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Abstract
The problem of finding the smallest DNA tile set that self-assembles into a desired pattern or shape is
a research focus that has been investigated by many researchers. In this paper, we take a polyomino,
which is a non-square element composed of several connected square units, as an element of assembly
and consider the design problem of the minimal set of polyominoes that self-assembles into a desired
shape. We developed a self-assembly simulator of polyominoes based on the agent-based Monte
Carlo method, in which the potential energy among the polyominoes is evaluated and the simulation
state is updated toward the direction to decrease the total potential. Aggregated polyominoes are
represented as an agent, which can move, merge, and split during the simulation. In order to search
the minimal set of polyominoes, two-step evaluation strategy is adopted, because of enormous search
space including many parameters such as the shape, the size, and the glue types attached to the
polyominoes. The feasibility of the proposed method is shown through three examples with different
size and complexity.
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1 Introduction

As a method of creating artificial nanostructures, programed self-assembly of molecules is
attracting attentions [3, 5, 7]. Since DNA has an excellent property of double helix formation
between complementary base sequences, it is thought to be the most promising molecule for
this purpose. One of the methods to make DNA nanostructures is called DNA tile [11, 12, 2].
In this method a unit called DNA tile composed of a few short DNA strands assemble into a
large two-dimensional nanostructure. The DNA tile is a rectangle molecule having sticky
ends (i.e. bonding edges with sequence specificity) on its sides. By arranging the sticky
ends, it is possible to program the connectivity between the tiles. We can design a tile set to
assemble periodic or aperiodic patterns, while the production cost depends on the complexity
of the tile set (e.g. the number of sticky end types and the number of tile types), also the
more complicated the tile set, the lower the quality and yield of the obtained assembly. From
this point of view, the problem of finding the smallest tile set that forms the desired pattern
(Pattern self-Assembly Tile-set Synthesis, PATS) has been studied [4, 1].
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8:2 Design Automation of Polyomino Set

In this paper, we deal with self-assembly problem of a non-square element composed of
several connected square units called a polyomino. We propose an algorithm to search for
the minimum set of polyominoes required to assemble a desired outer shape. By using a
polyomino as an element of assembly, it becomes possible to utilize the shape complementarity
of the polyomino, in addition to the complementarity of sticky ends on the polyomino. This
enables us to make relatively complex shapes also given as connected polyominoes. Since
DNA origami technique enables us to make various three-dimensional shapes, it is expected
that such non-square-shaped element made by DNA origami will allow us to construct a
large structure with desired shape.

In the following sections, we consider the problem of finding the smallest polyomino set
to fill a given shape. In Section 2, we introduce an assembly model that simulates the
stochastic process of polyomino assembling. Section 3 describes a searching method for the
simplest polyomino set that forms the target shape. In Section 4, we show the results of
automatic design for target shapes with different size and complexity to verify the validity of
the proposed method. Section 5 gives discussions.

2 Self-assembly model of polyominoes

2.1 Outline
This section explains the mathematical model of a polyomino and then introduces a stochastic
simulation technique to predict the behavior of polyominoes. Unlike the abstracted kinetic
tile assembly model [9, 10, 6], we employ an agent-based technique for the simulation.

Our model is illustrated in Fig. 1. The following summarises the outline.

Polyomino is represented as a set of connected square units.
An integer number named glue type is assigned to each side of the square unit.
Agent is defined as a naive set of polyominoes.
At the beginning of simulation, agents are randomly distributed over discretized space.
In each step of simulation, agents can translate or rotate in the space.
Potential energy computed from the interactions among polyominoes is minimized through
the agent-based Monte Carlo simulation.

2.2 Square unit
A polyomino consists of several connected square units. To define the square unit, we need
some prerequisite notations. D = {N,E,S,W} is a set of four cardinal directions (north, east,
south, west) such that N̂ = S, Ŝ = N, Ê = W, Ŵ = E. The neighboring cell of x = (x, y) ∈ N2

in the direction d ∈ D is given by coord(x, d) assuming a periodic boundary condition of the
square lattice space.

coord(x, d) =


(x, y − 1 mod mcell) (d = N)
(x+ 1 mod ncell, y) (d = E)
(x, y + 1 mod mcell) (d = S)
(x− 1 mod ncell, y) (d = S)

,

where mcell, ncell ∈ N are the total number of rows and columns in the lattice, respectively.
Hereafter, mcell and ncell are both set to 32.
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Figure 1 (a) Model of polyomino. (b) polyomino sets. (c) Interaction between square unit. (d)
Initial simulation state I0 and most stable simulation state Ibest. (e) Snapshot of the simulation.

Square unit u is defined as a tuple of a position x, y ∈ N and a map g ∈ ZD that gives
the glue type of the cardinal direction D (i.e. u = (x, y, g)). The pair (x, y), and coordinates
x and y of a square unit u = (x, y, g) can be obtained by pos(u) = (x, y), posx(u) = x,
posy(u) = y, respectively. Similarly, the glue type of a square unit u = (x, y, g) in the
direction d ∈ D can be obtained by gl(u, d) = g(d). Non-zero glue types g1 and g2 are
complementary when g1 + g2 = 0 stands.

2.3 Polyomino
A polyomino p is defined as a nonempty set of connected square units (i.e. p = {u1, u2, . . .}
such that ∀ui, uj ∈ p,∃u′1 = ui, u

′
2, . . . , u

′
k = uj ∈ p,∀l ∈ {z ∈ N|1 ≤ z ∧ z ≤ k},∃d ∈

D,pos(u′l+1) = coord(pos(u′l), d)). To avoid an overlap, we assume that a square unit
u1 ∈ p1 never belongs to other polyomino p2 (i.e. ∀u1 ∈ p1, u2 ∈ p2, u1 = u2 → p1 = p2).
The center of mass of a polyomino p is defined as cM(p) = (cx(p), cx(p)), where cx(p) =
round(

∑
u∈p posx(u)/|p|) and cy(p) = round(

∑
u∈p posy(u)/|p|)). The nearest integer is

obtained by round(x) ∈ Z from a real number x ∈ R.

2.4 Movement of polyomino
A polyomino is capable of performing a movement m ∈ Mpoly, which is a map from
polyominoes to polyominoes. Here, we define 7 possible movements : translation to
the north, east, south or west, or rotation to the left, back or right. Here “back rota-
tion” means rotation of 180 degrees. The set of these movements is defined as Mpoly =
{north, east, south,west, right,back, left}. Formal description of the movement is given in
Appendix A.1.

DNA 26



8:4 Design Automation of Polyomino Set

Polyominoes p1 and p2 are isomorphic (p1 ≡ p2) when there are finite movements that
can move p1 to p2, which is defined as p1 ≡ p2 ↔ ∃n ∈ N,∃m1,m2, . . .mn ∈ Mpoly,m1 ◦
m2 ◦ . . . ◦mn(p1) = p2. When p1 and p2 are not isomorphic, they are called non-isomorphic.

2.5 Polyomino species
The concept of polyomino set was ambiguously used so far to illustrate the goal of our
research. Here, we introduce the formal definition of polyomino species, which is more
accurate to describe the polyomino set. A polyomino species is a multiset of quotient set of
polyominoes by the isomorphic relationship ≡, which is not a naive set of polyomino. Namely,
polyomino species P can be expressed as a set of tuples of representative polyomino pi and
its occurrence count ni (i.e. P = {(p1, n1), (p2, n2), . . .}). The number of representative
polyominoes is denoted as |P |, and the set of glue types in P is defined as Gl(P ) = {gl(u, d) ∈
D, u ∈ p, (p, n) ∈ P}. We say polyomino set to simply explain the target problem, although
it formally means polyomino species throughout this paper.

2.6 Agent
In the proposed simulation model, we introduce a concept of agent which represents a naive
set of polyominoes [8]. Instead of applying the movement to each polyomino, we move the
agent in order to improve energy convergence.

Agent a = {p1, p2, . . .} is a non-empty set of polyominoes, connected by the complementary
glue types. (i.e. a = {p1, p2, . . .} such that ∀pi, pj ∈ a,∃p′1 = pi, p

′
2, . . . , p

′
k = pj ∈ a,∃u ∈

p′l+1,∃u′ ∈ pl,∀l ∈ {z ∈ N|1 ≤ z ∧ z ≤ k},∃d ∈ D,pos(u) = coord(pos(u′), d) ∧ gl(u, d̂) +
gl(u′, d) = 0 ∧ gl(u′, d) 6= 0). We define a set of square units in an agent a as U(a) and the
number of square units in the agent a as |U(a)|. Similar to the polyomino, there are also 7
movements Magent for the agent (see Appendix A.1).

At the beginning of the simulation, each polyomino is assumed to belong to a different
agent, and is able to move independently. Through the simulation process, agents can merge
or split, resulting in a unified movement of several polyominoes. Details of the process is
described in the following.

2.7 Simulation state
Simulation state I = {a1, a2, . . .} is defined as a set of agent at specific time step. We define
a naive set of polyominoes in the simulation state I as P(I) = {p|p ∈ a, a ∈ I}, and a set of
square units as U(I) = {u|u ∈ p, p ∈ P(I)}.

The initial simulation state I0 is defined for a given polyomino species P =
{(p1, n1), (p2, n2), . . .}. There are ni copies of polyomino pi without any overlap at the
beginning. Namely, ∀u1, u2 ∈ U(I0),pos(u1) = pos(u2)→ u1 = u2.

2.8 Cluster
A cluster c is a naive set of polyominoes in a simulation state I, such that there are no
polyomino p ∈ P(I)\c neighboring to c. This is formalized as ∀p1 ∈ c,∀p2 ∈ P(I)\c,∀u1 ∈
p1,∀u2 ∈ p2,∀d ∈ D, coord(pos(u1), d) 6= pos(u2). Note that a cluster does not necessarily
have to contain polyominoes with matching glues. Unlike agents that can translate and
rotate, the cluster only refers to an static assembly of polyominoes. They are used to evaluate
the state of the simulation. When a simulation state I is given, the set of all clusters are
defined as cl(I).

The same movements Magent of agent can be applied to cluster (see Appendix A).
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2.9 Potential energy
During the simulation, the total potential energy is evaluated as a sum of local energy gained
from interactions among the square units. When two units are not neighboring, there is no
local energy between them. If they are located in the neighboring cells, there is an attractive
force between them when the facing glue types are complementary, otherwise, there is a
repulsive force. Given two square units u1 and u2, the local energy between them eunit(u1, u2)
is defined as

eunit(u1, u2) =

{
0 (∀d ∈ D, coord(pos(u1), d) 6=pos(u2))
eatt (∃d ∈ D, coord(pos(u1), d)=pos(u2) ∧ gl(u1, d) + gl(u2, d̂)=0) ∧ gl(u1, d) 6=0)
erep (otherwise)

,

where eatt and erep are local energy caused by the attractive and the repulsive forces,
respectively. Hereafter, we use eatt = −11 and erep = 2, referring to a reported agent-based
simulation method [8].

The potential energy epoly(p1, p2) between polyominoes p1, p2 is a sum of all energy of
the square units in them. Namely,

epoly(p1, p2) =
{ ∑

u1∈p1,u2∈p2
eunit(u1, u2) (p1 6= p2)

0 (otherwise) .

Similarly, the potential energy eagent(a1, a2) between agents a1, a2 can be defined as

eagent(a1, a2) =
{ ∑

p1∈a1,p2∈a2
epoly(p1, p2) (a1 6= a2)

0 (otherwise) .

For convenience, we also define the potential ein(a) of a given agent a as

ein(a) =
∑

p1,p2∈a
epoly(p1, p2)/2.

The total potential energy estate(I) of a given simulation state I is defined as

estate(I) =
∑

a1,a2∈I
eagent(a1, a2)/2.

2.10 Time development of the simulation state
By using the agent-based simulation, we are able to minimize the total energy of a simulation
state. From a state Ii of i-th step of the simulation, the next state Ii+1 can be obtained by
the algorithm shown in Fig. 2. First, an agent asel is randomly selected from the state Ii,
and one of the three actions (i.e. split, move or merge) takes place to update the state. If
none of the actions are admissible, Ii becomes the next state.

Split of agent
Namely, the agent an with an energy ein(an) is split into two, if it is composed of n
(n ≥ 2) polyominoes that satisfy

∃i ∈ N, 1 < i ≤ n, ein(an)/n > emin(i, n)/i,

where emin(i, n) is the smallest energy of the agent with i square units among all the
simulation states before the current n-th step. Namely,

emin(i, n) = min(
⋃
j≤n

{ein(a)|a ∈ Ij ∧ |U(a)| = i}).

DNA 26



8:6 Design Automation of Polyomino Set

Figure 2 Flowchart of simulation.

An agent can be split in several ways. One polyomino p1 is removed from the agent and
becomes a new agent when p1 has the worst (biggest) contribution to the potential. The
polyomino p1 satisfies ∀p2 ∈ asel, eagent(asel, {p1}) ≤ eagent(asel, {p2}). When splitting
takes place, the next simulation state Ii+1 becomes Ii\{asel} ∪ {asel\{p1}, {p1}}.
Move of agent
When the agent cannot split, one or several polyominoes try to move together as a unified
agent. When the agent asel takes a move m ∈ Magent, a simulation state transits to
Imi+1 = Ii\{asel} ∪ {m(asel)}. As there are 7 movements, there are 7 possible simulation
states Inorth

i+1 , Ieast
i+1 , Isouth

i+1 , Iwest
i+1 , Iright

i+1 , Iback
i+1 , I left

i+1. One of them is stochastically selected
as the next simulation state Ii+1 with the probability P(Ii, Imi+1) given as

P(Ii, Imi+1) =
{

min(1, exp((estate(Ii)−estate(Im
i+1))/kBτsim))

|Magent| (condition A)
0 (otherwise)

,

where τsim is a temperature parameter introduced to overcome the energetic barrier (i.e.
local minima), and kB is the Boltzmann constant. Hereafter, we use τsimkB = 5, which is
an empirically good value for the energy convergence. “Condition A” means that there
is no overlap of agents as a result of the movement and the agent asel is not rotational
symmetry, which can be formalized as

(∀p1, p2 ∈ Im
i , p1 6= p2, ∀u1 ∈ p1, u2 ∈ p2, pos(u1) = pos(u2)→ u1 = u2)∧ (m(asel) 6= m(asel)).
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Merge of agents
If all the possible movements increase the potential energy (i.e. ∀m ∈ Magent,P(Ii, Imi+1) <
1/|Magent|) and also none of the movements are chosen by the calculated possibilities, the
agent then try to merge with a neighboring agent. This condition implies that there is an
attractive interaction between asel and the neighboring agent.
The agent asel merges with another agent a1 that can make the assembly most stable
in respect to the potential energy. The agent a1 satisfies ∀a2 ∈ Ii, eagent(asel, a1) ≤
eagent(asel, a2). When the agent asel merges with the agent a1, the simulation state
becomes

Ii+1 = Ii\{asel, a1} ∪ {asel ∪ a1}.

The most stable simulation state is predicted by iterating the above state transition for
nsim times. When a polyomino species P is given, the resulting assembly is defined as a set
of clusters A(P ) such that

A(P ) = cl(Ibest) (∃Ibest ∈ X,∀I ∈ X, estate(Ibest) ≤ estate(I)),

where X is the set of simulation state through the simulation (X = {I0, I1, . . . , Insim}).

3 Design automation

3.1 Criteria
By using the simulation model in Section 2, we solve a shape self-assembly polyomino
set (SAP) problem, which is formalized as follows.

The target assembly is given as a shape defined as a finite set of positions s =
{(x1, y1), (x2, y2), . . .} with the size mshape = max(x1, x2, . . .) − min(x1, x2, . . .), and
nshape = max(y1, y2, . . .)−min(y1, y2, . . .).
If a polyomino species P can construct a shape s through self-assembly, then P is said to
be an polyomino species of s.
The size of polyominoes in the polyomino species P is less than or equal to mpoly × npoly,
and must be smaller than that of the target shape s.
There are no limitations on the number of representative polyominoes |P | and glue types
|Gl(P)|.
An optimum polyomino species for a shape of finite size is the polyomino species of
minimum cardinality (i.e., with the smallest number of representative polyominoes).
The SAP (shape self-assembly polyomino species) problem is defined as a problem to find
the optimum polyomino species for a given finite-size shape.

3.2 Outline
To tackle the SAP problem, we employ a simulated-annealing algorithm which is one of
the meta-heuristics approaches. The flowchart of the algorithm is given in Fig. 3. An
initial polyomino species is randomly generated from a given shape s and evaluated by
the simulation. In our optimization strategy, a polyomino species is rated better when the
predicted assembly is closer to the target shape, and also the number of representative
polyominoes and the number of glue types are smaller. A polyomino species is gradually
improved by repeating evolutionary process.
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8:8 Design Automation of Polyomino Set

Figure 3 Flowchart of automatic design.

3.3 Evaluation of polyomino species
To evaluate a polyomino species P , we introduce an inaccurate but light-cost function losslight
and an accurate but heavy-cost function lossheavy. The function is named “loss” because
the smaller the value, the better the polyomino species. In order to minimize the time
of computation, the light-cost function is first used for rough evaluation, then heavy-cost
function is further used when it meets a certain criteria.

The light cost function is defined as

losslight(P ) = |P |2 + 1
2 |Gl(P )|.

When losslight(P ) < αth holds, the heavy-cost function is applied, where αth ∈ R is a
threshold parameter updated when lossheavy(P, s) is computed. By introducing αth, the
algorithm can efficiently search for polyomino species with a smaller loss value than current
best value. The initial value of αth is |s|2 + 2|s|, which is the maximum value of losslight(P )
for given target shape s. The algorithm to update αth is

αth :=
{
αth (lossheavy(P, s)− losslight(P ) > 0)
min(αth, losslight(P )) (otherwise) .

The condition indicates that αth is updated when all the clusters in A(P ) have exactly the
same shape as the target s.
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Figure 4 Example of loss value calculation. (a) Polyomino species P . (b) Cluster A(P ) which P

self-assembles into. (c) Target shape s. (d) A state that gives maximum overlap between the cluster
and the shape.

The heavy-cost function is computationally heavy because it is necessary to estimate the
formed clusters A(P ) by the simulation. In order to define the heavy-cost function, we need
to introduce a function to evaluate similarity between shapes.

The shape of a given cluster c is represented as a set of x, y coordinates in the cluster,
shape(c) = {pos(u) |u ∈ p, p ∈ c}. The similarity Vss between a cluster c and a shape s is
defined as the number of square units that does not belong to the overlap, which is

Vss(c, s) =
∑

x∈shape(c)

incl(x, s) +
∑
y∈s

incl(y, shape(c)),

where

incl(p, s) =
{

0 (p ∈ s)
−1 (otherwise) .

The maximum volume of the similarity Vmax
ss (c, s) is then defined by moving cluster c to

have the maximum overlap, which means

Vmax
ss (c, s) = max(

⋃
n∈N
{Vss(c′, s)|∀m1,m2, . . .mn ∈ Magent, c

′ = m1 ◦m2 ◦ . . . ◦mn(c)}).

Using the above definitions, the heavy-cost function is defined as

lossheavy(P, s) = |P |2 + 1
2 |Gl(P )|+ (

∑
c∈A(P )

Vmax
ss (c, s)
|A(P )| )2.

As the result, a polyomino species P is evaluated as

loss(P, s) =
{

lossheavy(P, s) (losslight(P ) < αth)
|s|2 + 3|s|+ ncell ×mcell (otherwise) .

3.4 Search of polyomino species with low loss value
Fig. 5 illustrates an example of initial and neighbor polyomino species generation. The
initial polyomino species is generated by randomly decomposing the target shape into smaller
polyominoes. This process is realized by repeating following two actions after generating a
naive set of polyomino S = {p} that has only one element p with the shape s.

DNA 26



8:10 Design Automation of Polyomino Set

Figure 5 Generation of initial polyomino species and neighbor polyomino species.

Action1
A square unit u ∈ p is randomly selected. If randomly selected polyomino p ∈ S satisfies
“condition B”, the algorithm removes the square unit u from the polyomino p and generate
a new polyomino {u}. Here, condition B for a given polyomino p means that there are
no other polyominoes with the same shape, or the size of p is smaller than or equal to
mfix × nfix. The S is updated to S\{p} ∪ {p\{u}, {u}}. The probability to perform this
action is rgen.
Action2
A pair of neighboring polyominoes p and p′ are randomly selected from S. If the
polyominoes p and p′ satisfy condition B, the algorithm removes a randomly selected
square unit u ∈ p from p that is adjacent to p′, and add it to p′. The S is updated to
S\{p, p′} ∪ {p\{u}, p′ ∪ {u}}. The probability to perform this action is 1− rgen.

If there are no polyominoes which meet condition B, one of these two actions takes place
ignoring condition B. These two actions are repeated more than nnew steps, so that the sizes
of all the polyominoes become smaller or equal to mpoly × npoly. Hereafter, we use mfix = 2
and nfix = 1 and rgen = 0.05, nnew = 100.

Next, the algorithm assigns the glue types of polyominoes. Each glue type of polyominoes
is set to all different value such that the square units have complementary glue types in
contacting face with another polyomino. Glue types which are not contacting with any
other polyomino are fixed to 0. Polyominoes with the equivalent shape are converted to
equivalent polyominoes by assigning glue types properly (see Appendix A.2). From the set
of polyominoes, corresponding polyomino species can be trivially constructed.
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To make a neighbor polyomino species, one of the two decomposing actions is applied as
a mutation and then new glue types are assigned.

When the current polyomino species is P and its new neighbor is P ′, the possibility to
accept P ′ is

P(P, P ′) =
{

1 (loss(P, s)− loss(P ′, s) ≥ 0)
exp((loss(P, s)− loss(P ′, s)) / τsa) (otherwise) ,

where τsa is a constant temperature parameter. Hereafter, we use τsa = 10, which empirically
accepts 20% of transitions that increase the loss values. The total iteration nopt is set to 100.

4 Result

To demonstrate the validity of proposed algorithm, we tested 3 target shapes with different
complexities (small, medium, and large), where mpoly and npoly are both set to 3. For
each case, we run 100 searches for statistical analysis. The small target is given in 4 × 4
lattice (Fig. 6(a)). For this target, reasonably good polyomino species were always obtained
such as the example in Fig. 6(b,c). The loss function development of 10 representative
searches are shown in Fig. 6(d). The average loss value over 100 searches was 12.5 with a
standard deviation of ±0.37, which is smaller than 67.3± 14.6 of 100 random searches that
find the best candidate from randomly generated 100 polyomino species.

Figure 6 (a) Target shape. (b) An example of polyomino species P . (c) Cluster which P

self-assembles into. (d) Development of loss function. The illustrated solution is shown in bold.

The medium target is given in a 5 × 5 lattice (Fig. 7(a)). A polyomino species that
self-assembles into the target shape was also found as expected (Fig. 7(b,c)). The average
loss value was 15.4± 2.7, which is significantly smaller than 134.2± 29.0 of random search.
Ten representative results are shown in Fig. 7(d).

The large target is given in a 6× 6 lattice (Fig. 8(a)). Some of the searches succeeded in
finding a polyomino species that self-assembles into the target shape as in the example of
Fig. 8(b,c). The polyominoes in the set, however, were all different and none of them were
recycled in different places. The average loss value was 144.7± 87.7, which is smaller than
201.0± 121.6 of random search. Ten representative results are shown in Fig. 8(d).

The performance of the proposed algorithm is summarized in Fig. 9. In the small and
medium cases, the loss values of proposed algorithm got significantly smaller than those of
random search. In the large case, however, the difference between the proposed algorithm
and random search was not as significant. This may due to insufficient iteration of the
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8:12 Design Automation of Polyomino Set

Figure 7 (a) Target shape. (b) An example of polyomino species P . (c) Cluster assembled by P .
(d) Development of loss function. The illustrated solution is shown in bold.

Figure 8 (a) Target shape. (b) An example of polyomino species P . (c) Cluster assembled by P .
(d) Development of loss function. The illustrated solution is shown in bold.

search. We further quantified the convergence speed of the search using a logarithmic fit.
The development of loss values in respect to the logarithmic optimization step with estimated
slopes are shown in inset of Fig. 9(b). The number of iteration that is necessary to optimize
the polyomino species using our strategy may grow exponentially to the size of the target.

5 Discussion

In this paper, we consider the problem of finding minimum set of polyominoes that assemble
into a desired shape. A simulator developed on the agent-based Monte Carlo method
evaluates the potential energy among the polyominoes and updates the simulation state to
decrease the total potential. Since the geometrical interactions between polyominoes have
to be taken into account, the developed simulator become complicated compared with the
simulators for homogeneous units such as kTAM, where a set of polyominoes is represented
as an agent, which can move, merge, and split during the simulation. With this framework,
a self-assembly processes of polyominoes can be efficiently simulated.

In the proposed algorithm, meta-heuristic method called simulated annealing was adopted.
Because of the enormous search space for the design problem, a two-step evaluation strategy
was adopted to prune unpromising solution spaces. Automatic design for three example
targets with different size and complexity was tested to show the feasibility of the proposed
method.
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Figure 9 (a) The average of loss values at the last iteration of the searches of small (4 × 4),
medium (5× 5), and large (6× 6) cases. The results of random search and proposed algorithms are
compared. (b) Convergence speed of the proposed algorithm using a logarithmic fit. The inset shows
the log-scale mean development of loss values, where standard deviation is illustrated as transparent
area. The bars summarize the estimated slopes in the log-scale graph. The algorithms are run 100
times, and error bar indicates the standard deviation.

In order to solve a larger problem, we need to improve the efficiency of the algorithm,
especially to reduce the computational cost of Monte Carlo simulation. For this purpose,
it is necessary to redesign the potential energy between polyominoes to avoid kinetic traps.
Introducing a new criterion to terminate the simulation at an appropriate step will be also
effective. Larger-scale problems can be solved by introducing parallel computing hardware
such as GPU along with the above improvements of the algorithms. From a computer science
point of view, whether or not the automatic design problem of the polyomino set is NP is an
interesting issue. Also, extending the problem to three-dimensional polycube is remained for
a future work.
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A Appendix

A.1 Movements
Each movement of the polyomino p is defined as

north(p) =
⋃
u∈p
{(coord(pos(u),N), gl(u))},

east(p) =
⋃
u∈p
{(coord(pos(u),E), gl(u))},

south(p) =
⋃
u∈p
{(coord(pos(u),S), gl(u))},

west(p) =
⋃
u∈p
{(coord(pos(u),W), gl(u))},

right(p) =
⋃
u∈p
{(−(posy(u)− cy(p)) + cx(p),posx(u)− cx(p) + cy(p), gl(u)|r)},

back(p) =
⋃
u∈p
{(−(posx(u)− cx(p)) + cx(p), (posy(u)− cy(p)) + cy(p), gl(u)|b)},

left(p) =
⋃
u∈p
{(posy(u)− cy(p) + cx(p),−(posx(u)− cx(p)) + cy(p), gl(u)|l)},

where gl(u) is the glue types g of u = (x, y, g) and g|r, g|b, g|l are the glue types which can
be obtained by rotating g. Namely,

g|r(d) =


g(W) (d = N)
g(N) (d = E)
g(E) (d = S)
g(S) (d = W)

,

g|b(d) =


g(S) (d = N)
g(W) (d = E)
g(N) (d = S)
g(E) (d = W)

,
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https://doi.org/10.1007/978-3-540-24628-2_13
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g|l(d) =


g(E) (d = N)
g(S) (d = E)
g(W) (d = S)
g(N) (d = W)

.

Similarly, each movement of the agent a is defined as

north(a) =
⋃
p∈a
{north(p)},

east(a) =
⋃
p∈a
{east(p)},

south(a) =
⋃
p∈a
{south(p)},

west(a) =
⋃
p∈a
{west(p)},

right(a) =
⋃
p∈a
{
⋃
u∈p
{(−(posy(u)− cy(p)) + cx(a),posx(u)− cx(a) + cy(a), gl(u)|r)}},

back(a) =
⋃
p∈a
{
⋃
u∈p
{(−(posx(u)− cx(a)) + cx(a),−(posy(u)− cy(a)) + cy(a), gl(u)|b)}},

left(a) =
⋃
p∈a
{
⋃
u∈p
{(posy(u)− cy(a) + cx(a),−(posx(u)− cx(a)) + cy(a), gl(u)|l)}},

where cx(a) and cy(a) are the center of mass of an agent a, which is defined as cx(a) =
round(

∑
u∈p,p∈a posx(u)/|a|) and cy(a) = round(

∑
u∈p,p∈a posy(u)/|a|)).

A.2 Glue type assignment
Given a naive set of polyominoes S, the assignment of glue types satisfies the conditions;

∀p1, p2 ∈ S, ∀u1 ∈ p1,∀u2 ∈ p2,∀d ∈ D, gl(u1, d) = 0→
coord(pos(u1), d) 6= pos(u2), and

∀p1, p2 ∈ S, ∀u1 ∈ p1,∀u2 ∈ p2,∀d ∈ D, coord(pos(u), d) = pos(u2)→
gl(u1, d)) + gl(u2, d̂) = 0 ∧ gl(u1, d)) 6= 0.

The first condition means that the glue type is 0 when there are no neighboring square
units. The second condition guarantees that the the neighboring units have complementary
glue types. Finally, the number of representative polyominoes are decreased as much as
possible by assigning glue types through an ad-hoc trial and error. The assignment of glue
types is applied to construct the initial and neighbor polyomino species.
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