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Abstract
State Machine Replication (SMR) solutions often divide time into rounds, with a designated leader
driving decisions in each round. Progress is guaranteed once all correct processes synchronize to the
same round, and the leader of that round is correct. Recently suggested Byzantine SMR solutions
such as HotStuff, Tendermint, and LibraBFT achieve progress with a linear message complexity and
a constant time complexity once such round synchronization occurs. But round synchronization
itself incurs an additional cost. By Dolev and Reischuk’s lower bound, any deterministic solution
must have Ω(n2) communication complexity. Yet the question of randomized round synchronization
with an expected linear message complexity remained open.

We present an algorithm that, for the first time, achieves round synchronization with expected
linear message complexity and expected constant latency. Existing protocols can use our round
synchronization algorithm to solve Byzantine SMR with the same asymptotic performance.
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1 Introduction

Byzantine State Machine Replication (SMR) has received a lot of attention in recent years
due to the increasing demand for robust and scalable systems. In order to tolerate periods of
high load or even denial-of-service attacks, practical solutions commonly assume the eventual
synchrony model [20], meaning that they guarantee consistency despite asynchrony and make
progress during periods when the network is synchronous. Examples of such systems include
PBFT [16], SBFT [25], LibraBFT [4], HotStuff [37], Zyzzyva [29], Tendermint [13], and many
more. Eventually synchronous SMR solutions typically iterate through a sequence of rounds,
(also called views), wherein a designated leader process tries to drive all correct processes to
consensus. The main complexity of such algorithms arises whenever a new round begins and
its (new) leader collects information about possible consensus decisions in previous rounds.

When using such protocols, it is common to constantly advance in rounds with a rotating
leader [16, 37, 4]; this is because when the leader is faulty, it is possible for some processes
to perceive progress while others made no progress.

In the last couple of years, there has been a race to improve the performance of Byzantine
SMR. Recent algorithms such as Tendermint [13], Casper [14], HotStuff [37], and LibraBFT [4]
allow rounds to advance (and leaders to be replaced) with a constant time complexity and
a linear message complexity. Thus, even if every consensus instance is led by a different
leader, the message complexity for each decision remains linear. Nevertheless, the linear
message complexity is achieved only after all correct processes synchronize to execute the
same round of the protocol (provided that that round’s leader is correct). And such round
synchronization has a cost of its own. In Tendermint, round advancement is gossiped
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26:2 Expected Linear Round Synchronization

throughout the system, entailing an expected O(n logn) message complexity with expected
O(logn) latency. In HotStuff, it is delegated to a separate round synchronization module
called PaceMaker, whose implementation is left unspecified. And in LibraBFT, this module is
implemented with quadratic message complexity, which in fact matches Dolev and Reischuk’s
Ω(n2) communication complexity lower bound [19] on deterministic Byzantine consensus.
Later work on Cogsworth [32] implemented a randomized PaceMaker with expected constant
latency and linear message complexity under benign failures, but with expected quadratic
message complexity in the Byzantine case.

In this work we present a new round synchronization algorithm that achieves expected
constant time complexity and expected linear communication complexity even in the presence
of Byzantine processes. Specifically, under an oblivious adversary, we guarantee these
bounds on the expected time/message cost until all processes synchronize to the same round
from an arbitrary state of the protocol. Under a strong adversary, we achieve the same
bounds but on the average expected time and message cost until round synchronization
over all states occurring in an infinite run of the protocol. To this end, we decompose the
round synchronization module into a synchronizer abstraction and two local functions. The
synchronizer abstraction captures the essence of the distributed coordination required in
order to synchronize processes to the same round.

Like previous works [32, 37, 4], the main technique used in our algorithm to lower the
message complexity is a relay-based message distribution with threshold signatures. Instead
of broadcasting messages all-to-all, our algorithm sends each message to a designated relay.
The relay aggregates messages from multiple processes, and when a certain threshold is
met, it combines them into a threshold signature, which it sends to all the processes. Note
that a threshold signature’s size is the same as the original signature sizes, i.e., remains
constant as the number of processes grows. This leads to linear communication complexity
per message. The challenge is that the relay can be Byzantine and, for example, send the
aggregated message only to a subset of the processes. Another challenge arises when some
correct process advances to a new round while others lag behind. We introduce a relay-based
linear-complexity helping mechanism to allow lagging processes to catch up with faster ones
without all-to-all broadcast.

In summary, the main contribution of this paper is providing an algorithm that for
the first time reduces the expected message complexity of Byzantine SMR in the presence
of Byzantine faults to linear, while maintaining expected constant latency. The rest of
the paper is structured as follows: §2 describes the model; §3 formally defines the round
synchronization problem and our performance metrics; §4 explains our decomposition of round
synchronization into a synchronizer abstraction and local functions, and proves that this
decomposition solves the round synchronization problem; §5 presents our new synchronizer
algorithm and proves its expected linear message complexity, expected constant latency,
and correctness; §6 gives related work and §7 concludes the paper. Some formal proofs are
deferred to the full version [33].

2 Model

Our model consists of a set Π = {P1,P2, . . . ,Pn} of n processes. Every two processes in Π
have a bidirectional, reliable, and authenticated link between them, i.e., every process can
send a message to another process that will eventually arrive and the recipient can verify the
sender’s identity. We use the term broadcast to indicate sending a message to all processes.
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We follow the eventually synchronous model [20] in which there is no global clock, and
every execution is divided into two periods: first, an unbounded period of asynchrony; and
then, a period of synchrony, where messages arrive within a bounded time, δ. The second
period begins at a moment called the Global Stabilization Time (GST). Messages sent before
GST arrive by GST + δ. We assume that after GST, processes can correctly estimate such
an upper bound δ on communication latency and also measure time locally, but this does not
imply a global clock. We consider a failure model where f < n/3 processes may be faulty, or
Byzantine and act arbitrarily.

We assume a shared source of randomness, R, that is used to derive a function
Relay(r, k) : N × {1, . . . , f + 1} 7→ Π. This function is used to select for each round r

the k-th process that will act as a relay. The relay function satisfies the following properties:
R1 f + 1 different relays for each round:

∀r ∈ N,∀1 ≤ i < j ≤ f + 1: Relay(r, i) 6= Relay(r, j).

R2 Random relay selection, while ensuring f + 1 different relays for each round:

∀r ∈ N,∀1 ≤ k ≤ f + 1,∀P1,P2 ∈ Π \
k−1⋃
i=1
{Relay(r, i)} :

Pr [Relay(r, k) = P1] = Pr [Relay(r, k) = P2].

Note that R2 implies that the first relay is continuously rotated throughout the run, i.e.,
∀r ∈ N :

⋃∞
i=r Relay(i, 1) = Π. Generating secure randomness as assumed by our protocol

has been studied in the literature, e.g., [8, 17, 31, 2], and is beyond the scope of this paper.
For clarity of the algorithm’s presentation, we assume that the adversary is a static

oblivious adversary [10, 5, 21], i.e., has no knowledge of the randomness R. This assumption
is required for the worst-case performance bounds as defined in §3.2, and can be relaxed to
a strong static adversary if we only wish to prove an average-case bound. We discuss this
in §5.5 below.

Like previous linear-complexity BFT algorithms [4, 13, 32, 37], we use a cryptographic
signing scheme, a public key infrastructure (PKI) to validate signatures, and a threshold
signing scheme [9, 15, 36]. The threshold signing scheme is used in order to create a compact-
sized signature of K-of-N processes as in other consensus protocols [15]. Usually K = f + 1
or K = 2f + 1. The size of a threshold signature is constant and does depend on K or
N . We assume that the adversary is polynomial-time bounded, i.e., the probability that it
will break the cryptographic assumptions in this paper (e.g., the cryptographic signatures,
threshold signatures, etc.) is negligible.

3 Problem Definition - Round Synchronization

We start by specifying the round synchronization problem in §3.1, then discuss performance
metrics in §3.2, and conclude by describing how to use a round synchronization module to
solve consensus in §3.3.

3.1 Specification
We define a long-lived task of round synchronization, parameterized by the desired round
duration ∆. It has a single output signal at process Pi, round_leaderi(r,P), r ∈ N,P ∈ Π,
indicating to Pi to enter round r of which P is the leader. We say that a process Pi is in
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round r between the time t when round_leaderi(r, ·) occurs and the next round_leaderi(r′, ·)
event after t. If no such event occurs, Pi remains in round r from t onward. The goal of
round synchronization is to reach a synchronization time, defined as follows:

I Definition 3.1 (Synchronization time). Time ts is a synchronization time if all correct
processes are in the same round r from ts to at least ts + ∆, and r has a correct leader.

A round synchronization module satisfies two properties. The first ensures that in every
round all the correct processes have the same leader.

I Property 1 (Leader agreement). For any two correct processes Pi,Pi′ if round_leaderi(r,Pj)
and round_leaderi′(r,Pj′) occur, then Pj = Pj′ .

The second property ensures that synchronization times eventually occur. Formally:

I Property 2 (Eventual round synchronization). For every time t in a run, there exists a
synchronization time after t.

3.2 Performance Metrics
For an oblivious adversary, we measure the maximum expected performance after GST under
all possible adversary behaviors and protocol states, where the expectation is taken over
random outputs of our randomness source R, which drives the relay function. In more detail,
let S be the set of all reachable states of a round synchronization algorithm, and let A be the
set of all possible adversary behaviors after GST. This includes selecting up to f processes
to corrupt and scheduling all message deliveries within at most δ time. For a state s ∈ S,
and adversary behavior a ∈ A, let RS(s, a, π) be the time from when s occurs until the next
synchronization time in a run extending s with adversary behavior a and the relay function
derived from the random bits π ∈ R.

The worst-case expected latency of the round synchronization module is defined as

max
s∈S
a∈A

{
E
π∈R

[RS (s, a, π)]
}
.

Similarly, to define message complexity let M(s, a, r) be the total number of messages
correct processes send from state s until the next synchronization time in a run extending s
with adversary a ∈ A and relay output π ∈ R. The worst-case message complexity is defined
as

max
s∈S
a∈A

{
E
π∈R

[M (s, a, π)]
}
.

For brevity, in the rest of this paper, we omit the parameters s, a, π, and simply bound
the expected latency or message cost over all reachable states and adversary behaviors.

3.3 Using Round Synchronization to Solve Consensus
In HotStuff [37], Theorem 4 states the following in regards to reaching a decision in the
consensus protocol:

“After GST, there exists a bounded time period Tf such that if all correct replicas
remain in view v during Tf and the leader for view v is correct, then a decision is
reached.”
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The round synchronization module satisfies exactly the conditions of the theorem, i.e., an
eventual round that all the correct processes are in at the same time for at least ∆ = Tf ,
and the leader of that round is correct.

Given a round synchronization module with expected linear message complexity and
expected constant latency, HotStuff solves consensus in the same expected asymptotic message
complexity and latency as the round synchronization module. In addition, HotStuff also uses
the same cryptographic primitives (namely threshold signatures) as we use in this paper,
incurring similar computational costs.

Note that, in general, processes know neither whether their leader is correct nor whether
all correct processes are in the same round as them. Indeed, it is possible for a set of f + 1
correct processes (and f Byzantine ones) to make progress in a round with a Byzantine
leader, while f correct processes are stuck behind. In an SMR algorithm where the processes
communicate only with the leader of each round and do not broadcast decisions to all
processes, this scenario is indistinguishable from one where the leader is correct and all
correct processes make progress. Therefore, to ensure the condition required by HotStuff (and
captured by Property 2), we continuously advance in rounds and change leaders, regardless
of the observed progress made in the consensus protocol utilizing the round synchronization
module.

4 Round Synchronization Decomposition

We build the round synchronization module using a synchronizer abstraction and two local
modules. The synchronizer captures the necessary distributed coordination among the
processes. The abstraction’s properties appear in §4.1, and a round synchronization module
using this abstraction is given in §4.2. The latter consists of a timer function that paces
the synchronizer and a leader function that outputs the leader and round to the application.
This decomposition is illustrated in Figure 1.

4.1 Synchronizer
We define a synchronizer abstraction to be a long-lived task with an API that includes an
advancei() input and a new_roundi(r) output signal, where r ∈ N.

In a similar way to the round synchronization module, we say that process Pi enters
round r when new_roundi(r) occurs. We say process P is in round r during the time interval
that starts when P enters round r and ends when it next enters another round. If the process
does not enter a new round, then it remains indefinitely in r. We denote by r_max(t) the
maximum round a correct process is in at time t.

We define four properties a synchronizer algorithm should guarantee. The first ensures
that rounds are monotonically increasing. Formally:

I Property 3 (Monotonically increasing rounds). For each correct process Pi, if
new_roundi(r′) occurs after new_roundi(r), then r′ > r.

The next property is the validity of new rounds.

I Property 4 (Validity). If a correct process signals new_round(r) then some correct process
called advance() while in round r − 1.

Next, we define the two liveness properties. Informally, the first ensures the stabilization
of at least f + 1 correct processes to the same maximum round, and the second ensures
progress after the stabilization.
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Synchronizer
advance()

Timer
new_round(r)

Leader
round_leader(r, P)

Round Synchronization (Δ)

Distributed abstraction

Local function

Figure 1 Round synchronization using the synchronizer abstraction.

Algorithm 1 Round synchronization using the synchronizer abstraction.

1 Timer:
2 after c1 + ∆ from last new_round(r) signal: // c1 is defined in S2
3 advance()

4 Leader:
5 on new_round(r) signal:
6 round_leader(r,Relay(r, 1))

I Property 5 (Stabilization). For any t during the run, let t0 be the first time when a correct
process enters round r_max(t). If no correct process enters any round r > r_max(t), then:
S1 From some time t1 onward, at least f + 1 correct processes are in round r_max(t).
S2 If t0 ≥ GST and Relay(r_max(t), 1) is correct, then from some time t2 onward all the

correct processes enter r_max(t) and t2 − t0 ≤ c1 for some constant c1.
Although Property 5 is primed on no correct processes ever entering rounds higher than
r_max(t), we observe that S2 holds as long as no process enters rounds higher than r_max(t)
by t0 + c1 because any such run is indistinguishable to all processes until time t0 + c1 from a
run where they never enter a higher round at all. Formally:

I Observation 1. Assume Property 5 holds, then for any t during the run, let t0 ≥ GST
be the first time when a correct process enters round r_max(t). If no correct process enters
any round r > r_max(t) by t0 + c1 for some constant c1 and Relay(r_max(t), 1) is correct,
then all correct processes enter round r_max(t) by t0 + c1.

The next property ensures progress.

I Property 6 (Progress). For any t during the run, if f + 1 correct processes in round
r_max(t) call advance() by t0, and no correct process calls advance() while in any round
r > r_max(t) then:
P1 From some time t1 onward, there is at least one correct process in r_max(t) + 1.
P2 If t0 ≥ GST and Relay(r_max(t), 1) is correct, then from some time t2 onward all the

correct processes enter r_max(t) + 1 and t2 − t0 ≤ c2 for some constant c2.
Property P2 is not required for round synchronization, but it gives a bound on performance.

4.2 From Synchronizer to Round Synchronization
We now describe how to use the synchronizer abstraction to implement round synchronization.
The implementation uses two local functions: a timer function that paces a process’ advance()
calls, and a leader function that maps a round to a leader using the Relay function. This
construction is illustrated in Figure 1, and specified in Alg. 1. When one module invokes
a function in another, we refer to this as a signal, e.g., the timer signals advance() to the
synchronizer.
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We prove that this construction provides round synchronization. Let t0 = GST and
∀` ≥ 1 let t` be the first time after t`−1 that a correct process enters a new maximum round.
We prove the following lemma:

I Lemma 4.1. In an infinite run of Alg. 1, t` eventually occurs for any ` ≥ 0.

Proof. We prove this by induction on `. Based on the model, the base step of the induction,
t0 = GST eventually occurs.

Next, assume that t` occurs during the run. If t`+1 occurs, then we are done.
Assume by contradiction that t`+1 does not occur, i.e., by the induction hypothesis some

correct process entered r_max(t`) but no correct process enters any round r > r_max(t`). By
S1, eventually at least f + 1 correct processes enter r_max(t`). Denote this set of processes
by P . The timer function ensures that eventually every process in P calls advance(), so
there are at least f + 1 correct processes in r_max(t`) that call advance(). By P1, eventually
at least one correct process enters r_max(t`+1) = r_max(t`) + 1, a contradiction to the
assumption that no correct process enters any round r > r_max(t`). J

We prove the main theorem of this section:

I Theorem 4.2. Using a synchronizer abstraction, Alg. 1 implements a round synchronization
module.

Proof. Since the relay function’s outputs are identical among all correct processes and the
leader local function outputs round_leader(r,Relay(r, 1)), it is immediate that the leader
agreement property (Property 1) is satisfied.

We now prove eventual round synchronization (Property 2). Define Leader(`) ,
Relay(r_max(t`), 1). By Lemma 4.1, ti occurs for all i ≥ 0, and since the first relay
for each round is randomly chosen, eventually, with probability 1, there exists a ` ≥ 0 such
that Leader(`) is a correct process. Let us look at r_max(t`), and denote t̃ , t` + c1 + ∆.

Recall that t` is the time when the first correct process enters r_max(t`). By Line 2 in
Alg. 1, no correct process calls advance() between t` and t̃, and because of validity (Property 4)
no correct process enters any round r > r_max(t`) until at least t̃. By using Observation 1,
we can apply S2 for r_max(t`), since by t` + c1 all correct processes enter r_max(t`).

Thus, between t` and t` + c1, all correct processes enter r_max(t`). Since no correct
process calls advance() until at least t̃, this guarantees that all correct processes remain in
r_max(t`) until t̃ = t` + c1 + ∆, so t` + c1 is a synchronization time (Def. 3.1), as needed. J

5 An Expected Linear Message Complexity and Constant Latency
Synchronizer

In this section we present a synchronizer abstraction algorithm with expected linear message
complexity and constant latency in the Byzantine case.

We start by describing the main ideas used to lower the message complexity (while still
guaranteeing constant latency) in §5.1. We give a more in-depth description of the algorithm
in §5.2, reason about the algorithm’s correctness in §5.3, and performance in §5.4. Some of
the formal proofs are deferred to the full version [33].

5.1 Achieving Linear Message Complexity
The crux of the algorithm is a relay-based distribution of messages among processes. A
standard Byzantine broadcast system, which ensures that a message sent by a correct process
is eventually delivered by all other correct processes, usually requires quadratic message
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Figure 2 The message flow of the algorithm. A process enters round r when it receives a
commit message for round r, the circled numbers represent the different stages of the algorithm
(see Alg. 2). Only the 2f + 1 correct processes are illustrated.

complexity for each message disseminated. This is because in Byzantine broadcast protocols
such as Bracha’s [11], when a correct process delivers a message, it also sends it to all the
other processes, resulting in all-to-all communication for each delivered message.

In our algorithm, we instead use a single designated process as a relay. Processes send
their messages to the relay, which aggregates messages from a number of processes, combines
them into one message using a threshold signature, and broadcasts it to all the processes.
This mechanism reduces the total number of protocol messages from O(n2) to O(n).

A difficulty arises if the relay is Byzantine. We overcome this as follows: when a process
P sends a message to a relay, it expects a response from it within a certain time-bound.
If no timely response arrives, P can deduce that either GST has not occurred yet and the
message to/from the relay is delayed, or it is after GST and the relay is Byzantine. In either
case, after the allotted time passes, P proceeds to send a message to a different relay, again
waiting for the new relay to respond in a timely manner, and so on. This mechanism uses
the relay function described in §2. Once a correct relay is contacted, the algorithm makes
progress. In expectation, the number of consecutive Byzantine relays until a correct one is
bounded by 3/2, leading to expected constant latency and linear message complexity. In the
worst-case, each round has f + 1 potential relays, guaranteeing that at least one of them is
correct, which ensures liveness.

5.2 Algorithm Description

At a high level, the goal of the algorithm is to eventually enter all rounds during the run,
and reach a synchronization time after GST in every round r where Relay(r, 1) is a correct
process. If the relay is Byzantine, then the goal is to eventually move from r to r + 1. The
randomization of the relay function guarantees that in an infinite run there will be infinitely
many rounds with a correct process as the first relay, guaranteeing an infinite number of
synchronization times.

Message flow of the algorithm. The algorithm is presented in Alg. 2, and its message flow
is depicted in Figure 2. Protocol messages are signed and verified; for brevity, we omit the
signatures and their verification from the algorithm description and pseudocode.
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A process sends to Relay(r, k) messages of the form 〈message type, r, k〉, where r and
k are natural numbers, and message type is one of the following: pre-commit, commit, or
finalize. The relay’s messages to the processes are threshold signatures on an aggregation of
the same messages, denoted

〈
pre-commit, r, k

〉
,
〈
commit, r, k

〉
, and

〈
finalize, r, k

〉
, respectively.

Each threshold signature is created using some number (f + 1 or 2f + 1) of signatures.
When advance() is signaled via the local timer function (see §4.2) to indicate that it wants

to move from round r − 1 to round r, the process sends a pre-commit message to the relay
(this is stage 1 of the algorithm). Once f + 1 processes indicate that they wish to move to
round r, the relay broadcasts a pre-commit message (stage 2). The reason f +1 processes are
needed to initiate the first stage of the algorithm is to ensure that there is at least one correct
process among them, preventing Byzantine processes from causing correct ones to advance
prematurely. Any process receiving a relay’s pre-commit message in a round r′ < r joins in
by sending a commit message for r (stage 3). Unlike in previous work such as Cogsworth [32],
pre-commit messages are linked to a particular relay, and therefore, if the protocol times out
and proceeds to the next relay, the new relay needs to collect f + 1 pre-commits afresh. This
subtle difference prevents Byzantine relays from spuriously engaging in the protocol, which
is crucial for avoiding the quadratic message complexity occurring in Cogsworth.

When 2f + 1 processes indicate that they commit to moving to r, the relay sends a
commit message (stage 4) and processes that receive it enter that round (stage 5). Requiring
2f + 1 processes to commit to a round r before entering it ensures that at least f + 1 correct
processes are aware of the intent to enter r. This ensures that at least f + 1 correct processes
will eventually enter r, and those f + 1 processes guarantee progress, as it is the minimal
quorum required to initiate the stages of the algorithm to the next round, until a round with
a first correct relay is reached and in that round a synchronization time will occur.

However, the algorithm for synchronizing for round r does not end when a process receives
a commit message for r. Rather, a process that enters round r sends a finalize message to
help any lagging processes with the transition to round r. Once 2f + 1 finalize messages
are sent, the relay broadcasts a finalize message (stage 6), and when a process receives it, it
completes the algorithm for round r (stage 7). The finalization phase is needed to overcome
cases of a Byzantine relay that does not send the commit message to all the processes.

Variables and timeouts. The variable curr_round stores the current round a process is
currently in which changes in stage 5, and next_round indicates to what round the process
is attempting to enter. The value of next_round becomes curr_round + 1 when a process
invokes advance(), and it can become higher if the process learns (via a pre-commit) of at
least f + 1 other processes that want to advance to a higher round than the one the process
is currently in.

The timeouts at the bottom of the pseudocode dictate when a process moves to the next
relay of a round. When a process sends a message to a relay, it expects the relay to respond
within 2δ, which is the upper bound of the round-trip time after GST. For example, if a
process sends a message of round r to Relay(r, k) at time t and does not receive a response
by t+ 2δ, it sends the message to Relay(r, k + 1). This continues up to Relay(r, f + 1),
guaranteeing that at least one of the relays for round r is correct.

Upon a timeout, a process sends a pre-commit message to the next relay in line, and once
that relay gets f+1 such messages, it, too, can try to complete the stages of the protocol for
the same round. There is a tradeoff involved in choosing the timeout – a shorter timeout
may cause a second relay to engage even when the first relay is correct, whereas a longer
one delays progress in case of a Byzantine relay. Nevertheless, it is important to note that a
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process responds to all relays, so contacting the (k + 1)-st relay for round r does not in any
way prevent the k-th one from making progress. Thus, while setting an aggressive timeout
may cause the protocol to send more messages, it does not in any way hamper progress.
A process that partakes in the protocol to advance to round r contacts a new relay every
2δ time for as long as it does not make progress in the phases of the algorithm for round
r. Since a process takes an expected 6δ to complete the algorithm for round r, the process
contacts 3 relays in expectation.

The round_relay array holds the highest relay for each round the process sent a pre-
commit message to. For example, round_relay[r] = k for k > 1 indicates that the process
sent 〈pre-commit, r, 1〉 , . . . , 〈pre-commit, r, k〉 messages to Relay(r, 1), . . . ,Relay(r, k), re-
spectively. Note that a process sends a pre-commit message for round r to Relay(r, 1)
when it first receives a pre-commit message in stage 3, regardless of the relay it received
the message from. This is to allow the first relay of round r to complete the stages of
the algorithm in case it is correct, and make sure that round synchronization will occur in
round r. Note that the fact that some relay sends a message with a threshold signature does
not ensure that that relay is correct, even if all the signatures used to create the threshold
signature are from correct processes. For example, a Byzantine relay can broadcast a message
only to a subset of the correct processes. Thus, to ensure liveness, processes must iterate
through all f + 1 relays of a round, starting from the first one, until progress is made.

We note that the round_relay array is introduced in the pseudocode for simplicity, but
in a real implementation there is no need for an unbounded array to be stored in memory. A
process only sends messages to the relays of rounds stored in the curr_round and next_round
variables, thus limiting the amount of memory needed for an actual implementation to a
constant number of integers.

Example. To clarify the need for the last phase of the algorithm (stages 6 and 7), consider
the following scenario: Suppose a set P of f + 1 correct processes are in round r − 1 and
invoke advance(). The remaining f correct processes are in a round r′ < r− 1. The processes
in P send a pre-commit message to Relay(r, 1), which is Byzantine. The relay generates
a threshold signature and sends a pre-commit only to the processes in P , which respond
with a commit message. Now, Relay(r, 1), with the help of f Byzantine processes, creates a
commit message for r, but sends it to only one correct process Pi in P . This results in a
scenario where Pi is the only correct process in round r, while f correct processes remain in
round r − 1 and continue to timeout and send pre-commit messages to the relays of round r.
Since a relay needs at least f + 1 pre-commit messages to engage the stages of the algorithm,
unless Pi continues to help the rest of the processes in P by sending pre-commit messages,
they might get stuck in round r − 1. Therefore, processes continue to timeout and send
pre-commit messages in the previous round until they receive a finalize message. Once a
process in r receives a finalize message for r, it knows that there are at least f + 1 correct
processes in round r, and can stop sending pre-commit messages for r. This is crucial for
achieving the desired message complexity after GST. These f + 1 correct processes will
eventually call advance() and proceed to round r + 1.
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Algorithm 2 Synchronizer Algorithm. The circles show the protocol’s stages.
1 initialize:
2 curr_round← 0 // Processes begin their execution at round 0.
3 next_round← 0
4 ∀i ∈ N : round_relay[i]← 1
5 finalized← True

Every process:
1

6 on advance() signal:
7 if curr_round < next_round then // old

round
8 return
9 next_round← curr_round + 1

10 send 〈pre-commit,next_round, 1〉 to
Relay(next_round, 1)

Relay (Relay(r, k)):
2

11 upon receiving the first valid f + 1
〈pre-commit, r, k〉 messages:

12 broadcast
〈
pre-commit, r, k

〉

3
13 upon receiving the first valid

〈
pre-commit, r, k

〉
from Relay(r, k):

14 if r < next_round then // old round
15 return
16 if r > next_round then /* start participating

in round r */
17 next_round← r
18 send 〈pre-commit, r, 1〉 to Relay(r, 1)
19 send 〈commit, r, k〉 to Relay(r, k)

4
20 upon receiving the first valid 2f + 1

〈commit, r, k〉 messages:
21 broadcast

〈
commit, r, k

〉

5
22 upon receiving the first valid

〈
commit, r, k

〉
from Relay(r, k):

23 if r < curr_round then // old round
24 return
25 if r > curr_round then // enter round r
26 curr_round← r
27 finalized← False
28 send 〈commit, r, 1〉 to Relay(r, 1)
29 new_round(r) // signal new round
30 send 〈finalize, r, k〉 to Relay(r, k)

6
31 upon receiving the first valid 2f + 1

〈finalize, r, k〉 messages:
32 broadcast

〈
finalize, r, k

〉

7
33 upon receiving the first valid

〈
finalize, r, k

〉
from

Relay(r, k):
34 if r = curr_round then
35 finalized← True

Timeouts (for every process):
36 on pre-commit and commit timeouts: /* Every 2δ from last sending pre-commit or commit

messages and not receiving the matching pre-commit or commit */
37 if round_relay[next_round] < f + 1 then
38 round_relay[next_round]← round_relay[next_round] + 1
39 send 〈pre-commit,next_round, round_relay[next_round]〉 to

Relay(next_round, round_relay[next_round])
40 on finalize timeout: // Every 2δ from last sending finalize and not receiving the matching finalize
41 if finalized = False and round_relay[curr_round] < f + 1 then
42 round_relay[curr_round]← round_relay[curr_round] + 1
43 send 〈pre-commit, curr_round, round_relay[curr_round]〉 to

Relay(curr_round, round_relay[curr_round])

DISC 2020



26:12 Expected Linear Round Synchronization

5.3 Correctness
Next, we prove that the algorithm satisfies the properties of a synchronizer, as defined in §4.1.
The proofs of Lemma 5.1 and Lemma 5.5 are in the full version of the paper.

I Lemma 5.1. Alg. 2 satisfies monotonically increasing rounds (Property 3).

I Lemma 5.2. Alg. 2 satisfies round validity (Property 4).

Proof. A correct process enters round r when it is in a round r′ < r and receives a commit
message for r. A commit message is a threshold signature of (2f + 1)-of-n commit messages,
meaning at least f + 1 are from correct processes. A correct process sends a commit message
for round r when it receives a pre-commit message for r. A pre-commit message is a threshold
signature of (f + 1)-of-n pre-commit messages, meaning at least one correct process sent a
pre-commit message for round r.

Denote Pi as the first correct process that sends a pre-commit message for r during the
run. A correct process only sends a pre-commit for r (in Lines 10, 18, 39, and 43) when
its next_round or curr_round variables hold r. next_round changes in one of two places –
Line 9 when a process calls advance(), and Line 17 on receiving a valid pre-commit for r.
curr_round changes on receiving a valid commit for r. Because no pre-commit or commit
message can be sent for round r before at least one correct process sends a pre-commit for r,
then Pi must have sent its pre-commit message for round r when it changed its next_round
in Line 9, i.e., on executing advance(). J

I Proposition 5.3. If a correct process receives a finalize for round r at time t, then at least
f + 1 correct processes entered round r by t.

Proof. Let t be a time in which a correct process received a finalize message for round r.
This message is a threshold signature of (2f + 1)-of-n finalize messages, of which at least
f + 1 originated from correct processes. A correct process only sends a finalize message for r
if it receives a commit message for r, which means that it is already in round r by time t. J

I Lemma 5.4. Alg. 2 satisfies stabilization (Property 5) with c1 = 4δ.

Proof. Let t be a point in time during the execution and r = r_max(t). Let Pi be the first
correct process that enters round r at time t0. Such a process exists by the definition of
r_max(t). Pi is at round r, so it received a commit message for round r. A commit message
is a threshold signature of (2f + 1)-of-n commit messages, at least f + 1 of which were sent
by correct processes. Denote by S the set of correct processes whose signatures on commit
messages are included in the commit message Pi received. The processes in S are either in
round r at time t or in smaller rounds r′ < r.

We now prove the two sub-properties of Property 5:
S1. If some correct process receives finalize for round r, by Proposition 5.3, there are at

least f + 1 correct processes in r and we are done.
Assume no correct process receives finalize. Then, the processes in S continue to timeout

and send pre-commit messages for round r to the relays of r. This guarantees that eventually,
a correct relay for r receives at least f + 1 pre-commit messages, as Property R1 of the relay
function ensures f + 1 different relays for each round. This relay eventually completes the
stages of the algorithm, allowing all correct processes to advance to round r.

S2. Because Pi receives commit for round r at time t0 ≥ GST, as argued above, f + 1
correct processes have sent a commit message for round r by time t0. Because a process
sends pre-commit to Relay(r, 1) before sending a commit to any relay for round r (Lines
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10 or 18), these messages, too, are sent by time t0. Therefore, by time t0 + δ, Relay(r, 1)
receives f + 1 pre-commit messages and sends a pre-commit message to all processes. By
t0 + 2δ all the correct processes receive the pre-commit message sent from the first relay,
by t0 + 3δ the relay receives 2f + 1 commit messages (along with any process that already
entered r, Line 28), and by t2 ≤ t0 + 4δ all the correct processes receive the commit message
and enter round r. J

I Lemma 5.5. Alg. 2 satisfies progress (Property 6) with c2 = 4δ.

The following theorem follows directly from Lemmas 5.1, 5.2, 5.4, and 5.5.

I Theorem 5.6. Alg. 2 satisfies the synchronizer abstraction.

5.4 Performance: Latency and Message Complexity
We prove that our algorithm has expected constant latency and linear message complexity.
The proofs of Proposition 5.7 and Lemmas 5.8 and 5.9 appear in the full version of the paper.

I Proposition 5.7. For any round r, let Xr be the number of consecutive Byzantine relays
until the first correct relay. Then, ∀r : E [Xr] ≤ 3/2.

I Lemma 5.8. For any t ≥ GST let t0 be the first time during the run where a correct
process enters r_max(t). There exists a time t1 ≥ t0 such that up to t1 either (i) at least
f +1 correct processes are in r_max(t) or (ii) a correct process enters a round r > r_max(t);
and E [t1 −max{t0,GST}] ≤ 3

2 · 6δ.

I Lemma 5.9. For any t ≥ GST let t0 be the first time when f + 1 correct processes call
advance() while in round r_max(t). There exists a time t1 ≥ t0 such that there is at least
one correct process in r_max(t) + 1 and E [t1 −max {t0,GST}] ≤ 3

2 · 6δ.

I Theorem 5.10. The synchronizer algorithm along with a Timer local function (as defined
in §4) achieves expected constant latency and linear message complexity.

Proof. The latency for our algorithm is based on the definition in §3.2. We go over all possible
states after GST the correct processes in our algorithm can be in, and look at the expected
latency until the synchronization time. Let t0 = GST and for all ` ≥ 1 let t` represent the
first time after t`−1 that a correct process enters a new maximum round. By Lemma 4.1,
in an infinite run, t` eventually occurs for any ` ≥ 0. For any time t ≥ GST during the
run, let sync_time(t) be the first time after t until a synchronization time (Def. 3.1). To
calculate the expected latency of our algorithm, we need to show that for any t ≥ GST,
E1 , E [sync_time(t)− t] ≤ O(δ).

Denote E2 as the expected time from any time t ≥ GST until the next t`, i.e., for any
l ≥ 0 and t, E2 , E

[
mint`≥t

{
t`
}
− t
]
and E3 , E

[
t`+1 − t`

]
. If Relay(r_max(t`), 1) is

correct, then based on P2, by t` + 4δ all the correct processes enter r_max(t`). Therefore:

E1 ≤ E2 + n− f
n︸ ︷︷ ︸

Probability that
Relay(r_max(t`), 1)

is correct

· 4δ︸︷︷︸
The maximum time for
all correct processes
to enter a round
(Lemma 5.4)

+ f

n︸︷︷︸
Probability that

Relay(r_max(t`), 1)
is Byzantine

·E
[
sync_time(t`+1)− t`

]︸ ︷︷ ︸
The expected time until all

correct processes
enter r_max(sync_time(t`+1))

=

= E2 + n− f
n
· 4δ + f

n
·
(
E1 + E

[
t`+1 − t`

]︸ ︷︷ ︸
=E3

)
⇒ E1 ≤

n

n− f

(
E2 + n− f

n
· 4δ + f

n
· E3

)
. (1)
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Assuming that once a correct process enters a new round, the timer calls advance() within
4δ + ∆, the expected time between t` and t`+1 can be bounded as follows:

E3 = E
[
t`+1 − t`

]
≤ E

[
Time from t` until
at least f + 1 correct

processes enter r_max(t`)
or t`+1 occurs

]
︸ ︷︷ ︸

Lemma 5.8

+ 4δ + ∆︸ ︷︷ ︸
Time until at least f + 1
correct processes call

advance() in r_max(t`)

+E

 Time from the first
time f + 1 correct

processes call advance()
in r_max(t`) and
until t`+1 occurs


︸ ︷︷ ︸

Lemma 5.9

≤ 3
2 · 6δ + 4δ + ∆ + 3

2 · 6δ = 22δ + ∆.

The calculation of E3 proves that in expectation, the time between any t` and t`+1 is
expected constant, assuming ∆ is constant. Therefore, E2 is also expected constant.

To conclude, we proved that E2 ≤ O(δ) and E3 ≤ O(δ), and by Eq. (1), E1 ≤ O(δ), as
needed to prove expected constant latency.

For the message complexity of the synchronizer, note that since the expected time between
two occurrences of round synchronization is expected constant, the message complexity is
expected linear. This is because for a given round the number of consecutive Byzantine
relays until a correct one is expected constant, and in the algorithm, every process sends
one message to the relay in each stage of the algorithm, and the relay responds with one
message to all the processes. Even if a process contacts more than one relay per round, it
still contacts an expected constant number of relays, and therefore this does not hamper the
asymptotic linear message complexity. J

5.5 Relaxed Model
As part of the model in §2 we assumed that the adversary is oblivious. If the adversary is
strong, and knows the randomness R before choosing which processes to corrupt, a worst-case
bound is tantamount to a deterministic one, because it holds for all coin flips. Therefore, we
cannot hope to get a linear message complexity for the worst-case. Nevertheless, in a run
with infinitely many round synchronization events, we can bound the average-case expected
latency and message complexity by considering the limit of the average latency and message
complexity on prefixes of length t of the run as t tends to infinity.

Thus, a strong adversary who is aware of the relay function, can choose to corrupt, e.g.,
the first f relays of some round r, causing that round to have linear latency and quadratic
message complexity. But since the adversary is static, it has to corrupt the same processes
in all rounds, and by property R2, this does not impact the average-case performance.

6 Related Work

Algorithms for the eventual synchrony model almost invariably use the notion of round
or views [30, 34, 26, 6]. A number of works have suggested frameworks and mechanisms
for round synchronization in the benign case [3, 23, 27, 28, 24]. For example, Awerbuch
introduced synchronizers [3] for failure-free networks. TLC [23] places a barrier on round
advancement, so that processes enter round r + 1 only after a threshold of the processes
entered round r. Frameworks like RRFD [24] and GIRAF [27, 28] create a round-based
structure for eventually synchronous and failure-detector based algorithms.

A related concurrent work due to Bravo et al. [12] also tackles the liveness of consensus
protocols, and creates a general framework to abstract the liveness part of consensus protocols.
They show that some protocols such as PBFT [16] and HotStuff [37] can use this framework.
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They also provide an algorithm for round synchronization that, starting from some round
r, synchronizes all rounds r′ ≥ r (even rounds with a Byzantine leader, in which decisions
are not made), but unlike our algorithm, it requires a quadratic communication cost per
synchronization event. They assume a relaxed network model compared to us, where before
GST messages might be lost.

Several algorithms include two modes of operation: a normal mode where the leader
is correct incurring linear message complexity, and a recovery mode when the leader is
faulty and needs to be replaced incurring quadratic or higher message complexity. For
example, PABC [35] achieves amortized linear message complexity in an asynchronous atomic
broadcast protocol, and Zyzzyva [29] implements a linear fast-track in an SMR algorithm.

Randomization is often used to solve consensus in asynchronous networks to circumvent
the seminal FLP result [22]. VABA [1] is the first multi-value asynchronous consensus
algorithm that achieves an expected quadratic message complexity against a strong adaptive
adversary, and other works in the asynchronous model [18, 7] achieve expected sub-quadratic
communication complexity under various assumptions, but do not achieve O(n) commu-
nication complexity. In the context of Byzantine SMR, HotStuff [37] specified the round
synchronization conditions needed for their algorithm, and abstracted it into a module that
was left unspecified. Our work provides the round synchronization they require.

Our algorithm builds on ideas presented in Cogsworth [32], but Cogsworth achieved
expected linear message complexity only in the benign case, whereas in the Byzantine case
its message complexity was still expected quadratic. In Cogsworth, it is enough that the
first relay of a round is Byzantine to create a run with a quadratic number of messages to
synchronize for that round. Since the probability that the first relay is Byzantine is constant,
i.e., f/n, the overall message complexity under Byzantine failures is expected quadratic.

To reduce the expected message complexity to linear, we modified Cogsworth in a number
of ways, including adding another phase to the algorithm, signing each message from a
process to a relay with the relay it is intended for, and adding a “helping” mechanism to help
processes “catch-up” to the latest round. By incorporating these ideas into our algorithm,
we managed to bring the expected message complexity down to linear.

7 Conclusion

We presented an algorithm that reduces the expected message complexity of round synchro-
nization to linear with an expected constant latency. Combined with algorithms like HotStuff,
this yields, for the first time, Byzantine SMR with the same asymptotic performance, as
round synchronization is the “bottleneck” in previous Byzantine SMR algorithms. While we
achieve only expected sub-quadratic complexity, we note that achieving the same complexity
in the worst-case is known to be impossible [19], and so cannot be improved.
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