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—— Abstract

We introduce a new graph problem, the token dropping game, and we show how to solve it efficiently

in a distributed setting. We use the token dropping game as a tool to design an efficient distributed
algorithm for the stable orientation problem, which is a special case of the more general locally
optimal semi-matching problem. The prior work by Czygrinow et al. (DISC 2012) finds a locally
optimal semi-matching in O(A®) rounds in graphs of maximum degree A, which directly implies
an algorithm with the same runtime for stable orientations. We improve the runtime to O(A*) for
stable orientations and prove a lower bound of Q(A) rounds.
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1 Introduction

In this work, we study efficient distributed algorithms for assignment problems. The task is
to assign each customer to one adjacent server, and the customers prefer servers with a low
load, i.e., few other customers. We are interested in finding a stable assignment, that is, an
assignment in which no customer has an incentive to unilaterally switch servers. The stable
assignment problem that we study here is also known as a locally optimal semi-matching,
and it was studied in the distributed setting by Czygrinow et al. [4].

Stable Orientations. We start by studying a restricted version of the problem, stable
orientation, which is the special case in which all customers can choose between two possible
servers — we will then see how the same ideas generalize also to the stable assignment problem.

We model this setting as the following graph problem: The task is to orient all edges.
We say that an oriented edge e = (u,v) is happy if indegree(v) < indegree(u) + 1, that is,
turning the orientation of e from (u,v) to (v,u) would not lower the indegree of the head of
edge e. An orientation is stable if all edges are happy, i.e., no customer has an incentive to
change his or her server.
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The intuition here is that if an edge e = {u, v} is oriented from wu to v, then customer e is
using server v. The load of a server is the total number of customers using it, i.e., its indegree.
Customers would like to use servers with a low load to maximize the quality of service. From
this viewpoint, a stable orientation corresponds to a game-theoretic equilibrium.

Model of Computing. We study the stable orientation problem and its generalizations in
the standard LOCAL [7] model of distributed computing.

State of the Art. By prior work [4], it is known that the problem can be solved in O(A®)
communication rounds in graphs of maximum degree A; note that the running time is
independent of the number of nodes.

2 Contributions

The main technical contribution is that we improve the distributed round complexity of
stable orientations from O(A®) to O(A%*). We also prove a lower bound of Q(A) for any
algorithm that finds a stable orientation.

New techniques. On a high level, we use the following new techniques to save time in
comparison with the prior algorithm:
In the prior work, one starts with an arbitrary orientation. This potentially creates a
large amount of unhappiness and resolving it takes a lot of time.
In our work, we iteratively orient edges more carefully, so that there is always at most
one unit of excess load per node.
We show that the carefully oriented edges have a nice structure and model this structure
by a new problem called the token dropping game. We show how to solve this problem
efficiently, that is, in O(A?) rounds.
We play token dropping with the excess load in order to resolve unhappiness. After O(A)
such iterations, all edges are happily oriented.

Token Dropping Game. The key new idea that we use to solve the orientation problem is
to introduce a new graph problem that we call the token dropping game. The input consists
of a graph in which the nodes are organized in layers, numbered from 0 to L. Some of the
nodes hold a token; a node can hold at most one token. The rules are simple:

Any token can move downwards from layer ¢ to layer £ — 1 along any edge to any node
that does not currently hold a token. Each edge can be used at most once.

Put otherwise, once an edge has been used to move a token, it is deleted. The task is to find
some possible sequence of token movements such that we reach a configuration in which no
token can be moved anymore, i.e., the only goal of this single-player game is to get stuck.

Our algorithm for this problem follows a simple proposal strategy. In every round, a
node that has no token, but is adjacent to a token in a higher layer, send a proposal to the
node with a token. A node that has a token accepts one proposal, and passes its token to
the proposing node. The main technical challenge is to show that this process terminates
quickly.
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Using Token Dropping to Find Stable Orientations. We show that the token dropping
problem can be solved in O(L - A?) rounds with a distributed algorithm; we also prove a
lower bound of (L 4+ A) rounds. We show that any algorithm that solves token dropping in
T(L,A) rounds can be used to find a stable orientation in O(A - T(A, A)) rounds. Plugging
in our algorithm for token dropping, we obtain an algorithm for finding a stable orientation
in O(A%) rounds, a factor-A improvement over the previous algorithm by [4]. In the full
version we also investigate generalizations and relaxations of stable orientations problem.

Discussion. This work is part of the ongoing effort of understanding the distributed com-
putational complexity of locally verifiable problems. In brief, these are problems in which
a solution is globally correct if it looks good in all constant-radius neighborhoods. Stable
orientations are by definition locally verifiable: if all edges are happy, the orientation is stable,
and the happiness of an edge only depends on the other edges adjacent to it.

Typically, the complexity of locally verifiable problems is studied as a function of two
parameters, the number of nodes n and the maximum degree A. In essence, these capture
two complementary notions of scalability: how does the complexity of finding a solution
increase when the input graph gets larger vs. when the input graph gets denser.

To study dependency on A, it is helpful to identify natural examples of graph problems
that can be solved in T'(A) rounds for some function T, independently of n. Key examples
of problems that can be solved in T'(A) rounds include maximal matching on bipartite
graphs [2,6], maximal fractional matching [1,5], and weak coloring in odd-degree graphs [3,8].
However, all of these problems have a complexity at most linear in A. Stable orientation is
perhaps one of the simplest locally verifiable graph problems that is known to be solvable in
T(A) rounds, but for which the current upper bound is superlinear in A.

In this work we take the first steps towards deriving tight bounds on the round complexity
of the stable orientation problem, with the long-term goal of showing that it indeed requires
w(A) rounds.
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