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Abstract
A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism
that tackles controllable and uncontrollable durations as well as controllable and uncontrollable
choices simultaneously. In the classic top-down model-based engineering approach, a designer builds
a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper,
we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to
mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design
of controllable temporal networks mined from traces that also contain information on uncontrollable
events.
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1 Introduction

Temporal networks are a possible framework to model temporal plans and check the coherence
of their temporal constraints imposing delays and deadlines between the occurrences of pairs
of events in the plan [7]. The main components of a temporal network are time points and
constraints. Time points are real variables modeling temporal events. Executing time points
means to assign them real values to fix “when” the corresponding temporal events occurred.
Constraints are linear inequalities imposing minimal and maximal temporal distances between
pairs of time points.

Over the years the core formalism of Simple Temporal Networks [7] has been extended
in several ways to cope with uncontrollable durations [17], uncontrollable and controllable
choices [5, 13] and, more recently, with combinations of them (see, e.g., [3, 11, 12, 18, 19]).
The most expressive formalisms of temporal networks are those that simultaneously handle
all such features. Moreover, such formalisms give rise to several, different, taxonomies in
which sub-formalisms belonging to them can be ordered by expressive power. As a result,
solving any problem for a top-level formalism (e.g., checking consistency or controllability)
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results in solving the same problem for every sub-formalism in the corresponding hierarchy.
Conditional Simple Temporal Networks with Uncertainty and Decisions (CSTNUDs, [19, 22])
is a recent formalism tackling controllable and uncontrollable durations as well as controllable
and uncontrollable choices simultaneously. CSTNUDs define a hierarchy of temporal networks
in which any combination of features can be considered by focusing on the corresponding
sub-formalism.

Like any model-based engineering approach, creating a temporal network is a complex,
time-consuming, and error-prone task, where typically discrepancies between the actual
process and the obtained network might eventually emerge asking the designer for refinement
or abstraction of the model being created. This is a top-down, trial-and-error approach.
Instead, the opposite, bottom-up, approach is known in the literature under the name of
process mining and it aims to mine (i.e., synthesize) process descriptions (or, more reasonably,
model approximations) from execution traces (i.e., process logs).

A trace formalizes a run of a process, and the set of all available traces can be thought
of as a log of a process carried out many times by humans that base their actions on their
experience only. As a result, since such actions may not follow any particular rule, we have
no guarantee of consistency or controllability of the underlying process overall. One of the
first contributions in process mining is that of Agrawal, Gunopulos, and Leymann [1], but,
after this seminal work, many others have come by focusing on different process description
languages [6, 8, 14, 15, 16]. However, to the best of our knowledge, the problem of mining
temporal networks subject to uncontrollable parts has not received particular attention.
Despite the current trend in process mining calls for machine learning techniques, we shall
see that the well-founded mathematical structure of temporal networks allows us to solve
this problem correctly and efficiently, because of a strong underlying monotonicity.

Contribution. We provide a deterministic polynomial time algorithm to mine a CSTNUD
from a finite set of execution traces. By construction, every trace in the set will satisfy
the constraints of the mined CSTNUD, therefore the CSTNUD is correct, complete and
significant, meaning that every temporal event, (un)controllable duration and (un)controllable
choice belonging to some processed trace occurs in it.

Organization. Section 2 discusses background and related work. Section 3 adapts CSTNUDs
for the purpose of this paper. Section 4 defines the problem of mining significant CSTNUDs
and provides a correct algorithm for it. In Section 5 we conclude by summing up and
discussing future work.

2 Background and Related Work

Simple Temporal Networks (STNs) [7] model fully controllable and non-disjunctive temporal
plans but they cannot deal with (un)controllable choices nor with uncontrollable durations.
To bridge such gaps some extensions were put forth over the years. Simple Temporal Networks
with Uncertainty (STNUs) [17] extend STNs with uncontrollable (but bounded) durations
by means of contingent links. A contingent link consists of an activation (time) point,
whose execution is under control, a contingent (time) point, whose execution is not, and a
closed interval specifying the minimal and maximal duration of the link. Conditional Simple
Temporal Networks (CSTNs) [10] (formerly, Conditional Temporal Problem (CTP) [13])
extend STNs with uncontrollable choices. Constraints are labeled by sets of consistent literals
over a finite set of uncontrollable Boolean variables, or booleans, which describe when the
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(a) A hierarchy of STNs.
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{} : −1

{} : 1
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{d} : 1

{¬c} : −3
{¬d} : −4

(b) CSTNUD.

Figure 1 Hierarchy (left) and an example of CSTNUD (right). STNDs, STNUDs and CSTNDs
are further frameworks implicitly arising from CSTNUDs. Any acronym speaks for what the
corresponding framework supports: “C” (uncontrollable choices), “D” (controllable choices), “U”
(contingent links).

components labeled by them are relevant for an execution. The truth value assignments
to these booleans are out of control and take place upon the execution of specific time
points. Initially, labels were on both time points and constraints but later it was proved
that having labels on constraints only does not limit the expressiveness of the network [2].
Temporal networks with labels on constraints only are called streamlined. Conditional Simple
Temporal Networks with Uncertainty (CSTNUs) [9] merge STNUs and CTPs/CSTNs, whereas
Conditional Simple Temporal Networks with Uncertainty and Decisions (CSTNUDs) [19, 22]
extend CSTNUs with controllable choices (i.e., controllable booleans). Figure 1a shows the
hierarchy of CSTNUDs. Figure 1b gives an example of CSTNUD that we discuss in Section 3.
Other formalisms were built on top of STNs (e.g., [3, 5, 11, 12, 18]) but are not employed in
this work.

Process mining has been approached by several authors. Agrawal, Gunopulos and
Leymann first introduced the problem of producing a process description from unstructured
executions in a log [1]. Cook and Wolf investigated similar issues in the context of software
engineering processes [6]. They described three methods for process discovery: one based on
neural networks, one based on a purely algorithmic approach, and one based on a Markovian
approach. In particular, in the second approach, they built a finite state machine where
states are fused whenever their futures (in terms of possible behavior in the next k steps)
are identical. In [8], Herbst addresses the issue of process mining in the context of workflow
management using an inductive (machine learning based) approach. Finally, in [14], Van
Der Aalst proposes an algorithm to extract a workflow network from logs of a hospital. The
results of the experiments highlight that the proposed method can discover processes whose
underlying models are acyclic and sound workflow nets, involving parallel, conditional and
sequential workflow blocks.

3 Conditional STNUs with Decisions

When uncontrollable parts are supported, the corresponding planning and scheduling problem
modeled by the underlying network can be seen as a two-player game between Controller
(representing the executor) and Nature (representing the environment). Controller executes
controllable time points and assigns truth values to controllable booleans. Nature does the
same for uncontrollable time points and uncontrollable booleans. Controller aims to satisfy
all constraints. Nature aims to have Controller violate at least one of them. In other words,
we are the Controller and everything else is Nature.

TIME 2020
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I Definition 1. A Conditional Simple Temporal Network with Uncertainty and Decisions
(CSTNUD) is a tuple 〈T ,B, TB , β,L, C〉, where:
T = TC∪̇TU = {A, . . . , Z} is a finite set of time points disjointly partitioned in control-
lable time points (those executed by Controller) and uncontrollable time points (those
executed by Nature), respectively.
B = BC∪̇BU = {a, . . . , z} is a finite set of booleans disjointly partitioned in controllable
booleans (those assigned by Controller) and uncontrollable booleans (those assigned by
Nature), respectively.
TB ⊆ TC is the set of controllable time points having booleans associated according to β.
β : TB → B is a bijection assigning to any A ∈ TB the boolean β(A). Once a time point
A ∈ TB is executed, the truth value of β(A) is set by Controller (if β(A) ∈ BC) or by
Nature (if β(A) ∈ BU ).
L is a set of contingent links each having the form (A, `, u,B) where A ∈ TC , B ∈ TU ,
`, u ∈ R with 0 < ` ≤ u. Once A is executed by Controller, B is executed by Nature
guaranteeing that the temporal distance between A and B falls in [`, u]. Contingent links
do not share uncontrollable time points.
C is a set of temporal constraints having the form S : B −A ≤ k, where S, the label of
the constraint, is a consistent set of literals over B, B,A ∈ T and k ∈ R. Many temporal
constraints Si : B − A ≤ ki may be defined for the same pair of time points (w.r.t. the
same direction1) provided Si is different. Any pair S1 : B −A ≤ k1 and S2 : B −A ≤ k2
with S1 = S2, implies S1 : B−A ≤ min{k1, k2} (tightening). Temporal constraints labeled
by S = ∅ are unconditional (i.e., they must always hold). Those labeled by S 6= ∅ are
conditional: they hold only if all literals in S are satisfied by the truth value assignment
to the booleans.

Definition 1 differs from that given in [19] as follows. First, our CSTNUDs are streamlined.
Second, we allow the intervals of contingent links to be a single point; despite this resembles
no uncertainty, it is an extension that does not break the current semantics (we just know
what Nature will do in that case). Third, we no longer differentiate between observation and
decision time points2 but we just focus on controllable and uncontrollable booleans.

We graphically represent a CSTNUD as a directed graph whose set of nodes coincides
with the set of time points and whose set of edges divides in double and single edges. A
double edge A ⇒ B labeled by [`, u] models a contingent link (A, `, u,B). A single edge
A→ B labeled by S : k models a temporal constraint S : B − A ≤ k. Figure 1b shows an
example of CSTNUD where we highlight uncontrollable parts in red. This network contains
three controllable time points A,C,D, one uncontrollable time point B, one contingent link
(A, 1, 2, B), a controllable boolean d associated to D, an uncontrollable boolean c associated
to C, two unconditional temporal constraint ∅ : C − B ≤ 1 and ∅ : B − C ≤ −1 and
four conditional ones {¬c} : C − D ≤ −3, {¬d} : C − D ≤ −4, {c} : D − C ≤ 2 and
{d} : D − C ≤ 1. A few problems are associated to CSTNUDs. For example, when BU and
TU are both empty, the network does not have uncontrollable parts; in this case, we may
ask whether the network is consistent. On the other hand, when at least one among BU

and TU is nonempty, then the network has at least one uncontrollable part, and consistency
is no longer a well-defined problem. In this case, we worry about controllability, that is,

1 Regardless of S and k, a constraint on a pair of time points A,B has two possible “directions”:
S : B −A ≤ k and S : A−B ≤ k.

2 Historically, time points associated to controllable (resp., uncontrollable) booleans were called decisions
(resp., observations).
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if we can find an execution strategy for the CSTNUD, according to different assumptions
on Nature’s behavior. Given a CSTNUD Z = 〈T ,B, TB , β,L, C〉, we say that a (partial)
mapping t : T → R assigning real values to the time points is a schedule if it enforces that
for each (A, `, u,B) ∈ L, if B ∈ dom(t), then A ∈ dom(t) and t(B) ∈ [t(A) + `, t(A) + u].
Furthermore, let P be a consistent set of literals over B, that is, a (partial) instantiation of
truth values to the booleans of a network. We call 〈P, t〉 a model. 〈P, t〉 is total iff dom(t) = T
and for each a ∈ B either a or ¬a is in P.

I Definition 2. Let Z = 〈T ,B, TB , β,L, C〉 be a CSTNUD. We say that the model 〈P, t〉
satisfies a network Z (in symbols, 〈P, t〉 |= Z) if and only if for each S : B − A ≤ k ∈ C,
whenever S ⊆ P and A,B ∈ dom(t), then t(B)− t(A) ≤ k.

I Definition 3. Let Z = 〈T ,B, TB , β,L, C〉 be a CSTNUD. We say that:
Z is weakly controllable if whenever Nature tells Controller (before starting the execution)
what durations and truth values she is going to assign to contingent links and uncontrollable
booleans, Controller can generate a schedule and a consistent set of literals that contain
the information given by Nature and satisfy all constraints.
Z is strongly controllable if Controller can find a unique schedule for controllable time
points and a unique consistent set of literals over controllable booleans that will satisfy all
constraints regardless of any possible extension that Nature can provide for uncontrollable
time points and uncontrollable booleans.
Z is dynamically controllable if Controller can dynamically generate a schedule over
controllable time points and a consistent set of literals over controllable booleans depending
on which extension Nature is providing for uncontrollable time points and uncontrollable
booleans.

The CSTNUD shown in Figure 1b is weakly, dynamically but not strongly controllable.
We provide an example of dynamic execution strategy. Controller executes A at 0. Then,
Nature executes B at a time falling in [1, 2]. After that, Controller executes C exactly 1 after
B and Nature chooses a truth value for c. If c is true, then Controller executes D within 1
after C and assigns true to d. If c is false, then Controller executes D after 4 since C and
assigns false to d.

4 Mining Significant CSTNUDs

As we explained in Section 2, a CSTNUD models a temporal plan in a compact way. The
problems that are associated with a network allow one to study intrinsic properties of the
network itself. In real-world cases, often the network is not given, but, on the contrary, it
must be hand-craftily designed. In this section, we approach this problem: given a finite set
of execution traces (e.g., a log) of the underlying temporal plan, we solve the problem of
automatically mine a “good” CSTNUD that describes it.

I Definition 4. A trace τ is a sequence of these statements:
A = tA, where tA ∈ R≥0. This statement models the execution of a controllable time
point A at time tA.
B(A) = tB, where tB ∈ R≥0. This statement models the execution of an uncontrollable
time point B at time tB whose corresponding activation is A (contingent link).
a! (resp., ¬a!). This statement models that the controllable boolean a was assigned true
(resp., false).
a? (resp., ¬a?). This statement models that the uncontrollable boolean a was assigned
true (resp., false).

Controllable and uncontrollable booleans are identified by the suffixes ! and ?, respectively.

TIME 2020
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The following are example of traces:
τ1: Z = 0, A = 0, ¬a?
τ2: Z = 0, A = 0, ¬a?, E(A) = 5
τ3: Z = 0, A = 0, a?, B = 2, b!
τ4: Z = 0, A = 0, a?, C = 1, B = 2, ¬b!, D = 4
τ5: Z = 0, B = 0, b!, C = 2, E(A) = 2, A = 3, a?, D = 4
τ6: Z = 0, A = 0, a?, B = 1, b!, C = 4, D = 6, E(A) = 7
τ7: Z = 0, A = 0, a?, D = 5, B = 5, ¬b!

I Definition 5. A trace τ is well-defined if it is finite, starts with Z = 0, and:
Any time point (resp., any boolean) appearing in τ is assigned a real value (resp., truth
value) exactly once.
If B(A) = tB appears in τ , then A = tA appears in τ before B(A) = tB.
If any of a!,¬a!, a?,¬a? appears in τ , then the statement appearing immediately before it
is A = tA, meaning that β(A) = a, whereas that appearing immediately after it (if any) is
either A′ = tA′ or A′(A′′) = tA′ .
If a statement B = tB (or B(B′) = tB) appears after a statement A = tA (or A(A′) = tA),
then tB ≥ tA.

I Definition 6. A pair of traces is coherent if and only if:
Any time point appearing in both traces is of the same type, and, if such a time point is
uncontrollable, then it also refers to the same activation.
Any boolean appearing in both traces is of the same type, and it is associated to the same
time point.

A set of traces is coherent if every pair of traces in it is coherent.

I Definition 7. A CSTNUD Z is significant for a well-defined trace τ if the following
conditions hold.

If A = tA ∈ τ , then A ∈ TC

If B(A) = tB ∈ τ , then B ∈ TU and (A, `, u,B) ∈ L for some `, u ∈ R, 0 ≤ ` ≤ u such
that tB − tA ∈ [`, u].
If a! = > ∈ τ or a! = ⊥ ∈ τ (resp., a? = > ∈ τ or a? = ⊥ ∈ τ), then a ∈ BC (resp.,
a ∈ BU ) and β(A) = a; moreover, if A = tA is the statement before it, then β(A) = a.
〈P, t〉 |= Z, where P and t are the consistent set of literals and schedule arising from τ ,
respectively.

The set I = {τ1τ2, τ3, τ4, τ5, τ6, τ7} in the example above is coherent and contains well-
defined traces.

Problem. Given a finite set of well-defined and coherent traces, mine a significant
CSTNUD.

CstnudMiner (Algorithm 1) starts by creating a CSTNUD containing the zero-time point
Z only. After processing a trace, Z contains all time points, booleans, contingent links
and temporal constraints specified by that trace. After processing a set of traces, Z
is such that all traces in that set satisfy it, and once a trace is processed, it can be
forgotten. CstnudMiner internally uses the rules WeakenTC and WeakenCL on
temporal constraints and contingent links, respectively. Table 1 shows these weakening rules.
The aim of these two sub-procedures is to add temporal constraints and contingent links
if they do not exists in Z or to weaken them otherwise (to allow new traces to satisfy Z
as well). Before proceeding we introduce some useful notation. Given a pair of time point
A,B and a set of literals S, let L(B,A) = {S | S : B −A ≤ k ∈ C} be the set of labels of all
temporal constraints going from A to B and let:



G. Sciavicco, M. Zavatteri, and T. Villa 11:7

Table 1 Weakening rules for Algorithm 1.

WeakenTC(S : B −A ≤ k)

Case T1: L1(S, B,A) = {S1, . . . ,Sn} 6= ∅.

A B

. . .
S1 : k1 . . . Sn : kn

. . .
A B

. . .
S1 : max{k1, k} . . . Sn : max{kn, k}

. . .

Example: WeakenTC({a, b} : C − Z ≤ 7)

Z C

{¬c,¬a} : 6 {b} : 8

{a} : 3
Z C

{¬c,¬a} : 6 {b} : 8

{a} : 7

Case T2: L2(S, B,A) = {S1, . . . ,Sn} 6= ∅.

A B

. . .
S1 : k1 . . . Sn : kn

. . .
A B

. . .
S : max{K2(S, B,A), k}

. . .

Example: WeakenTC({b} : Z − C ≤ −7)

Z C

{¬c, b} : −8 {¬b,¬a} : −6

{a, b} : −3
Z C

{¬b,¬a} : −6

{b} : −3

Case T3: L1(S, B,A) = L2(S, B,A) = ∅.

A B
. . .

A B
. . . S : k . . .

Example: WeakenTC({b} : C − Z ≤ 5)

Z C

{a,¬b} : 8

{¬b} : 3
Z C

{a,¬b} : 8 {b} : 5

{¬b} : 3

WeakenCL(A, k, k,B)

Case L1: contingent link between A and B exists

A B
[`, u]

A B
[min{l, k},max{u, k}]

Case L2: no contingent link between A and B

A B A B
[k, k]

L1(S, B,A) = {Si | Si ∈ L(B,A),Si ⊆ S} be the set of labels in L(B,A) contained in S.
L2(S, B,A) = {Si | Si ∈ L(B,A),S ⊂ Si} be the set of labels in L(B,A) strictly
containing S.
L3(S, B,A) = L(B,A) \ (L1 ∪ L2) be the set of all other labels in L(B,A) neither in L1
nor in L2.
Ki(S, B,A) = {kj | Sj : B − A ≤ kj ∈ C,Sj ∈ Li(S, B,A)} be the set of weights of all
constraints from A to B labeled by Sj ∈ Li(S, B,A) for i = 1, 2, 3.

TIME 2020
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Algorithm 1 CstnudMiner.

Input: A set I of well-defined and coherent traces.
Output: A significant CSTNUD.

1 Z = 〈{Z}, ∅, ∅, β, ∅, ∅〉 . “Initial CSTNUD”
2 foreach τ ∈ I do
3 S ← ∅
4 foreach statement in τ do
5 if the statement is A = tA then
6 TC ← TC ∪ {A}
7 WeakenTC(S : A− Z ≤ tA)
8 WeakenTC(S : Z −A ≤ −tA)
9 if the statement is B(A) = tB then

10 TU ← TU ∪ {B}
11 Let tA be the execution time of A.
12 WeakenCL(A, tB − tA, tB − tA, B)
13 if the statement is a! or ¬a! or a? or ¬a? then
14 Let A = tA be the previous statement.
15 if the suffix is ! then BC ← BC ∪ {a} ;
16 else BU ← BU ∪ {a} ;
17 β(A) = a

18 if the prefix is ¬ then S ← S ∪ {¬a};
19 else S ← S ∪ {a};

20 return Z

WeakenTC works on a temporal constraint S : B −A ≤ k. When called, WeakenTC
first computes L1(S, B,A), L2(S, B,A) and L3(S, B,A). Then, it handles three cases as
follows:
Case T1. This case applies whenever L1(S, B,A) 6= ∅. In such a case, each weight ki

associated to a constraint going from A to B labeled by any Si ∈ L1(S, B,A) is possibly
weakened (meaning raised) to k if k > ki.

Case T2. This case applies whenever L2(S, B,A) 6= ∅. In such a case, we add a sin-
gle constraint labeled by S whose numeric weight is the maximum value in the set
K2(S, B,A) ∪ {k}. Finally, we remove each constraint labeled by any Si ∈ L2(S, B,A).

Case T3. This case applies whenever L1(S, B,A) = L2(S, B,A) = ∅ (i.e., whenever neither
Case T1 nor Case T2 does). In such a case we just add S : A−B ≤ k.

WeakenCL, on the other hand, works on a contingent link (A, k, k,B) by means of two
mutually-exclusive cases:
Case L1. This case applies whenever (A, `, u,B) already exists. In such a case, we weaken

(meaning lower) ` to k if k < ` or weaken (meaning raise) u to k if u < k (note that at
most one among ` and u is weakened).

Case L2. This case applies whenever (A, `, u,B) does not exist. In such a case, we add
(A, k, k,B).

We provide application examples for WeakenTC in Table 1. We omit those for WeakenCL
due to their triviality. Figure 2 shows the result of applying CstnudMiner on the previous
discussed set of traces I = {τ1, . . . , τ7}.
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Z

A

{} : 0{} : 0

(a) Mining after τ1.

Z

A E

{} : 0{} : 0

[5, 5]

(b) Mining after τ2.

Z

A

B

E

{} : 0{} : 0
{a} : 2

{a} : −2

[5, 5]

(c) Mining after τ3.

Z

A

B

C

E
[5, 5]

D

{} : 0{} : 0

{a} : 2

{a} : −2

{a} : 1{a} : −1

{a,¬b} : 4

{a,¬b} : −4

(d) Mining after τ4.

Z

A

B

C

D

E
[2, 5]

{} : 3{} : 0

{} : 2

{} : 0

{b} : 2
{a} : 1

{b} : −2
{a} : −1

{a, b} : 4
{a,¬b} : 4

{a, b} : −4
{a,¬b} : −4

(e) Mining after τ5.

Z

A

B

C

D

E
[2, 7]

{} : 3{} : 0

{} : 2

{} : 0

{b} : 4
{a} : 4

{b} : −2
{a} : −1

{a, b} : 6
{a,¬b} : 4

{a, b} : −4
{a,¬b} : −4

(f) Mining after τ6.

Z

A

B

C

D

E
[2, 7]

{} : 3{} : 0

{} : 5

{} : 0

{b} : 4
{a} : 4

{b} : −2
{a} : −1

{a} : 6

{a} : −4

(g) Mining after τ7.

Figure 2 Mining a significant CSTNUD from execution traces.

We are left to discuss invariants, correctness and complexity of CstnudMiner. Let Z
be the CSTNUD being mined.

I Invariant 1. Cases T1,T2 and T3 of WeakenTC are mutually-exclusive. So are cases
L1 and L2 of WeakenCL.

Proof. We only need to focus on WeakenTC, as cases L1 and L2 of WeakenCL are
mutually-exclusive by definition (either a contingent link exists or it doesn’t). When
CstnudMiner starts, the invariant is trivially true as no constraints exist (so only case T3
is enable). Now assume that Invariant 1 holds and let S be the set of literals collected in the
current trace τ being processed. Moreover, assume the current processed statement is A = tA.
If Case T1 applies, only the weights of the constraints labeled by some Si ∈ L1(S, B,A)

TIME 2020
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are (possibly) modified. After processing the statement, L(B,A) remains the same, thus
Invariant 1 still holds. If Case T2 applies, all constraints labeled by some Si ∈ L2(S, B,A) are
thrown away and replaced by a single constraint labeled by S. After processing the statement,
(the new) L(B,A) contains S but does not contain any Si in the previous L2(S, B,A). Note
that S is not a superset of any other Si ∈ L(B,A), Si 6= S as if it were, so would each set in
L2(S, B,A) before processing the statement (invariant contradiction). If Case T3 applies,
a constraint labeled by S is merely added. After that, the new L(B,A) contains S, and
Invariant 1 still holds. J

I Theorem 8. CstnudMiner mines a significant CSTNUD.

Proof. We need to prove the following: first, that WeakenTC and WeakenCL are sound
meaning that any constraint and uncontrollable duration for contingent links that held before
applying the rules keeps holding after applying them, and, second, that CstnudMiner mines
the same CSTNUD regardless of the ordering in which traces are processed.

Soundness of the rules. From Invariant 1 we know that all cases in Table 1 are
mutually exclusive. Therefore, we analyze each case of each rule in isolation. Consider a
call to WeakenTC(S : B −A ≤ k). In Case T1 only the numeric weights of all constraints
Si : B −A ≤ ki where Si ∈ L1(S, B,A) are (possibly) modified. For each Si ∈ L1(S, B,A),
let ki be the weight of the constraint Si : B − A ≤ ki. After the rule applies we have
that the new weight is max{ki, k}. It is clear that the initial constraint still holds as
Si ⊆ S : B − A ≤ ki ≤ max{ki, k}. All remaining constraints in the CSTNUD hold as
well as they are left untouched. In Case T2 all constraints labeled by some some set in
L2(S, B,A) are thrown away and replaced by a single constraint labeled by S. After the rule
applies we have that S : B−A ≤ max(K2(S, B,A)∪{k}) is added. Each removed constraint
Si : B−A ≤ ki still holds as S ⊂ Si : B−A ≤ ki ≤ max(K2(S, B,A)∪{k}). Once again, all
remaining constraints in the CSTNUD hold as well as they are left untouched. In Case T3
no existing constraint is modified. Now, consider a call to WeakenCL(A, k, k,B). We only
need to focus on the part of the durations related to this link as all other parts of such
durations are left untouched. In Case L1 a contingent link (A, `, u,B) already exists.

After applying the rule, either ` is lowered to k (if k < `) or u is raised to k (if u < k)
or both are left untouched (if ` ≤ k ≤ u). Let `′ and u′ be the new minimal and maximal
durations after the rule is applied. It is clear that `′ ≤ ` ≤ u ≤ u′, therefore all previous
durations are still possible. In Case L2 the contingent link does not exist yet, therefore we
have nothing to verify.

Processing order of traces. CstnudMiner processes each trace once. Processing a
trace means to process each statement in it. Whenever a time point does not exist, the
algorithm adds it to the CSTNUD associating it to the right activation if the time point is
uncontrollable. Likewise, whenever a boolean does not exist, the algorithm adds it to the
CSTNUD and sets β accordingly. Also, the significance of the resulting CSTNUD (constraints
and contingent links) follows from the soundness of the rules. J

We are left to discuss the complexity of CstnudMiner. Let I be the set of well-defined
and coherent traces in input.

I Theorem 9. CstnudMiner runs in polynomial time.

Proof. We focus on WeakenTC since the operations carried out by WeakenCL are neg-
ligible (no partitioning of contingent links is done). Instead, WeakenTC hides internally
inner cycles to compute L1(S, B,A), L2(S, B,A) and L3(S, B,A) every time that it is called.
The worst case happens when CstnudMiner applies WeakenTC as much as possible as
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L3(S, B,A) keeps growing. We show how to build a set of traces I that leads to this situation.
Let B be a finite set of booleans and T = {Z,X} ∪ {Yb | b ∈ B} a finite set of time points.
In this way every boolean in b can be associated to a time point in T \ {Z,X}. We shall
see that it is enough to have |I| ≤ 2|B|. In our construction, if B = {a1, . . . , a|B|}, then any
trace has the form Z = 0, Ya1 = 0, a = �, . . . , Ya|B| = 0, a|B| = �, X = 0 where � ∈ {>,⊥}
with trace specifying a different set of literals S.

In this way, each trace τ ∈ I has length |τ | = 2 + 2× |T \ {Z,X}|. Each trace specifies
a different truth value assignment for the booleans in B. When the last statement of each
trace is processed, CstnudMiner can only add a new constraint between Z and X (for
each direction). As a result, the maximum number of constraints that appear between
Z and X (in any direction) is |I|. However, when the “X = 0” of the |I|th trace is
processed, we know (from the proof of Theorem 8) that WeakenTC(S : X − Z ≤ 0) (resp.,
WeakenTC(S : Z − X ≤ 0)) partitions the set of constraints between Z and X (resp.,
between Z and X) in L1(S, X, Z), L2(S, X, Z), L3(S, X, Z) (resp., L1(S, Z,X), L2(S, Z,X),
L3(S, Z,X)). The cost of this operation is 2 × (|I| − 1) (the number of constraints that
are currently between Z and X in both directions). Eventually, when all traces have been
processed, the overall cost of this operation is 2×

∑|I|−1
i=0 n = 2× ((|I|−1)×|I|)/2 = O(|I|2).

Since this term is greater of any other number of analyzed constraints between Z and any Yb

in the trace, an upper bound for the algorithm is given by O(|I|2 × |τ |). J

5 Conclusions and Future Work

Like any model-based engineering approach, creating a temporal network is a complex,
time-consuming, and error-prone task. Along the lines of the bottom-up approach in the
field of process mining, we proposed CstnudMiner, an algorithm for mining significant
CSTNUDs from execution traces that also contain information on uncontrollable events. A
CSTNUD is significant if it contains all time points, booleans and uncontrollable durations in
the processed traces and each partial instantiation of a schedule and consistent set of literals
arising from any processed trace satisfies all constraints involving those components. We
proved that CstnudMiner runs in polynomial time with respect to the size of the set of
input traces, and the length of each trace. Since in our approach once a trace is processed
it can be forgotten, this paves the way for future “streaming” versions of the algorithm.
As future work, we plan to carry out a thorough analysis of the properties of the mined
CSTNUDs as well as adapting the algorithm for other classes of constraint networks involving
resources either in isolation [20, 21, 23] or in conjunction with time [4].
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