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Abstract
In the context of game development, there is always the need for describing behaviors for various
entities, whether NPCs or even the world itself. That need requires a formalism to describe properly
such behaviors. As the gaming industry has been growing, many approaches were proposed. First,
finite state machines were used and evolved to hierarchical state machines. As that formalism was
not enough, a more powerful concept appeared. Instead of using states for describing behaviors,
people started to use tasks. This concept was incorporated in behavior trees. This paper focuses
in the specification and processing of Behavior Trees. A DSL designed for that purpose will be
introduced. It will also be discussed a generator that produces LATEX diagrams to document the
trees, and a Python module to implement the behavior described. Additionally, a simulator will be
presented. These achievements will be illustrated using a concrete game as a case study.
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1 Introduction

At some point in the video-game history, NPCs (Non-Playable Characters) were introduced.
With them came the need to describe behaviors. And with these behaviors came the need of
the existence of a formalism so that they can be properly specified.

As time passed by, various approaches were proposed and used, like finite and hierarchical
state machines. These are state-based behaviors, that is, the behaviors are described through
states. Altough this is a clear and simplistic way to represent and visualize small behaviors,
it becomes unsustainable when dealing with bigger and more complex behaviors. Some time
later, a new and more powerful concept was introduced: using tasks instead of states to
describe behaviors. This concept is incorporated in what we call behavior trees.
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Behavior Trees (BT for short) were first used in the videogame industry in the development
of the game Halo 2, released in 2004 [5]. The idea is that people create a complex behavior
by only programming actions (or tasks) and then design a tree structure whose leaf nodes are
actions and the inner nodes determine the NPC’s decision making. Not only these provide
an easy and intuitive way of visualizing and designing behaviors, they also provide a good
way to work with scalability through modularity, solving the biggest issue from state-based
design. Since then, multiple gaming companies adopted this concept and, in recent years,
behavior trees are also being used in different areas like Artificial Inteligence and Robotics.

In this context, we felt that it could be useful to have a DSL to specify BTs independently
of application area and the programming language chosen for the implementation. The
language must be compact and easy to use but it should be expressive enough to be applied
to real situations. In that sense a new kind of node was included, as will be described.

This paper will introduce the DSL designed and the compiler implemented to translate it
to a programming language, in this case Python. Additionally, the compiler also generates
LATEX diagrams to produce graphical documentation for each BT specified.

A small example will be described in our language as a case study to illustrate all the
achievements attained.

The paper is organized as follow: Concepts and State of the Art frameworks are presented
in Section 2. Architecture and language specification are proposed in Section 3. Compiler
development is discussed in Section 4. An illustrative case study is presented in Section 5,
before concluding the paper in Section 6. The paper also includes one appendix that contains
the tokens table.

2 Concepts

This section will be built based on references [1, 4, 3].
Formally, a BT is a tree whose internal nodes are called control flow nodes and leafs are

called execution nodes.
A behavior tree executes by peridiocally sending ticks to its children, in order to traverse

the entire tree. Each node, upon a tick call, returns one of the following three states to its
parent: SUCCESS if the node was executed with success; FAILURE if the execution failed; or
RUNNING if it could not finish the execution by the end of the tick. In the last case, the next
tick will traverse the tree until it reaches the running execution node, and will try again to
run it.

2.1 Control Flow Nodes

Control flow nodes are structural nodes, that is, they do not have any impact in the state
of the system. They only control the way the subsequent tree is traversed. In the classical
formulation, there are 4 types of control flow nodes: Sequence, Selector, Parallel and
Decorator. Even if not standard we use decorators as control flow nodes, according to [1].
A sequence node (figure 1a) visits its children in order, starting with the first, and advancing
for the next one if the previous succeeded. Returns:

SUCCESS – if all children succeed;
FAILURE – if a child fails;
RUNNING – if a child returns RUNNING.
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Like the sequence, the selector node (figure 1c) also visits its children in order, but it
only advances if the child that is being executed returns FAILURE. Returns:

SUCCESS – if a child succeeds;
FAILURE – if all children fails;
RUNNING – if a child returns RUNNING.

A parallel node (figure 1e), as the name implies, visits its children in parallel. Additionally,
it has a parameter M that acts as a success rate. For N children and M ≤ N , it returns:

SUCCESS – if M children succeed;
FAILURE – if N −M + 1 children fail;
RUNNING – otherwise.

A decorator (figure 1b) is a special node that has an only one child, and uses a policy (set
of rules) to manipulate the return status of its child, or the way it ticks it. Some examples of
decorator nodes are:
1. Inverter – inverts the SUCCESS/FAILURE return status of the child;
2. Max-N-Times – the child can only fail N times. After that it only returns FAILURE

without ticking the child.

2.2 Execution Nodes
Execution nodes are the simplest, yet the most powerful. They are the ones that have access
to the state of the system, and can update it. There are two types of execution nodes:
Action and Condition.

Upon the execution of a tick, an action node (figure 1d) runs a chunk of code that can
return either SUCCESS, FAILURE or RUNNING.

The condition node (figure 1f) verifies a proposition, returning SUCCESS/FAILURE if the
proposition is/is not valid. This node never returns RUNNING.

2.3 Control Flow Nodes with memory
Sometimes, when a node returns RUNNING, we want it to remember which nodes he already
executed, so that the next tick does not execute them again. We call this nodes with memory.
And they are represented by adding a _∗ to the symbols mentioned previously. This is only
syntactic sugar because we can also represent these nodes with a non-memory BT, but that
will not be discussed here.

Please note that, while we avoid the re-execution of nodes with this type of node, we also
lose the reactivity that this re-execution provides.

2.4 State of The Art
In the gaming industry there is some interesting projects that use tools based on Behavior
trees as the main focus to describe NPCs behaviors. Unreal Engine [2] and Unity1 are two
examples of major game engines that use them. In their case, instead of a language, they offer
a graphical user interface (GUI) to specify the BTs, through a drag and drop tactic. Upon
the creation of an execution node, the programmer needs to specify the action or condition
that will be executed. The nodes mentioned before are all implemented in these engines,
along with some extensions. All the nodes that were mentioned before are implemented in
both of these engines, along with some extensions.

1 https://unity.com
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(a) Sequence node.

δ
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(b) Decorator with policy δ.

?

Child 1 . . . Child N

(c) Selector node.

Action

(d) Action node.

⇒M

Child 1 . . . Child N

(e) Parallel node.

Condition

(f) Condition node.

Figure 1 BT Nodes structure.

In addition to game engines, there are also frameworks like Java Behavior Trees2 for Java
and Owyl3 for Python that implement BTs. In this case, they work as a normal library.

3 Architecture and Specification

In this section, it will be explained the general architecture of our system to process BTs,
that is depicted in Figure 2. After introducing its modules, one subsection is devoted to the
BhTSL domain specific language design.

Figure 2 System Architecture.

2 https://github.com/gaia-ucm/jbt
3 https://github.com/eykd/owyl

https://github.com/gaia-ucm/jbt
https://github.com/eykd/owyl
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The input for our system, DSL - Specification, is a text file describing the behavior
which should follow the language syntax. The compiler, which is represented as the green
rounded rectangle in the diagram of Figure 2, is composed of the following modules: a Lexer,
a Parser and a Code Generator.
This generator has two sub-generators. The Latex Generator, that is responsible for the
generation of the LATEX code to draw the tree diagram representing the behavior specified.
And the Python Generator, that produces the fragment of Python code that implements
the desired behavior according to a template predefined by us in the context of this project;
that code fragment can be later imported by any Python application that aims to.

3.1 BhTSL
Before we start describing the DSL, we will introduce a new node, called Probability
Selector (Figure 3 depicts that concept), that provides us with a relevant extension to the
standard formalism for a more powerful behavior specification. This extension improves the
expressiveness of BhTSL language.

A probability selector node is like a normal selector node, but instead of visiting its
children from left to right, it visits them randomly, taking into account that each child has a
probability, defined by the user, of being chosen first.

?P

Child 1 Child 2 . . . Child N

P1 P 2 PN

Figure 3 Probability Selector node.

Example

Now that all nodes have been introduced, let us see an example of a specific behavior.
Suppose that in some game, called TGame, it is intended to have a guard that patrols a

house. The guard has the following behavior: while he is patrolling, if he sees the player,
activates an alarm and then, depending on the level of courage he has, decides (based
on probabilities) whether he runs away or fights the player. In case of running away, he
constantly checks if he still sees the player, returning to patrolling in case he does not. If he
still sees it, he keeps running. The same thing happens when he chooses to fight the player,
only this time he checks if the player is already dead or not.

In Figure 4, we can see a possible tree specification for this behavior.

3.1.1 Syntax
In our language, each specification represents one and only one behavior. An input file,
containing the behavior specification text, is divided into 3 components:

Behavior – main behavior tree;
Definitions (optional) – node definitions that can be referenced in other nodes or in the
main BT;
Code – Python block that contains the code fragments described the execution nodes,
and other code that the programmer wishes to add.

SLATE 2020
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Figure 4 Example: TGame behavior tree diagram automatically generated by our tool.

To illustrate our idea about the DSL we plan to design (formally defined by a grammar in
Section 4), we present below an example of a specification written in the intended language.

behavior : [
sequence : [

condition : $cond1 ,
condition : $cond2
memory selector : [

parallel : $par1 ,
prob_selector : $prob1

]
]

]

parallel par1 : 10 [
action : $action1 ,
action : $action2

]

prob_selector prob1 : [
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$e1 -> decoraror : INVERTER [
action : $action1

],
$e2 -> action : $action2

]

%%

def action1 ( entity ):
pass

def action2 ( entity ):
pass

def cond1( entity ):
pass

def cond2( entity ):
pass

def e1( entity ):
pass

def e2( entity ):
pass

4 Tool development

In the next subsection the implementation of the BhTSL processor will be detailed, as well
as the language specification will be presented.

4.1 Lexical analysis
The first step in the development of a compiler is the lexical analysis, that converts a char
sequence into a token sequence. The tokens table can be seen in Appendix A.

4.2 Syntatic analysis
Syntatic analysis, or parsing, it the process of analyzing a string of symbols conforming the
rules of a grammar.
Below we list the context free grammar that formally specifies BhTSL syntax:

root : behavior CODE
| behavior definitions CODE
| definition behavior CODE

behavior : BEHAVIOR ’:’ ’[’ node ’]’

node : SEQUENCE ’:’ ’[’ nodes ’]’
| SEQUENCE ’:’ VAR
| MEMORY SEQUENCE ’:’ ’[’ nodes ’]’
| MEMORY SEQUENCE ’:’ VAR
| SELECTOR ’:’ ’[’ nodes ’]’

SLATE 2020
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| SELECTOR ’:’ VAR
| MEMORY SELECTOR ’:’ ’[’ nodes ’]’
| MEMORY SELECTOR ’:’ VAR
| PROBSELECTOR ’:’ ’[’ prob_nodes ’]’
| PROBSELECTOR ’:’ VAR
| MEMORY PROBSELECTOR ’:’ ’[’ prob_nodes ’]’
| MEMORY PROBSELECTOR ’:’ VAR
| PARALLEL ’:’ INT ’[’ nodes ’]’
| PARALLEL ’:’ VAR
| DECORATOR ’:’ INVERTER ’[’ node ’]’
| DECORATOR ’:’ VAR
| CONDITION ’:’ VAR
| ACTION ’:’ VAR

nodes : nodes ’,’ node
| node

prob_nodes : prob_nodes ’,’ prob_node
| prob_node

prob_node : VAR RIGHTARROW node

definitions : definitions definition
| definition

definition : SEQUENCE NODENAME ’:’ ’[’ nodes ’]’
| SELECTOR NODENAME ’:’ ’[’ nodes ’]’
| PROBSELECTOR NODENAME ’:’ ’[’ prob_nodes ’]’
| PARALLEL NODENAME ’:’ INT ’[’ nodes ’]’
| DECORATOR NODENAME ’:’ INVERTER ’[’ node ’]’

4.3 Semantic analysis

As usual, from a static semantics perspective, the compiler will check the source text for
non-declared variables and variable redeclaration.
A variable can only be accessed if it is declared, either in the definitions section (if it represents
a control flow node), or in the code section (execution node). Additionally, a variable can
only be declared once, to avoid ambiguity in the memory access by the processor.

The dynamic semantics is discussed in the next subsection.

4.4 Code generator

The compiler can generate two different outputs: a LATEX file, that contains the LATEX
commands to draw a diagram for the BT specified; and a Python file, that contains the
functions that implement the specified behavior.

The Python file is built using a Template file which contains markers that the Code
Generator will fill with the processed data. This file also contains the class Simulator
which is capable of executing the processed BT.

Due to the lack of time available, we have only been able to generate Python code, but
we hope to be able to compile into different languages in the future.
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4.5 BT Simulator
In order to test the Python code generated and to help the BT specifier to debug the behavior
he is willing to describe, we also developed an interpreter that imports the Python behavior
file and simulates its execution. This additional tool proved to be useful.

4.6 Implementation
The project was developed using Python. We chose this language due to our previous
experience with it, but also due to its simplicity, flexibility and its cutting edge technology;
it is also relevant to be a reflective language.

To automatically generate the compiler from the tokens and grammar specifications, we
used the PLY (Python Lex-Yacc)4 library, which is an implementation of the lex and yacc
lexer and parser generator tools for Python. We chose to use PLY because we had prior
experience with Lex-Yacc which enabled us to save time to implement the project. Moreover,
we realized that the specification is lighter than an equivalent using attribute grammars and
because the code produced by those generators is really efficient.

To implement the Code Generator module, we resorted to the well-known tree-traversal
approach, that upon visiting every node of the parsed tree, produces the corresponding
output. For that purpose, some standard libraries were used.

Additionally, we created a LATEX library, behaviortrees.sty, to draw the trees specified.
This library is used in the LATEX generator.

5 Case Study

In order to test our tool, we designed a simple game that consists of an entity finding and
grabbing a ball in a generated map. This entity has a range of vision that it is used to search
the ball. When the entity finds it, it approaches the ball and, if it is within reach, grabs it.

The following code is an example of a specification for this behavior in our DSL, and
Figure 5 depicts the behavior tree automatically generated by our tool.

behavior : [
selector : [

memory sequence : $seq1 ,
action : $search_ball

]
]

sequence seq1 : [
condition : $ball_found ,
selector : [

sequence : [
condition : $ball_within_reach ,
action : $grab_ball

],
action : $approach_ball

]
]

4 https://www.dabeaz.com/ply/
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%%

def ball_found ( player ):
return player . ball_found

def ball_within_reach ( player ):
return player . ball_within_reach

def grab_ball ( player ):
player . grab_ball ()
return SUCCESS

def approach_ball ( player ):
player . approach_ball ()
return RUNNING

def search_ball ( player ):
player . search_ball ()
return RUNNING

Now that we have the specification, we can generate the Python file to use in our code.
Suppose that the generated file’s name is behavior.py, we can import it by writing import
behavior. With this, we can make use of the Simulator class to execute the behavior.

Below we show the code that exemplifies how to use this class to run the behavior.

game = Game ()
game.setup ()
S = behavior . Simulator (game. player1 )

game. render ( screen )

while True:

game. process_events ()

S.tick ()
game. update (clock , 2)
game. render ( screen )

According to the specification, our entity can perform 3 different actions: search for the
ball, approach the ball, and grab the ball.

Searching for the ball occurs in an initial moment, in which the entity does not know yet
where the ball is. Figure 6 depicts an example of that moment, where the entity is the blue
square and the ball is the red square.

Until it finds the ball, the entity roams freely through the map.
When it finds it, unless it is within arms reach, the entity will approach it. Figure 7

depicts the moment when the entity found the ball.
Lastly, when the ball is within reach, the entity grabs it, as it is shown in Figure 8.
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∅

?
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ball found ?

→
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search ball

Figure 5 Behavior Tree generated from the case study.

Figure 6 Searching for the ball.
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Figure 7 Approaching the ball.

Figure 8 Grabbing the ball.

6 Conclusion

As games industry is growing significantly every day, the need for a formal way to describe
behaviors is also increasing requiring more and more expressiveness keeping it easy to learn,
to use and to understand. After some initial attempts not powerful enough, a new approach
called Behavior Trees (BT) appeared. This paper describes a project in which we are working
on, aimed at designing a DSL to write BT and developing the respective compiler to generator
Python functions to be incorporated in final Python programs created to implement games
or other kind of applications.

Along the paper the DSL designed, called BhTSL, was introduced by example and
specified by a context free grammar. The architecture of the BhTSL processor was depicted
and discussed, and the development of the compiler that produces the Python code library
was described. In that context an example of a game specification was presented and the
LATEX fragment that is generated to draw the BT was shown.

Although not detailed or exemplified, the simulator developed to help on debugging the
BT specified in BhTSL language was mentioned along the paper.
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6.1 Future Work
As future work we intend to implement the generation of code for other programming
languages, such as Java and C++ so that it can be widely used by the game development
community. This should be a fairly standard procedure due to our usage of templates on the
Code Generation stage of our program.
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A Tokens Table

The following table displays the full set of tokens of BhTSL language defined in terms of
regular expressions (REs) as utilized in our compiler.

Table 1 BhTSL Tokens Table for Lexical Analysis.

Tokens
Name Value

literals ([]),:%
RIGHTARROW ->
BEHAVIOR \bbehavior\b
SEQUENCE \bsequence\b
SELECTOR \bselector\b
PROBSELECTOR \bprobselector\b
PARALLEL \bparallel\b
DECORATOR \bdecorator\b
CONDITION \bcondition\b
ACTION \baction\b
INVERTER \bINVERTER\b
MEMORY \bmemory\b
INT \d+
VAR $\w+
NODENAME \b\w+\b
CODE %%(.|\n)+
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