
Stab-Forests: Dynamic Data Structures for
Efficient Temporal Query Processing
Jelle Hellings
Exploratory Systems Lab, Department of Computer Science,
University of California, Davis, CA, USA
jhellings@ucdavis.edu

Yuqing Wu
Computer Science Department, Pomona College, Claremont, CA, USA
melanie.wu@pomona.edu

Abstract
Many sources of data have temporal start and end attributes or are created in a time-ordered
manner. Hence, it is only natural to consider joining datasets based on these temporal attributes.
To do so efficiently, several internal-memory temporal join algorithms have recently been proposed.
Unfortunately, these join algorithms are designed to join entire datasets and cannot efficiently join
skewed datasets in which only few events participate in the join result.

To support high-performance internal-memory temporal joins of skewed datasets, we propose
the skip-join algorithm, which operates on stab-forests. The stab-forest is a novel dynamic data
structure for indexing temporal data that allows efficient updates when events are appended in a
time-based order. Our stab-forests efficiently support not only traditional temporal stab-queries,
but also more general multi-stab-queries. We conducted an experimental evaluation to compare the
skip-join algorithm with state-of-the-art techniques using real-world datasets. We observed that the
skip-join algorithm outperforms other techniques by an order of magnitude when joining skewed
datasets and delivers comparable performance to other techniques on non-skewed datasets.

2012 ACM Subject Classification Information systems → Join algorithms; Information systems →
Temporal data

Keywords and phrases Cache-friendly temporal joins, temporal data, skewed data, stab-queries,
temporal indices

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.18

Supplementary Material Open-source code of the full implementation of the data structures, algo-
rithms, and supporting tooling used can be found at https://jhellings.nl/projects/skipjoin/.

Funding This material is based upon work supported by the National Science Foundation under
Grant No. NSF 1606557.

1 Introduction

In practice, most sources of data have temporal attributes. Examples include news events,
air travel records, employment records, and event logs. Temporal attributes also play a role
in data that does not have explicit temporal attributes: e.g., in versioned databases the time
of creation and replacement of each data element is recorded such that the evolution of the
database is maintained. Given that temporal data is so ubiquitous, applications naturally
expect support from DBMSs for efficient operations based on these temporal attributes.
Examples of such operations are stab-queries and the temporal join:

I Example 1.1. Consider complex systems in which events are logged by (start, end)-time
intervals. We want to use the event log to diagnose failures in the complex system. More
specifically, if a failure at time t needs to be diagnosed, one does not want to search through

© Jelle Hellings and Yuqing Wu;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jhellings@ucdavis.edu
mailto:melanie.wu@pomona.edu
https://doi.org/10.4230/LIPIcs.TIME.2020.18
https://jhellings.nl/projects/skipjoin/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

the entire event log, but use more directed ways to look for causes. A first step would be to
perform a stab-query at time t to find all events that are active when the failure happened.
A next step would be to combine event logs of the failed system with event logs of another
system via a (windowed) temporal join that yields pairs of events that were active at the
same time (and could have influenced each other) in a 24 h-window around time t.

Efficient temporal join algorithms are at the basis of many other efficient temporal
operations. E.g., selecting all events in a dataset that occur during a given set of windows in
time is equivalent to a temporal join between the dataset and these windows. Unfortunately,
state-of-the-art techniques fail to cope with skewed datasets or fail to deliver high performance:

Temporal join algorithms. Many temporal join algorithms proposed in the literature fine-
tune the usage of traditional relational database storage and join techniques towards temporal
joining [3, 7, 13, 15, 26]. These relational-oriented temporal join algorithms are not optimized
for high-performance internal-memory operations and achieve only acceptable performance.

Separately from these relational-oriented approaches, a few dedicated internal-memory
join algorithms have been proposed that operate on ordered arrays of events. These algorithms
use merge-join style methods that employ either sweeping-based techniques or forward-scan
techniques [3, 6, 7, 13, 15, 21, 26]. Based on these merge-join style algorithms, Piatov et
al. [21] recently introduced the endpoint join algorithm, a cache-friendly internal-memory
temporal join algorithm. Due to the timestamp-based representation of events used by the
endpoint join algorithm, the algorithm needs complicated data structures to maintain active
lists of events while joining them. Bourus et al. [6] showed that a traditional forward-scan
algorithm [7] operating on a simple event list will attain similar performance without all the
complexities of the endpoint join algorithm. Unfortunately, these merge-join style algorithms
inspect the entire dataset, due to which their performance degrades when the join output is
restricted to a small window in time and when the datasets only have few overlapping events,
the lather limiting their usability on skewed datasets.

Temporal data structures. Besides relying on temporal joins, one can also consider index
structures that support answering temporal operations. Unfortunately, existing index struc-
tures either do not support temporal operations efficiently, are statically built or complex
to maintain, or fail to provide high-performance cache-friendly internal-memory operations.
Indeed, to support temporal operations over interval data, traditional relational indices
such as binary search trees, B-trees, and range-trees cannot be effectively used, as these
structures lack the information to efficiently perform stab-queries and other basic temporal
operations [5, 13, 22, 26]. Alternatively, one can use specialized static interval data structures
developed for geometric applications [1, 4, 5, 16, 18, 23]. Examples include interval trees,
segment trees, and priority search trees [11, 12, 17]. These statically built data structures all
support efficient stab-queries, but do not support any form of updates.

Unfortunately, dynamic general-purpose versions of these statically-built interval data
structures are highly complex, have expensive maintenance algorithms, and rely completely
on pointer-based tree structures [4, 9, 20]. The usage of such complex pointer-based data
structure prevents cache-friendly traversal and, hence, prevent them from supporting high-
performance internal-memory operations [4, 14, 24]. A few external memory interval data
structures have been proposed, but these either place many restrictions on the inserted
data [19, 25] or are highly complex and have not yet proven themselves in practice [4].

J. Hellings and Y. Wu 18:3

Our proposal: the skip-join algorithm. To address the shortcomings of existing techniques,
we propose the skip-join algorithm (Section 2). Our skip-join algorithm is an efficient
temporal join algorithm that can deal with all datasets and, additionally, supports windowed
temporal joins. To do so, the skip-join algorithm uses the stab-forest, a novel temporal index
data structure that is designed to efficiently support stab-queries and, more importantly,
multi-stab-queries that yield the combined results of multiple stab-queries in a highly efficient
manner (Section 3 and Section 4). We also present efficient ways to maintain stab-forests
when events are appended (Section 5).

To show the effectiveness of the skip-join algorithm, we evaluate the performance of our
algorithm using real-world datasets (Section 6). Our evaluation shows that the skip-join
algorithm outperforms state-of-the-art join algorithms by an order of magnitude when joining
skewed datasets. On dense datasets, the performance of the skip-join algorithm is comparable
to the state-of-the-art.

2 The Skip-Join Algorithm

Before we propose the skip-join algorithm, we first introduce some event-related terminology.
A timestamp represents a single point in time. We assume that timestamps are non-negative
integers. An event is a pair 〈v, w〉 of timestamps that represents the interval [v, w] in time. If
e = 〈v, w〉 is an event, then v is the start-time and w is the end-time and we write e.start
and e.end to denote v and w, respectively. If e.start ≤ t ≤ e.end, then we also say
that e is active at t. If e1 and e2 are events, then the intersection e1 ∩ e2 is empty if
e1.end < e2.start or e2.end < e1.start. We say that e1 and e2 overlap if e1 ∩ e2 6= ∅.

I Definition 2.1. Let R and S be sets of events. The temporal join of R and S, denoted by
R on S, is defined by

R on S = {(e1,e2) ∈ R× S | e1 ∩ e2 6= ∅}.

Our skip-join algorithm relies on the ability to efficiently perform sequences of stab-queries:

I Definition 2.2. Let S be a set of events, let t be a timestamp, and let φ be a sorted sequence
of timestamps. The stab-query of S by t is defined by

Stab(S, t) = {e ∈ S | e.start ≤ t ≤ e.end},

and the multi-stab-query of S by φ is defined by

MultiStab(S, φ) =
⋃
t∈φ Stab(S, t).

Several high-performance internal-memory temporal join algorithms have been proposed,
most of which use a merge-join style method that employs either sweeping-based techniques
or forward-scan techniques [3, 6, 7, 13, 15, 21, 26]. Unfortunately, these merge-join style
algorithms cannot efficiently support windowed temporal joins or deal with skewed datasets.

To efficiently support windowed temporal joins and deal with skewed datasets, we will
present our skip-join algorithm. To simplify presentation, we build skip-join on top of the
forward-scan algorithm, the simplest among the merge-join style algorithms. Our techniques
can, however, easily be translated to endpoint-based join algorithms, e.g., the algorithm of
Piatov et al. [21].

TIME 2020

18:4 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

Algorithm 1 Algorithm FwdScan, outputs R on S (R and S sorted in ascending start-time
order).

Algorithm FwdScan(R, S):
1: i, j := 0, 0
2: while i < |R| and j < |S| do
3: if R[i].start ≤ S[j].start then
4: k := j #(Join R[i] with S[j . . .]).
5: while k < |S| and S[k].start ≤ R[i].end do
6: Output (R[i], S[k])
7: k := k + 1
8: i := i + 1
9: else analogous (swap roles of R and S)

0 1 2 3 4 5 6 7 8 9 10 11 12

R0
R1 R2 R3

R4

S0
S1 S2

S3

Figure 1 Two lists of events R and S visualized on an explicit timestamp scale.

The forward-scan temporal join algorithm. The forward-scan algorithm is a cache-friendly
temporal join algorithm that can efficiently join non-skewed datasets represented by ordered
lists of events (e.g., sorted arrays of events) [3, 6, 7, 13, 15, 21, 26]. The outline of such a
forward-scan algorithm is shown in Algorithm 1.

I Example 2.3. Let R = [〈0, 10〉, 〈1, 2〉, 〈4, 7〉, 〈8, 11〉, 〈11, 12〉] and S = [〈0, 2〉, 〈1, 3〉, 〈9, 10〉,
〈10, 12〉] be the lists of events visualized in Figure 1. We compute R on S using Algo-
rithm FwdScan. First, we join R0 with S[0 . . .], and output (R0, S0), (R0, S1), (R0, S2).
Next, we join S0 with R[1 . . .], and output (R1, S0). Next, we join R1 with S[1 . . .], and
output (R1, S1). Next we join S1 with R[2 . . .], and output nothing. Next, we join R2 with
S[2 . . .], and output nothing. Next, we join R3 with S[2 . . .], and output (R3, S2), (R3, S3).
Next, we join S2 with R[4 . . .], and output nothing. Next, we join S3 with R[4 . . .], and
output (R4, S3). Finally, we stop, as we have reached the end of S.

If the event-list is implemented as an array, then these forward-scan algorithms will have
high performance when most events in R and S are part of the join result:

I Proposition 2.4. Let R and S be lists of events sorted in ascending start-time order. The
algorithm FwdScan(R, S) computes R on S in worst-case O(|R|+ |S|+ |output|).

Dealing with skew in temporal joins. In practice, one can expect some skew in the data
that causes standard forward-scan algorithm to waste time inspecting parts of R and/or S
that are not part of the join result. To deal with this form of data skew, we need a way
to detect and skip over parts of R and S that are irrelevant to the join result. To do so,
we augment the forward-scan algorithm with the ability to use stab-queries to jump over
irrelevant events: if, e.g., we are at an event R[i] that ends before the event S[j] starts, then
we simply jump in R until we find the first event R[i′] that starts after S[j]. By jumping
over events in R, we might miss events in R[i . . . i′] that end after S[j].start. To assure we
do not miss such events, we jump over events in R via a stab-query and join the output of
the stab-query with S[j . . .]. This approach results in the skip-join algorithm of Algorithm 2.

I Example 2.5. Consider the lists of events R and S of Example 2.3 and visualized in
Figure 1. We compute R on S using the SkipJoin algorithm. First, we join R0 with S[0 . . .],

J. Hellings and Y. Wu 18:5

Algorithm 2 Algorithm SkipJoin, outputs R on S (R and S sorted in ascending start-time order).

Algorithm SkipJoin(R, S):
1: i, j := 0, 0
2: while i < |R| and j < |S| do
3: if R[i].start ≤ S[j].start then
4: if S[j].start ≤ R[i].end then
5: Join R[i] with S[j . . .] (see Algorithm 1, Lines 4–8)
6: i := i + 1
7: else
8: (i, L) := Stab(R[i . . .], R[i].start)
9: For each event e ∈ L, join e with S[j . . .] (see Algorithm 1, Lines 4–8)

10: else analogous (swap roles of R and S)

and output (R0, S0), (R0, S1), (R0, S2). Next, we join S0 with R[1 . . .], and output (R1, S0).
Next, we join R1 with S[1 . . .], and output (R1, S1). Next we join S1 with R[2 . . .], and
output nothing. Next, when we process the event R2 = 〈4, 7〉, we detect that the event
S2 = 〈9, 10〉, the first event in S[2 . . .], starts after R2.end as 7 = R2.end < S3.start = 9.
Hence, we perform Stab(R[2 . . .], 9), which yields the list [R3] and the index 4 in R. We
output (R3, S2) and continue with joining R[4 . . .] and S[2 . . .], which only yields (R4, S3).

The SkipJoin algorithm will only be efficient if the sequence of stab-queries can be
performed efficiently. Obviously, such an ordered sequence of stab-queries can be seen as a
single multi-stab-query (whose evaluation is interleaved with running the join algorithm).
In Section 3, we introduce the stab-forest data structure which we will use to answer such
multi-stab-queries efficiently, and in Section 4, we show how to efficiently query stab-forests.

I Theorem 2.6. Let R and S be lists of events sorted in ascending start-time order. The
algorithm SkipJoin(R, S) computes R on S in worst-case O(M(R,S) +M(R,S) + |output|),
in which M(A,B) denotes the cost of either a multi-stab-query with |A| timestamps on B or
of fully traversing B, whichever is smaller.

We notice that the focus of the skip-join algorithm is on supporting temporal joins of
skewed datasets. The skip-join algorithm can easily be tuned to also support windowed
temporal joins that only output events restricted to some window 〈v, w〉 in time, however:
one simply starts with stab-queries to determine which events are active at v and stops
whenever encountering events that start after w.

3 The Stab-Forest Data Structure

In the previous section, we introduced the SkipJoin algorithm. This algorithm requires an
efficient manner to perform multi-stab-queries. To provide this, we introdce a novel index
structure, the stab-forest. The stab-forest is a triple S = (E , I, itail) with E an event-list
ordered lexicographically on (start, end)-times, I an index over the head of the event-list,
and itail the tail pointer that holds the offset of the first event in E not yet part of I. We call
the part of the event-list starting at itail the tail. We define |S | = |E|. Next, we introduce
stab-trees, which are at the basis of index I. Then, we introduce the forest structure of I,
which stitches together the stab-trees used to index the event-list. Finally, we discuss the
relevant parts of the physical layout we use for the index.

The stab-tree. A stab-tree is a binary tree that shares similarities with binary search
trees and interval trees. First, we introduce the standard binary tree terminology and

TIME 2020

18:6 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

notation. Let S = (E , I, itail) be a stab-forest and let T be a stab-tree indexing a portion
of E . We write root(T) to denote the root node of T . Let n be a node in T . By left(n) and
right(n), we denote the left and right child of n. We call n a leaf if n does not have children
(left(n) = right(n) = ⊥). By height(T), we denote the height of the tree T , which we define
as the number of nodes on the longest downward path from the root of the tree to a leaf
node (the height of a tree without nodes is 0 and the height of a tree with a single node is 1).

Each node n has a navigation key and a data key, denoted by nkey(n) and dkey(n),
respectively. The key dkey(n) is a timestamp present as the start-time of an event in the
event-list. The data pointer idata(n) holds the offset of the first event in E with start-time
dkey(n). The key nkey(n) is the smallest timestamp such that no event in the event-list has
a start-time in the range [nkey(n), dkey(n)).

Each node of a stab-tree represents events in E via the data key and data pointer: the
node n represents those events e ∈ E with e.start = dkey(n). The navigation key nkey(n)
is derived from the event preceding E [idata(n)]. Based on the definition of nkey(n), the only
timestamp in [nkey(n), dkey(n)] that has events e ∈ E starting at it is dkey(n) – these are
exactly the events represented by n. In Section 4, we will explain how the data and navigation
keys are used while querying stab-forests. We define

min(n) = min{nkey(n′) | n′ in the subtree rooted at n};
max(n) = max{dkey(n′) | n′ in the subtree rooted at n}.

The scope of n is defined by scope(n) = [nkey(n), dkey(n)] and the cover by cover(n) =
[min(n),max(n)]. We say that timestamp t is in the scope of n if t ∈ scope(n) and is covered
by n if t ∈ cover(n). For answering stab-queries, each node n is augmented with a left-list

LEFT(n) = {〈v, w〉 ∈ E | min(n) ≤ v ≤ dkey(n) ∧ nkey(n) ≤ w ≤ max(n)}.

Intuitively, the left-list LEFT(n) contains all events that are active in the scope of n, while
starting and ending in the cover of n.

I Example 3.1. Consider the list of events [〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉, 〈5, 6〉,
〈6, 8〉, 〈7, 7〉, 〈7, 9〉]. This list is indexed by the stab-tree T visualized in Figure 2, left. We have
height(T) = 3. For the root node r = root(T), we have nkey(r) = 3, dkey(r) = 4, min(r) = 0,
max(r) = 7, scope(r) = 〈3, 4〉, cover(r) = 〈0, 7〉, and LEFT(r) = [〈0, 3〉, 〈2, 3〉, 〈4, 5〉].

Every node n in a stab-tree in I must satisfy the following four structural invariants:
(i) nkey(n) ≤ dkey(n);
(ii) if e ∈ E with e.start ∈ scope(n), then e.start = dkey(n);
(iii) if left(n) 6= ⊥, then nkey(n) = 1 + max(left(n)); and
(iv) if right(n) 6= ⊥, then dkey(n) = min(right(n))− 1.
To use the stab-trees for answering stab-queries efficiently, we also need to provide strong
upper-bounds on the height of stab-trees. To do so, we put the following structural invariant
on each stab-tree T used in I:
(v) T has exactly 2height(T) − 1 nodes.
Invariants i-iv imply the binary-search-tree property and Invariant v implies that each
stab-tree is balanced and complete.

Let t be a timestamp. We say that a stab-tree T covers t if root(T) covers t. We say that
an event e ∈ E is covered by a stab-tree node or stab-tree if e.start is covered by it. Given
a stab-tree T and a timestamp t covered by T , Invariants i-iv guarantee that there exists
exactly one node n in T that has t in its scope. Likewise, if e ∈ E is covered by T , then there

J. Hellings and Y. Wu 18:7

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

(0, 0)

(1, 1)

(2, 2)

(3, 4)

(5, 5)

(6, 6)

(7, 7)

[e2]

[e0,e3,e4]

[e5]

[e6]

[e8]

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

(0, 0)

(1, 1)

(2, 2)

(3, 4)

(5, 5)

(6, 6)

(7, 7)

[e2]
T1

F1 [e0,e1,e3,e4]

m1

[e5]
T2

F2 [e6,e7]

m2 F3 [e8,e9]

m3

E

itail

scope(r)
cover(r)

0 1 2 3 4 5 6 7 8 9 10 11
e0

e1

e2 e3

e4 e5e6
e7

e8
e9

scope(T1)
cover(T1)

scope(m1)
cover(m1)

cover(F1) cover(F2)

cover(F3)

itail

0 1 2 3 4 5 6 7 8 9 10 11
e0

e1

e2 e3

e4 e5e6
e7

e8
e9

e10

Figure 2 Examples of stab-trees and stab-forests. Left, a stab-tree indexing ten events. For each
node n, the keys are visualized as (nkey(n), dkey(n)) and the left-list is only included if LEFT(n) 6= ∅.
Right, three forest-points over the same dataset, each with its own stab-tree, dummy stab-tree node,
and max-list. Observe that the last forest-point’s stab-tree is empty.

exists exactly one node n in T with dkey(n) = e.start. Given this node n, idata(n) holds
the offset of the first event in E with start-time e.start. In this case, either e is part of
exactly one left-list of a node n′, ancestor of n, in T or e.end > max(root(T)).

I Example 3.2. Consider the stab-tree T in Example 3.1, visualized in Figure 2, left. The
timestamps 0, . . . , 7 are covered by T . More specifically, the timestamp 3 is covered by
root(T), even though no event starts at 3. the timestamp 5 is covered by the leaf node with
data key 5. No timestamp at-or-after 8 is covered by T , even though some events covered by
T end at-or-after timestamp 8.

The stab-forest index. We require that all stab-trees are balanced and complete. Conse-
quently, it is in most cases impossible to cover all events by a single stab-tree. Alternatively,
we can cover consecutive parts of the event-list by a forest of stab-trees of decreasing heights.
To use this forest of stab-trees for query answering, we need to maintain some metadata per
stab-tree. This metadata is stored in forest-points.

Let S = (E , I, itail) be a stab-forest. A forest-point in I is a pair F = (T,m), with
T a stab-tree and m a dummy stab-tree node without left-list augmentation. We define
height(F) = 1 + height(T),

min(F) =
{

nkey(m) if height(T) = 0;
min(root(T)) if height(T) 6= 0,

and max(F) = dkey(m). Each forest-point F is augmented with a max-list

MAX(F) = {〈v, w〉 ∈ E | min(m) ≤ v ≤ dkey(m) ∧ nkey(m) ≤ w}.

If we interpret root(T) as the left child of m, then, intuitively, the max-list MAX(F) contains
all events that are active in the scope of m while starting in the cover of m (but not necessary
ending in the cover of m). Hence, conceptually, forest-points and their max-lists can be seen
as open-ended versions of stab-tree nodes and their left-lists: MAX(m) is a superset of a
conceptual left-list of m with left child root(T) and with a yet undetermined right child. If a

TIME 2020

18:8 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

sufficient number of events is appended to the event-list, then one is capable of constructing
an appropriate right child for m, after which MAX(F) provides all the candidate events that
might be part of LEFT(m).

I Example 3.3. Consider the event-list E = [〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉, 〈5, 6〉,
〈6, 8〉, 〈7, 7〉, 〈7, 9〉, 〈8, 10〉]. This list is indexed by the stab-forest S visualized in Figure 2,
right. The stab-forest S has three forest-points, F1 = (T1,m1), F2 = (T2,m2), and
F3 = (T3,m3). Let r1 = root(T1). For the first forest-point, we have nkey(r1) = dkey(r1) = 1,
nkey(m1) = 3, dkey(m1) = 4, and MAX(F1) = [〈0, 3〉, 〈0, 11〉, 〈2, 3〉, 〈4, 5〉]. For the third
forest-point, we observe that stab-tree T3 is empty. Not all events are part of the index, as
the tail-pointer points to the last event e10 = 〈8, 10〉. We observe that these forest-points
cover the same set of events as the single stab-tree of Example 3.1. Due to the structural
invariants we will place on stab-forests, the provided set of events does not yet contain
sufficient information to merge these three forest-points to the stab-tree of Example 3.1,
however.

We say that a forest-point covers timestamp t if either T or m covers t, we say that
index I covers timestamp t if a forest-point F ∈ I covers t, and we say that the tail covers
t if t is larger than any timestamp covered by I. We say that an event e ∈ E is covered
by a forest-point, index, or tail if e.start is covered by it. We write events(F), events(T),
events(n), and events(itail) to denote the set of events in the E covered by forest-point F ,
stab-tree T , stab-tree node n, or the tail, respectively.

To guarantee that I covers all events in E up to itail and that the index structure has
strong upper-bounds on its size, we put the following structural invariants on the index:
(vi) the first forest-point in I covers the first event in E ;
(vii) all events in E at-or-after itail have the same start-time;
(viii) if E 6= ∅, then itail is the offset of the first event e ∈ E not covered by I;
(ix) if (T,m) ∈ I with height(T) 6= 0, then nkey(m) = 1 + max(root(T)); and
(x) if F2 ∈ I directly follows F1 ∈ I, then height(F1) > height(F2) and min(F2) =

1 + max(F1).
We observe that the Invariants vi–x combined with Invariants i-iv guarantee that, for every
event e ∈ E before offset itail, there exists exactly one forest-point F ∈ I that covers e. If
e ∈ E and e is covered by F = (T,m), then either e is part of exactly one left-list of a node
in T or e ∈ MAX(F). Combining Invariant v with Invariant x allows us to upper bound the
number and height of forest-points: if E has N distinct start-times and F ∈ I is the i-th
forest-point in I, 0 ≤ i < |I|, then |I| ≤ dlogNe and height(F) ≤ dlogNe − (i+ 1).

Physical representation. The index structure will be used to support multi-stab-queries.
To do so efficiently, we use specialized materializations of the left-lists and max-lists. Let n
be a stab-tree node and let F = (T,m) be a forest-point. The lists LEFT(n) and MAX(F)
are each stored in two parts:

LEFTn,↓(n) = {〈v, w〉 ∈ LEFT(n) | v < nkey(n)}; LEFTd,↓(n) = LEFT(n) \ LEFTn,↓(n);
MAXn,↓(F) = {〈v, w〉 ∈ MAX(F) | v < nkey(m)}; MAXd,↓(F) = MAX(F) \MAXn,↓(F).

In the above, each part is sorted on descending end-time order. We also maintain copies
LEFTn,↑(n) and MAXn,↑(F) of LEFTn,↓(n) and MAXn,↓(F) that are sorted on ascending
start-time order.

I Proposition 3.4. Let L be a list of events. The stab-forest S indexing L can be stored in
worst-case O(|L|) space.

J. Hellings and Y. Wu 18:9

4 Query Evaluation on Stab-Forests

Previously, we discussed the structure of the stab-forest. Next, we show how the stab-
forest supports answering multi-stab-queries efficiently. The definition of multi-stab-queries
suggests a straightforward way to answer them: by simply executing multiple stab-queries
and combining the results. This approach can become unnecessary inefficient if the dataset
has events that appear in several of these stab-queries, as we have to explicitly eliminate
duplicates.

I Example 4.1. Consider the stab-forest S of Example 3.3. We consider the multi-stab-
query MultiStab(S , [0, 2, 5]). We have Stab(S , 0) = {〈0, 3〉, 〈0, 11〉}, Stab(S , 2) =
{〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉}, and Stab(S , 5) = {〈0, 11〉, 〈4, 5〉, 〈5, 5〉}. By combining the re-
sults, we obtain MultiStab(S , [0, 2, 5]) = {〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉}. Observe
that 〈0, 3〉 appears in two stab-query results and 〈0, 11〉 appears in all stab-query results.

To improve on this situation, we will present a direct multi-stab-query procedure that cir-
cumvents the need of deduplication. Let φ = [t1, . . . , t|φ|] be a sorted sequence of timestamps,
let Ri = Stab(S , ti), 1 ≤ i ≤ |φ|, let S1 = R1, and let Sj = Rj \Rj−1, 2 ≤ j ≤ |φ|. Notice
that MultiStab(S , φ) =

⋃
1≤i≤|φ| Ri =

⋃
1≤i≤|φ| Si. By definition, the sets S1, . . . , S|φ|

are all pair-wise disjoint. Hence, we can answer multi-stab-queries efficiently if we can
compute the sets Si, 1 ≤ i ≤ |φ|, efficiently. Observe that an event is in Sj if and only if it
is active at tj but not at tj−1 (or any other timestamp in [t1, . . . , tj−1]). First, we describe
how to find parts of Sj stored in forest-points and the tail. Then, we describe how to find
parts of Sj stored in a stab-tree, Finally, we provide necessary implementation details and
analyze the complexity of the described multi-stab-query procedure. All details necessary to
answer stab-queries efficiently can be derived from this multi-stab-query procedure.

Searching in forest-points and the tail. Let S = (E , I, itail). To simplify presentation, we
assume that E 6= ∅ and tj is at-or-after the start of the first event in E . (If these assumptions
do not hold, we have Sj = ∅). We also assume that tj−1 = −∞ if tj = t1. Under these
assumptions, we need to search in the stab-forest to find all events in Sj . The first step is
to identify if there exists a forest-point that covers tj . If tj−1 is smaller than the start-time
of any event in E , then we start at the first forest-point in I. Otherwise, we start at the
forest-point that covers tj−1. When visiting a forest-point F = (T,m), we have one of the
following four cases:
1. F only covers events that start before tj. In this case, max(F) < tj and events in

events(T) start before-or-at max(F). Hence, events(F) ∩ Sj = MAX(F) ∩ Sj . We have
events(F) ∩ Sj 6= ∅ only when tj−1 < max(F). In this case, we compute events(F) ∩ Sj
by traversing both MAXn,↓(F) and MAXd,↓(F) and stop when we find the first event that
stops before tj . During this traversal, we may encounter events already active at tj−1;
we skip over these events by not outputting them again. As an optimization, we notice
that MAX(F) ∩ Sj ⊆ MAXd,↓(F) if nkey(m) ≤ tj−1 < dkey(m). In this case, we can skip
traversing MAXn,↓(F). After processing this forest-point, proceed to the next forest-point.

2. F represents events that start at tj and tj is covered by T . In this case, min(F) ≤ tj <
nkey(m) and events(F)∩Sj = (MAX(F)∪ events(T))∩Sj . Due to tj < dkey(m), we have
MAX(F) ∩ Sj = MAXn,↑(F) ∩ Sj . We compute MAXn,↑(F) ∩ Sj by traversing MAXn,↑(F)
and stop when we find the first event that starts after tj . Traversing MAXn,↑(F), we
encounter events in MAX(F) that start before-or-at tj−1, followed by those that start
after tj−1 and before-or-at tj , followed by those that start after tj . Hence, to avoid

TIME 2020

18:10 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

unnecessary deduplication, we traverse MAXn,↑(F) starting at the first event that starts
after tj−1 (we detail how to do so later). Next, we search for all events in events(T) ∩ Sj .
After searching in T , we have completed the computation of Sj .

3. F represents events that start at tj and tj is not covered by T . In this case, nkey(m) ≤ tj ≤
dkey(m). Events in events(T) start before nkey(m). Hence, events(F)∩Sj = MAX(F)∩Sj .
We compute events(F) ∩ Sj by traversing MAXn,↓(F) as in Case 1. If tj = dkey(m), we
also include MAXd,↓(F) entirely. We completed the computation of Sj .

4. F only covers events that start after tj. In this case, tj < min(F). We have events(F) ∩
Sj = ∅, and, as we process forest-points ordered on the events they cover, this forest-point
will not be reached.

We have events(itail)∩Sj 6= ∅ only if tj is greater than any timestamp covered by I. Let e be
the event pointed at by itail. We have events(itail) ∩ Sj 6= ∅ only if tj−1 < e.start ≤ tj . In
this case, we find all events in the tail that are active at tj by traversing E backwards starting
at the end and stopping at either itail or at the first event that stops before tj , whichever
comes first. We notice that this traversal is a traversal on descending end-time order.

Searching in a stab-tree. The above only details how to process the max-lists of forest-
points and the tail. To handle Case 2 above, we also need to describe how to compute
events(T) ∩ Sj . Assume that tj ∈ cover(F) and tj < nkey(m). We perform a binary-search-
tree search on T until we find the node n with t ∈ scope(n). For each node n′ visited during
this search, we have one of the following three cases:
5. If t < nkey(n′), then we need to continue the search in left(n′). We have events(n′)∩Sj =

(events(left(n′)) ∪ LEFT(n′)) ∩ Sj . We compute LEFT(n′) ∩ Sj by traversing LEFTn,↑(n′)
and stop when we find the first event that starts after tj . Traversing LEFTn,↑(n′), we
encounter events in LEFT(n′) that start before-or-at tj−1, followed by those that start
after tj−1 and before-or-at tj , followed by those that start after tj . Hence, to avoid
unnecessary deduplication, we traverse LEFTn,↑(n′) starting at the first event that starts
after tj−1 ((we detail how to do so later).

6. If nkey(n′) ≤ t ≤ dkey(n′), then we have found node n. We have events(n′) ∩ Sj =
LEFT(n′) ∩ Sj . We compute events(n′) ∩ Sj by traversing LEFTn,↓(n′) and stop when
we find the first event that stops before tj . During this traversal, we may encounter
events already active at tj−1; we skip over these events by not outputting them again. If
tj = dkey(n′), we also include LEFTd,↓(n′) entirely. We completed the search in T .

7. If dkey(n′) < t, then we need to continue the search in right(n′). We have events(n′)∩Sj =
(events(right(n′))∪LEFT(n′))∩Sj . We have LEFT(n′)∩Sj 6= ∅ only when tj−1 < dkey(n′).
In this case, we compute LEFT(n′) ∩ Sj by traversing both LEFTn,↓(n′) and LEFTd,↓(n′)
and stop when we find the first event that stops before tj . During this traversal,
we may encounter events already active at tj−1; we skip over these events by not
outputting them again. As an optimization, we notice that LEFT(n′) ∩ Sj ⊆ LEFTd,↓(n′)
if nkey(n′) ≤ tj−1 < dkey(n′). In this case, we can skip traversing LEFTn,↓(n′).

Analysis of multi-stab-queries. To implement Cases 2 and 5 efficiently, we need to do some
bookkeeping. For the relevant nodes n′ and forest-point F on which Cases 2 and 5 applied
while computing Sj , we need to keep track of the position of the first events in LEFTn,↑(n′)
and MAXn,↑(F) that start after tj . In total, we need to keep track of at most dlog|S |e
different positions.

I Example 4.2. We repeat the query MultiStab(S , [0, 2, 5]) of Example 4.1 on the stab-
forest S of Example 3.3. When stabbing with 0, we traverse MAXn,↑(F1) and output the first
two events 〈0, 3〉 and 〈0, 11〉. While searching in the stab-tree T1, we do not find any further

J. Hellings and Y. Wu 18:11

events. Next, we stab with 2. When traversing MAXn,↑(F1) we start at the third event,
〈2, 3〉, which we output. Next, we search in the stab-tree T1, where we find 〈1, 2〉. During
the stab with 5, we recognize that 5 is not covered by F1. Hence, we traverse MAXn,↓(F1)
and MAXd,↓(F1) to find any events that are still active at 5. The first event in MAXd,↓(F1)
is 〈4, 5〉, which we output. The first event in MAXn,↓(F1) is 〈0, 11〉, which we skip over. We
then search in F2 to find and output 〈5, 6〉 and 〈5, 5〉.

We observe that the above multi-stab-query procedure will, in the worst case, read every
event in the output of the multi-stab-query twice; once in a max-list or left-list that is sorted
on ascending start-time order and once in a max-list or left-list that is sorted on descending
end-time order. If the index I has N stab-tree nodes, then the approach to compute Sj
will navigate through up to dlogNe forest-points and stab-tree nodes. The multi-stab-query
approach for computing Sj described above can easily be extended to also yield a pointer pj
to the first event in the event-list that starts after tj , as used by the SkipJoin algorithm.

We can also compute Sj by traversing the event-list from the first event starting after
tj−1 until the first event that starts after tj . As long as this traversal of E performs at
most dlogNe memory operations, traversing E will be faster. To choose between these two
methods to compute Sj , we can use a simple test. Let q be the position of the first event
starting after tj−1. Let c be the threshold constant representing the number of events one can
read from the event-list in a single memory operation. To choose between the two approaches
to compute Sj , we check if the event at position q + cdlogNe does not exists or, otherwise,
starts at-or-after tj+1. With this approach, we need to change the processing of left-lists and
max-lists to, additionally, skip over any events we found by traversing the event-list. Hence,
with this change, the above process will read every event in the output at-most thrice.
I Theorem 4.3. Let S be a stab-forest and let φ be a sorted sequence of timestamps.
MultiStab(S , φ) can be answered in O(min(|φ| log|S |, |φ|+ |S |) + |output|).

5 Stab-Forest Maintenance

The stab-forest is designed to be a dynamic data structure to which events can be appended
efficiently. Here, we show how to append events using the assumption that events are
appended in lexicographical order on (start, end)-time. In Appendix A, we generalize the
principles of the stab-forest to support less-restrictive semantics in equally efficient ways.

To support appending events that are ordered lexicographically on (start, end)-times,
we start by describing an algorithm to put appended events in newly created forest-points.
When appending a new event e′ to stab-forest S = (E , I, itail), we distinguish the following
cases:
1. If |E| = 0, then append event e′ to the end of E and set itail := 0, the offset of e′ in E .
2. Else, if E [itail].start = e′.start, then append event e′ to the end of E .
3. In all other cases, E [itail].start < e′.start. Let L be the list of events in the event-list

starting at itail. Create a fresh leaf node l and a fresh forest-point F = (T, l) in I with T
an empty tree. We set

dkey(l) = e.start; idata(l) = itail;
left(l) = ⊥; right(l) = ⊥;

LEFT(l) = ∅; MAX(F) = L.

If |I| = ∅, then set nkey(l) = dkey(l). Else, set nkey(l) = max(F ′) + 1, with F ′ the last
forest-point in I. After constructing F , append F to the end of I. Finally, append e′ to
E and set itail := |E| − 1, the offset of e′ in E .

TIME 2020

18:12 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

(0, 0)

(1, 1)

(2, 2)

(3, 4)

(5, 5)

(6, 6)

(7, 7)

(8, 8)
T

F[e1,e7,e9,e10]

m

[e2]

[e0,e3,e4]

[e5]

[e6]

[e8]

E

itail

scope(T)
cover(T)

scope(m)
cover(m)

cover(F) itail

0 1 2 3 4 5 6 7 8 9 10 11
e0

e1

e2 e3

e4 e5e6
e7

e8
e9

e10 e11

Figure 3 The stab-forest obtained after adding event 〈9, 11〉 to the stab-forest of Figure 2, right.

Remember that the event-list is ordered lexicographically on (start, end)-times and that
the current tail L only has events with a start-time e.start. Hence, by reversing L, we
can directly construct MAXd,↓(F), and, in this case, we have MAXd,↓(F) = MAX(F).

We observe that the above algorithm might invalidate Invariant x (Section 3), as a newly
added forest-point can have the same height as the previous last forest-point in I. To restore
Invariant x, we will repeatedly merge the last two forest-points in I until they no longer
have the same height. Let F1 = (T1,m1) and F2 = (T2,m2) be adjacent forest-points with
h = height(F1) = height(F2) and min(F2) = max(F1) + 1. We merge these forest-points into
a single forest-point F = (T,m2) with

root(T) = m1;
left(m1) = root(T1);

right(m1) = root(T2);
LEFT(m1) = {e ∈ MAX(F1) | e.end ≤ max(T2)};

MAX(F) = (MAX(F1) \ LEFT(m1)) ∪MAX(F2).

In the above, the necessary parts of LEFT(m1) and MAX(F) can be constructed via straight-
forward merge-procedures on the parts of MAX(F1) and MAX(F2).

I Example 5.1. Consider the stab-forest of Example 3.3. We add the event 〈9, 11〉, resulting
in the stab-forest visualized in Figure 3.

One can show that the above forest-point merge maintains the Invariants i–iv, v, and ix
(Section 3). Using this result, it is straightforward to prove that the described append method
is sound. We conclude:

I Theorem 5.2. Let L be a list of events ordered lexicographically on (start, end)-times.
The structure obtained from starting with an empty stab-forest and appending each of the
events in L in order is a stab-forest. This stab-forest is constructed in O(|L| log|L|) and will
use O(|L|) storage. Additional events can be added to the stab-forest in amortized O(log|L|).

Notice that the maintenance algorithm only operates on forest-points and does not change
the stab-forests stored within them. Indeed, the constructed stab-trees are static, while
merging of forest-points can be implemented via efficient array-merge-operations on their
max-lists.

J. Hellings and Y. Wu 18:13

6 Empirical Evaluation

Finally, we provide an empirical study to showcase the practical performance of the stab-
forest and the skip-join algorithm. We have implemented the stab-forest, the temporal query
operations, and the temporal join algorithms presented in this paper in C++. Open-source
code of the full implementation of the data structures, algorithms, and supporting tooling
used can be found at https://jhellings.nl/projects/skipjoin/. In our implementation,
we used 32bit unsigned integers to represent timestamps. The programs were compiled with
the Microsoft C/C++ Compiler Version 19.13.26132 for x64, part of Visual Studio 2017, and
run on a workstation with an Intel Core i5-4670 processor and 16GB of internal memory.
In each experiment, the algorithms used write out their query results to a dynamic array
(implemented by the standard vector data structure).

As a baseline for comparison, we implemented the forward-scan algorithm FwdScan,
which is reported to be among the fastest internal-memory temporal join algorithms [6]. As
our SkipJoin algorithm is based on FwdScan, our experiments not only showcase how
SkipJoin performs compared to the state-of-the-art, but also allows for a detailed look at
the benefits and costs of SkipJoin. To further examine the behavior of SkipJoin in detail,
we tested with three variants; namely SkipJoin-E that uses the event-list exclusively for
answering stab-queries, SkipJoin-I that uses the stab-forest index exclusively for answering
stab-queries, and normal SkipJoin that uses a threshold constant c = 16 to choose between
using the event-list and the stab-forest index.

In our experiments, we used two real-world datasets. The first real-world dataset we used
is the Airline On-Time Performance Data (AOTPD) dataset [8], which contains flight-events
(takeoff and duration) over a ten-year period. The second real-world dataset we used is
the Civil Unrest Event Data (CUED) dataset [10], a set of civil unrest events in recent
human history. The details of both datasets can be found in Figure 4, left. We also used a
synthetically generated gap dataset. This dataset consists of two lists R and S that contain
consecutive non-overlapping groups of G events (the gap size) that are placed alternatingly
in either R or S . Figure 4, right, visualizes such a dataset with twelve events grouped in
groups of G = 3 events.

AOTPD [8] CUED [10]

Number of Events 61, 100, 539 62, 141
Start date July, 2007 February, 1946
End date June, 2017 November, 2005
Minimal duration 0 minutes 0 days
Maximum duration 1, 350 minutes 18, 407 days

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4 The datasets used in our evaluation. Left, statistics on the real-life datasets used. Right,
gap datasets R and S with gap size 3.

Temporal joins on sparse datasets. First, we investigated the performance of temporal
join algorithms in cases where only a few events are part of the join result, the situation for
which our SkipJoin algorithm is designed. We used the temporal join algorithms to select a
set of days from the AOTPD dataset. The temporal join algorithms select these specified
days by joining the AOTPD dataset with a filter dataset that contains the to-be-selected
days. As an additional point of reference, we compared the temporal join algorithms with a
dedicated multi-window-query implementation that selects the same days. In this experiment,
we selected the 7-th day from each of the first n out of 120 months. The results of our

TIME 2020

https://jhellings.nl/projects/skipjoin/

18:14 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

0 20 40 60 80 100 120

0

20

40

60

80

100

Selected periods

To
ta

lj
oi

n
tim

e
(m

s)
Sparse joins and multi-window-queries

FwdScan
SkipJoin
SkipJoin-E
(Dedicated)

0 0.2 0.4 0.6 0.8 1 1.2
·106

0.0

0.5

1.0

1.5

2.0

·103

Number of events in R

Joining the dense AOTPD dataset

FwdScan
SkipJoin
SkipJoin-E

0 0.5 1 1.5 2 2.5 3
·104

0.0

0.1

0.2

·103

Number of events in R

Joining the dense CUED dataset

FwdScan
SkipJoin
SkipJoin-E

Figure 5 Temporal joins on sparse and dense datasets. On the left, we use temporal joins to
select events from specific days in the AOTPD dataset. We compare these sparse temporal joins
with a dedicated multi-window-query implementation to select the specific days. In the middle and
on the right, we present the join performance on dense datasets, joining parts of the AOTPD dataset
(middle) and parts of the CUED dataset (right). In these two cases, all three algorithms perform
approximately the same.

20 22 24 26 28 210 212 214 216 218 220

0

100

200

300

Gap size

To
ta

lj
oi

n
tim

e
(m

s)

Joining gap datasets

FwdScan
SkipJoin
SkipJoin-E
SkipJoin-I

20 22 24 26 28 210 212 214 216 218 220

0

200

400

600

800

1,000

1,200

Gap size

Joining gap datasets (SkipJoin, varying threshold constants)

c = 1
c = 2
c = 4
c = 8
SkipJoin (c = 16)
c = 32
c = 64
SkipJoin-E
SkipJoin-I

Figure 6 The behavior of SkipJoin: temporal join performance on sparse gap datasets, in which
the gap-size determines the amount of data SkipJoin can skip over.

measurements can be found in Figure 5, left. As expected, SkipJoin benefits heavily from
skipping over the non-relevant portions of the event-list. We also observe that the gain in
performance comes from the usage of the stab-forest index, as SkipJoin-E only performs
slightly better than FwdScan. Finally, we observe that the performance of SkipJoin
comes close to our dedicated algorithm; showing that the performance of SkipJoin is even
acceptable for implementing more specialized operators.

Temporal joins on dense datasets. Next, we investigated the performance of temporal
join algorithms in cases where most events are part of the join result, e.g., in which almost
every event in each dataset joins with an event in the other dataset. This is the situation
for which the traditional FwdScan algorithm is designed. In this experiment, we used two
datasets, namely the CUED dataset and a randomly selected fragment of 2, 500, 000 events
from the AOTPD dataset. For this experiment, we took a dataset, split that dataset into
two halves R and S, shuffled R, and joined the first 0%, 10%, . . . , 100% of the shuffled R
with the entirety of S. The results of our measurements can be found in Figure 5, middle
and right. We observe that in the setting of joining densely correlated datasets, there is no
real difference between the SkipJoin-family of algorithms and the FwdScan algorithm,
even though the SkipJoin-family of algorithms have higher complexity and overhead.

The behavior of SkipJoin. Third, we investigated the exact behavior of SkipJoin in
situations where the algorithm is triggered to skip over data. To have full control over
the amount of skipping possible, we used gap datasets with 64 · 220 events and a gap

J. Hellings and Y. Wu 18:15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
·107

0.0

0.2

0.4

0.6

0.8

1.0

1.2
·104

Number of events

To
ta

lc
on

st
ru

ct
io

n
tim

e
(m

s)
Data structure construction time

stab-forest
multiset
multiset(∗)

vector

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
·107

0.0

1.0

2.0

3.0

·109

Number of events

To
ta

lm
em

or
y

co
ns

um
pt

io
n

(b
yt

es
) Data structure memory usage

stab-forest
multiset
multiset(∗)

vector

Figure 7 The costs of the stab-forest: construction time (left) and memory usage (right) of the
stab-forest in comparison to various other data structures.

size of G = 20, 21, . . . , 220. We ran the SkipJoin algorithm with threshold constants
c ∈ {1, 2, 4, 8, 16, 32, 64}, and compared the SkipJoin algorithm with FwdScan, SkipJoin-
E , and SkipJoin-I. The results of our measurements can be found in Figure 6. From the
measurements, we conclude that the SkipJoin-family of algorithms is favorable as soon as
they can skip over at least 4 events (the performance gain of skipping over a single event
does not justify the overhead introduced by skipping). Skipping over events via the event-list,
as SkipJoin-E does, provides a small improvement over FwdScan. Skipping over events
via the index, as SkipJoin-I does, can provide order-of-magnitudes improvements over
FwdScan, but only if sufficient events are skipped over. Due to this, it is important to use
a threshold constant that is well-suited to the details of the underlying hardware. For our
setting, the threshold constant c = 16, as used in SkipJoin, provides acceptable performance
in all cases as it usually provides performance that is close to the fastest algorithm.

The costs of the stab-forest. In our final experiment, we looked at the costs of stab-forest
maintenance. More specifically, we investigated the construction cost (by appending events
one-by-one) and the memory consumption of a fully constructed stab-forest. We compared the
construction of the stab-forest with the construction of three standard C++ data structures:
1. vector. We use a vector, a bare bones dynamic array implementation, as a lower bound

for representing the underlying event data without any indices.
2. multiset. We use a multiset, which is implemented as a self-balancing binary search

tree. The multiset provides a lower bound on the cost of constructing and maintaining
dynamic general-purpose interval data structures, as all dynamic general-purpose interval
data structures are built using self-balancing binary search trees at their core [4, 9, 20].

3. multiset(∗). Finally, we use a multiset in which each insert operation uses placement
hints to allow the data structure to optimize for the append-only workload we provided.
This multiset implementation provides a lower bound on the cost of constructing and
maintaining dynamic general-purpose interval data structures that provide optimized
append operations. We denote this usage of the multiset by multiset(∗).

In this experiment, we used the AOTPD dataset. For each of the data structures, we
measured the time it took to append the first N events from this dataset to the data
structure (N = 5 · 106, 10 · 106, . . . , 60 · 106). The results of our measurements can be found
in Figure 7. Unsurprisingly, appending data to the stab-forest is slower than appending
to a vector, as the vector is the underlying representation of the event-list. The cost of
appending to a stab-forest is on-par with the cost of appending to a multiset(∗) binary
search tree, showing that the stab-forest construction only incurs minimal overhead. Finally,
appending to a fully dynamic multiset binary search tree, which provides the lower bound
for dynamic general-purpose interval data structures, is much more costly than appending to

TIME 2020

18:16 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

stab-forests. This supports our choice for designing stab-forests with append-only semantics.
With respect to memory usage, we see that the stab-forest is much more compact than a
binary search tree (even with all time-based augmentations), as it only requires a single
stab-tree node per start-time, whereas the multiset uses a single search tree node per event.

7 Conclusion

We set out to develop high-performance internal-memory temporal join algorithms for
dynamically generated heavily skewed data. Towards this goal, we proposed the stab-forest,
the multi-stab-query, and the skip-join temporal join algorithm. In our evaluation, we showed
that the skip-join algorithm is capable of significantly speeding up temporal joins of heavily
skewed data. Our experiments also showed that the overhead of the skip-join algorithm when
joining non-skewed data is insignificant, making our algorithm highly performant in all cases.

References
1 Pankaj K Agarwal and Jeff Erickson. Geometric range searching and its relatives, volume 223

of Contemporary Mathematics, pages 1–56. American Mathematical Society, 1999.
2 Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-

Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and Sam
Whittle. The dataflow model: A practical approach to balancing correctness, latency, and
cost in massive-scale, unbounded, out-of-order data processing. Proceedings of the VLDB
Endowment, 8(12):1792–1803, 2015. doi:10.14778/2824032.2824076.

3 Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey Scott Vitter.
Scalable sweeping-based spatial join. In Proceedings of the 24rd International Conference on
Very Large Data Bases, pages 570–581. Morgan Kaufmann Publishers Inc., 1998.

4 Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management. SIAM
Journal on Computing, 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

5 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

6 Panagiotis Bouros and Nikos Mamoulis. A forward scan based plane sweep algorithm for
parallel interval joins. Proceedings of the VLDB Endowment, 10(11):1346–1357, 2017. doi:
10.14778/3137628.3137644.

7 Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial
joins using r-trees. SIGMOD Record, 22(2):237–246, 1993. doi:10.1145/170036.170075.

8 Bureau of Transportation Statistics, United States Department of Transportation. Airline
on-time performance data, 2017. URL: https://www.transtats.bts.gov/Tables.asp?DB_
ID=120.

9 Yi-Jen Chiang and Roberto Tamassia. Dynamic algorithms in computational geometry.
Proceedings of the IEEE, 80(9):1412–1434, 1992. doi:10.1109/5.163409.

10 Cline Center for Democracy. Speed project - civil unrest event data, 2012. URL: https:
//clinecenter.illinois.edu/project/human-loop-event-data-projects/SPEED.

11 Herbert Edelsbrunner. A new approach to rectangle intersections part I. International Journal
of Computer Mathematics, 13(3–4):209–219, 1983. doi:10.1080/00207168308803364.

12 Herbert Edelsbrunner. A new approach to rectangle intersections part II. International Journal
of Computer Mathematics, 13(3–4):221–229, 1983. doi:10.1080/00207168308803365.

13 Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. Join
operations in temporal databases. The VLDB Journal, 14(1):2–29, 2005. doi:10.1007/
s00778-003-0111-3.

14 Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter Michael Fischer, Donald
Kossmann, Franz Färber, and Norman May. Timeline index: A unified data structure
for processing queries on temporal data in SAP HANA. In Proceedings of the 2013 ACM

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1137/S009753970240481X
https://doi.org/10.14778/3137628.3137644
https://doi.org/10.14778/3137628.3137644
https://doi.org/10.1145/170036.170075
https://www.transtats.bts.gov/Tables.asp?DB_ID=120
https://www.transtats.bts.gov/Tables.asp?DB_ID=120
https://doi.org/10.1109/5.163409
https://clinecenter.illinois.edu/project/human-loop-event-data-projects/SPEED
https://clinecenter.illinois.edu/project/human-loop-event-data-projects/SPEED
https://doi.org/10.1080/00207168308803364
https://doi.org/10.1080/00207168308803365
https://doi.org/10.1007/s00778-003-0111-3
https://doi.org/10.1007/s00778-003-0111-3

J. Hellings and Y. Wu 18:17

SIGMOD International Conference on Management of Data, pages 1173–1184. ACM, 2013.
doi:10.1145/2463676.2465293.

15 Hans-Peter Kriegel, Marco Pötke, and Thomas Seidl. Managing intervals efficiently in object-
relational databases. In Proceedings of the 26th International Conference on Very Large Data
Bases, pages 407–418. Morgan Kaufmann Publishers Inc., 2000.

16 Jiří Matoušek. Geometric range searching. ACM Computing Surveys, 26(4):422–461, 1994.
doi:10.1145/197405.197408.

17 Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,
1985. doi:10.1137/0214021.

18 Dinesh P. Mehta and Sartaj Sahni. Handbook Of Data Structures And Applications, Second
Edition. Chapman & Hall/CRC, 2017.

19 A. Montplaisir-Gonçalves, N. Ezzati-Jivan, F. Wininger, and M. R. Dagenais. State history tree:
An incremental disk-based data structure for very large interval data. In 2013 International
Conference on Social Computing, pages 716–724. IEEE, 2013. doi:10.1109/SocialCom.2013.
107.

20 Mark H. Overmars. The Design of Dynamic Data Structures. Springer, 1983.
21 Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for modern

hardware. In 2016 IEEE 32nd International Conference on Data Engineering, pages 1098–
1109. IEEE, 2016. doi:10.1109/ICDE.2016.7498316.

22 Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for time-evolving data.
ACM Computing Surveys, 31(2):158–221, 1999. doi:10.1145/319806.319816.

23 Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley Longman
Publishing Co., Inc., 1990.

24 Peter Sanders. Memory Hierarchies — Models and Lower Bounds, pages 1–13. Springer, 2003.
doi:10.1007/3-540-36574-5_1.

25 Arie Segev and Himawan Gunadhi. Event-join optimization in temporal relational databases.
In Proceedings of the 15th international conference on Very large data bases, pages 205–215.
Morgan Kaufmann Publishers Inc., 1989.

26 Donghui Zhang, Vassilis J. Tsotras, and Bernhard Seeger. Efficient temporal join processing
using indices. In Proceedings 18th International Conference on Data Engineering, pages
103–113. IEEE, 2002. doi:10.1109/ICDE.2002.994701.

A Variants of Stab-Forests and their Maintenance

The stab-forest is designed to be a dynamic data structure to which events can be appended
efficiently. In the main text, we showed how stab-forests support appending events using the
assumption that events are appended in lexicographical order on (start, end)-time. Here, we
the principles of the stab-forest to support two less-restrictive semantics in equally efficient
ways.

Increasing start-time order semantics. The ordering on end-times is only used to assure
that the tail is always lexicographically ordered on (start, end)-times: we only need to keep
the tail ordered on end-times as all events in the tail have the same start-time. Hence, we
can support appending events only ordered on start-time if we store the tail in a search tree.
We then simply copy over the tail to the event-list whenever appending an event triggers the
construction of a fresh forest-point.

One can also opt to not keep the tail sorted on end-times, but only enforce this ordering
when creating a fresh forest-point. In such a design, queries can only access a history of the
data that does not include the current events in the tail. This approach can also be used to
support streams of events for which watermarks provide an after-the-fact guarantee on the
ordering of past events [2].

TIME 2020

https://doi.org/10.1145/2463676.2465293
https://doi.org/10.1145/197405.197408
https://doi.org/10.1137/0214021
https://doi.org/10.1109/SocialCom.2013.107
https://doi.org/10.1109/SocialCom.2013.107
https://doi.org/10.1109/ICDE.2016.7498316
https://doi.org/10.1145/319806.319816
https://doi.org/10.1007/3-540-36574-5_1
https://doi.org/10.1109/ICDE.2002.994701

18:18 Stab-Forests: Dynamic Data Structures for Efficient Temporal Query Processing

Timestamp-based semantics. In streaming data processing and in versioned databases,
the start-time and end-time of events are usually known when the event starts and ends,
respectively [22]. For these applications, it is natural to append the start- and end-times when
they happen, as separate operations. The stab-forest can be generalized to support these
applications. In specific, we show how a stab-forest can support the following timestamp-based
semantics. When an event starts, it is appended to the stab-forest by registering its start-time.
On successful registration, the stab-forest returns an event-handle that can be used to update
the event. When the event ends, one uses the event-handle to update the end-time of the
event. We assume that all start- and end-times are appended and updated on increasing
timestamps.

I Example A.1. Consider a versioned database. At t1 record r gets created, at t2 record
r gets updated, and, finally, at t3 record r gets deleted. At t1, we append an event e1
representing record r with start-time t1 (and no end-time). At t2, we update e1 by setting
the end-time t2. We create a new event e2 representing the updated record r with start-time
t2 (and no end-time). Finally, at t3, we update e2 by setting the end-time t3.

Stab-forests with timestamp-based semantics are an obvious choice when adding skip-join
style techniques to endpoint-based join algorithms, e.g., the algorithm of Piatov et al. [21].

To maintain all the invariants under the timestamp-based semantics, we need to make a
few changes to the stab-forest structures. We represent open-ended events with start-time
v and without an end-time by e = 〈v,∞〉. Each copy of such an open-ended event e in
the event-list and in max-lists keeps a reference to the event-handle, which we describe
in detail later. Each stab-tree node n, which represents events with start-time dkey(n), is
augmented with an ∞-pointer i∞(n) that holds the offset of the first open-ended event in
E with start-time dkey(n) (if such an event exists). Each forest-point F is augmented with
∞-pointers i∞(MAXn,↓(F)) and i∞(MAXd,↓(F)) that hold the offsets of the last open-ended
events in MAXn,↓(F) and MAXd,↓(F) (if such events exist). Finally, we use an ∞-pointer
i∞-tail to hold the offset of the first open-ended event in the tail.

For every open-ended event e = 〈v,∞〉, we maintain an event-handle

handle(e) = (iE , n, F, iMAXn,↓(F), iMAXd,↓(F), iMAXn,↑(F)),

in which iE is the offset of the copy of e in E , n is a reference to the stab-tree node with
dkey(n) = v (if e is not in the tail), F is the reference to the forest-point that has e in its
max-list (if e is not in the tail), and iMAXn,↓(F), iMAXd,↓(F), and iMAXn,↑(F) are offsets of the
copies of e in these max-lists (if such copies exist).

When a start-time v is appended to the stab-forest, the event e = 〈v,∞〉 and event-handle
handle(e) are constructed and e is appended to the tail. Appending an event to the tail can
cause the construction and merging of forest-points. During this forest-point maintenance,
the event-handles of open-ended events need to be kept up-to-date, which can be done in
constant time per involved event. Finally, a reference to handle(e) is returned.

When an end-time w for open-ended event e is updated in the stab-forest, one uses the
reference to event-handle handle(e) = (iE , n, F, iMAXn,↓(F), iMAXd,↓(F), iMAXn,↑(F)). First, we
consider the steps necessary to update the end-time when e is not in the tail:
1. The copy of e in E is updated by setting E [iE].end := w. Then, to restore the lexicographic

order on (start, end)-times in E , the event at E [iE] is swapped with the event at E [i∞(n)].
Next, the offsets iE in the handles of the swapped events are updated. Finally, i∞(n) is
incremented by setting i∞(n) := i∞(n) + 1.
This sequence of steps will update E and restore the lexicographic order in E . Observe that
the end-times arrive in order. Hence, the end-time w of e comes after all earlier-updated

J. Hellings and Y. Wu 18:19

e1 e2 e3 e4 e5

〈2, 3〉 〈2, 5〉 〈2,∞〉〈2,∞〉〈2,∞〉

i∞(n)

n

iE

handle(e3) iE

handle(e5)

e1 e2 e5 e4 e3

〈2, 3〉 〈2, 5〉 〈2, 7〉 〈2,∞〉〈2,∞〉

i∞(n)

n

iE

handle(e3)

Figure 8 Updating an event by setting the end-time. On the left, the stab-forest before the
update. On the right, the situation after setting e5.end := 7. In this sketch, only details relevant to
the update are included.

end-times and swapping e to offset i∞(n) puts e directly after all other events with the
same start-time and with a smaller end-time. All other open-ended events with the same
start-time (including the event that got swapped with e) follow e and, hence, are still in
a valid order. Consequently, incrementing i∞(n) will assure that i∞(n) once again points
to the first open-ended event with start-time dkey(n) (if such an event exists).

2. If a copy of e is in a max-list MAXn,↑(F), then this copy of e is updated by setting
MAXn,↑(F)[iMAXn,↑(F)] := w. This update does not affect the start-time ordering of events
in MAXn,↑(F), hence, no further change to MAXn,↑(F) is necessary.

3. If a copy of e is in a max-list MAXn,↓(F), then this copy of e is updated by set-
ting MAXn,↓(F)[iMAXn,↓(F)] := w. This update does affect the end-time ordering of
events MAXn,↓(F). Similar to how the ordering of E is restored by a swap, the or-
dering in MAXn,↓(F) is restored by swapping value MAXn,↓(F)[iMAXn,↓(F)] and value
MAXn,↓(F)[i∞(MAXn,↓(F))], updating the relevant handles, and, finally, decrementing
i∞(MAXn,↓(F)) by setting i∞(MAXn,↓(F)) := i∞(MAXn,↓(F))− 1.

4. Finally, if a copy of e is in a max-list MAXd,↓(F), then this copy is updated analogous to
the previous case.

When e is in the tail, a swap of E [iE] and E [i∞-tail], followed by incrementing i∞-tail suffices
(once again similar to how the ordering of E is restored by a swap). After updating the
end-time w for event e, the handle handle(e) can be destroyed.

I Example A.2. Consider a stab-tree node n with dkey(n) = 2, pointing to an event-list
with events 〈2, 3〉, 〈2, 5〉, 〈2,∞〉, 〈2,∞〉, and 〈2,∞〉. We wish to update the last event,
e5 = 〈2,∞〉, by setting its end-time to 7. In Figure 8, left and right, we sketched this setting
before and after updating end-time 7.

TIME 2020

	Introduction
	The Skip-Join Algorithm
	The Stab-Forest Data Structure
	Query Evaluation on Stab-Forests
	Stab-Forest Maintenance
	Empirical Evaluation
	Conclusion
	Variants of Stab-Forests and their Maintenance

