
Fast Agreement in Networks with Byzantine
Nodes
Bogdan S. Chlebus
School of Computer and Cyber Sciences, Augusta University, GA, USA

Dariusz R. Kowalski
School of Computer and Cyber Sciences, Augusta University, GA, USA
SWPS Uniwersytet Humanistycznospołeczny, Warsaw, Poland

Jan Olkowski
Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, Warsaw, Poland

Abstract
We study Consensus in synchronous networks with arbitrary connected topologies. Nodes may
be faulty, in the sense of either Byzantine or proneness to crashing. Let t denote a known upper
bound on the number of faulty nodes, and Ds denote a maximum diameter of a network obtained
by removing up to s nodes, assuming the network is (s + 1)-connected. We give an algorithm for
Consensus running in time t + D2t with nodes subject to Byzantine faults. We show that, for any
algorithm solving Consensus for Byzantine nodes, there is a network G and an execution of the
algorithm on this network that takes Ω(t + D2t) rounds. We give an algorithm solving Consensus in
t + Dt communication rounds with Byzantine nodes using authenticated messages of polynomial
size. We show that for any numbers t and d > 4, there exists a network G and an algorithm solving
Consensus with Byzantine nodes using authenticated messages in fewer than t + 3 rounds on G, but
all algorithms solving Consensus without message authentication require at least t + d rounds on G.
This separates Consensus with Byzantine nodes from Consensus with Byzantine nodes using message
authentication, with respect to asymptotic time performance in networks of arbitrary connected
topologies, which is unlike complete networks. Let f denote the number of failures actually occurring
in an execution and unknown to the nodes. We develop an algorithm solving Consensus against
crash failures and running in time O(f + Df ), assuming only that nodes know their names and can
differentiate among ports; this algorithm is also communication-efficient, by using messages of size
O(m log n), where n is the number of nodes and m is the number of edges. We give a lower bound
t + Dt − 2 on the running time of any deterministic solution to Consensus in (t + 1)-connected
networks, if t nodes may crash.
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1 Introduction

We consider distributed algorithms solving Consensus in synchronous networks of arbitrary
connected topologies. A network has n nodes, each with a unique name. Links connecting
nodes are reliable and can transmit messages in both directions. Nodes are prone to failures.
We want a distributed algorithm to produce an agreement on a common decision value across
the whole network. The feasibility of reaching agreement in a network with faulty nodes
depends on its connectivity properties, as showed by Dolev et al. [14]. We consider time
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30:2 Fast Agreement in Networks with Byzantine Nodes

performance of distributed and deterministic algorithms solving Consensus in such networks
for which Consensus solutions exist. The ultimate goal is to optimize time performance, but
next to minimize the initial knowledge of nodes and message size.

A network is (s+ 1)-connected if removing at most s nodes does not break it into multiple
connected components. We let Ds denote a maximum diameter of a network obtained by
removing up to s > 0 nodes, assuming the network is (s+ 1)-connected. An upper bound on
the number of faulty nodes is denoted either by t or by f . The difference is that t denotes
an upper bound on the number of faulty nodes that is known, in being usable in codes
of algorithms, while f is a number of faulty nodes actually occurring in an execution and
unknown. This convention extends to network properties determined by the numbers of
faults, with respect to either being known or unknown. In particular, properties depending
on t, like the magnitude of D2t, are known and can be a part of code, while properties
depending on f , like the magnitude of Df , are not known and cannot be referred to directly.

Bounds on the running time of Consensus solutions have been extensively studied in
complete networks. It was shown in [1, 20] that t+ 1 rounds are sufficient and necessary to
solve Consensus in the case of node crashes. The number of crashes f actually occurring
in an execution could be less than t. This leads to the postulate of early stopping, see [17],
which can be interpreted as scaling running time to the number of faults: we want all
nodes to decide and halt as early as possible, in a number of rounds that depends on f ,
and possibly on t as well. Early stopping was studied for complete networks under various
models of failures, see [7, 8, 17, 24, 28, 35]; it was established that min{f + 2, t+ 1} rounds
are sufficient and necessary for all the nodes to reach agreement and halt. We extend to
arbitrary connected topologies the concept of scalability of time of a Consensus algorithm to
the number of failures in an execution.

A summary of the results. We give an algorithm solving Consensus with Byzantine modes
in t+D2t rounds, which is presented in Section 3. The algorithm works under the assumption
that node degrees are greater than 3t. (In complete graphs, the condition on degrees to be
greater than 3t is equivalent to having t < n/3, which is necessary for solvability of Consensus
with Byzantine nodes in such networks.) We show that, for any algorithm solving Consensus
for Byzantine nodes, there is a network G and an execution of the algorithm on this network
that takes Ω(t+D2t) rounds, which is presented in Section 4. We give a Consensus solution
with Byzantine nodes using authentication of messages that runs in t+Dt rounds, in networks
with node degrees at least 2t and using messages of size polynomial in n, see Section 5. We
show that, for any t and d > 4, there exists a network G and an algorithm solving Consensus
with Byzantine nodes using authenticated messages in fewer than t+3 rounds on G, but every
algorithm solving Consensus without message authentication requires at least t+d rounds on
this network. This separates the model of networks with Byzantine nodes from the model with
Byzantine nodes using message authentication, with respect to asymptotic time performance
of Consensus solutions in networks of suitably connected topologies; such a difference does
not hold for complete networks. We develop an early-stopping algorithm solving Consensus
against crash failures and running in time O(f +Df ), where nodes know their names and can
differentiate among ports, see Section 6. This algorithm is communication-efficient, in that
nodes use messages of O(m logn) size, where n is the number of nodes and m is the number
of edges. We give a lower bound t+Dt− 2 on the running time of any deterministic solution
to Consensus in (t+ 1)-connected networks, if up to t nodes may crash, see Section 7. Our
algorithms for Consensus with Byzantine nodes and Consensus with Byzantine nodes along
with message authentication rely only on nodes knowing their names and the parameters
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t and also either the bound Dt or D2t, unlike previously known solutions in these models,
which assumed knowledge of the whole network’s topology. The results of this paper, along
with some other relevant facts, are summarized in Table 1.

Table 1 A summary of algorithms and lower bounds. The meaning of notations is as follows:
letter n denotes the number of nodes, m is the number of links, t denotes a known upper bound on
the number of faulty nodes, and f an actual number of node failures in an execution. The asterisk ∗
marks the contributions of this paper.

model algorithm time
performance

message
size connectivity remarks lower bound

on time

Byzantine
faults

Dolev et al. [14] t ·D2t O(n5) 2t + 1 topology
is known

-

Fast-
Byzantine
Section 3 ∗

t + D2t

∗ exponential 2t + 1
node degrees ≥ 3t

D2t is known
Ω(t + D2t)
Section 4 ∗

Byzantine
local broadcast

Khan et al [25] exponential exponential
⌊

3
2 t

⌋
+ 1 node degrees ≥ 2t

is necessary
-

Khan et al. [25] O(n) exponential 2t - -

Byzantine
message

authentication

Bansal et al. [4] - - - topology is known
monitoring model

-

Fast-
Authenticated

Section 5 ∗

t + Dt

∗

polynomial
in n

∗
t + 1

node degrees ≥ 2t

Dt is known
t + Dt − 2
∗

crash
failures

Early-Stopping
-Crashes
Section 6 ∗

O(f + Df + 3)
∗

O(m log n)
∗ f + 1

f actual number
of failures

f , Df not known

f + Df − 2
Section 7 ∗

Previous and related work. Consensus has been among most popular algorithmic problems
studied in distributed systems and communication networks, see [3, 23, 27, 30]. The problem
of distributed agreement in systems prone to faults was first considered by Pease at al. [29],
Dolev [14] and Lamport et al. [26]. Pease at al. [29] proposed an algorithm for Byzantine
faults that has nodes share all their information acquired over time, known as “exponential
information gathering,” with a further modification given by Bar-Noy et al. [5]. This
approach to algorithm design requires nodes to send exponentially long messages and process
an exponential amount of information, in the number of nodes n. Pease at al. [29] and
Lamport et al. [26] considered reaching agreement with Byzantine faults in message-passing
systems with authenticated messages. Dolev and Strong [18] gave a simple algorithm for
Byzantine nodes with authentication of messages; Sirikanth and Toueg [31] showed how to
implement that algorithm in the model of Byzantine faults and local broadcast, in which
every node sends identical messages to every neighbor in each round.

A bound t < n/3 on the number of Byzantine nodes t was shown to be necessary for
solvability of Consensus by Pease at al. [29], Dolev [14] and Lamport et al. [26]. Fisher
and Lynch [19] proved a lower bound t+ 1 on the number of communication rounds, which
holds for crashes. Dolev and Reischuk [16] gave a lower bound Ω(nt) on the number of
communication bits necessary to solve Consensus with Byzantine faults, which becomes Ω(n2)
if the number of Byzantine nodes satisfies t = Ω(n). Methods to show impossibilities and
lower bounds for distributed-computing problems, including reaching distributed agreement,
are reviewed in [2]. Garay and Moses [22] showed how to reach agreement with a polynomial
number of communication bits and a polynomial local computation, subject only to the
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bound of t < n/3 on the number of Byzantine nodes while staying within t+1 communication
rounds. Next, we review previous work on distributed agreement solutions that scale well
with respect to performance metrics. We consider an algorithm scaling its running time well
if it is either fast, by running in time O(t+ 1), or early stopping, by running in time O(f + 1).
Berman and Garay [6] developed an algorithm for Byzantine faults which uses messages
carrying just one input value, so a message is of constant size if the range of input values is
of constant size; the algorithm works for t < n/4. Galil et al. [21] developed an algorithm for
crashes using O(n) messages, thus showing that this number of messages is optimal; this
algorithm runs in over-linear time O(n1+ε), for a parameter 0 < ε < 1; that paper gave an
early-stopping algorithm of message complexity O(n+ fnε), for any 0 < ε < 1. Chlebus and
Kowalski [9] developed a gossiping algorithm coping with crashes and applied it to develop
a fast solution to Consensus which sends O(n log2 t) messages, provided that n− t = Ω(n).
Chlebus and Kowalski [10] developed a deterministic algorithm which is early-stopping and
globally scales communication by sending O(n log5 n) messages. Chlebus at al. [12] gave
a fast deterministic Consensus algorithm that sends O(n log4 n) bits, and showed that no
deterministic Consensus algorithm can be locally scalable with respect to message complexity.
Chlebus and Kowalski [11] gave a randomized Consensus solution terminating in O(logn)
expected time, while the expected number of bits that each process sends and receives against
oblivious adversaries is O(logn), assuming that a bound t on the number of crashes is a
constant fraction of the number of nodes n. Dolev and Lenzen [15] showed that any crash-
resilient Consensus algorithm deciding in f + 1 rounds has worst-case message complexity
Ω(n2f). Chlebus et al. [13] gave a scalable quantum algorithm to solve binary Consensus, in
a system of n crash-prone quantum processes, which works in O(polylog n) time sending
O(n polylog n) qubits against the adaptive adversary.

Here is a brief review of previous work on reaching agreement in networks beyond the
complete network topologies. The following assumptions about networks and distribution of
faults were shown to be necessary and sufficient for solvability of the problem: for Byzantine
nodes, networks need to be (2f + 1)-connected with the number of faulty nodes less than n/3,
while for Byzantine nodes with authentication of messages and for crash failures they need to
be (f + 1)-connected, see [3, 27]. Dolev [14] showed that solving Consensus with t Byzantine
nodes requires at least 3t+ 1 nodes in total and network connectivity at least (2t+ 1); see
also [20]; that paper [14] gave an algorithm relying on knowing the network’s topology and
solving Consensus in any network satisfying these conditions. Khan at al. [25] considered
Consensus in networks in the local-broadcast model, in which every node sends the same
message to every neighbor in a round, including Byzantine nodes. They showed that in
order for Consensus to be solvable in that model, a network needs to be connected and with
each node’s degree of at least 2t. Their algorithms rely on knowing a network’s topology;
one algorithm has an exponential running time, and another has O(n) running time, in
networks that are 2f -connected. Bansai et al. [4] considered Consensus in arbitrary networks
with Byzantine faults such that nodes can authenticate messages, subject to allowing an
adversary to monitor up to k nodes to forge their messages; the paper gave tight conditions on
network connectivity referring to the values of t and k to make Consensus solvable, assuming
additionally that the network’s topology is known. Tseng and Vaidya [33] studied solvability
of Consensus in networks with Byzantine nodes and uni-directional links; such networks are
modeled as directed graphs. Surveys of related work on reaching distributed agreement are
given in [32, 34].



B. S. Chlebus, D. R. Kowalski, and J. Olkowski 30:5

2 Preliminaries

A distributed system is modeled as a simple graph, in which vertices represent nodes and
edges represent bi-directional links connecting pairs of nodes. We use letter n to denote the
number of vertices and letter m for the number of edges. A graph G is (s+ 1)-connected if
removing up to s nodes from G does not produce a subgraph of G with at least two connected
components. For an (s+ 1)-connected graph G, the notation D(G, s), for an integer s > 0,
denotes the s-diameter of G, which is a maximum diameter of a graph obtained by removing
s nodes from G. If an (s+ 1)-connected graph G is understood from context, then we use
the notation Ds for D(G, s).

Networks are synchronous, in that an execution of a communication algorithm is par-
titioned into global rounds; an execution starts for all nodes at the same round. During a
round, a node may send messages to all neighbors, including itself, and receive all messages
sent to it in this round. Links are considered fully reliable, in that no messages are lost,
duplicated, nor otherwise modified or corrupted.

Nodes are prone to failures. A node crashes at a round when it stops all activity beyond
this round and never resumes it again in an execution; some messages sent by a node in a
round it crashes may be delivered. A node fault is arbitrary or Byzantine if the node may
undergo arbitrary state transitions in an execution.

We say that a network is equipped with a mechanism to authenticate messages if a
copy of a message received by a node can be embedded in its future messages such that
the authenticity of the contents of the included copy can be verified beyond doubt. We
abstract from a mechanism to implement authentication of messages, simply assuming that
it is available to every node in a network. If Byzantine faults of nodes are combined with
authentication of messages, this is understood such that faulty nodes cannot forge messages,
which imposes a restriction on how “arbitrary” their state transitions can be.

In the problem of Consensus, each node p is given an input value denoted inputp. We
say that a node decides on a value x if it sets a dedicated private variable to this value x;
such a decision is considered irrevocable in an execution. Informally, the goal for all nodes
is to eventually decide on one common value. We use standard specifications of Consensus
expressed as agreement, validity, and termination, depending on the kind of faults, which are
either Byzantine or crashes; see [3, 27, 30].

Our algorithms are deterministic and their performance is measured in the worst-case
sense. One performance metric is time, understood as a number of communication rounds
until termination. Another performance metric is message size, meant to be an upper bound
on the number of bits a node transmits to a neighbor in a round.

We say that some aspect of a distributed system is known if nodes can use it in the code
of an algorithm. Each node is equipped with a unique name, which it knows. We assume a
name can be encoded by O(logn) bits if transmitted in messages. A node communicates
with its neighbors by transmitting messages via ports, one port per neighbor. Ports at a
node are distinguishable in the following sense: if a node wants to send a message then it
can specify by which port the message is to be transmitted, and if a node receives a message
then the node can identify which port delivered the message.

Letter t denotes a known upper bound on the number of faulty nodes; if an algorithm
refers to t then its correctness needs to hold only in executions in which up to t nodes
are faulty. Letter f denotes a number of faults actually occurring in an execution; this
parameter f is not known. By analogy, if we refer to network parameters like Dt or Df then
Dt is assumed to be known but Df is not assumed to be known. If nodes only know their
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names and can distinguish ports then this is the model of minimal knowledge. We say that a
node knows its neighbors if it can map ports on the names of nodes that receive messages
transmitted via each of these ports. If neighbors are not initially known, then this can be
discovered by having every node send its name to every neighbor, which takes one round but
contributes O(m logn) bits to total communication.

3 Fast Byzantine Consensus

We present a distributed algorithm Fast-Byzantine solving Consensus in arbitrary networks
with Byzantine node faults in asymptotically-optimal time. Consensus in arbitrary networks
with bi-directional links was already studied by Lamport et al. [26] and Dolev in [14]. These
papers concentrated on solvability of Consensus, as determined by network’s connectivity,
and did not attempt to optimize time and communication performance; most importantly,
they gave algorithms relying on knowing network’s topology. We propose an approach to
solve Consensus in a deterministic and distributed manner that does not require knowing
network’s topology, and works assuming sufficiently strong connectivity, while each node’s
degree is at least 3t. We use a paradigm to solve Consensus in complete networks with
Byzantine nodes, which is known as “exponential information gathering,” see [5, 29]. An
execution is partitioned into two parts. In the first part, which takes t+1 rounds, information
is exchanged among the nodes. In a round i, nodes store the information gained so far in a a
tree of height i. Leaves store the input value that passes trough subsequent nodes with names
belonging to the path from the root to a respective leaf. When the first part is over, the
trees have height t+ 1. In the second part, the tree is evaluated from the lowest level to the
highest one by a local computation in each node such that the value at the root represents a
decision. We divide executions of our algorithm into four stages, described next, referring to
notations used in the pseudocode of the algorithm Fast-Byzantine given in Algorithm 1.
All non-faulty nodes communicate by sending messages of the format (p1p2 . . . pi,W ), which
is an ordered pair such that p1, p2, . . . , pi is a sequence of names of nodes that forwarded W
from p1 through pi. A message of this format is well-formed if all node names in the sequence
p1, p2, . . . , pi are distinct.

The initialization stage. This stage initializes variables Paths[i] representing sets and is
performed in the very beginning of the first round. Each set Paths[i] at p, for 2 ≤ i ≤ t+ 1,
will store well-formed pairs (s1s2 . . . si−1si,W ), where si = p. The set Paths[1] at node p
is initialized to one ordered pair, which has a single-vertex path p as the first component
and the input value inputp of node p as the second component. The sets Paths[i], for
2 ≤ i ≤ t+ 1, are initialized to an empty set each.

The local authorization stage. In this stage, nodes work to deliver their input values to
other nodes at distance at most t. A node p considers only messages that passed through t+1
different nodes, including itself at the end: these are pairs of the form (s1s2 . . . st+1,W ) with
all distinct vertices on the path. To collect such pairs, each node tries to propagate its input
value along paths of length t+ 1: each node forwards all the received messages it considers
legitimate to its neighbors during t consecutive rounds. More precisely, whenever a node p
receives a pair (s1s2 . . . si−1,W ) at round i− 1, then it checks two conditions: (1) did the
last node on the path si−1 send the message, and (2) is the path s1s2 . . . si−1, p well-formed.
If both conditions are met, node p forwards the pair (s1s2 . . . si−1, p,W ) to its neighbors in
the next round. An upper bound 3t on a node’s degree ensures that each non-faulty node
can propagate its input value in a verifiable manner to other nodes via sufficiently many
well-formed sequences of nodes.
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Algorithm 1 A pseudocode of algorithm Fast-Byzantine for a node p, structured into four
stages. A pseudocode of procedure Deliver is in Algorithm 2. Variable Leaves[q] stores paths of
nodes, each path starting with node q.

algorithm Fast-Byzantine

initialization
1. initialize Paths[1] = {(p̄, input)}
2. initialize Paths[2], . . . , Paths[t+ 1] as empty sets

local authorization
3. for i← 1 to t do

a. send Paths[i] to each neighbor
b. foreach neighbor q do

i. receive Pathsq[i] from q

ii. foreach (s1s2 . . . si,W ) in Pathsq[i] do
if si = q and (s1s2 . . . sip,W ) is well-formed \\ q is just before p on the path

add (s1s2 . . . sip,W ) to Paths[i+ 1]

global communication
4. (Nodes,M1, . . . ,M|Nodes|)← Deliver(Paths[t+ 1])
5. foreach q in Nodes do

a. construct set Leaves[q] based on sets of paths M1, . . . ,M|Nodes|.

local computation
6. foreach q in Nodes do

a. construct Tree[q] based on the set Leaves[q]
b. for i← t to 1 do \\ evaluation of tree for node q

i. foreach vertex s1s2 . . . si of Tree[q] do
A. if s1s2 . . . si is active then

set resolve(s1s2 . . . si) to majority among values resolve(s1s2 . . . sisi+1)
such that s1s2 . . . sisi+1 is an active vertex of Tree[q]

B. else resolve(s1s2 . . . si)←⊥
7. decision← the majority among values resolve(Tree[q].root) for q in Nodes

The global communication stage. In this stage, each node p tries to propagate all legitimate
messages it has accumulated in the previous stage to all other nodes in the network. To this
end, node p invokes procedure Deliver, which returns a set Nodes of nodes that p heard
from along with sets M1, . . . ,M|Nodes| that node p could validate as information they wanted
to propagate. Node p discovers what a node q in Nodes wants to send by working with a set
of paths of nodes traversed by messages that start at node q and arrive at p after suitable
forwards. This stage begins by invoking procedure Deliver, which has its pseudocode in
Algorithm 2. It takes a node’s name and the information to be sent as parameters, and
returns a set Nodes of names of nodes along with the information that these nodes wanted
to propagate. In order to achieve this, nodes work to propagate messages between any two
non-faulty nodes trough all possible paths of length D2t: in consecutive D2t rounds, each
node propagates all received valid paths, by first appending its name at the end of a received
path to form a new path. The assumed connectivity 2t+ 1 ensures that at least t+ 1 paths
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Algorithm 2 A pseudocode of procedure Deliver for a node p. Parameter I denotes information
to be sent. Variable Mq stores paths of nodes, each ending with node q. Variable Relay denotes a set
of pairs received from neighbors to be forwarded. An element (s1s2 . . . q, W ) in Relay is considered
confirmed if there are at least t + 1 received pairs such that all the pairs carry value W and the
paths by which they reached node p are disjoint, except for the endpoints s1 and p.

procedure Deliver (I)

1. initialize sets Relay← {(p, I)} ; Nodes← ∅
2. for i← 1 to D2t do

a. foreach x in Relay do send x to each neighbor unless x was already sent
b. foreach neighbor q do

i. foreach (s1s2 . . . si,W ) received from q do
A. if si = q and (s1s2 . . . sip,W ) is well-formed \\ q is last node on received path

then add (s1s2 . . . sip,W ) to Relay
3. foreach confirmed (s1s2 . . . sk,W ) in Relay do

add s1 to set Nodes ; assign Ms1 ←W

4. return (Nodes,M1, . . . ,M|Nodes|)

are free of faulty nodes. Thus, the information the other node q wanted to propagate could
be computed by node p by considering the maximum set of received disjoint paths starting
at q with the same propagated value, with at least t+ 1 such disjoint paths. A node p that
received (s1s2 . . . q,W ) from a neighbor considers W a confirmed value from s1 if there are
at least t+ 1 pairs received from neighbors such that all the pairs carry value W and the
paths by which they reached node p are disjoint, except for the endpoints s1 and p. When
the global communication stage is over, then each node p wants to store a record of the
preceding communication about all nodes q in the set Leaves[q], such that the input value
of q could be retrieved from this set. This is indeed doable in non-faulty nodes q.

The local computation stage. For a node q in Nodes, we treat paths in the set Leaves[q]
as leaves of a tree. More precisely, these are paths of the form s1s2 . . . st+1 such that a pair
(s1s2 . . . st+1, ?) is in Leaves[q], where notation ? is a wildcard character. The tree for a
node q in Nodes is denoted Tree[q] and referred to as the tree for q. If a sequence x is a
prefix of a sequence y then we say that a vertex x is a ancestor of a vertex y and y is a
descendant of x; immediate ancestors and descendants are parents and children. Vertex q is
a root of tree Tree[q], denoted Tree[q].root. The property to be an active vertex is defined
recursively as follows: each leaf is active and a vertex with at least t+1 active children is such
as well. Node p associates a value resolve(s1s2 . . . sk) with each vertex s1s2 . . . sk of tree
Tree[q]. This is a unique value such that node p believes node sk received it from node sk−1,
who received this value from node sk−2, who in turn received the value from node sk−3, and
so on. A systematic approach to compute resolve values is as follows. If s1s2 . . . st+1 is a
leaf then resolve(s1s2 . . . st+1) equals W taken from the pair (s1s2 . . . st+1,W ) in the set
Leaves[q]. The value of resolve for an inner node is the majority of values resolve of its
children. Finally, a node determines the input value of a node q to resolve(Tree[q].root).
A node decides on the majority of the input values of all nodes q in Nodes.

I Theorem 1. Algorithm Fast-Byzantine solves Byzantine Agreement in t+D2t commu-
nication rounds, provided n > 3t.
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Figure 1 A visualization of graph Gt,`. The parameter t is an upper bound on the number of
faulty nodes, while the parameter ` denotes a number of cliques in the sets C and D. An edge
between either two cliques or a node and a clique indicates that every node at one end is connected
with all nodes at the other end.

4 A Lower Bound for Byzantine Faults

In this section, we present a lower bound on time performance of algorithms solving Consensus
with Byzantine nodes. The performance of algorithm Fast-Byzantine from Section 3
matches this lower bound. This shows that the parameter D(G, 2t) of a network G captures
time-optimality of algorithms solving Consensus with Byzantine faults of nodes in networks
of general topologies. Let Gt,` denote a graph with topology as depicted in Figure 1. Its
nodes are partitioned into four sets A,B,C,D. Each of the two sets A and B has t elements:
A = {a1, . . . , at} and B = {b1, . . . , bt}. The set C is partitioned into ` disjoint subsets,
denoted by c1, . . . , c`, each of 2t nodes, and analogously, the set D is also partitioned into `
disjoint subsets, denoted by d1, . . . , d`, each of 2t nodes. The edges of the graph are defined
as follows:

for every i such that 1 ≤ i ≤ `, all pairs of nodes in ci are connected to produce a clique,
and all nodes in di are connected to produce a clique;
for every i such that 1 ≤ i ≤ `− 1, every node in ci is connected to all nodes in ci+1, and
every node in di are connected with all nodes in di+1;
every node in clique c` is connected with all nodes in clique d`;
for every i such that 1 ≤ i ≤ `, node ai and node bi is connected with all nodes in C ∪D.

Graph Gt,` is 2t+ 1 connected, the parameter D(Gt,`, t) of such a graph equals 2, regardless
of t and `, while D(Gt,`, 2t) equals 2`, regardless of t.

I Lemma 2. For every deterministic algorithm solving Consensus with at most t Byzantine
nodes and for every ` ≥ t, there exists an execution of the algorithm on some graph Gt,` with
t faulty nodes that takes more than ` rounds.

I Theorem 3. For every t ≥ 1 and ` ≥ 1 and any algorithm A solving Consensus in networks
with Byzantine faults there is a network G such that ` ≥ D(G, 2t)/2 and an execution of
algorithm A on this network G, with some t faulty nodes, that takes more than (t + `)/2
rounds to terminate.

Proof. We consider two cases: either t ≥ ` or t < `. If t > `, then we take a a clique of
3t + 1 nodes as G. A graph obtained from G by removing some 2t nodes has diameter 1,
so that D(G, 2t) = 1 ≤ `. Any algorithm requires at least t+ 1 rounds to solve Consensus
in this G with t faulty nodes, see [19]. Observe that (t+ `)/2 ≤ t < t+ 1. If t ≤ ` then we
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take graph Gt,` as G. We rely on the property D(G, 2t) = 2`, which follows by inspection of
the topology of G. By Lemma 2, some execution of algorithm A takes at least `+ 1 rounds.
Observe that (t+ `)/2 ≤ ` < `+ 1. J

5 Fast Authenticated Consensus

We show a separation of the Consensus problem with Byzantine nodes from its version with
the same model augmented by authentication of messages. The last part of this section
discusses a class of graphs in which time performance of algorithm solving Consensus can
be greater, by an arbitrarily large amount, than time performance of an algorithm solving
Consensus when supported by authentication of messages, subject to a given number of
Byzantine faults.

We use the concept ot authentication as originally proposed by Pease et al. [29]. It
assumes the existence of authenticators and an oracle creating such authenticators. The
authenticator of data d calculated at a node p will be denoted Ap[d]. It is considered infeasible
for a node q different from p to be able to forge Ap[d]. At the same time, each node should
be able to check if d = Ap[d] for any other node p. Algorithm Fast-Authenticated has
its pseudocode in Algorithm 3. In local authorizing stage the node p tries to make exchange
of input values dependable. An input value becomes reliable if passes through a well-formed
path of length exactly f+1. In order to accomplish this, nodes authenticate received messages
and send it to all neighbors in the next round. To avoid exponential message complexity,
nodes keep at most one message from every non-faulty source and at most two messages
from every node that decided to equivocate. Then the node p analyses the knowledge that it
receives in the previous stage and determines a decision.

The algorithm works in four stages. All messages sent by non-faulty nodes are of the
following format: (pi, ai, (pi−1, ai−1, . . . (p1, a1, v) . . .)), where the node p1 is the original
source of the transmitted value v. The nodes pi, . . . , p1 are the ones that propagated
the message in consecutive rounds. The value aj is the authenticator of the message
(pj−1, aj−1, (pj−2, aj−2, . . . (p1, a1, v) . . .)), for 2 ≤ j ≤ i, while the value a1 is the authen-
ticator of value v. This format ensures, that consecutive nodes that propagated the mes-
sage could not fabricate value v. If all nodes p1 . . . pi are different, then the message
(pi, ai, (pi−1, ai−1, . . . (p1, a1, v) . . .)) is well-formed. Non-faulty nodes in a network need to
exchange messages. If messages can be authenticated, then network connectivity is the main
constraint. Assuming (f + 1)-connectivity allows for all non-faulty nodes to communicate
in principle without faulty nodes interfering. Procedure Send-To-All implements such
communication, its pseudocode is in Algorithm 4. We assume an authentication mechanism
with an overhead of a polynomial number of bits per authenticated message. This allows
achieving O(|M |n2 logn) message-size complexity, which is polynomial in n, where |M |
denotes an upper bound on the number of bits in an authenticated input value.

The local authorizing stage. The nodes work to disseminate the inputs dependably. The
mechanism of authentication prevents forging messages, but this does not provide consistency
of knowledge about inputs of faulty nodes. To handle this, nodes do not disseminate their
input values directly, but instead work also to validate knowledge of their inputs. A validation
is provided by passing information through a path of f + 1 different nodes. - Such a path
contains at least one non-faulty node, which guarantees that later the node spreads the
value reliably among other non-faulty nodes. We require each node on this path to confirm
forwarding the message.
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Algorithm 3 A pseudocode of algorithm Fast-Authenticated for a node p structured into four
stages. Procedure Send-To-All has its pseudocode in Algorithm 4.

algorithm Fast-Authenticated

initialization
1. initialize set ReceivedMessages[1] = {(p, input, Ap[input])}
2. initialize ReceivedMessages[2], . . . , ReceivedMessages[f + 1] to empty sets

local authorization
3. for i← 1 to f do

a. initialize mapping Inputs to empty
b. send ReceivedMessages[i] to each neighbor
c. foreach neighbor q do

i. Let ReceivedMessages[i]q be the set of messages received from the node q
ii. foreach well-formed message (pi, ai, (pi−1, ai−2, . . . (p1, a1, v) . . .)) received from q

and such that p /∈ {p1, . . . , pi} do
if a1 = Ap1 [v] and aj = Apj [(pj−1, aj−1, . . . (p1, a1, v) . . .))] for all 2 ≤ j ≤ i

encrypted-message←
(p, (pi, ai, (pi−1, ai−1, . . . (p1, a1, v) . . .)), Ap[(pi, ai, (pi−1, ai−1, . . . (p1, a1, v) . . .))])
if Inputs[p1] = ∅ \\ this is the first message from the node pk

ReceivedMessages[i+ 1]← encrypted-message, Inputs[p1]← v

elseif Inputs[p1] 6= v \\ message does not match the previous one
ReceivedMessages[i+ 1]← encrypted-message, Inputs[p1]←⊥

global communication
4. {Nodes,M1, . . . ,M|Nodes|} ← Send-To-All(p, ReceivedMessage[f + 1])

local computation
5. set map Inputs to empty ; set Inputs[p]← input
6. foreach (pf+1, af+1, (pf , af , . . . (p1, a1, v) . . .)) ∈ di∈NodesMi do

if a1 = Ap1 [v] and ai = Api
[(pi−1, ai−1, . . . (p1, a1, v) . . .))] : 2 ≤ i ≤ f + 1

if Inputs[p1] = ∅ then Inputs[p1]← v

elseif Inputs[p1] 6= v then Inputs[p1]←⊥
7. decide on the majority of {Inputs[q] : Inputs[q] 6=⊥}

The mechanism given above takes f rounds. A node pmaintains sets ReceivedMessages[i],
for 1 ≤ i ≤ f + 1, with the messages received after rounds 0, 1, · · · , f respectively. In a
round i, the node p sends the set ReceivedMessages[i] to its neighbors. Consider a genuine
message (pi, ai, (pi−1, ai−2, . . . (p1, a1, v) . . .)) received by a node p in round i. The message
is processed as follows: if node p has marked the node p1 as faulty, it skips the message; if in
this round the node p has not received yet a message carrying the p1’s input value, it adds the
message to the set ReceivedMessages[i+ 1]; if the node p has received a message carrying
the p1’s input value before, but the new value does not match the old one, it still adds the
message to the set ReceivedMessages[i + 1], but also marks the node p1 as a faulty one
(indicated by symbol ⊥ in the pseudocodes); otherwise node p omitts the message. In case of
adding the message to the set ReceivedMessages[i+ 1], node p confirms the authenticity of
communication by adding its name to the list of nodes traversed by the forwarded message
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Algorithm 4 A pseudocode of procedure Send-To-All for a node p. The variable m denotes the
information to be sent. The node p checks the genuine of an message by verifying the authenticator
of the sender.

procedure Send-To-All(p,m)

1. initialize set ReceivedMessages← {m}
2. for i← 1 to Df do

a. EncryptedMessages← {(p,Ap[v], v) : v ∈ ReceivedMessages}
b. send EncryptedMessages to each neighbor
c. foreach neighbor q do

foreach (p1, a1, (p2, a2, . . . (pk, ak, v) . . .)) received from q do
\\checking if the message is genuine

if ak = Apk
[v] and ai = Api

[(pi+1, ai+1, . . . (pk, ak, v) . . .))] : 1 ≤ i ≤ k − 1
and pk /∈ Nodes then
A. add (p1, a1, (p2, a2, . . . (pk, ak, v) . . .))) to ReceivedMessages
B. add pk to Nodes
C. Mpk

← v

3. return (Nodes,M1, . . . ,M|Nodes|)

and authenticating it. If a node p adheres to this scheme of communication, then it stores in
each round at most one message from a non-faulty node and at most two messages from a
faulty node. This gives a polynomial bits complexity for this stage.

The global communication stage. Once nonfaulty nodes deliver their input values depend-
ably to all other nodes, by executing the previous stage, the messages containing input values
are scattered among the network nodes. To distribute the information among all nodes,
the nodes perform an all-to-all communication procedure called Send-To-All. It takes
a node’s name and the information to be sent as parameters, and returns the set Nodes
of the names of the other nodes together with the information the nodes from set Nodes
wanted to propagate; in the case of Byzantine nodes, such a message may be missing. During
the following Df rounds, each node sends its entire knowledge to all the neighbors, using
messages that can be verified for their authenticity. A node that obtains a message from a
neighbor, verifies if the message is authentic. If this is the case, then the recipient learns new
knowledge by adding it to its private repository. Such knowledge includes, for each node that
has been learned about, the input value of each node along with the path that this piece of
knowledge traversed from its originator node.

The local computation stage. Once the global communication stage is over, the information
about input values is distributed among the non-faulty nodes. Each non faulty node
authenticate all received messages. Based on all received authenticated messages, a node p
discovers input values of another node q. This information is stored array Inputp[q]. It may
occur that two different input values of the same node q appear even after authenticating
messages. Each node that sent such ambiguous information is considered as faulty by the
node p. Once this is detected, the corresponding value in the set Inputp[q] is set to a special
symbol ⊥. The decision at node p is made on a majority from the values in the array Inputsp
that are different from ⊥.
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I Theorem 4. Algorithm Fast-Authenticated solves Consensus with authenticated mes-
sages in f +Df communication rounds while using messages with a polynomial number of
authenticators and a polynomial number of auxiliary bits.

The following corollary combines Theorem 3 from Section 4 with properties of algo-
rithm Fast-Authenticated to establish a separation between Byzantine Agreement and
Authenticated Byzantine Agreement based on time performance.

I Corollary 5. For every d ≥ f ≥ 4 there exists a (2f + 1)-connected graph G on which
solving Consensus in the presence of at most f Byzantine nodes requires at least d rounds,
while solving Consensus with authenticated messages in the presence of at most f Byzantine
nodes is possible within f + 2 rounds.

6 Early Stopping for Node Crashes

We propose an algorithm that is more efficient in terms of message size than algorithm
Fast-Authenticated, assuming nodes are only prone to crashes. We give a Consensus
algorithm that operates in time proportional to f +Df , it uses messages of size O(m logn),
and relies on limited initial knowledge of nodes. Each node knows only its own name and
could locally distinguish ports; in particular, knowing either f +Df or n is not assumed.

The algorithm is structured into three stages: discovery, testing and deciding. An
execution starts with discovering the neighbors in one round. It is followed by the stage of
testing, which is the main part of the algorithm, and completed by the stage of deciding.
The algorithm is called Early-Stopping-Crashes, its pseudocode is given in Algorithm 5.

Algorithm 5 A pseudocode of algorithms Early-Stopping-Crashes for a node p . The
pseudocode of procedure Send-And-Receive is in Algorithm 6. The main while loop implements
testing and deciding. The variable Grasp represents the state of a node. The variable Inputs is the
set of input values known to the node, and max(Inputs) is the maximum value in this set. The
variable Faulty stores the set of crashed nodes known to p.

algorithm Early-Stopping-Crashes

1. tentative← null, Inputs← {inputp}, Faulty← ∅, Grasp← ∅, i← 1
2. for each port do

send message with namep to each neighbor
if nameq received through this port then assign nameq to this port

3. while tentative = null do
a. j ← 1, checkpoint← i, previousInputs← Inputs, previousFaulty← Faulty
b. while (tentative = null) and (j < 2(checkpoint + 1))

and (|Faulty \ PreviousFaulty| < checkpoint)
and (for every inputq ∈ Input \ Faulty : (q, ?, ?, j) ∈ Grasp ) do

set (i, Inputs, Faulty, Grasp, tentative) to the output returned by
Send-And-Receive(v, i, Inputs, Faulty, Grasp, tentative)

j ← j + 1
c. if j = 2(checkpoint + 1) and (tentative = null) then tentative← max(Inputs)

4. send tentative to each neighbor as the decision
5. decide on tentative

In the beginning, each node initiates its variables by instruction (1.) in the pseudocode.
The variable Inputs stores the set of the known input values represented as pairs of a node’s
name and the input value of this node. Initially it contains the input value of the node. If a
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node knows an input value of some other node, then this is a correct value, because nodes
are prone to crashes only. The variable Faulty stores nodes that are known to have crashed.
These are nodes from whom some of their neighbors failed to receive a message in some
round, and this information has been forwarded to other nodes in the network. A set Grasp
is a digest of current knowledge. It is exchanged among neighbors until it stabilizes. More
precisely, the set Grasp at node p consists of tuples (q, Inputs, Faulty, i), each interpreted
such that p has learned the set of input values Inputs and crashed nodes Faulty as known
by q at the end of round i. Here q is a node’s name, which could be also p, while Inputs
and Faulty contain the content of these variables taken at the end of round i.

The stage of discovery is implemented by instruction (2.) of the pseudocode given in
Algorithm 5. It consists of sending a node’s name to all neighbors and collecting their names
in return to assign neighbors’ names to ports. Testing occurs in instruction (3.) and is
structured as a loop. The stage of deciding begins in instruction (3c.) and continues through
the last two lines of the pseudocode in Algorithm 5.

Algorithm 6 A pseudocode of procedure Send-And-Receive for a node p. It implements
communicating the essential components of its state in a round to all the neighbors and updating
the state by collecting similar information from the neighbors. Letter i denotes the current round
number.

procedure Send-And-Receive (p, i, Inputs, Faulty, Grasp, decision)

1. i← i+ 1 ; add a tuple (p, Inputs, Faulty, i− 1) to set Grasp
2. send message with Grasp to each neighbor of p
3. for each neighbor q of p do

a. if p received message Graspq from q then
for each tuple (r, Inputsr, Faultyr, ir) from Graspq do

Inputs← Inputs ∪ Inputsr
Faulty← Faulty ∪ Faultyr

add each tuple in Graspq to Grasp
b. if p received message with decisionq from q then

decision← decisionq
c. if p did not received anything from q then

add node q to set Faulty
4. return (i, Inputs, Faulty, Grasp, decision)

The conditions controlling the testing loop (3.) allow for the next iteration if we have
not heard from a neighbor about its decision yet and if the set Inputs has not just been
updated and if the current estimate of the number of crashes is less than checkpoint. When
a new testing phase begins at a round checkpoint, a node starts monitoring the changes
of its Grasp in the subsequent period of 2(checkpoint + 1) rounds spent on executing the
inner loop (3b.). If it finds too many changes in Grasp in the course of this testing period, it
aborts this testing phase and starts a new one with an updated Grasp. Otherwise, if a node
considers Grasp stable enough at this point, it decides on the maximum of the known input
values, broadcasts its decision value to its neighbors and halts, which is what makes the
stage of deciding. Similarly, if a node receives a decision value, it decides on it, broadcasts it
to its neighbors and halts.

What a node tests is if its set Grasp is stable enough to make a decision. It does this
in subsequent testing phases. Suppose that a node starts a new testing phase in round
checkpoint. Then, in the course of 2(checkpoint + 1) following rounds, a node observes
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Figure 2 A visualization of graph Gf,Df , for given values of f and Df . It consists of 2(Df − 1)
cliques of size f +1 each, denoted K1, K2, . . . , K2(Df −1), with additional edges between corresponding
nodes of subsequent cliques.

but also transmits further the set Grasp it has received. A node must receive consistent
information about the Grasp of each round of every non-faulty node it learned so far, up
to this round – not present in the current set Faulty but present in some pair in Inputs.
If any of the received sets Grasp provides information about a new node in the network
or increases the number of known crashes learned by the node during this testing phase
beyond t, this is interpreted that Grasp is not stable enough. This results in aborting this
testing phase and a new one starts with respect to the current Grasp. If such an event does
not occur, a node proceeds to decide at the end of round 2(checkpoint + 1) in the phase.
The rules to update Grasp at a node p at the end of round i are as follows. Initially, a tuple
(p, Inputs, Faulty, i− 1) is created. Corresponding to the digest of the state of node p at the
end of round i− 1. The current sets Inputs and Faulty are updated by incorporating the
contents of the sets Inputs and Faulty in the sets Grasp relayed by the received messages.
Each neighbor from which a message has not been received at a round is deemed crashed
and added to the set Faulty.

I Theorem 6. Algorithm Early-Stopping-Crashes solves Consensus in O(f+Df ) rounds.

7 A Lower Bound for Node Crashes

We present a lower bound that applies to node crashes. This bound matches the performance of
algorithm Early-Stopping-Crashes given in Section 6 and algorithm Fast-Authenticated
given in Section 5. For any values of f ≥ 3 and Df ≥ 4, we define a corresponding (f + 1)-
connected graph Gf,Df

, which consist of 2(Df − 1) cliques of size f + 1 each, in which
additionally the ith node in clique j is connected to the respective ith nodes in cliques j − 1
and j+ 1 taken modulo 2(Df − 1), for any 1 ≤ i ≤ f + 1 and 1 ≤ j ≤ 2(Df − 1); see Figure 2
for an illustration. The value of Df for graph Gf,Df

is exactly Df . Additionally, for each
node p, if some other f nodes get removed, there is still a node of distance at least Df − 1
from p in the remaining graph.

I Theorem 7. For every deterministic distributed algorithm solving Consensus there is an
execution in which this algorithm terminates after least f +Df − 2 rounds.

Proof. Suppose that input values are binary: 0 and 1, to simplify the exposition. For every
graph G and every deterministic algorithm A there exists a bivalent initial configuration,
see [3]. There is an execution E of f − 1 rounds that ends in a bivalent configuration,
see [3]. If there is an extension of E to some execution E ′ of f rounds, ending in a bivalent
configuration, then take E ′ and continue similarly through rounds f + 1, f + 2, . . ., until
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reaching an execution E ′′ of r ≥ f −1 rounds such that each of its possible extensions leads to
a univalent configuration. Such E ′′ exists because otherwise agreement would not be achieved
for some unbounded extension of E , contradicting the fact that A solves Consensus. Let β
be an extension of E ′′ by one round such that there is no crash in round r + 1. Since β is
univalent, it determines a decision value vβ . By the choice of E ′′, there is another extension
of it to some execution γ of r+ 1 rounds resulting in a different decision 1− vβ . Since γ 6= β,
there must be a crash in round r + 1 of γ; denote a crashed node by p. There is at least one
node q of distance at least Df − 1 from p in a subgraph of Gf,Df

induced by the nodes that
are non-faulty at round r + 1. Let β1, respectively γ1, be an extension of β, respectively
γ, to the following Df − 3 rounds, with no crashes occurring. The relation β1

q∼ γ1 holds.
Indeed, the only difference between these two executions occurs at round r + 1 and takes
place in the non-faulty neighbors of node p in graph Gf,Df

. Since p and q are of distance
Df − 1, the neighbors of p are of distance at least Df − 2 from q. The information about
the only difference between these two executions could be recorded in a state of q at round
r+1+Df −2. Both executions take r+1+Df −3 rounds, therefore β1

p∼ γ1. Configurations
β1 and γ1 are univalent and result in different decisions, therefore node q cannot decide by
round r+ 1 +Df − 3 ≥ f +Df − 3. So at least f +Df − 2 rounds are needed for algorithm A
to terminate. J
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