
Higher Inductive Type Eliminators Without Paths
Nils Anders Danielsson
University of Gothenburg, Sweden

Abstract
Cubical Agda has support for higher inductive types. Paths are integral to the working of this
feature. However, there are other notions of equality. For instance, Cubical Agda comes with an
identity type family for which the J rule computes in the usual way when applied to the canonical
proof of reflexivity, whereas typical implementations of the J rule for paths do not.

This text shows how one can use some of the higher inductive types definable in Cubical Agda
with arbitrary notions of equality satisfying certain axioms. The method works for several examples
taken from the HoTT book, including the interval, the circle, suspensions, pushouts, the propositional
truncation, a general truncation operator, and set quotients.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Cubical Agda, higher inductive types

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.10

Supplementary Material Accompanying Agda code is available to download [3].

Acknowledgements I would like to thank Anders Mörtberg and Andrea Vezzosi for helping me
get to grips with Cubical Agda. I would also like to thank some anonymous reviewers for useful
feedback.

1 Introduction

Higher inductive types provide a way to define things like propositional truncation, (set)
quotients and other things in type theory [7]. Recently support for higher inductive types
has been added to Agda [1, 8]. As an example propositional truncation can be defined in the
following way (where Type a is the universe at level a):

data ‖_‖ (A : Type a) : Type a where
|_| : A → ‖ A ‖
trivial : (x y : ‖ A ‖) → x ≡ y

This type family has a regular constructor |_| which states that ‖ A ‖ is inhabited if A is.
It also has a higher constructor trivial which states that every element of ‖ A ‖ is equal to
every other, i.e. that ‖ A ‖ is a (mere) proposition. In the type of trivial the equality x ≡ y

stands for the type of paths from x to y. Paths in A are a kind of functions from the interval
I to A. When trivial x y is applied to an element i of the interval we get a value in ‖ A ‖:
this value is definitionally equal to x if i is 0, and y if i is 1, where 0 and 1 are the endpoints
of the interval. Thus all constructors of ‖ A ‖ target the same type.

One can define functions from ‖ A ‖ using pattern matching. For instance, here is a map
function:

map : (A → B) → ‖ A ‖ → ‖ B ‖
map f | x | = | f x |
map f (trivial x y i) = trivial (map f x) (map f y) i

© Nils Anders Danielsson;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).
Editors: Marc Bezem and Assia Mahboubi; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343693055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-8688-0333
https://doi.org/10.4230/LIPIcs.TYPES.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Higher Inductive Type Eliminators Without Paths

Let us consider the second case. Note that trivial is applied to three arguments. The
right-hand side of the function must be an expression of type ‖ B ‖ that satisfies two side-
conditions: if 0 is substituted for i, then the value must be definitionally equal to map f x
(because trivial x y 0 is definitionally equal to x), and if 1 is substituted for i, then the value
must be definitionally equal to map f y. The given right-hand side satisfies these conditions.

This text is concerned with the following question: What if you want to use higher
inductive types, but you do not want to use paths? Cubical Agda, the variant of Agda with
support for higher inductive types, comes with two notions of equality: paths and an identity
type family [2, 6]. One can prove the J rule for paths, but so far no one has managed to do
this in such a way that the J rule computes in the usual way when applied to reflexivity. The
identity type family comes with a J rule that does compute in the usual way when applied
to reflexivity. People with code that relies on this computational behaviour of J might not
want to switch to using paths. This text shows one way in which one can avoid doing this,
and still make use of (at least some) higher inductive types:

The approach works for any notion of equality that satisfies certain axioms (see Section 2).
There is work in progress on adding proper support for inductive families to Cubical
Agda. Such support would mean that the approach would work also for equality defined
in the following way:

data_≡_ {A : Type a} (x : A) : A → Type a where
refl : x ≡ x

The basic idea of the approach is to define variants of the higher constructors that use
the other notion of equality instead of paths, and to define eliminators that refer to these
variants of the constructors. It might seem obvious that this can be done, because any
notion of equality that satisfies the axioms is equivalent to path equality. However, in
Cubical Agda it is natural to express eliminators for many higher inductive types using a
heterogeneous notion of path equality (see Section 4). Fortunately heterogeneous paths
can be expressed using homogeneous paths (see Section 4; this result was proved together
with Anders Mörtberg and Andrea Vezzosi).
The eliminators are defined in such a way that they compute in the “right” way for con-
structors that do not involve paths. For higher constructors propositional “computation”
rules are proved.
The approach works for at least the following higher inductive types: the circle (see
Section 5), set quotients (Section 6), the propositional truncation operator given above
(Section 7), suspensions (Section 7), and some types that are not discussed in detail in the
paper, but are treated in accompanying Agda code: the interval, pushouts, and a general
truncation operator. The obtained eliminators are close to the induction principles given
in the HoTT book [7]. No attempt is made to characterise exactly when the method
works, but there is some discussion of when the method might be usable in Section 9.
It might not come as a surprise that something like this can be done. A key contribution
of the paper is, in my opinion, some functions that make it easy—at least for the higher
inductive types mentioned above—to define the eliminators and to prove the computation
rules (see Sections 4 and 5).
Dependent eliminators are defined by using the eliminators for paths, plus one of two
lemmas for each higher constructor (one lemma for truncation constructors, and one for
the rest). All corresponding “computation” rules (one for each higher constructor, except
for the truncation constructors) are proved using the same lemma, applied to a proof
of reflexivity. These three lemmas suffice for all the examples mentioned above. There
are also similar lemmas for non-dependent eliminators. Section 7 demonstrates that the
lemmas developed in previous sections work also for other higher inductive types.

N.A. Danielsson 10:3

The text is accompanied by machine-checked Agda proofs [3] (but there is no guarantee
that Agda is free of bugs). Note that there are small differences between the accompanying
code and the code presented below.

2 An Axiomatisation of Equality With J

Let us assume that _≡_ has the following type:

≡ : {A : Type a} → A → A → Type a

(Arguments in braces are implicit arguments, that do not need to be given explicitly if Agda
can infer them. To avoid clutter some implicit argument declarations, like the one for the
universe level a, are omitted from type signatures.) This type family is assumed to satisfy
the following axioms:

refl : (x : A) → x ≡ x

J : (P : {x y : A} → x ≡ y → Type p) → (∀ x → P (refl x)) → (eq : x ≡ y) → P eq
J-refl : (P : {x y : A} → x ≡ y → Type p) (r : ∀ x → P (refl x)) → J P r (refl x) ≡ r x

There should be a canonical proof of reflexivity, refl, there should be a J rule, and the usual
computation rule for J should hold up to the given notion of equality.

Any two notions of equality satisfying these axioms are pointwise equivalent, in the sense
of the HoTT book [7], using one of the notions to define what it means to be equivalent:

≡'≡ : (x ≡1 y) ' (x ≡2 y)

(Hofmann and Streicher have proved a very similar result [4, Section 5.2].) Furthermore
this proof maps refl to refl, in both directions. The proofs of these properties are easy and
omitted.

Cubical Agda’s path and identity type families are instances of these axioms, as is the
equality type family defined as an inductive family with a single constructor refl as in
Section 1. For paths this is shown in Section 3.

From now on_≡_ will be used to refer to an arbitrary notion of equality satisfying the
axioms above, whereas the path type family will be called Path. (It might be the case that
≡ also refers to the path type family.)

3 Homogeneous Paths

This section contains an introduction to paths, or more specifically homogeneous paths.
Section 4 discusses heterogeneous paths.

The path type constructor has the following type:

Path : {A : Type a} → A → A → Type a

The type Path {A = A} x y (where the notation {A = A} is used to explicitly give A as the
implicit argument A) is a kind of function space from the interval I to A. It is subject to
the restriction that when values in this type are applied to the endpoints of the interval, 0
and 1, we get x and y, respectively.

We can prove that the path type family is reflexive in the following way:

reflP : (x : A) → Path x x

reflP x = λ_ → x

Note that reflP x i is equal to x for all values of i.

TYPES 2019

10:4 Higher Inductive Type Eliminators Without Paths

Cubical Agda comes with some interval operations. There is a maximum operation,
max, with 0 as a definitional unit and 1 as a definitional zero. Similarly min is a minimum
operation, with 1 as a definitional unit and 0 as a definitional zero. Furthermore there is a
negation operation, −_, that maps 0 to 1 and 1 to 0.

Cubical Agda also comes with a primitive transport operation:

transport : {p : I → Level} (P : (i : I) → Type (p i)) → I → P 0 → P 1

(Level is the type of universe levels.) If the interval argument is 0, then the computational
behaviour of transport depends on the type family P . However, if the interval argument is
1, then transport returns its final argument. In this case there is a side-condition on the
use of transport that is not captured in its type: the type family P must be definitionally
constant. (The interval argument might be an expression that does not reduce to 0 or 1, and
the type family might mention interval variables used in the interval argument. In this case
the application is accepted if Agda can verify that the type family is constant whenever the
constraint i = 1 holds, where i is the interval argument [8].)

The primitive transport operation can be used to prove the J rule for paths (the notation
{x = x} is used to bind the implicit argument x to the name x):

J P : (P : {x y : A} → Path x y → Type p) → (∀ x → P (reflP x)) →
(eq : Path x y) → P eq

J P {x = x} P p eq = transport (λ i → P (λ j → eq (min i j))) 0 (p x)

Note that when i is 0, then the expression P (λ j → eq (min i j)) is definitionally equal to
P (λ_ → x), which is the type of p x. When i is 1, then the expression is definitionally
equal to P eq.

The computation rule for J does not hold by definition for J P . However, it can be proved
using the following lemma (following Anders Mörtberg [1]):

transport-refl : Path (transport (λ i → reflP A i) 0) (λ x → x)
transport-refl {A = A} = λ i → transport (λ_ → A) i

Note that the first argument given to the final occurrence of transport is constant when i
is 1, as required.

Cubical Agda also has support for composition of paths [2, 8]. There are two variants,
homogeneous and heterogeneous. Here the homogeneous variant is used to prove that path
equality is transitive [2] (this can also be proved using the J rule):

transP : Path x y → Path y z → Path x z

The basic idea of the proof is to construct three sides of a square, and to use the composition
operation to compute the square’s fourth side. Instead of showing the Agda code I have
included a diagram:

x y

x z

x≡y i

x y≡z j

transP x≡y y≡z i

N.A. Danielsson 10:5

Every arrow in the diagram is a path between the expressions at the arrow’s endpoints,
and the expressions between the endpoints stand for arbitrary “points” on the paths. The
left-hand side of the diagram corresponds to i being 0, and the right-hand side to i being 1.
Similarly, the bottom corresponds to j being 0, and the top to j being 1. The solid arrows are
constructed using the two arguments given to transP (x≡y and y≡z), as well as a constant
path (the left-hand side). The composition operation is then used to construct the dashed
arrow.

The homogeneous composition operation requires that (roughly speaking) every “point”
on the left and right sides of the square have the same type. The heterogeneous operation,
which is used in Section 4, is more general in that it (roughly speaking) allows the types of
the points on the left and right sides to vary with j.

4 Heterogeneous Paths

The path type family discussed above is a homogeneous special case of a heterogenous notion
of path:

PathH : (P : I → Type p) → P 0 → P 1 → Type p

Path is defined using PathH :

Path : {A : Type a} → A → A → Type a
Path {A = A} = PathH (λ_ → A)

A typical eliminator for a regular inductive type takes one argument per constructor
(plus some other arguments). What should the type of such an argument be for a higher
constructor? It turns out that one can, at least in some cases, use heterogeneous paths to
give suitable types to such arguments.

Consider the following incomplete definition of an eliminator for the propositional trunca-
tion operator:

elimP : (P : ‖ A ‖ → Type p) → ((x : A) → P | x |) → ? → (x : ‖ A ‖) → P x

elimP P f t | x | = f x

elimP P f t (trivial x y i) = ?

There are two side-conditions on the right-hand side of the last clause: when i is 0, then it
must be definitionally equal to elimP P f t x (because trivial x y 0 is definitionally equal to
x), and when i is 1, then it must be definitionally equal to elimP P f t y. These requirements
can be captured using PathH :

elimP P f t (trivial x y i) = rhs i
where
rhs : PathH (λ i → P (trivial x y i)) (elimP P f t x) (elimP P f t y)
rhs = ?

There are no side-conditions on the right-hand side of rhs. Here is a complete definition of
the eliminator:

elimP : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
({x y : ‖ A ‖} (p : P x) (q : P y) → PathH (λ i → P (trivial x y i)) p q) →
(x : ‖ A ‖) → P x

TYPES 2019

10:6 Higher Inductive Type Eliminators Without Paths

elimP P f t | x | = f x

elimP P f t (trivial x y i) = t (elimP P f t x) (elimP P f t y) i

The goal here is to define eliminators that use an arbitrary notion of equality that satisfies
the axioms from Section 2, not necessarily paths, either heterogeneous or homogeneous. As
mentioned above homogeneous path equality is pointwise equivalent to any other notion of
equality satisfying the axioms. How do heterogeneous paths fit into this picture?

PathH can, up to equivalence, be expressed using Path:

PathH'Path :
(P : I → Type p) {p : P 0} {q : P 1} → PathH P p q ' Path (transport P 0 p) q

It turns out that it is very easy to prove this equivalence.1 One can use transport to construct
the corresponding path:

PathH≡Path :
(P : I → Type p) (p : P 0) (q : P 1) → Path (PathH P p q) (Path (transport P 0 p) q)

PathH≡Path P p q i =
PathH (λ j → P (max i j)) (transport (λ j → P (min i j)) (− i) p) q

When i is 0, then the type family argument given to transport is constant, as required, and
the right-hand side is definitionally equal to PathH P p q. Furthermore, when i is 1, then
the right-hand side is definitionally equal to Path (transport P 0 p) q. Once the equality has
been established in this way one can turn it into an equivalence by using substP :

substP : (P : A → Type p) → Path x y → P x → P y

substP P x≡y p = transport (λ i → P (x≡y i)) 0 p

A function like substP can also be defined for the arbitrary notion of equality by using
the J rule. In order to support different definitions, like substP for paths, let us assume that
our arbitrary notion of equality comes with a function subst, along with a propositional
computation rule for subst:

subst : (P : A → Type p) → x ≡ y → P x → P y

subst-refl : subst P (refl x) p ≡ p

As noted in Section 2 the arbitrary notion of equality is pointwise equivalent to path equality.
Let from-path : Path x y → x ≡ y denote one direction of the equivalence, and to-path the
other. We can now relate subst to substP :

subst≡substP : (x≡y : Path x y) → subst P (from-path x≡y) p ≡ substP P x≡y p

The proof uses the J rule for paths and the following calculation (recall that from-path maps
canonical reflexivity proofs to canonical reflexivity proofs):

subst P (from-path (reflP x)) p ≡
subst P (refl x) p ≡
p ≡
substP P (reflP x) p

The last step follows from transport-refl.

1 In retrospect. Anders Mörtberg had implemented a corresponding logical equivalence [5]. I asked Anders
and Andrea Vezzosi if and how the corresponding equivalence could be proved. Andrea gave me some
useful hints. I managed to finish the proof, only to find out that Andrea had proved it a couple of days
before me. However, both proofs were rather complicated. The simple proof presented here was found
by Anders quite some time later.

N.A. Danielsson 10:7

4.1 Consequences of the Equivalence
Let us now discuss some consequences of the equivalence PathH'Path. By combining it with
subst≡substP we get the following equivalence:

subst≡'PathH : {x≡y : Path x y} →
(subst P (from-path x≡y) p ≡ q) ' PathH (λ i → P (x≡y i)) p q

We can calculate in the following way:

subst P (from-path x≡y) p ≡ q '
substP P x≡y p ≡ q '
Path (substP P x≡y p) q '
PathH (λ i → P (x≡y i)) p q

Thus heterogeneous paths are closely related to the dependent paths used in the types of
eliminators for several higher inductive types in the HoTT book [7]. Let us denote the forward
direction of the equivalence by subst≡�PathH and the other direction by PathH�subst≡. Let
us also give a name to the forward direction of the first two steps of the calculation above:

subst≡�substP≡ : {x≡y : Path x y} →
subst P (from-path x≡y) p ≡ q → Path (substP P x≡y p) q

The HoTT book also makes use of a function called apd, defined using J [7]. Let us assume
that the arbitrary notion of equality comes with such a function, along with a propositional
computation rule:

congD : (f : (x : A) → P x) (x≡y : x ≡ y) → subst P x≡y (f x) ≡ f y

congD-refl : (f : (x : A) → P x) → congD f (refl x) ≡ subst-refl

We can prove a similar property for paths [5]:

congH : (f : (x : A) → P x) (x≡y : Path x y) → PathH (λ i → P (x≡y i)) (f x) (f y)
congH f x≡y i = f (x≡y i)

The functions can be related in the following way:

congD≡congH :
{x≡y : Path x y} (f : (x : A) → P x) →
congD f (from-path x≡y) ≡ PathH�subst≡ (congH f x≡y)

We can prove congD≡congH by defining congDP (a variant of congD for paths) and relating
this variant to congD as well as congH .

Given the definition of substP above one can define congDP using transport in the following
way:

congDP : (f : (x : A) → P x) (x≡y : Path x y) → Path (substP P x≡y (f x)) (f y)
congDP {P = P} f x≡y = λ i → transport (λ j → P (x≡y (max i j))) i (f (x≡y i))

The proof of the following property relating congD and congDP is omitted (see the accompa-
nying code for details):

congD≡congDP :
{x≡y : Path x y} →
subst≡�substP≡ (congD f (from-path x≡y)) ≡ congDP f x≡y

TYPES 2019

10:8 Higher Inductive Type Eliminators Without Paths

Let us instead focus on the proof of the following property that relates congDP to congH

(_'_.to gives the forward direction of an equivalence, and_'_.from the other one):

congDP≡congH :
{x≡y : Path x y} (f : (x : A) → P x) →
Path (congDP f x≡y) (_'_.to (PathH'Path (λ i → P (x≡y i))) (congH f x≡y))

We can start by using the J rule for the path x≡y, and then calculate in the following way:

congDP f (reflP x) ≡
(λ i → transport (λ_ → P x) i (f x)) ≡
transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0 (reflP (f x)) ≡
transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0

(transport (λ_ → Path (f x) (f x)) 0 (reflP (f x))) ≡
'.to (PathH'Path (λ i → P (reflP x i))) (congH f (reflP x))

The first and last steps hold by definition. The third step follows from transport-refl. Finally
the second step uses heterogeneous composition to construct the dashed arrow of the following
square:

reflP (f x) transport (λ_ → Path (f x) (f x)) 0 (reflP (f x))

λ i → transport (λ_ → P x) i (f x)

transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0 (reflP (f x))

b

l

r

The bottom line in the diagram (b) is defined in the following way:

transport (λ_ → Path (f x) (f x)) (− i) (reflP (f x))

The left-hand side of the diagram (l) corresponds to i being 0, and the right-hand side (r)
to i being 1. Similarly, the bottom (b) corresponds to j being 0, and the dashed arrow to j
being 1. The diagram’s left-hand side (l) is defined in the following way:

λ k → transport (λ_ → P x) (max k (− j)) (f x)

The right-hand side (r) is defined in the following way:

transport (λ k → Path (transport (λ_ → P x) (− min k j) (f x)) (f x)) 0 (reflP (f x))

As mentioned above the heterogeneous composition operation allows the types of l and r to
vary with j. In this case these expressions have the following type:

Path (transport (λ_ → P x) (− j) (f x)) (f x)

With congD≡congDP and congDP≡congH in place it is easy to prove congD≡congH . As
a corollary we get the following property that will be used below:

dependent-computation-rule-lemma :
{x≡y : Path x y} {fx≡fy : subst P (from-path x≡y) (f x) ≡ f y} →
congH f x≡y ≡ subst≡�PathH fx≡fy → congD f (from-path x≡y) ≡ fx≡fy

N.A. Danielsson 10:9

5 The Circle Without Paths

Let us now see how we can make the definition of a higher inductive type—the circle [7]—usable
with the arbitrary notion of equality satisfying the axioms from Section 2 (and with subst,
subst-refl, congD and congD-refl instantiated in some way, as discussed in Section 4).

Here is the definition of the circle, using paths:

data S1 : Type where
base : S1

loopP : Path base base

It is easy to define a variant of loopP that uses the arbitrary notion of equality instead of a
path:

loop : base ≡ base
loop = from-path loopP

What about the eliminator? An eliminator that uses paths can be defined in the following
way:

elimP : (P : S1 → Type p) (b : P base) → PathH (λ i → P (loopP i)) b b → (x : S1) → P x

elimP P b ` base = b

elimP P b ` (loopP i) = ` i

Now it is easy to use subst≡�PathH to construct an eliminator that uses the arbitrary notion
of equality instead. The type signature matches the one given in the HoTT book [7]:

elim : (P : S1 → Type p) (b : P base) (` : subst P loop b ≡ b) (x : S1) → P x

elim P b ` = elimP P b (subst≡�PathH `)

The HoTT book gives two computation rules for the eliminator. The one for the point
constructor base is stated to be definitional, and that is the case here. The one for the higher
constructor is given as an equality, and we can do the same thing:

elim-loop : congD (elim P b `) loop ≡ `

elim-loop = dependent-computation-rule-lemma (refl _)

The proof simply applies dependent-computation-rule-lemma to reflexivity. Things have been
set up in such a way that congH (elim P b `) loopP is definitionally equal to subst≡�PathH `;
every step of the following calculation holds by definition:

congH (elim P b `) loopP ≡
(λ i → elim P b ` (loopP i)) ≡
(λ i → elimP P b (subst≡�PathH `) (loopP i)) ≡
(λ i → subst≡�PathH ` i) ≡
subst≡�PathH `

We can also define a non-dependent eliminator. This definition does not require most of
the machinery introduced above. Here is a non-dependent eliminator for paths:

recP : (b : A) → Path b b → S1 → A

recP = elimP _

TYPES 2019

10:10 Higher Inductive Type Eliminators Without Paths

This variant can be used to define an eliminator for the arbitrary notion of equality:

rec : (b : A) → b ≡ b → S1 → A

rec b ` = recP b (to-path `)

We simply convert the equality to a path. The computation rule for the higher constructor is
stated using cong, a function that, along with a propositional computation rule, is assumed
to come with our arbitrary notion of equality (these functions could be defined using J):

cong : (f : A → B) → x ≡ y → f x ≡ f y

cong-refl : cong f (refl x) ≡ refl (f x)

The computation rule can be stated and proved in the following way:

rec-loop : cong (rec b `) loop ≡ `

rec-loop = non-dependent-computation-rule-lemma (refl _)

Here non-dependent-computation-rule-lemma is a lemma that is easy to prove:

non-dependent-computation-rule-lemma :
{x≡y : Path x y} {fx≡fy : f x ≡ f y} →
congH f x≡y ≡ to-path fx≡fy → cong f (from-path x≡y) ≡ fx≡fy

An alternative is to define the non-dependent eliminator in terms of the dependent one:

rec′ : (b : A) → b ≡ b → S1 → A

rec′ b ` = elim _ b (trans subst-const `)

Here trans and subst-const have the following types:

trans : x ≡ y → y ≡ z → x ≡ z

subst-const : subst (λ_ → A) x≡y z ≡ z

The third argument to elim thus captures the following calculation, where the first step uses
subst-const and the second uses `:

subst (λ_ → A) loop b ≡
b ≡
b

The computation rule can be proved using the computation rule for the dependent eliminator:

rec′-loop : cong (rec′ b `) loop ≡ `

rec′-loop = congD≡→cong≡ elim-loop

The proof uses the following lemma:

congD≡→cong≡ :
{x≡y : x ≡ y} {fx≡fy : f x ≡ f y} →
congD f x≡y ≡ trans subst-const fx≡fy → cong f x≡y ≡ fx≡fy

N.A. Danielsson 10:11

6 Set Quotients Without Paths

The higher inductive type given for the circle does not include any truncation constructor, i.e.
a constructor that states directly that the type has a certain h-level. As an example of such
a higher inductive type this section treats set quotients [7], which come with a truncation
constructor that ensures that the resulting types are sets (in the sense of the HoTT book [7]).

A type of h-level n is an (n− 2)-type:

Contractible : Type a → Type a
Contractible A = Σ A λ x → (y : A) → x ≡ y

H-level : N → Type a → Type a
H-level zero A = Contractible A
H-level (suc zero) A = (x y : A) → x ≡ y

H-level (suc (suc n)) A = {x y : A} → H-level (suc n) (x ≡ y)

Propositions (or mere propositions) are types of h-level 1, and sets are types of h-level 2:

Is-proposition : Type a → Type a
Is-proposition = H-level 1

Is-set : Type a → Type a
Is-set = H-level 2

Let H-levelP , Is-propositionP and Is-setP refer to the corresponding concepts defined using
paths instead of the arbitrary notion of equality.

Now we can define set quotients (the definition is similar to the one in the HoTT book [7],
but the relations are not required to be propositional, following Mörtberg [5]):

data_/_ (A : Type a) (R : A → A → Type r) : Type (a t r) where
[_] : A → A / R

[]-respects-relationP : R x y → Path [x] [y]
/-is-setP : Is-setP (A / R)

(Here _t_ is a maximum operator for universe levels.) The constructor [_]—box—takes
values from the underlying type to the quotient, and the type of []-respects-relationP implies
that box maps related values to equal values. If we expand Is-setP , then we see that the
/-is-setP constructor takes two paths between quotient values, and returns a path between
paths:

{x y : A / R} (eq1 eq2 : Path x y) → Path eq1 eq2

A direct definition of an eliminator could take the following form:

elimP ′ : (P : A / R → Type p)
(f : ∀ x → P [x])
(g : ∀ {x y} (r : R x y) → PathH (λ i → P ([]-respects-relationP r i)) (f x) (f y)) →
(∀ {x y} {eq1 eq2 : Path x y} {p : P x} {q : P y}

(eq3 : PathH (λ i → P (eq1 i)) p q) (eq4 : PathH (λ i → P (eq2 i)) p q) →
PathH (λ i → PathH (λ j → P (/-is-setP eq1 eq2 i j)) p q) eq3 eq4) →

(x : A / R) → P x

TYPES 2019

10:12 Higher Inductive Type Eliminators Without Paths

elimP ′ P f g h [x] = f x

elimP ′ P f g h ([]-respects-relationP r i) = g r i
elimP ′ P f g h (/-is-setP p q i j) =

h (λ i → elimP ′ P f g h (p i)) (λ i → elimP ′ P f g h (q i)) i j

However, the type of the penultimate argument might look somewhat daunting. It can be
replaced by the requirement that the motive P is a family of sets. (For performance reasons
the accompanying code defines the eliminator in a slightly different way: the second, third
and fourth arguments are bundled up using a record type with η-equality turned off. Other
eliminators from this section are also defined in this way in the accompanying code.)

Before defining an alternative eliminator, let us prove some lemmas. Consider the following
variant of the final clause of H-levelP :

H-levelP-suc'H-levelP-PathH :
{P : I → Type p} →
H-levelP (suc n) (P i) ' ((x : P 0) (y : P 1) → H-levelP n (PathH P x y))

This variant can be proved by calculating in the following way:

H-levelP (suc n) (P i) '
H-levelP (suc n) (P 1) '
((x y : P 1) → H-levelP n (x ≡ y)) '
((x : P 0) (y : P 1) → H-levelP n (Path (transport P 0 x) y)) '
((x : P 0) (y : P 1) → H-levelP n (PathH P x y))

The first step follows from the following equality:

index-irrelevant : (P : I → Type p) → ∀ i j → Path (P i) (P j)
index-irrelevant P i j k = P (max (min i (− k)) (min j k))

The second step is related to Lemma 3.11.10 from the HoTT book [7], and the fourth step uses
PathH'Path. The third step uses index-irrelevant again, as well as the following preservation
lemma:

Π-cong : (A'B : A ' B) → (∀ x → P x ' Q (_'_.to A'B x)) →
((x : A) → P x) ' ((x : B) → Q x)

This step also uses transport-refl and the following equality:

transport-transport : (P : I → Type p) {p : P 0} →
Path (transport (λ i → P (− i)) 0 (transport P 0 p)) p

We can use H-levelP-suc'H-levelP-PathH to prove that a heterogeneous notion of proof
irrelevance holds for families of propositions:

heterogeneous-irrelevance :
(∀ x → Is-propositionP (P x)) →
{x≡y : Path x y} {p : P x} {q : P y} → PathH (λ i → P (x≡y i)) p q

We can reason in the following way:

(∀ x → Is-propositionP (P x)) →
Is-propositionP (P x) →

N.A. Danielsson 10:13

Is-propositionP (P (x≡y 0)) →
ContractibleP (PathH (λ i → P (x≡y i)) p q) →
PathH (λ i → P (x≡y i)) p q

The third step follows from H-levelP-suc'H-levelP-PathH , and the last step uses the fact that
contractible types are inhabited. We can also prove a similar result for families of sets:2

heterogeneous-UIP :
(∀ x → Is-setP (P x)) →
{eq1 eq2 : Path x y} {eq3 : Path eq1 eq2} {p1 : P x} {p2 : P y}
(eq4 : PathH (λ j → P (eq1 j)) p1 p2)
(eq5 : PathH (λ j → P (eq2 j)) p1 p2) →
PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5

The proof is very similar to the previous one:

(∀ x → Is-setP (P x)) →
Is-setP (P x) →
Is-setP (P (eq3 0 0)) →
Is-propositionP (PathH (λ j → P (eq3 0 j)) p1 p2) →
ContractibleP (PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5) →
PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5

Here H-levelP-suc'H-levelP-PathH is used twice, once in the third step and once in the fourth.
Now let us go back to the set quotients. Using heterogeneous-UIP it is easy to implement

the following dependent eliminator and a corresponding non-dependent eliminator:

elimP : (P : A / R → Type p)
(f : ∀ x → P [x]) →
(∀ {x y} (r : R x y) → PathH (λ i → P ([]-respects-relationP r i)) (f x) (f y)) →
(∀ x → Is-setP (P x)) →
(x : A / R) → P x

elimP P f g s = elimP ′ P f g (heterogeneous-UIP s)

recP : (f : A → B) → (∀ {x y} → R x y → Path (f x) (f y)) → Is-setP B → A / R → B

recP f g s = elimP _ f g (λ_ → s)

With the non-dependent eliminator one can define a function from A / R to a set B by
giving a function from A to B that respects the relation.

Let us now define variants without paths of the higher constructors and the last two
eliminators. The first higher constructor can be treated in the same way as before:

[]-respects-relation : R x y →_≡_ {A = A / R} [x] [y]
[]-respects-relation = from-path ◦ []-respects-relationP

For the other one we can start by noting that the two definitions of h-levels given above are
pointwise equivalent:

H-level'H-levelP : ∀ n → H-level n A ' H-levelP n A

2 Zesen Qian has proved more or less the same result, but in a different way [5, Git commit
9a4f3cf3c733db82344bfc98b82f405101df816a].

TYPES 2019

10:14 Higher Inductive Type Eliminators Without Paths

It is then easy to define the variant of the second constructor:

/-is-set : Is-set (A / R)
/-is-set =_'_.from (H-level'H-levelP 2) /-is-setP

The dependent eliminator can be defined in the following way, using subst≡�PathH and
H-level'H-levelP :

elim : (P : A / R → Type p)
(f : ∀ x → P [x]) →
(∀ {x y} (r : R x y) → subst P ([]-respects-relation r) (f x) ≡ f y) →
(∀ x → Is-set (P x)) →
(x : A / R) → P x

elim P f g s = elimP P f (subst≡�PathH ◦ g) (_'_.to (H-level'H-levelP 2) ◦ s)

Finally it is easy to define a variant of recP :

rec : (f : A → B) → (∀ {x y} → R x y → f x ≡ f y) → Is-set B → A / R → B

rec f g s = recP f (to-path ◦ g) (_'_.to (H-level'H-levelP 2) s)

I have not included computation rules for the higher constructors, because sets have proposi-
tional equality types (i.e. any two equality proofs of the same type are equal).

7 More Examples

Let us now consider more examples. No new functionality is introduced in this section: the
functions introduced above suffice to handle a large number of examples.

The suspension type constructor and corresponding eliminators can be defined in the
following way [7]:

data Susp (A : Type a) : Type a where
north : Susp A
south : Susp A
meridianP : A → Path north south

elimP : (P : Susp A → Type p) (n : P north) (s : P south) →
(∀ x → PathH (λ i → P (meridianP x i)) n s) →
(x : Susp A) → P x

elimP _ n s n≡s north = n

elimP _ n s n≡s south = s

elimP _ n s n≡s (meridianP x i) = n≡s x i

recP : (n s : B) → (A → Path n s) → Susp A → B

recP = elimP _

Variants of the higher constructor and the eliminators, and two propositional computation
rules, can then be defined in the following way:

meridian : A →_≡_ {A = Susp A} north south
meridian = from-path ◦ meridianP

N.A. Danielsson 10:15

elim : (P : Susp A → Type p) (n : P north) (s : P south) →
(∀ x → subst P (meridian x) n ≡ s) →
(x : Susp A) → P x

elim P n s n≡s = elimP P n s (subst≡�PathH ◦ n≡s)

elim-meridian : (P : Susp A → Type p) (n : P north) (s : P south)
(n≡s : ∀ x → subst P (meridian x) n ≡ s) →
congD (elim P n s n≡s) (meridian x) ≡ n≡s x

elim-meridian ____ = dependent-computation-rule-lemma (refl _)

rec : (n s : B) → (A → n ≡ s) → Susp A → B

rec n s n≡s = recP n s (to-path ◦ n≡s)

rec-meridian : (n s : B) (n≡s : A → n ≡ s) →
cong (rec n s n≡s) (meridian x) ≡ n≡s x

rec-meridian ___ = non-dependent-computation-rule-lemma (refl _)

Note that most of the text consists of type signatures, and that the lemmas introduced above
can be used unchanged.

As a second example of a higher inductive type with a truncation constructor, let us
now return to the propositional truncation operator from Section 1 (with trivial renamed to
trivialP):

data ‖_‖ (A : Type a) : Type a where
|_| : A → ‖ A ‖
trivialP : (x y : ‖ A ‖) → Path x y

The following eliminator was given in Section 4 (but it was called elimP):

elimP ′ : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
({x y : ‖ A ‖} (p : P x) (q : P y) → PathH (λ i → P (trivialP x y i)) p q) →
(x : ‖ A ‖) → P x

elimP ′ P f t | x | = f x

elimP ′ P f t (trivialP x y i) = t (elimP ′ P f t x) (elimP ′ P f t y) i

Just like for the set quotients in Section 6 we can define an alternative eliminator and a
corresponding non-dependent eliminator:

elimP : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
(∀ x → Is-propositionP (P x)) →
(x : ‖ A ‖) → P x

elimP P f p = elimP ′ P f (λ__ → heterogeneous-irrelevance p)

recP : (A → B) → Is-propositionP B → ‖ A ‖ → B

recP f p = elimP _ f (λ_ → p)

Variants of the higher constructor and the eliminators can then be defined in the following
way:

trivial : Is-proposition ‖ A ‖
trivial =_'_.from (H-level'H-levelP 1) trivialP

TYPES 2019

10:16 Higher Inductive Type Eliminators Without Paths

elim : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
(∀ x → Is-proposition (P x)) →
(x : ‖ A ‖) → P x

elim P f p = elimP P f (_'_.to (H-level'H-levelP 1) ◦ p)

rec : (A → B) → Is-proposition B → ‖ A ‖ → B

rec f p = recP f (_'_.to (H-level'H-levelP 1) p)

Note again that the lemmas introduced above can be used unchanged. (Computation rules
for the higher constructors are omitted, because propositions have propositional equality
types.)

8 An Alternative Approach

This section discusses an alternative approach, suggested by an anonymous reviewer. The
circle is used as an example.

We can write down the formation, introduction, elimination and computation rules of
the circle using Σ-types in the following way:

Circle : (p : Level) → Type (lsuc p)
Circle p =

Σ Type λ S1 →
Σ S1 λ base →
Σ (base ≡ base) λ loop →

(P : S1 → Type p) (b : P base) (` : subst P loop b ≡ b) →
Σ ((x : S1) → P x) λ elim →
Σ (elim base ≡ b) λ elim-base →

subst (λ b → subst P loop b ≡ b) elim-base (congD elim loop) ≡ `

Note that the definition is parametrised by the level of the universe into which the eliminator
should eliminate (lsuc is a successor operation for levels). Note also that the computation
rule for loop is more complicated than in Section 5; the reason is that the computation rule
for base does not hold by definition.

We can also write down a corresponding definition that uses paths instead of the arbitrary
notion of equality and prove that the two definitions are pointwise equivalent:

CircleP : (p : Level) → Type (lsuc p)
CircleP'Circle : CircleP p ' Circle p

Finally we can prove that CircleP p is inhabited and use the equivalence to derive an
implementation of Circle p:

circleP : CircleP p

circle : Circle p

It is even possible to do this in such a way that the derived eliminator gets the “right”
computational behaviour for the point constructor (see the accompanying code for details).
This implies that the less complicated computation rule given for the higher constructor in
Section 5 can be proved.

N.A. Danielsson 10:17

However, when I followed this method I ended up with quite a bit more code (excluding
library code) than when I used the approach demonstrated above. Here is an implementation
of circleP , with the proof of the second computation rule omitted:

S1 , base , loopP , λ P b ` → elimP P b (subst≡�PathH {P = P} `) , reflP b , . . .

The code uses a variant of subst≡�PathH for paths, and the omitted proof of the second
computation rule uses a variant of dependent-computation-rule-lemma for paths, plus an
extra lemma (due to the more complicated formulation of the computation rule). If we do
not count the size of library code then this code (CircleP and circleP) is already about as
large as the definition of the eliminator and computation rule given in Section 5. In addition
we have to prove CircleP'Circle, and if we are not careful we can end up with an eliminator
that does not have the right computational behaviour for the point constructor. Finally we
can write a little more code to establish the less complicated formulation of the computation
rule for the higher constructor.

9 Discussion

The approach used for suspensions in Section 7 works for several other higher inductive
types from the HoTT book [7], including the interval, pushouts, and a general truncation
operator (see the accompanying code for details). Furthermore I have shown how one can
handle propositional truncation and set truncation constructors. The higher constructors of
these types—with the exception of the truncation constructors—satisfy the following two
properties:

All constructors return paths between points.
No constructor takes a path involving the type family that is being defined as input
(ignoring the possibility of later instantiating parameters to such paths).

This might seem to be a serious limitation. However, the HoTT book mentions a method
for avoiding paths as inputs [7, Section 6.9], involving the use of auxiliary higher inductive
types. It also discusses a method for avoiding higher constructors that return paths between
paths, using a “hub” and “spokes” [7, Section 6.7]. The hub-and-spokes construction is
used to define the general truncation operator. A potential drawback of the hub-and-spokes
construction is that the resulting eliminators may have different computational behaviour [7,
Remark 6.7.2], but that is already the case for the methods discussed here.

If the computational behaviour for higher constructors is important, then I do not
advocate using the techniques discussed above. Working directly with paths can lead to
better computational behaviour: the J rule might not compute in the usual way, but instead
there are new definitional equalities. To illustrate this point: The HoTT book mentions
another higher inductive type, the torus, given using the hub-and-spokes construction. The
definition refers to the circle. I could use a variation of the method described in this text to
give an interface to the torus. However, when doing this I found it easier to work with the
path-based interface to the circle than the one using an arbitrary notion of equality. (For
details of my definition, see the accompanying code.)

References
1 The Agda Team. Agda User Manual, Release 2.6.1, 2020. URL: https://readthedocs.org/

projects/agda/downloads/pdf/v2.6.1/.
2 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:

A constructive interpretation of the univalence axiom. In 21st International Conference on
Types for Proofs and Programs, TYPES 2015, number 69 in LIPIcs, page 5:1–5:34, 2018.
doi:10.4230/LIPIcs.TYPES.2015.5.

TYPES 2019

https://readthedocs.org/projects/agda/downloads/pdf/v2.6.1/
https://readthedocs.org/projects/agda/downloads/pdf/v2.6.1/
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

10:18 Higher Inductive Type Eliminators Without Paths

3 Nils Anders Danielsson. Code related to the paper “Higher Inductive Type Eliminators
Without Paths”, 2020. doi:10.5281/zenodo.3941063.

4 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five Years of Constructive Type Theory: Proceedings of a Congress Held in Venice,
October 1995, volume 36 of Oxford Logic Guides, page 83–111. Oxford University Press, 1998.

5 Anders Mörtberg, Andrea Vezzosi, et al. An experimental library for Cubical Agda. Agda
code, 2020. URL: https://github.com/agda/cubical/.

6 Andrew Swan. An algebraic weak factorisation system on 01-substitution sets: A constructive
proof. Journal of Logic & Analysis, 8(1):1–35, 2016. doi:10.4115/jla.2016.8.1.

7 The Univalent Foundations Program. Homotopy type theory, 2013. First edition. URL:
https://homotopytypetheory.org/book/.

8 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. Proceedings of the ACM
on Programming Languages, 3(ICFP):87:1–87:29, 2019. doi:10.1145/3341691.

https://doi.org/10.5281/zenodo.3941063
https://github.com/agda/cubical/
https://doi.org/10.4115/jla.2016.8.1
https://homotopytypetheory.org/book/
https://doi.org/10.1145/3341691

	Introduction
	An Axiomatisation of Equality With J
	Homogeneous Paths
	Heterogeneous Paths
	Consequences of the Equivalence

	The Circle Without Paths
	Set Quotients Without Paths
	More Examples
	An Alternative Approach
	Discussion

