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Abstract
Of all the threats to the consistency of a type system, such as side effects and recursion, impredicativity
is arguably the least understood. In this paper, we try to investigate it using a kind of blackbox
reverse-engineering approach to map the landscape. We look at it with a particular focus on its
interaction with the notion of implicit arguments, also known as erasable arguments.

More specifically, we revisit several famous type systems believed to be consistent and which
do include some form of impredicativity, and show that they can be refined to equivalent systems
where impredicative quantification can be marked as erasable, in a stricter sense than the kind of
proof irrelevance notion used for example for Prop terms in systems like Coq.

We hope these observations will lead to a better understanding of why and when impredicativity
can be sound. As a first step in this direction, we discuss how these results suggest some extensions
of existing systems where constraining impredicativity to erasable quantifications might help preserve
consistency.
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1 Introduction

Russell introduced the notion of type and predicativity as a way to stratify our definitions
so as to prevent the diagonalization and self-references that lead to logical inconsistencies.
This stratification seems sufficient to protect us from such paradoxes, but it does not seem
to be absolutely necessary either: systems such as System-F are not predicative yet they
are generally believed to be consistent. Some people reject impredicativity outright, and
indeed systems like Agda [8] demonstrate that you can go a long way without impredicativity,
yet, many popular systems, like Coq [18], do include some limited form of impredicativity.
But those limits tend to feel somewhat ad-hoc, making the overall system more complex,
with unsatisfying corner cases. For this reason we feel there is still a need to try and better
understand what those limits to impredicativity should look like.

Let’s disappoint the optimistic reader right away: we won’t solve this problem. But
during the design of our experimental language Typer [24], we noticed a property shared by
several existing impredicative systems, that seemed to link impredicativity and erasability.
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9:2 Is Impredicativity Implicitly Implicit?

Some mathematicians, such as Carnap [13], have argued that impredicative quantification
might be acceptable as long as those arguments are not used in a, we shall say, “significant”
way. So in a sense this article investigates whether erasability might be such a notion of
“insignificance”.

The two main instances of impredicativity in modern type theory are probably Coq’s
Prop universe, which is designed to be erasable, and the propositional resizing axiom [27]
which allows the use of impredicativity for all mere propositions, i.e. types whose inhabitants
are all provably equal and hence erasable. For this reason, it is no ground breaking revelation
to claim that there is an affinity between impredicativity and erasability, yet it is still unclear
to what extent the two belong together nor which particular form of erasability would be the
true soulmate of impredicativity.

While Coq and the propositional resizing axiom basically link impredicativity to the
concept of erasure usually called proof irrelevance, where an argument is deemed erasable if
its type has at most one inhabitant, in this article we investigate its connection to a different
form of erasability, where an argument is deemed erasable if the function only uses it in type
annotations. This is the notion of erasability found in systems like ICC* and EPTS [5, 22].

More specifically, in Section 3, we take various well-known impredicative systems, refine
them with annotations of erasability, and then show that all impredicatively quantified
arguments can be annotated as erasable. In other words, we show that those existing systems
already implicitly restrict the arguments to their impredicative quantifications to be erasable.
This suggests that maybe a good rule of thumb to keep impredicative quantification sound is
to make sure its argument is always erasable.

Armed with this proverbial hammer, we then look at the two main limitations of
impredicative quantification in existing systems: the restriction we call no-SELIT (which
disallows strong elimination of large inductive types) in systems like Coq, and the fact that
only the bottom universe can be impredicative. We then propose systems that replace those
somewhat ad-hoc restrictions with the arguably less ad-hoc restriction that impredicative
quantification is restricted to erasable quantification. The contributions of this work are:

A proof that in CCω all arguments to impredicative functions are erasable.

A proof that in the CIC resulting from extending CCω with inductive types in the
impredicative universe, all arguments to impredicative functions and all large fields of
inductive types are also erasable.

A new calculus ECIC which lifts the no-SELIT restriction, i.e. it extends CIC with strong
elimination of large inductive types.

A proof that restricting impredicativity to erasable quantifiers does not directly make
impredicativity in more than one universe consistent.

A new calculus EpCCω with an impredicative universe polymorphism which allows more
powerful forms of impredicativity, such as a Church encoding with strong elimination.

As needed for some of the above contributions, we sketch an extension of ICC* with both
inductive types. While this is straightforward, we do not know of such a system published
so far, the closest we found being the one by Bernardo in [6] and Tejiscak’s thesis [26].
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(var) x, y, t, l ∈ V
(sort) s ∈ S
(argkind) k, c ::= n | e
(term) e, τ ::= s | x | (x :τ1) k→ τ2 | λx :τ k→ e | e1@ke2
(context) Γ ::= • | Γ, x :τ

primitive reductions: (λx :τ k→ e1)@ke2  e1[e2/x]

Figure 1 Syntax and reduction rules of EPTS.

2 Background

Here we present the notion of erasability we use in the rest of the paper.

2.1 Erasable Pure Type Systems
The calculi we use in this paper are erasable pure type systems (EPTS) [22], which are pure
type systems (PTS) [4] extended with a notion of erasability. We use a notation that makes
it more clear that the erasability is just an annotation like that of colored pure type systems
(CPTS) [7] where the color indicates which arguments are ‘n’ormal and which are ‘e’rasable.
The syntax of the terms and computation rules are shown in Figure 1.

A specific EPTS is then defined by providing the triplet (S,A,R) which defines respectively
the sorts, axioms, and rules of this system. The difference with a plain pure type system,
is that the annotation on a function or function call has to match the annotation of the
function’s type and that the elements of R have an additional k indicating to which color
this rule applies: rules in R have the form (k, s1, s2, s3) which means that a function of color
k taking arguments in universe s1 to values in universe s2 itself lives in universe s3. For
example, we can define an EPTS which defines a version of System-F with erasability as
follows:

S = { ∗, � }
A = { (∗, �) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗) | k ∈ {n, e} }

This version has 4 different abstractions, allowing both System-F’s value abstractions λ and
type abstractions Λ to be annotated as either erasable or normal. It is well known that
System-F enjoys the phase distinction [9], which means that all types can be erased before
evaluating the terms, so we could also define an EPTS equivalent to System-F with only 2
abstractions, using the following rules instead:

R = { (n, ∗, ∗, ∗), (e,�, ∗, ∗) }

This is an example of an impredicative calculus where we can make all impredicative
abstractions (in this case, those introduced by the rule (�, ∗, ∗) in the PTS) erasable.

Figure 2 shows the typing rules of our EPTS. Compared to a normal CPTS, the only
difference is that the typing rule for functions is split into n-Lam and e-Lam where e-Lam
includes the additional constraint x 6∈ fv(e∗) that enforces the erasability of the argument.

TYPES 2019



9:4 Is Impredicativity Implicitly Implicit?

Γ(x) = τ

Γ ` x : τ
(Var)

(s1, s2) ∈ A
Γ ` s1 : s2

(Sort)

Γ ` e : τ1 Γ ` τ2 : s τ1 ' τ2
Γ ` e : τ2

(Conv)

Γ ` τ1 : s1 Γ, x :τ1 ` τ2 : s2 (k, s1, s2, s3) ∈ R

Γ ` (x :τ1) k→ τ2 : s3
(Pi)

Γ ` e1 : (x :τ1) k→ τ2 Γ ` e2 : τ1

Γ ` e1@ke2 : τ2[e2/x]
(App)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2

Γ ` λx :τ1
n→ e : (x :τ1) n→ τ2

(n-Lam)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2 x 6∈ fv(e∗)
Γ ` λx :τ1

e→ e : (x :τ1) e→ τ2
(e-Lam)

Figure 2 Typing rules of our EPTS.
In the Conv rule, ' stands for the ordinary β-convertibility.

The expression “e∗” is the erasure of e, where the erasure function (·)∗ erases type annotations
as well as all erasable arguments:

s∗ = s

x∗ = x

((x :τ1) k→ τ2)∗ = (x :τ1∗)→ τ2∗
(λx :τ n→ e)∗ = λx→ e∗
(λx :τ e→ e)∗ = e∗
(e1@ne2)∗ = e1∗@e2∗
(e1@ee2)∗ = e1∗

This expresses the fact that erasable arguments do not influence evaluation. The codomain
of the erasure function is technically another language with a slightly different syntax, i.e.
without erasability nor type annotations, but we will gloss over those details here since for
the purpose of this article we only really ever need to know if “x ∈ fv(e∗)” rather than the
specific shape of “e∗” itself.

Since the new e-Lam rule is strictly more restrictive than the normal one, it is trivial
to show that every EPTS S, just like every CPTS, has a corresponding PTS we note bSc
where erasability annotations have simply be removed, and that any well-typed term e in
the EPTS S has a corresponding well-typed term bec in bSc. More specifically: Γ ` e : τ in
the EPTS S implies bΓc ` bec : bτc in the PTS bSc. As a corollary, if the corresponding
PTS is consistent, the EPTS is also consistent.

2.2 Kinds of erasability
The claim that arguments to impredicative functions can be erased could be considered as
trivial if we consider that Coq’s only impredicative universe is Prop and that it is also the
universe that gets erased during program extraction.
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S = { Prop;Type` | ` ∈ N }
A = { (Prop : Type0); (Type` : Type`+1) | ` ∈ N }
R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }

∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Prop) | ` ∈ N } ⇐ Rule absent from eCCω and eCIC

Figure 3 Definition of CCω (and its little sibling eCCω) as EPTS.

But the kind of erasability we use in this article is different from that offered by Coq’s
irrelevance of Prop: on the one hand it’s more restrictive since the only thing you can do
with an erasable argument in an EPTS is to pass it around until you finally put it inside a
type annotation, but on the other it’s more flexible because any argument can be erasable,
regardless of its type. For example, let us take the following polymorphic identity function
in Coq:

Definition identity (t : Prop) (x : t) := x.

We can see that this function is impredicative since “t” can be instantiated with the type of
identity. Coq’s erasure would erase all uses of this function in terms that do not live in
Prop, whereas we will concentrate here on the fact that the “t” argument is erasable because
it is only used in type annotations.

In [2], Abel and Scherer discuss various other subtly different notions of erasure. One of
the differences they mention is the difference between internal and external erasure. The
rules of our EPTS are different in this respect from those of ICC [21] and ICC*[5]: our Conv
rule requires convertibility of the fully explicit types (which corresponds to external erasure),
whereas ICC and ICC* use a rule where convertibility is checked after erasure (so-called
internal erasure):

Γ ` e : τ1 Γ ` τ2 : s τ1∗ ' τ2∗
Γ ` e : τ2

We use the weaker rule because it is sufficient for our needs and makes it immediately obvious
that every well-typed term e in an EPTS S has a corresponding well-typed term bec in bSc.
Our results would carry over to systems with the stronger rule, of course.

3 Erasable impredicativity in Prop

In this section we show that the impredicative quantification in the bottom universe Prop
is almost always erasable and armed with this observation along with some circumstantial
evidence, we propose to rely on this property in order to lift the no-SELIT restriction.

3.1 eCCω: Erasing impredicative arguments of CCω
We will start by showing that impredicative arguments in the calculus of constructions
extended with a tower of universes (CCω) are always erasable. We use CCω, shown in
Figure 3, because it is arguably the pure type system that is most closely related to existing
systems like Coq. It follows the tradition of having a special impredicative Prop universe with
a tower of predicative universes named Type`. max(`1, `2) denotes simply the least upper
bound of l1 and l2.

TYPES 2019
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The calculus bCCωc we get by removing the erasability annotations is sometimes also
called CCω in the literature. And indeed the two are equivalent: we can see that any well-
typed term e in bCCωc has a corresponding well-typed term dee in CCω such that bdeec = e

by simply making d·e add n annotations everywhere. Our calculus CCω is incidentally almost
identical to the ICC* calculus of Barras and Bernardo [5] (except for the Conv rule, as
discussed above).

With respect to impredicativity, the relevant rules in CCω are (e,Type`,Prop,Prop) and
(n,Type`,Prop,Prop) which allow functions in Prop to take arguments in any Type`. We will
now show that the second rule is redundant:

I Lemma 1 (Confinement of impredicativity in CCω).
In CCω, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can
only appear in e∗ within arguments to impredicative functions, i.e. functions whose return
values live in Prop and whose arguments don’t.

Proof. By induction on the type derivation of e:
Given τe : Prop, clearly e is too small to be a type like a sort s or an arrow (y :τ1) k→ τ2,
and it is also too small to be x itself.
If the derivation uses the Conv rule to convert e : τe to e : τ ′e, we know that τ ′e also
has type Prop, by virtue of the type preservation property, so we can use the induction
hypothesis on e : τ ′e.
If e is a function λy :τy

k→ ey, then τy does not matter since it is erased from e∗ and only
occurrences of x in ey is a concern, and since τe : Prop, we also know that the type of ey

is itself in Prop, hence we can use the induction hypothesis on it.
If e is an application e1@ke2, as above we can apply the induction hypothesis to e1. As
for e2, there are two cases: either e1 takes an argument of type τ1 :Prop in which case we
can again apply the induction hypothesis, or it takes an argument of type τ1 :Type`′ in
which case we’re done. J

We call eCCω the restriction of CCω where all arguments to impredicative functions are
erasable, i.e. (n,Type`,Prop,Prop) is removed, as shown in Figure 3.

I Theorem 2 (Erasability of impredicative arguments in CCω).
CCω’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CCω
there is a corresponding derivation Γ′ ` e′ : τ ′ in eCCω such that bΓ ` e : τc = bΓ′ `
e′ : τ ′c.

Proof. By induction on the type derivation of e where we systematically replace n with e on
all functions, arrows, and applications that previously relied on the rule (n,Type`,Prop,Prop).
Since the erasability annotation is only used in the typing rule of λ-abstractions, the proof
follows trivially for all cases except this one. For λ-abstractions that had an n annotation
that we need to convert to e, we need to satisfy the additional condition that x 6∈ fv(e∗),
which follows from Lemma 1: In the absence of the rule (n,Type`,Prop,Prop), all functions
of type (y : τ1) k→ τ2 where τ2 : Prop and τ1 : Type`′ are necessarily erasable, so Lemma 1
implies that x can never occur in e′∗. J

This shows that the erasability of System-F’s impredicative type abstractions can be
extended to all of CCω’s impredicative abstractions as well.
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(index) i ∈ N
(term) e, τ, a, b, p ::= ... | Ind(x :τ)〈~a〉

| Con(i, τ)
| 〈τr〉Case e of 〈~b〉
| Fixi x : τ = e

primitive reductions: 〈τr〉Case (Con(i, τ)
−−→
@ke) of 〈~b〉  bi

−−→
@ke

Fixi x : τ = e  e[(Fixi x : τ = e)/x]

Figure 4 Extension of Figure 1’s EPTS with inductive types.

3.2 eCIC: Erasing impredicative arguments of CIC
We now extend this result to a calculus of inductive constructions (CIC). We reuse CCω
as the base language and add inductive types to it. The term CIC has been used to refer
to many different systems. Here we use it to refer to a variant of the “original” CIC from
1994, which only had 3 universes, in which we collapsed Set and Prop into a single universe,
which we call Prop even though it is not restricted to be proof irrelevant like Coq’s Prop; for
readers more familiar with Coq, our CIC’s Prop is more like Coq’s impredicative Set. Note
also that our CIC does have a tower of universes, like Coq, but its inductive types only exist
in the bottom universe, as was the case in the original CIC, which is why we prefer to call it
CIC than CICω.

We mostly follow the presentation of Giménez [16] for the syntax of inductive types
but we extend its rules according to the presentation of Werner [29] which adds a strong
elimination, i.e. the ability to compute a type by case analysis on an inductive type, which is
needed for many proofs, even simple ones. The syntax of terms and the computational rules
of inductive types are shown in Figure 4. Together with the rules of Figure 3 they define
CIC (and its little sibling eCIC).

Ind(x :τ)〈~a〉 is a (potentially indexed) inductive type which itself has type τ and whose ith
constructor has type ai, where we use the vector notation ~a to represent a sequence of terms
a0 . . . an. Con(i, τ) denotes the ith constructor of the inductive type e. 〈τr〉Case e of 〈~b〉 is
a case analysis of the term e which should be an object of inductive type; it will dispatch
to the corresponding branch bi if e was built with the ith constructor of the inductive type;
τr describes the return type of the case expression. Finally Fixi x : τ = e is a recursive
function x of type τ , defined by structural induction on its ith argument (the reduction rule
shown above is naive, but the details do not affect us here).

We must of course also extend the definition of our erasure function to handle those
additional terms:

Ind(x :τ)〈~a〉∗ = Ind(x)〈−→a∗〉
Con(i, τ)∗ = Con(i)
〈τr〉Case e of 〈~b〉∗ = Case e∗ of 〈

−→
b∗〉

(Fixi x : τ = e)∗ = Fix x = e∗

While these new terms may appear not to take erasability into account, this is only because
the erasability of the fields of those inductive types is introduced by the erasability annotations
on the formal arguments of ~a which need to match those of ~b: they really do let you specify
the erasability of each field; and every field, whether erasable or not, is available within the
corresponding Case branch but those marked as erasable in the Ind definition will accordingly
only be available as erasable within Case.

TYPES 2019
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Γ ` τ : s ∀i. Γ, x :τ ` ai : Prop x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

τ = Ind(x :τ ′)〈~a〉 Γ ` τ : τ ′

Γ ` Con(i, τ) : ai[τ/x]
∀i. Γ ` τi : Prop

Γ ` ~τ small

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ s = Prop ∨ Γ ` ~τy small

∀i. Γ ` bi :
−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Γ ` τ : s

Γ, xf :τ ` e : τ e = λ
−−−−→
y :_ k→λxi :_ k→ eb i = |y| xf ; i;xi; ∅ ` eb term

Γ ` Fixi xf : τ = e : τ

Figure 5 Typing rules of inductive types.

Auxiliary judgments: Γ ` ~τ small checks that the fields ~τ are all in Prop.
x ` ai con checks that a is strictily positive in x.
xf ; i;xi; ∅ ` eb term makes sure all recursive calls use structurally decreasing arguments.

Figure 5 shows the typing rules corresponding to each of those four new constructs. Those
typing rules are pretty intricate, if not downright scary, and most of the details do not
directly affect our argument, so the casual reader may prefer to skip them. We use _ at a
few places where the actual element does not matter enough to give it a name. The notation
f
−−→
@ke denotes a curried application with multiple arguments f@k1e1 . . .@knen, and similarly

λ
−−−−→
x :τ k→ e denotes a curried function of multiple arguments λx1 : τ1

k1→ . . . λxn :τn
kn→ e and−−−−−→

(x :τ) k→ e denotes the type of such a function (x1 :τ1) k1→ . . . (xn :τn) kn→ e.
The rules are very similar to those used by Giménez in [16] because they are largely

unaffected by the erasability annotations. The only exception is for Case where we have
to make sure that the various erasability annotations match each other, e.g. the vector
~c of erasability annotations placed on a given constructor ai must match the erasability
annotations of the arguments expected by the corresponding branch bi. Two important
details are worth pointing out:

In the rule for Ind the type of constructors is restricted to be in Prop: just like in the
original CIC we only allow inductive types in our bottom universe, contrary to what
systems like Coq [18] and UTT [20] allow.
In the Case rule, the hypotheses s = Prop ∨ Γ ` ~τy small ensure that when the result
of the case analysis is not in Prop, i.e. when this is a form of strong elimination, the
inductive type must be small, meaning that all its fields must be in Prop. This “no-SELIT”
restriction is taken fromWerner [29], with a slightly different presentation because he chose
to split the Case rule into two: one for weak elimination and one for strong elimination.
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We do not show the definition of the x ` e con judgment which ensures that e has the
appropriate shape for an inductive constructor, including the strict positivity, nor that of
the xf ; i;xi; ν ` e term judgment which ensures that recursive calls are made on structurally
smaller terms. Their definition is not affected by the presence of erasability annotations and
does not impact our work here.

To show that the (n,Type`,Prop,Prop) rule of non-erasable impredicativity is still
redundant in this new system, we proceed in the same way:

I Lemma 3 (Confinement of impredicativity in CIC).
In CIC, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can
only appear in e∗ within arguments to impredicative functions, i.e. functions whose return
values live in Prop and whose arguments don’t.

Proof. The proof stays the same as for CCω, with the following additional cases:
Given τe : Prop, clearly e is too small to be a type like Ind(x :τ)〈~a〉.
If e is of the form Con(i, τ), since τ is erased, the erasure is always closed.
If e is of the form Fixi x : τ = e′, then τ does not matter because it’s erased, and we
can invoke the inductive hypothesis on e′.
If e is of the form 〈τr〉Case e′ of 〈~b〉, then τr does not matter because it is erased.
Furthermore, we can invoke the inductive hypothesis on e′ since we know that e′ lives
in Prop, like all our inductive types. Finally since the hypothesis tells us that e lives in
Prop, all branches bi must as well, hence we can also invoke the induction hypothesis on
every bi. J

We call eCIC the restriction of CIC where all arguments to impredicative functions and
all large fields of inductive definitions are erasable, i.e. (n,Type`,Prop,Prop) is removed.

I Theorem 4 (Erasability of impredicative arguments in CIC).
CIC’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CIC
there is a corresponding derivation Γ′ ` e′ : τ ′ in eCIC such that bΓ ` e : τc = bΓ′ ` e′ : τ ′c

Proof. As before, by induction on the type derivation of e where we systematically replace
n with e on all functions, arrows, and applications that previously relied on the rule
(n,Type`,Prop,Prop). The interesting new case is when e is of the form 〈τr〉Case e′ of 〈~b〉:
as mentioned, the vector ~c of erasability annotations placed on a given constructor ai must
match the erasability annotations of the arguments expected by the corresponding branch bi.
Since our inductive types all live in Prop, it means all fields that live in higher universes have
been annotated as erasable. But that in turns means that all corresponding arguments to the
branches bi should also be annotated as erasable. When s is Prop (i.e. a weak elimination),
this is the case because all arguments of higher universe for functions in Prop can only be
annotated as erasable. And when s is a higher universe the property is also verified because
the Γ ` ~τy small constraint imposes that none of the arguments are in higher universes so
they don’t use the (n,Type`,Prop,Prop) rule. J

This shows that the erasability of System-F’s impredicative type abstractions can be
extended not only to all of CCω’s impredicative abstractions but also to CIC’s impredicative
abstractions and impredicative inductive types.

3.3 ECIC: Strong elimination of large inductive types
The reason behind the Γ ` e small special constraint on strong eliminations of CIC in
Figure 5 is pretty straightforward: without this restriction, we could use an inductive type
such as the following to “smuggle” a value of universe Type` in a box of universe Prop:
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R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 6 Rules of the ECIC system. The rest is unchanged from eCIC, Figures 1, 2, 4, and 5.

Inductive Box (t : Type): Prop := box : t -> Box.
Definition unbox (t : Type) (x : Box t) := match x with

| box x’ => x’
end.

Note that such a box (a large inductive type) is perfectly valid in CIC, but the Γ ` e small
constraint rejects the unbox definition (which uses a strong elimination). If we remove the
Γ ` e small constraint, the effect of such a box/unbox pair would be to lower any value of a
higher universe to the Prop universe and would hence defeat the purpose of the stratification
introduced by the tower of universes. This was first shown to be inconsistent in [11].

This restriction makes the system more complex since elimination is allowed from any
inductive type to any universe except for the one special case of strong elimination of large
inductive types (SELIT). It also significantly weakens the system. For example, in Coq with
the --impredicative-set option, we can define a large inductive type like:

Inductive Ω : Set :=
| int : Ω
| arrow : Ω -> Ω -> Ω
| all : forall k:Set, (k -> Ω) -> Ω.

which could be used for example to represent the types of some object language. But we
cannot prove properties such as the following variant of Leibniz equality (which we needed
in the proof of soundness of our Swiss coercion [23]):

forall k1 k2 f1 f2 p,
all k1 f1 = all k2 f2 -> p k1 f1 -> p k2 f2.

In practice, this important restriction significantly reduces the applicability of large inductive
types (which partly explains why Coq does not allow them in Set any more by default).

While the Γ ` e small constraint was added to avoid an inconsistency, this same
Γ ` e small is also the key to making our proof of erasability of impredicative arguments work
for CIC: it is the detail which makes it possible to mark all the large fields of impredicative
inductive definitions as erasable, as we saw in the previous section. This might be a
coincidence, of course, yet it suggests a close alignment between the needs of consistency and
the need to keep impredicative elements erasable.

Figure 6 shows a refinement of eCIC we call ECIC whose Case rule does not have the
Γ ` e small constraint. ECIC is more elegant and regular than CIC thanks to the absence
of this special corner case, and it allows typing more terms than eCIC and hence CIC. For
instance in ECIC we can define the above Ω inductive type with an erasable k and then
prove the mentioned property (with k1 and k2 marked as erasable).
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Note also that the lack of an (n,Type`,Prop,Prop) rule, means we cannot define a box as
above in this system; instead we are limited to making its content erasable. This in turn
prevents us from defining unbox since the x’ would now be erasable so it cannot be returned
as-is from the elimination form. In other words, forcing impredicative fields to be erasable
also avoids this source of inconsistency usually avoided with the Γ ` e small constraint.
Based on this circumstantial evidence, we venture to state the following:

I Conjecture 5. The ECIC system is consistent.

3.4 SELIT for Coq’s proof-irrelevant Prop
The Prop universe used in the previous section corresponds to Coq’s impredicative Set
universe, which is disabled by default. Coq’s impredicative Prop universe is similar except it
is designed to be proof-irrelevant. This property is used in two ways: to reflect this property
in the system via an axiom and to erase all Prop terms when extracting a program from
a proof. This proof-irrelevance property is enforced by two constraints imposed on the
strong elimination of those inductive types that live in Prop: first, they have to have a single
constructor and second, all fields must live in the Prop universe. The first constraint makes
sure there is no run-time dispatch based on an erased value, while the second guarantees
that the only data we can extract from an erased value is itself erased.

The second constraint is the no-SELIT constraint. So the Conjecture 5 suggests we could
relax this restriction and allow strong elimination on any Prop type with a single constructor
if the fields that do not live in Prop are erasable. From the point of view of extraction, we
could even relax this further to allow strong elimination on any Prop type with a single
constructor, and simply treat all the values so extracted as erased.

3.5 eCoq: Erasing impredicativity in Coq and UTT
As noted in Section 3.2, we were careful to restrict our inductive types to live in Prop.
This was no accident: we rely on this property in the confinement lemma used to show the
erasability of all impredicative arguments in CIC. Indeed, confinement does not hold if we
can do a case analysis on an inductive type that lives in Type` and return a value in Prop.

Systems such as Coq and UTT [20] allow impredicative definitions in Prop, inductive
types in higher universes, and elimination from those inductive types to Prop. These systems
are hence examples of impredicativity which is not straightforwardly erasable like it is in the
systems seen so far. Here is an example of code which relies on this possibility:

Inductive List (α : Type0) : Type0 := nil | cons (v : α) (vs : List t).

Definition ifnil (ts : List Prop) (t : Prop) (x y : t) :=
match ts with
| nil => x
| cons _ _ => y.

In Coq, ifnil lives in Prop because its return value is in Prop. If we extend Coq
with erasability annotations, the argument “t” could be marked as erasable since it only
appears in type annotations, but not the other three arguments. To determine in which
universe it rests, we would use the rules (n,Prop,Prop,Prop) for the last two arguments
and (e,Type`,Prop,Prop) for the second argument. Those rules obey the principle that
impredicativity is restricted to erasable arguments. But for the first argument, we need the
rule (n,Type`,Prop,Prop) which does not obey this principle.
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R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Type`) | ` ∈ N }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }

Γ ` τ : s ∀i. Γ, x :τ ` ai : s′ x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→ s′)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_ :τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 7 Rules of the eCoq system.

If we want to obey the principle, we could replace this last rule with the predicative rule
(n,Type`,Prop,Type`) instead. Figure 7 shows the important rules of such a system we call
eCoq. With such a system, we would have to adjust the above example in one of two ways:

Live with the fact that ifnil will now live in Type0 rather than in Prop.
Experience with Agda and other systems suggests that most code does not rely on
impredicativity, so in practice this first approach should be applicable in most cases.
Mark the non-Prop parts of “ts” as erasable so that it can live in Prop. Concretely, it
means using a new type we could call eList, which is like List except that the “v” field
of the “cons” constructor is marked as erasable, to allow those “thinner” lists to live in
Prop.

We call the second approach thinning. It replaces inductive objects from a higher universe
with similar objects that fit in Prop by marking the non-Prop parts of it as erasable or by
replacing them with similarly “thinned” elements.

It is still unclear whether any valid typing derivation in a system like Coq can have
a corresponding typing derivation in eCoq, that is, whether we can do away with the
(n,Type`,Prop,Prop) rule because we can always change the source code as described above.

4 Universe-agnostic impredicativity

CCω accepts impredicative definitions only in the bottom universe, Prop, just like in most
known consistent type systems that support impredicative definitions (one counter example
being arguably the λPREDω+ presented in [14]). This is a direct consequence of various
paradoxes formalized in systems which allow impredicative definitions in more than one
universe [17, 12, 19]. In this section we investigate the use of erasability constraints in order
to lift this restriction and thus allow impredicative definitions in higher universes as well.

4.1 λeU−: Erasing impredicative arguments in λU−

The last two papers referenced above showed a paradox in the system λU− which is Fω

extended with one extra rule. It can be defined as an EPTS as follows:

S = { ∗, �, ∆ }
A = { (∗, �), (�, ∆) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗), (k,�,�,�), (k,∆,�,�) | k ∈ {n, e} }
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U = ΠX : �.((℘℘X → X )→ ℘℘X )
τt = ΛX : �.λf : (℘℘X → X ).λp : ℘X .(t λx : U .(p (f ({x X} f))))
σs = ({s U} λt : ℘℘U .τ t)
∆ = λy : U .¬∀p : ℘U .[(σy p)⇒ (p τσy)]
Ω = τ λp : ℘U .∀x : U .[(σx p)⇒ (p x)]

[ suppose 0 : ∀p : ℘U .[∀x : U .[(σx p)⇒ (p x)]⇒ (p Ω)].
[ [〈0∆〉 let x : U .

suppose 2 : (σx ∆).
suppose 3 : (∀p : ℘U .[(σx p)⇒ (p τσx)]).
[[〈3 ∆〉 2] let p : ℘U .〈3 λy : U .(p τσy)〉]]

let p : ℘U .〈0 λy : U .(p τσy)〉]
let p : ℘U .
suppose 1 : ∀x : U .[(σx p)⇒ (p x)].
[〈1 Ω〉 let x : U .〈1 τσx〉]]

Figure 8 Hurken’s paradox.

Two of the four pairs of rules are impredicative: (k,�, ∗, ∗) and (k,∆,�,�). The first is
generally considered harmless since ∗ is the bottom universe and hence corresponds to Prop
in CCω. The new one is (k,∆,�,�) which introduces impredicativity in the second universe,
�. Following the same idea as in the previous section where we defined ECIC to rely on
erasability to avoid inconsistency, we could thus define a new λeU− calculus that only allows
the use of impredicativity with erasable abstractions:

R = { (k, ∗, ∗, ∗), (e,�, ∗, ∗), (k,�,�,�), (e,∆,�,�) | k ∈ {n, e} }

Alas, this does not help:

I Theorem 6. λeU− is not consistent.

Proof. The proof is the same as the proof of inconsistency of λU− shown by Hurkens in [19].
Figure 8 shows Hurken’s original proof, using the same notation he used in his paper. To
show that the proof also applies to λeU−, we need to make sure that all impredicative
abstractions can be annotated as erasable. For that, it suffices to know that the integers are
variable names, the impredicative abstraction in ∗ is introduced by let, the corresponding
application is denoted with 〈e1 e2〉, the impredicative abstraction in � is introduced by Λ,
and the corresponding application is denoted with {e1 e2}: by inspection we can see that all
the arguments introduced by impredicative abstractions are exclusively used either in type
annotations or in arguments to other impredicative functions. J

This demonstrates that, even though the notion of erasability we use here has shown
strong affinities with consistent uses of impredicativity, it is not in general sufficient to tame
the excesses of impredicativity.

4.2 Inductive types: Impredicative and universe polymorphic?
While paradoxes like Hurkens’s suggest that it is impossible to have impredicative definitions
in more than one universe without losing consistency, inductive definitions suggest otherwise.
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(level) ` ::= 0 | s ` | l | `1 t `2

S = { UL; Type`; Typeω }
A = { (Level : UL); (Type` : Type(s `)) }
R = { (k,UL,Type`,Typeω) | k ∈ {n, e} }

∪ { (k,UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 9 Informal rules of an Agda-like system.

The traditional encoding of inductive types using Church’s impredicative encoding looks
like the following:

NatC = (a : Prop)→ a→ (a→ a)→ a

But this is much more restrictive than the usual definition of Nat as a real inductive type.
More specifically, when defined as an inductive type we get two extra features compared
to the above Church encoding: the ability to do dependent elimination, and the ability to
perform elimination to any universe rather than only to Prop. Let us focus on the second
one. The following Church-like encoding would lift this restriction, allowing elimination to
any universe:

NatL = (l : Level)→ (a : Typel)→ a→ (a→ a)→ a

Such a definition is possible in systems like Agda which provide the necessary universe
polymorphism (the l above is a universe-level variable), but this type NatL is traditionally
placed in a universe too high to be useful as an encoding of natural numbers.

We have not been able to find a concise description of the rules used in Agda, but a first
approximation of its type system is described informally in Figure 9 where ω stands for the
smallest infinite ordinal. According to those rules, Agda would place the above universe-
polymorphic definition of NatL squarely in the far away Typeω universe. Yet everything that
can be done with it can also be done with the real Nat inductive type, which lives in the
much more palatable Type0 universe, so it would arguably be safe to let NatL live in Type0
(and thus make this definition impredicative). The same reasoning applies to the following
type:

ListType = (l : Level)→ (a : Typel)→ a→ (Type0 → a→ a)→ a

So ListType should arguably live in Type1 rather than in Typeω since that is what happens
when defined as a real inductive type. This would also make ListType impredicative but
should not threaten consistency. This illustrates that every inductive type corresponds
to an impredicative definition that could live in the same universe, making it clear that
having impredicative definitions in multiple universe levels is not inherently incompatible
with consistency.

Of course, this begs the question: what is it that makes it safe to let those definitions be
treated as impredicative? What is special about them?
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R = { (n, l :UL,Type`,Typeω) }
∪ { (e, l :UL,Type`,Type`[0/l]) }
∪ { (k, l :UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 10 Informal rules of EpCCω.

In the rest of this section we will consider one hypothesis, which is that the universe level
parameter ` needs to be erasable. In practice the vast majority of universe polymorphism
can be marked as erasable. Some simple counter examples are:

Set = λl :Level n→ Typel

ListType = λl1 :Level n→ (l2 :Level) e→ (a :Typel2) e→ a
n→ (Typel1

n→ a
n→ a) n→ a

4.3 EpCCω: Impredicative erasable universe polymorphism
With universe polymorphism, sorts are not closed any more, so we cannot really represent
the rules that govern them using a simple set like R. So, the (k,UL,Type`,Typeω) rule was
really meant to say something like:

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) k→ τ2 : Typeω

Now if we want to make this impredicative when k = e, since ` can refer to l we need to
substitute l with something before we can use it in the sort of the product. For the NatL
case, for example, ` will be “s l” and we argued that this product type should live in Type0,
so we would need to substitute l with −1! Rather than argue why a negative value could
make sense, we will use 0 in our rule:

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) e→ τ2 : Type`[0/l]

While this places NatL in Type1 rather than Type0, it still makes it impredicative, and if all
our base types live in Type1 we will not notice much difference.

Figure 10 describes the resulting calculus we call EpCCω, where the second fields of
elements of R now have the shape “x : s” so we can refer to the variable x that can appear
freely in the third field.

4.4 Encoding System-F in EpCCω
EpCCω is basically a predicative version of CCω (hence the “p”) to which we added universe
polymorphism and impredicative erasable universe polymorphism (which motivated the “E”).
Contrary to the previous calculus it does not have a base impredicative universe Prop: its
only source of impredicativity is the (e, l : UL,Type`,Type`[0/l]) rule which introduces the
impredicative erasable universe polymorphism. Compared to Agda, it lacks inductive types
but it adds a form of impredicativity. While we do not know if it is consistent, we can try and
compare it to existing systems, and for that we start by showing how to encode System-F.
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In order for our encoding function J·K to be based purely on the syntax of terms rather than
the typing derivation, we take as input a stratified version of System-F:

(types) τ ::= t | τ1 → τ2 | (t :∗)→ τ

(terms) e ::= x | λx :τ → e | e1 e2 | λt :∗ → e | e τ

To encode System-F, the only interesting part is the need to simulate System-F’s impredicative
quantification over types. We can do that in the same way NatC was generalized to NatL,
i.e. by replacing “(t : ∗)→ τ” with “(l :Level) e→ (t :Typel)

n→ τ”. The only tricky aspect of
this is that while in System-F all the type variables (and more generally all the types) have
the same kind ∗, this encoding makes every type variable come with its own universe level,
so the encoding function needs to keep track of the level of each type in order to know how
to instantiate the (l :Level) e→ ... quantifiers.

The encoding function on types takes the form JτK∆ where ∆ maps each type variable to
its associated level variable, and it returns a pair τ ′; ` where ` is the universe level of τ ′:

JtK∆ = t ; ∆(t)
Jτ1 → τ2K∆ = τ ′1

n→ τ ′2 ; `1 t `2 where τ ′1; `1 = Jτ1K∆ and τ ′2; `2 = Jτ2K∆
J(t :∗)→ τK∆ = (l :Level) e→ (t :Typel)

n→ τ ′ ; `′ where τ ′; ` = JτK∆,t:l and `′ = 1 t `[0/l]

Similarly the encoding function for terms takes the form JeK∆:

JxK∆ = x

Jλx :τ → eK∆ = λt :τ ′ n→ JeK∆ where τ ′; ` = JτK∆
Je1 e2K∆ = Je1K∆ @nJe2K∆

Jλt :∗ → eK∆ = λl :Level e→ λt :Typel
n→ JeK∆,t:l

Je τK∆ = (JeK∆ @e`)@nτ ′ where τ ′; ` = JτK∆

Finally we need to encode contexts as well, for which the encoding function takes the form
JΓK and it returns a pair Γ′; ∆:

J•K = • ; •
JΓ, x :τK = Γ′, x :JτK∆ ; ∆ where Γ′; ∆ = JΓK
JΓ, t :∗K = Γ′, l :Level, t :Typel ; ∆, t : l where Γ′; ∆ = JΓK

I Theorem 7 (EpCCω can encode System-F).
For any Γ ` e : τ in System-F, we have Γ′ ` e′ : τ ′ and Γ′ ` τ ′ : Type` in EpCCω where
Γ′; ∆ = JΓK, e′ = JeK∆, and τ ′; ` = JτK∆.

Proof. By structural induction on the type derivation. J

4.5 The power of EpCCω
EpCCω seems to be flexible enough to cover most uses of impredicativity found in the context
of programming, such as Church’s encoding, Chlipala’s parametric higher-order abstract
syntax [10], typed closure representations, or iCAP [25]. It does so without restricting
impredicativity to a single universe, and even makes those uses more flexible in EpCCω such
as adding the equivalent of strong elimination in Church’s encoding. So in this sense EpCCω
is more powerful than systems like CCω.

Yet we have not even been able to generalize the above System-F encoding in order to
encode arbitrary Fω terms into EpCCω. For example, consider the following Fω term:

λt1 :∗ → λ(t2 :∗ → ∗)→ λ(x : t2 t1)→ x
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A simple encoding into EpCCω could be:

λl :Level e→ λt1 :Typel
n→ λ(t2 :Typel

n→ Typel)
n→ λx : t2@nt1

n→ x

But it’s not faithful to the original Fω term because it only preserves the impredicativity of
the first λ. In order to get an encoding that can work for any Fω term, we hence need an
encoding which looks like:

λl1 :Level e→ λt1 :Typel1

n→ λl2 :Level e→ λt2 :T2
n→ λx :Tx

n→ x

where T2 refers to l2. We can then choose T2 and Tx as follows:

T2 = (l3 :Level) e→ Typel3

n→ Typel2

Tx = t2@el1@nt1

This makes the term valid, but its semantics doesn’t match that of the original Fω term since
we cannot pass the identity function λt :∗ → t as f any more: its encoding would now have
type (l3 :Level) e→ Typel3

n→ Typel3 instead of the expected (l3 :Level) e→ Typel3

n→ Typel2 .
Similarly, we have not been able to adapt Hurkens’s paradox to the EpCCω system either.

Of course, all this says is that we do not know if EpCCω is consistent, but at least it indicates
that this kind of impredicativity might be incomparable to the traditional form seen in CCω
or λU−.

5 Related work

In [3], Augustsson presents a language where inductive types only live in the bottom universe,
and shows that everything from the higher universes can be erased. This is similar to our
argument in Section 3.2, but with some important differences in the universe stratification
and in the definition of erasure. His universe stratification is unusual in that it is designed to
keep track of erasability and does not enforce predicativity, which makes it fundamentally
very different. It turns out that for eCCω and eCIC, his stratification rules match our
traditional rules when it comes to deciding if something is in the bottom universe, so his
erasure should apply equally to a stratification like the one used here, although this is not
the case when we consider systems like eCoq. More importantly, his notion of erasure is
different from ours since his erasure of (x :τ1) k→ τ2 is • meaning that it is significantly more
permissive. For example, his erasure has to be external (i.e., performed after checking type
convertibility), whereas the erasure we use here could be internal, as is the case in ICC [21]
and ICC*[5].

In [30], Werner discusses internal erasure of Coq’s impredicative Prop universe. This is
done in the context of the proof-irrelevance kind of erasure, where Prop is restricted to be
proof-irrelevant so that it can be erased from the non-Prop universes. So this approach is
contrary to ours: we erase non-Prop arguments from Prop terms, whereas he erases Prop
arguments from non-Prop terms. More importantly, this kind of erasure is already present in
Coq, so what Werner proposes is to make it internal, that is to take advantage of this erasure
to strengthen the convertibility rule during type checking, in the same way ICC [21] and
ICC*[5] systems use a stronger convertibility rule to take advantage of the kind of erasure we
use here, as discussed in Section 2.2. This strengthening comes at the cost of normalization,
as shown by Abel and Coquand [1].

In [15], Gilbert et.al. present a Coq and Agda library which provides a similar internal
erasure of proof-irrelevant propositions. In comparison to Werner’s work, they use a slightly
different definition of proof-irrelevance based on mere propositions [27] and they get internal
erasure by construction rather than by adding it to they underlying system.
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In [28], Uemura shows a model of a cubical λ-calculus with a bottom universe that is
impredicative and admits univalence and shows it not to satisfy the propositional resizing
axiom, which applies to proof-irrelevant propositions. This puts into question the consistency
of this axiom in such a calculus.

6 Conclusion

We have taken a tour of the interactions between impredicativity and erasability of arguments
in EPTS. We have shown that three of the five most well known systems that admit
impredicativity do it in a way that implicitly constrains all impredicative abstractions and
fields to be erasable (and that the remaining two almost do it as well). We have also shown
that while impredicativity and erasability seem to be correlated, erasability is neither a
necessary nor a sufficient condition for impredicativity to be consistent: the inconsistency of
λeU− shows it’s not sufficient, and our inability to show that UTT’s impredicative definitions
are all erasable suggests it’s not necessary either.

It remains to be seen whether erasability as used in ECIC allows us to lift the restriction
that strong elimination cannot be used on large inductive types without breaking consistency,
and whether erasability as used in EpCCω allows us to introduce a form of impredicativity
applicable to all universe levels without breaking consistency.

Another avenue of research might be to try and better understand the relationship
between the kind of erasure of impredicatively quantified arguments discussed here and the
impredicativity of proof-irrelevant terms, as used in Coq and in the propositional resizing
axiom.
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