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Abstract
Neighbourhood graphs are useful for inferring the travel network between locations posted in the
Location Based Social Networks (LBSNs). Existing neighbourhood graphs, such as the Stepping
Stone Graph lack the ability to process a high volume of LBSN data in real time. We propose a
neighbourhood graph named Diversion Graph, which uses an efficient edge filtering method from
the Delaunay triangulation mechanism for fast processing of LBSN data. This mechanism enables
Diversion Graph to achieve a similar accuracy level as Stepping Stone Graph for inferring travel
networks, but with a reduction of the execution time of over 90%. Using LBSN data collected from
Twitter and Flickr, we show that Diversion Graph is suitable for travel network processing in real
time.
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1 Introduction

Location Based Social Networks (LBSNs) contain a large volume of location information
posted by the users. The location data collected from LBSN can be further processed to
understand various aspects of users’ lives [19, 20]. LBSN data can be processed to infer the
travel network between the posted locations [8]. Inferring a travel network is to find a set of
edges between the posted locations or a subset of the locations so that a path can be found
between any pair of the locations in the network. Processing LBSN data for such purposes is
difficult due to the scale of the data to be processed. We are interested in efficient methods
for inferring travel networks with LBSN data.
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7:2 Diversion Graph

Location data collected from LBSNs is usually in the form of GPS points. Distance-based
connected neighbourhood graphs have been used for inferring the relationship between a set
of distinct GPS points [5]. Neighbourhood graphs are also called proximity graphs, where
edges between the points are built based on certain spatial relationship between the points.
Delaunay Triangulation (DT ) is a well-known distance-based connected neighbourhood graph.
Gabriel Graph (GG) [7], Relative Neighbourhood Graph (RNG) [17] and Urquhart Graph
(UG) [18] are extended from DT for movement network analysis. For example, Figure 1
(a) represents locations collected from Twitter relating to a state election. Figures 1 (c,h,i)
represent GG, RNG and UG skeletons, which are the geometric realization of neighbourhood
graphs and show the geometric shape of the point set.

Unlike the aforementioned graphs, there is a type of graphs called variable graphs, which
can generate a spectrum of possible skeletons based on different values of given parameters.
Therefore, the variable graphs are making them more versatile than other types of graphs. In
the rest of the paper, we specify the parameters used by variable graphs in the name of the
graphs. The Shortest Path Graph (SPG(t)) [6] and the Stepping Stone Graph (SSG(d)) [8]
are two commonly used variable graphs, built on the idea that the shortest path through the
inferred edges can be aligned with the shortest path through the imprecise region represented
by the point set. While SPG(t) considers the shortest path over all points when inferring
edges, SSG(d) only considers the shortest path that goes through points within the relative
neighbourhood between two points. Due to this difference, the travel networks created with
SSG(d) are more similar to real world travel networks. Both SPG(t) and SSG(d) can
generate various graph skeletons based on a single parameter. Figure 1 (b,d,f,h) represent
different SSG(d) skeletons of the same point set based on different parameter settings.

Although existing neighbourhood graphs can process LBSN data with a few hundred
locations, they are not suitable for large datasets due to the long running times. With
the widespread use of GPS-enabled mobile phones, the size of LBSN datasets tends to be
significantly large. Therefore we need to investigate efficient methods to infer travel networks
based on the location data collected from LBSNs.

In this paper, we propose a new type of variable graph, which we refer to as the Diversion
Graph (DG(d)). The skeletons inferred by DG(d) are likely to be close to human perception
of the corresponding point set. We show in our experiments that DG(d) is easier and faster to
build than SSG(d), and gives similar results in processing certain spatial queries as SSG(d).
Similar to SSG(d), DG(d) is defined on top of DT and uses Diversion Neighbourhood
(DN(d)) to cull edges from DT . Instead of checking all the points that lie in DN(d) between
two points, DG(d) only considers points in the neighbouring Delaunay triangles of the edge
that is considered for culling. This approach is suitable for inferring travel networks with
LBSN data as we assume that the social network data gives us partial data per individual
user in terms of its path but with a good picture of where people could be in an event in a
city. As explained with the definitions of the DG(d) (Section 3.1), for all endpoint pairs the
value of d indicates the preference of inferring a longer alternative path with less distance
between all point pairs on the path compared to the direct distance between the endpoint
pair. This is useful when we have a very dense point set to cull some connections. Similar
to both SPG(t) and SSG(d), as d increases, the number of edges in DG(d) monotonically
decreases and therefore the path length between any two non-adjacent points in the skeleton
monotonically increases. It is also important to note that GG is a special case of DG(d)
when d = 2.

We use publicly available LBSN data to evaluate the performance of DG(d) and SSG(d)
for inferring travel networks. We show that DG(d) performs as well as SSG(d) in terms of
the quality of the inferred network but DG(d) achieves significantly faster execution times



S. Kannangara, H. Xie, E. Tanin, A. Harwood, and S. Karunasekera 7:3

(a) location set.

(b) SSG(2) = GG. (c) DG(2) = GG.

(d) SSG(4). (e) DG(4).

(f) SSG(10). (g) DG(10).

(h) SSG(∞) = RNG. (i) DG(∞) = UG.

Figure 1 SSG(d) and DG(d) skeletons created on a subset of locations from Twitter data set.
Note that two skeletons in a row are created using two algorithms, but exhibit the same graph
structure.
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7:4 Diversion Graph

than SSG(d). In fact, DG(d) takes less than 10% of the time required to infer a movement
network than SSG(d). DG(d) contains a few more edges (less than 2% of the total number
of edges [1]) compared to SSG(d). However, compared to the time advantage of DG(d), the
negative impact of the additional edges in negligible. We observe that the resulting DG(d)
and SSG(d) are very similar in terms of their shape and topology.

2 Related Work

In this section, we present the related work in two categories. The first category, LBSN
data processing, presents systems and techniques used to process LBSN data. The second
category, neighbourhood graphs, provides an overview of neighbourhood graphs related to
the proposed Diversion Graph.

2.1 LBSN Data Processing
MacEachren et al. develop an LBSN analysis system SensePlace2 which is used to query and
visualize social media data over an interactive map interface [11]. Chae et al. develop another
systems for analysing public behaviour using LBSN data [4]. Geospatial heatmaps are used in
both systems to provide a summarized view of the spatial distribution of LBSN posts. Many
LBSN-based analytics systems support real time processing of LBSN data. For example,
RAPID is a real-time analytics platform for interactive data mining [10]. It streams social
media data and processes it to generate real time results. There are many types of analytics
that can be performed by the systems like RAPID. For example, the detection of the most
popular path followed by the users and the extraction of movement corridors [8]. When
performing such analytics at real time it is important to have a neighbourhood graph like
the proposed Diversion Graph that generates high quality results while minimizing execution
time.

2.2 Neighbourhood Graphs
Neighbourhood graphs infer edges between points based on a neighbourhood defined on the
points [3]. On two dimensional space neighbourhood represents an area, which can be defined
per point, per point pair or per all points in the sample. Neighbourhood graphs that infer
edges based on the emptiness (absence of other points within a region) of the neighbourhood
surrounding the endpoint pair of the edge are referred as Empty Region Graphs (ERG) [3].

Gabriel Graph (GG) [7] is a static ERG, first proposed as a tool for geographic variation
analysis. GG uses the closed circle (a circle where inferring edge becomes a diameter) as
the empty region for inferring edges. Relative Neighbourhood Graph (RNG) [17] is another
ERG, which uses open lune as the empty regions of inferring its edges. RNG can infer a
structure close to human perception of a point set [17]. Both GG and RNG are useful for
analysing the shape of a point set.

Urquhart Graph (UG) [18] was first proposed for fast construction of RNG. It was later
proved that the UG is not always similar to RNG [16], but UG only differs from RNG by
2% maximally. Therefore UG can be seen as a faster method to approximate RNG [1]. We
are combining the thought process behind UG creation and the Diversion neighbourhood of
the SSG(D) to create DG(d).

Delaunay Triangulation (DT ) is a Triangulated Irregular Network (TIN) with many
benefits. It serves as a planar graph which has similar properties as the complete graph. For
this reason, it can be used as the starting graph for inferring many other planar graphs. Due
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to having a low spanning ratio and faster inferring it is used in many travel network analysis
problems. Note that MST ⊆ RNG ⊆ UG ⊆ GG ⊆ DT . As later shown in properties
section, DG(2) = GG and DG(∞) = UG.

Mark de Berg et al. proposed Shortest Path Graph (SPG(t)) as a base skeleton for
delineating mechanism to identify boundary and cavities within an imprecise region [6].
They show that SPG(2) is better for delineating imprecise regions compared to both Kernel
Density Estimation (KDE) and GG [6]. SPG(t)’s global evaluation criteria is highlighted
as the main reason for its success. However, the quality of results generated using SPG(t)
heavily depends on certain parameter settings.

SSG(d) follows the general intuition used in proposing SPG(t), which is to roughly align
paths in the graph with paths in the imprecise region. Rather than using global criteria as
used in SPG(t), SSG(d) uses local criteria making it faster than SPG(t) and more effective
for movement analysis [8].

When the value of the parameter in SPG and SSG approaches infinity, SPG(t) converges to
MST and SSG(d) converges to RNG, and our proposedDG(d) converges to UG (Theorem 6)
which is a close approximation of RNG. Since UG is a close approximation of RNG,
structures generated using DG(d) are closely related to the human perception of the point
set. It should be noted that DG(d) may contain some additional edges compared to the
SSG(d) with the same d value. However, due to the relaxed nature of evaluation criteria for
DG(d), inferring the graph takes much less time compared to inferring SSG(d) or SPG(t).

3 Diversion Graph

Given a set of points, a Diversion Graph (DG(d)) connects the points in a traversable
manner.

3.1 Definitions
We construct DG(d) in the form of an undirected graph G(V,E) where V ⊆ R2 represents a
given point set and E represents the inferred edges between the points. An edge between two
endpoints p, q ∈ V is represented as pq ∈ E. Length lpq represents the Euclidean distance
between the two points.

As DG(d) is defined using Delaunay Triangulation (DT ), let us briefly iterate a useful
property of DT . DT is a triangulation of a point set, in which each triangle’s circumcircle
does not contain any other points other than triangle’s vertices. Also, DT is the dual of
Voronoi diagram. Our proposed graph DG(d) is evaluated by removing some edges from the
DT .

I Definition 1 (Diversion Graph). For V ⊆ R2, the Diversion Graph of V at d ∈ R : d ≥ 2,
denoted DG(V, d) or simply DG(d), is an undirected graph containing a subset of DT (V )
such that for each edge pq ∈ DT (V ):

pq is not an edge of DG(V, d) iff ldpz + ldzq ≤ ldpq,

where z is the other point in a Delaunay triangle where pq is an edge.

By this definition in common terms, DG(d) is the graph created by removing edges pq
from DT if and only if ldpz + ldzq ≤ ldpq where z is a vertex of a Delaunay triangle where pq
is an edge. Therefore inherently DG(d) is a subgraph of DT . We explore the properties of
DG(d) in the next section.

GISc ience 2021
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Figure 2 Counter example to show DG(d) does not always equal to SSG(d). Dashed line shows
diversion neighbourhood at d = 4 (DN(4)). Points p and q have equal y coordinates. Both points r

and s reside out side of DN(4). Point t lies inside shown DN(4).

3.2 Diversion Graph Properties
Since DG(d) is created by removing edges from DT , we can state the following theorem.

I Theorem 2. For 2 ≤ d,DG(d) ⊆ DT .

Consider the case DG(2) against GG. By comparing definitions of the two graphs we
can state the following theorem.

I Theorem 3. DG(2) ≡ GG.

Proof. Consider the definition of GG from [12]. The vertices p, q ∈ V are least squares
adjacent forming the edge pq ∈ GG iff

l2pq < l2pz + l2zq∀z ∈ V \ {p, q}.

Furthermore, in the same paper [12] it is proven that the GG can be extracted from DT by
evaluating the above inequality on each triangle, for each edge. Now let us look at DG(2)
definition. It is extracted from DT by removing edges pq iff l2pz + l2zq ≤ l2pq, for each z which
are other points of the Delaunay triangles where pq is an edge. Since both GG and DG(2)
are evaluated from DT using the same inequality, they are equivalent. J

Since equation used in DG(d) definition is same as the diversion neighbourhood defini-
tion [8], one may think DG(d) and SSG(d) are the same thing. As shown in the following
theorem, SSG(d) ⊆ DG(d).

I Theorem 4. For 2 ≤ d, SSG(d) ⊆ DG(d).

Proof. Consider the five points p, q, r, s, t in Figure 2. Their Delaunay triangulation is shown
in solid straight lines. Points p and q have equal y coordinates. The dashed line indicates
diversion neighbourhood at d = 4 (DN(4)) between p and q. Both points r and s reside
outside of DN(4). Point t lies inside shown DN(4). Let us consider inclusion of edge pq in
DG(4) and SSG(4). Since t is within the DN(4) of pq, pq will not be an edge of SSG(4).
However, since DG(4) considers only points in neighbouring triangles of pq, it only considers
point r when considering the inclusion of pq. Since r is outside the DN(4) of pq, pq becomes
an edge of DG(4). Therefore, for 2 < d, SSG(d) ⊆ DG(d). J
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In fact, DG(d) can contain more edges than SSG(d). Therefore we can state the following
corollary.

I Corollary 5. For 2 < d,DG(d) is not always equal to SSG(d).

Let us consider behaviour of DG(d) when d→∞.

I Theorem 6. As d→∞, DG(d)→ UG.

Proof. When d → ∞, by DG(d) definition for an edge pq to be removed from DT , both
other edges of the neighbouring Delaunay triangles only needs to be shorter than pq. In other
words, if pq is the longest edge in a Delaunay triangle it will be removed from DG(d) when
d → ∞. UG is created from DT by removing the longest edge of each Delaunay triangle.
Therefore, as d→∞, DG(d)→ UG. J

I Theorem 7. For 2 ≤ d,DG(d) is planar and connected.

Proof. Since for 2 ≤ d,DG(d) ⊆ DT , DG(d) is planar. Inequality used in DG(d) is the same
as the diversion neighbourhood of SSG(d). In [8] it is shown that diversion neighbourhood
does not get bigger than open lune neighbourhood. Open lune neighbourhood is proven as the
tight neighbourhood that ensures a connected edge embedding in empty region graphs in [3].
Therefore DG(d) is connected. Combining these arguments we can say for 2 ≤ d,DG(d) is
planar and connected. J

Next we consider the relationship between two DG(d)s as d increases.

I Theorem 8. For 2 ≤ d ≤ d′, DG(d′) ⊆ DG(d)

Proof. Define the edge weight of pq with respect to d′ as ld′

pq, for some d′ ≥ 2. Assume that
for all z ∈ Λ(pq) \ {p, q}, ld′

pz + ld
′

zq > ld
′

pq, where Λ(pq) is the set of points in neighbouring
Delaunay triangles of pq. In this case, pq is an edge in DG(d′). Now we show that for d ≤ d′,
pq is also an edge in DG(d). Let us write d = d′ ε where 2

d′ ≤ ε ≤ 1. Then we need to show
that:

ld
′ ε
pz + ld

′ ε
zq > ld

′ ε
pq (1)

ld
′ ε
pz + ld

′ ε
zq

ld′ ε
pq

> 1(
lpz
lpq

)d′ ε

+
(
lzq
lpq

)d′ ε

> 1

((
lpz
lpq

)d′ ε

+
(
lzq
lpq

)d′ ε
) 1
ε

> 1

Since the function x 7→ xβ is subadditive for β ≥ 1 then:

((
lpz
lpq

)d′ ε

+
(
lzq
lpq

)d′ ε
) 1
ε

≥
(
lpz
lpq

)d′

+
(
lzq
lpq

)d′

.

We know the right hand side is greater than 1 due to our initial assumption and therefore
Eq. 1 is true. Therefore pq is also an edge in DG(d) and this completes the proof. J
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Algorithm 1 Create DG(d).

Input: V - Filtered locality set
d - Configuration parameter
Output: DG(d)

1 DT ← create Delaunay Triangulation of V
2 initialize DG(d) to empty set
3 foreach (Edge pq : pq ∈ DT ) do
4 foreach (Point z : z ∈ Λ(pq) \ {p, q}) do
5 if (ldpq < ldpz + ldzq) then
6 Add pq to DG(d)
7 end
8 end
9 end

10 return DG(d)

3.3 Algorithms
In this section, we present an efficient algorithm to compute DG(d). Since DG(d) is defined
based on DT we can use DT as the starting graph to compute DG(d). There are two
approaches we can use to compute DG(d) using DT . One approach is to process DT as
triangles and check each edge of the triangle for removal from DT . The second approach is
to process DT as a set of edges and evaluate each edge against the points in the neighbouring
Delaunay triangles to check whether they belong in DG(d). The approach we are presenting
in this paper is the second approach which evaluates edges to check their membership of
DG(d), as it can be easily compared with the d-spectrum algorithm of the SSG(d).

We propose a simple and effective algorithm to calculate DG(d) (Algorithm 1). In the
algorithm, Λ(pq) is the set of points in neighbouring Delaunay triangles of pq. Each other
point in the Λ(pq) \ {p, q} are evaluated against pq to see whether pq is an edge of DG(d).
For simplicity, the condition in line 5 in Algorithm 1 is directly derived from the definition
of DG(d). However, it can be further improved by checking whether other edges connected
with Λ(pq) are longer than pq. The algorithm is readily parallelizable as there is no race
condition between separate edge evaluations.

Let us consider the time complexity of the proposed algorithm for calculating DG(d).
In line 3, as DT has O(n) edges, the code between line 4 and line 8 runs O(n) times. As
each edge pq has at most two neighbouring triangles, the code between line 5 and line 7 runs
at most two times per edge. Line 5 is assumed to run in O(1) time. Therefore, the whole
algorithm runs in O(n) time.

3.3.1 Improving Running Time of SSG(d)

Introduction of DG(d) allows us to efficiently calculate SSG(d) for a specific 2 ≤ d value
without calculating d-Spectrum [8]. Since DG(d) is a super graph of SSG(d) for 2 ≤ d, once
DG(d) is calculated we can use it to evaluate those edge using the triangle sweeping method
presented in Algorithm 1 of [8]. As later shown in the experiments DG(d) only contains a
very small number of additional edges compared to SSG(d). Therefore this is a very efficient
method of computing SSG(d).
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However, it should be noted that computing SSG(d) from DG(d) may be slower for
varying skeleton generation compared to using d-Spectrum. Since d-Spectrum pre-compute
the minimum d-value necessary for an DT edge to be in the SSG(d), varying skeleton
generation takes less time. But for generating SSG(d) for a specific 2 ≤ d using DG(d) is
faster than creating d-Spectrum.

3.4 Applications
The proposed DG(d) can be used in many applications detailed as follows.

3.4.1 Nearest Neighbour Queries
The DG(d) graph structure can be used to search for the path to the nearest interesting
locations from a given location. For example, this kind of query can be used to find the
nearest exit gate in a park. We can use breadth first search starting from the query location
and traverse the graph until a required interesting point is found.

Similarly, we can perform breadth first search on DG(d) for finding k-nearest neighbours.
Instead of stopping breadth first search when the first interesting point is found, it can be
continued until k interesting points are found. As for the edge weights, we can use weights
calculated in the section 3.4.4 according to the usage of edges. This will make sure that the
most popular path to the nearest neighbour will be found. This approach can be extended
to solve reverse nearest neighbour queries and group nearest neighbour queries as suggested
in [9].

3.4.2 Refinement of Movement Corridors
Once DG(d) is created using posted localities in LBSN data, user trajectories can be used to
refine the created travel network. The approach for refining the travel network is as follows.
For each consecutive location pair in user trajectories, the shortest path is determined using
DG(d). For each DG(d) edge, the number of trajectories passed through that edge is recorded
as a usage count (Definition 9). We can then represent movement corridors in the travel
network based on the edges where the usage counts are higher than a given threshold.

I Definition 9 (Usage count). Assuming a path is a sequence of edges traversed by a trajectory
trace, for all pq ∈ E, Usage Count of pq (denoted UC(pq)), is defined as the trajectory count,

UC(pq) = |{path : pq ∈ path}|

One of the problems of using DG(d), is that it does not consider the existence of obstacles.
As trajectories do not appear on obstacles such as rivers, incorporating trajectory information
into DG(d) allows filtering edges not used by the trajectories. By filtering edges not used by
trajectories, we are able to eliminate edges that do not represent user movement information.
In summary, refined movement corridors calculated using DG(d) is an edge subset of DG(d)
which are used by the trajectories for movement.

3.4.3 Inferring Road Network
The aforementioned approach for refining movement corridors can be used to infer the road
network in an area where we do not have prior knowledge about the road networks. Ideally
for this purpose, we need GPS locations published on the road network. The easiest way to
obtain such information is to collect LBSN post published while travelling in vehicles. Using
the GPS data in LBSN posts and associating the GPS points with trajectories, we can infer
the road network in an area.

GISc ience 2021
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3.4.4 Most Popular Paths
After calculating usage counts of DG(d) edges, the counts can be used to find the most
popular path between locations. To find the most popular path, the edge weight in DG(d)
should reflect the popularity of the edges. We can use a shortest path algorithm to calculate
the paths. The edge weights are defined in Definition 10. To ensure edges with more usage
have lower weights, we divide the length of the edge by the usage count of that edge. For an
edge with no usage, the edge length multiplied by a fixed value is used as the edge weight.
After calculating edge weights in this manner, the Dijkstra’s shortest path algorithm can be
used to find the most popular path between two locations.

I Definition 10 (Edge Weight). For all pq ∈ E, weight of pq is defined as,

weight(pq) =
{
lpq/UC(pq), if 0 < UC(pq).
lpq × C : 1 < C, if UC(pq) = 0.

3.4.5 Other Applications
DG(d) can be used in other applications such as tour recommendation, trajectory clustering
and group movement detections [9]. For all these applications we need to process user
trajectories after creating the initial graph structure to incorporate additional movement
related information to the created graph skeleton.

4 Experiments

4.1 Data Sets
We conducted experiments on two real world LBSN datasets and one synthetic data set. The
first real data set consists of geo-located posts collected from Twitter. It is collected from
06th March to 23rd April 2012, within a bounding box over Australia and New Zealand. It
contains 724651 LBSN posts authored by 36639 users. For our analysis, an LBSN post is
defined as a tuple containing four elements - userID, voluntarily generated textual content,
timestamp and the location where the post was authored.

We used Yahoo! Flickr Creative Commons 100M (YFCC100M) dataset [15] as the second
real dataset. It contains metadata such as user information, timestamp and location of 100
million photos and videos shared on Flickr. Only the entries with point geo-locations were
used for our experiments. For our experiment, we use the localities around the Thames river
in London from the YFCC100M data set.

The synthetic data set for our experiments was generated using SMARTS simulator [13].
We simulated vehicle movement in the Melbourne central business district (CBD) and collected
GPS locations of the vehicles every 0.5 seconds. The data set used for our experiment contains
100000 GPS points.

4.2 Implementation
To visualize the inferred neighbourhood skeletons, a visualization tool was implemented
utilizing GeoTools1 Java libraries. All the skeleton visualizations presented in this paper are
generated using this tool. Both DG(d) and SSG(d) algorithms are implemented using Java
8. The datasets are stored in a MongoDB database.

1 http://www.geotools.org/

http://www.geotools.org/
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(a) Spanning ratio with varying configuration
parameter d.

(b) The time to generate the graphs in mili
seconds with varying d.

Figure 3 Graphs depicting different properties between DG(d) and SSG(d).

To infer DG(d), firstly, DT is created using SweepHull [14] algorithm. Then, DG(d) is
calculated using Algorithm 1. SSG(d) is extracted from the planar d-Spectrum created using
DT . We used numerical analysis to calculate d-value of an edge. More specifically, a Java
method was implemented to perform Secant method2 to approximate the d-Value. The same
DT was reused for construction of DG(d) and SSG(d) with different d values. We selected
3 as the configuration value for d to compare resulting graphs generated using DG(d) and
SSG(d) based on preliminary tests.

4.3 Results

4.3.1 Event Analysis
In this experiment, we use a Twitter dataset relating to Queensland state election 2012 3.
All users participating in the event are there for a common reason and exhibit a similar
movement pattern. We implement an LBSN post filtering technique used in [8], to filter
posts relating to the election. For temporal bound of the dataset, we took the time period
between 23rd and 26th of March 2012. As for the spatial bound, we considered a bounding
box over the Queensland state. We consider all users who have posted with “#qldvote”
hashtag within spatial and temporal bounds of the event. The data set contains, 1270 unique
points after filtering the original Twitter data.

We generate skeletons using DG(d) and SSG(d) with different settings of d. The spanning
ratio [2] of graphs are calculated with varying configuration parameters. Spanning ratio of
a graph indicates the maximum ratio between the shortest path distance over the graph
and direct distance between any point pair. Therefore, graphs with low spanning ratios are
preferred to represent movement networks [2].

Figure 3 (a) shows the variation of spanning ratio as configuration parameter varies to
demonstrate how the shortest path distances between locality pairs change. Both DG(d) and
SSG(d) have a low and stable spanning ratio, making them suitable for movement analysis.
Furthermore, both DG(d) and SSG(d) have the same spanning ratio when d is less or equal
to 8.

The time taken to calculate skeletons of DG(d) and SSG(d) are shown in Figure 3
(b). Execution time for DG(d) calculation is around 95% less compared to SSG(D) for all
configuration values. The relaxed criteria for culling edges in DG(d) algorithm gives it a
significant advantage in computation time.

2 https://en.wikipedia.org/wiki/Secant_method
3 https://en.wikipedia.org/wiki/Queensland_state_election,_2012
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(a) Thick lines indicate refined movement cor-
ridors extracted using DG(3) and SSG(3).

(b) Execution time in mili seconds to generate
each graph with varying d.

Figure 4 Results of movement corridor refinement.

(a) Road network extracted using DG(3) and
SSG(3).

(b) Execution time in mili seconds to generate
each graph with varying d.

Figure 5 Results of road network extraction.

4.3.2 Movement Corridors Refinement
The refined movement corridors refer to the edges of the graph that are used by the users
on the move. These edges are selected by aligning user trajectories along the graph edges
using shortest path calculation. We analyse the refined movement corridors relating to the
trajectories filtered from the YFCC100M dataset, which is collected from around the Thames
river in London. We take locations posted over one month. The total number of locations
is 6318. To represent the travel networks, DG(3) and SSG(3) are used. This data set is
selected because it has higher randomness in tourist movement compared to the Twitter data
set. After that trajectories are aligned to both graph skeletons, and all the edges with usage
counts of more than 5 are filtered as refined movement corridors. That is, if an edge is used
by 5 or more trajectories, the edge is selected as a refined movement corridor. Both graphs
resulted in the same refined movement corridor structure (Figure 4 (a)). Edges created
across the river are filtered out as there cannot be any movement on those edges. Figure 4
(b) shows the execution times taken to calculate the graph structures. We can see that the
time for creating DG(d) is only 8% of the time taken to create SSG(d).

4.3.3 Road Network Inference
Refined movement corridor extraction can be used to infer the road network of an area.
Using our synthetic dataset we infer the road network of the Melbourne CBD. In order to
simulate the sparseness of data points in LBSN data, we filtered out some of the points in
the original synthetic dataset. The filtering process first sorts all GPS points based on the
timestamp and then takes one point for every n points from the sorted set. There are 2763
locations collected for this experiment.
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(a) Most popular path extracted using DG(3)
and SSG(3) is shown in thick lines.

(b) Execution time in mili seconds to generate
each graph with varying d.

Figure 6 Results of most popular path extraction.

In Figure 5 (a), we show the road networks inferred using DG(3) and SSG(3). The two
road networks almost totally overlap with each other. It should be noted that as the filtering
parameter n grows, the data set used to infer road network become more sparse, degrading
the result road network. Results heavily degrade when n reaches around 120. Figure 5 (b)
shows the execution times taken to calculate the graph structures. We can see that DG(d)
creation takes 7% of the time that is used for creating SSG(d).

4.3.4 Most Popular Path Finding
By calculating edge weights to reflect the popularity of edges we can use the resulting graph
to calculate the most popular paths. We used the Twitter data set to run experiments on
extracting the most popular paths. This data set was used because it contains users with
regular movement patterns. We executed the experiment in Melbourne city area where we
found 28431 locations. Figure 6 (a) shows a most popular path found between two locations.
DG(3) and SSG(3) produce the same path. The dashed lines indicate the shortest path
between the two locations while the thick lines indicate the most popular path. When
comparing this result with a map there are roads along the most popular path detected
while there are building on top of the shortest path. Overall 78% of the edges selected for
the most popular path were sitting on the road network of the Melbourne city. Figure 6
(b) shows the executions times taken by DG(d) and SSG(d) to create graphs. Due to the
size of the dataset SSG(d) has resulted in running times longer than one second. However,
DG(d) has generated the graph in 7% of the time taken by the SSG(d), making it suitable
for processing large data sets in real time.

5 Discussion and Future Works

From our experiments, it is clear that given a point set DG(d) creation takes less time
compared to SSG(d) creation. Also, DG(d) shows the similar effectiveness as the SSG(d) in
solving various queries. The low execution time of DG(d) is due to several reasons. Firstly,
for any edge, DG(d) creation algorithm (Algorithm 1) only processes two triangles. However,
for SSG(d), it can be empirically shown that per edge at least three triangles are processed.
This effect should give a 2 : 3 advantage to DG(d) creation compared to SSG(d). However,
our result shows that the ratio of the execution times are 1 : 10 between DG(d) and SSG(d).
Reason for this massive difference is due to the numerical analysis method used to evaluate
the d-value of an edge for SSG(d). For DG(d), only a simple inequality is evaluated based
on Definition 3.1, per processing triangle. For d-spectrum calculation method of SSG(d),
the numerical analysis method runs to determine the least empty diversion neighbourhood
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around an edge. In our implementation, the analysis method used by SSG(d) is the Secant
method , which may need to run hundreds of iterations when processing one edge. Therefore
we experience this massive time difference between DG(d) and SSG(d). Due to this reason,
it is advantageous to use DG(d) in applications where very little processing time is available
to generate results. This also highlights the need for looking into faster ways to locate the
d-value for SSG(d), as future work.

In our experiments, we have used data sets with few thousands of locations. As the
dataset size increases, one may think we can apply existing data processing techniques
applicable on dense GPS data. Even though the LBSN datasets are large, the locations in the
datasets are spread across large areas , resulting in a low density of data points. Therefore,
existing techniques for processing high-density GPS data may not be suitable for processing
LBSN datasets.

The future work on DG(d) can include the autonomous detection of configuration value
d and the analysis of the relationship between DG(d) and β-Skeletons. Determining the
bounds of the spanning ratio for DG(d) is another promising future direction. Investigating
how DG(d) can be used in more application scenarios is also an interesting research topic.
Incorporating geographical feature when solving queries with DG(d) is also an interesting
research topic. With the introduction of DG(d) as a super graph of SSG(d) it is necessary to
investigate how much faster SSG(d) can be generated using DG(d). Since DG(d) definition
is distance based, the concept of DG(d) can be extended to higher dimensions and with
different distance measurements.

6 Conclusion

We presented the Diversion Graph (DG(d)), a connected graph that varies depending on a
single parameter d. We analysed how DG(d) relates to some well-known graph structures,
and we presented how DG(d) can be used to improve running time of the state-of-the-art
graph, the Stepping Stone Graph (SSG(d)). We have empirically shown that DG(d) is both
efficient and effective to analyse LBSN data due to its distance based local evaluation criteria.
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