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Abstract
The routing of a DNA-origami scaffold strand is often modelled as an Eulerian circuit of an Eulerian
graph in combinatorial models of DNA origami design. The knot type of the scaffold strand dictates
the feasibility of an Eulerian circuit to be used as the scaffold route in the design. Motivated by the
topology of scaffold routings in 3D DNA origami, we investigate the knottedness of Eulerian circuits
on surface-embedded graphs. We show that certain graph embeddings, checkerboard colorable,
always admit unknotted Eulerian circuits. On the other hand, we prove that if a graph admits an
embedding in a torus that is not checkerboard colorable, then it can be re-embedded so that all its
non-intersecting Eulerian circuits are knotted. For surfaces of genus greater than one, we present
an infinite family of checkerboard-colorable graph embeddings where there exist knotted Eulerian
circuits.
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1 Introduction

The conception of stable branched DNA molecules was one of the central ideas in the birth
of DNA nanotechnology [28, 29]. Branched nucleic acids exhibit a mathematical structure
naturally modelled by graphs, where graph vertices (roughly points) correspond to the
branch locations while graph edges (roughly line segments connecting points) model linear
double-helical domains. Graph-theoretic models for the construction of three-dimensional
DNA nanostructures have been proposed as early as 1997 [15, 16]. The first experiments
demonstrating the self-assembly of non-regular graphs using DNA junctions as vertices and
duplexes as edge connectors were presented in 2003 [27]. DNA self assembly has also been
used to solve small instances of graph-theoretic problems such as the Directed Hamilton
Path problem [2] and the vertex 3-colorability problem [33].

Graphs of convex polyhedra [8, 11, 13, 14, 30] have been synthesized using a variety
of DNA vertex and edge motifs. Graph theory took an explicit and integral role in the
automated design of non-convex polyhedra when graphs embedded in topological spheres were
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Figure 1 A knotted Eulerian circuit (A-trail) on a torus.

exploited to model a large class of wireframe DNA origami [5, 22]. Thereafter, graph-theoretic
modelling has been widely adopted for the design and synthesis of 2D [4, 18, 19] and 3D
wireframe DNA origami [17, 32].

In DNA origami [26], a long, typically circular, scaffold strand is folded into a target
conformation using hundreds of short helper strands. One of the key and challenging steps
in designing complex 3D DNA origami is the routing of the circular scaffold strand so that it
covers half the mass of each of the constituent helical domains. In graph based design of
DNA origami [5, 4, 32], the scaffold routing typically corresponds to an Eulerian circuit of a
graph which has been obtained from the target wireframe after some processing. Briefly, an
Eulerian circuit is a closed path in a graph which traces each edge exactly once. Eulerian
circuits capture the essential idea that the scaffold constitutes exactly one of the strands in
each double helical domain. A general scheme for stapling Eulerian scaffold routings has
been proposed in [22].

A fundamental consideration when employing circular strands in the design of nano-
structures is ensuring that the topology of the strand routing in the design corresponds
to the topology of the physical strand. For instance, the scaffold strand currently used in
DNA origami assembly is unknotted. In most DNA origami constructs, the scaffold does
not intersect itself when it traces the structure. For this reason, a class of non-intersecting
Eulerian circuits called A-trails was adopted for unknotted scaffold routing of Eulerian graphs
embedded in a sphere [5]. However, it has been pointed out that A-trails can be knotted
for graphs embedded in tori [9]. An example of a knotted A-trail on a torus is shown in
Figure 1. The A-trail is illustrated with the blue curve. As usual, the torus is obtained
by gluing the horizontal boundaries in red together to form a cylinder and then gluing the
violet boundaries to close the cylinder to a torus. Compare with Figure 3 to see that the
A-trail corresponds to a trefoil knot. Unknotted scaffold routings may be achieved with
non-intersecting Eulerian circuits (a generalization of A-trails, see definitions in Section 2) for
graphs that are embedded in surfaces. In this paper, we further investigate the knottedness of
non-intersecting Eulerian circuits. These Eulerian circuits can represent knotted or unknotted
scaffold routings. Here we specify properties of graph embeddings in surfaces when knotted
or unknotted scaffold routings arise from non-intersecting Eulerian circuits.

An approximation algorithm for finding unknotted scaffold routings on triangular embed-
dings in positive genus surfaces has been proposed earlier [23]. For certain Eulerian graphs,
the algorithm can trace some edges twice even if the embedded graph contains an unknotted
non-intersecting Eulerian circuit. It has been proved that for checkerboard-colorable graph
embeddings (see definition in Section 2) in a torus, A-trails, if any exist, are unknotted [24].
In this paper, we present a number of additional results connecting checkerboard-colorable
graph embeddings and the knottedness of non-intersecting Eulerian circuits. We generalize
the result of [24] by proving that all non-intersecting Eulerian circuits of checkerboard-
colorable torus graphs are unknotted. We show that at least one unknotted non-intersecting
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(a) (b) (c)

Figure 2 Closed orientable surfaces of genus 1, 2 and 3 in (a), (b) and (c), respectively.

Eulerian circuits exists for all checkerboard-colorable embeddings in orientable closed surfaces,
including surfaces of genus greater than one. We show that, however, checkerboard-colorable
graph embeddings in surfaces of genus greater than one can contain knotted Eulerian circuits.
For tori, we characterize graphs which admit embeddings where all non-intersecting Eulerian
circuits are knotted; such embeddings would require a knotted scaffold for routing as a
non-intersecting Eulerian circuit.

2 Preliminaries

Graphs embedded in non-spherical surfaces significantly expand the class of wireframe DNA
origami that can be designed based on topological techniques. For instance, reinforced
cubes [32] and certain cubic lattices can be modelled as graphs on non-spherical surfaces. In
this section, we present the basic topological concepts needed to introduce non-intersecting
Eulerian circuits on surface-embedded graphs, our model for topological study of scaffold
routings. We refer the reader to Armstrong’s book [3] for an accessible account on surfaces,
the monograph by Fleischner [10] for a detailed exposition on Eulerian graphs and the first
two chapters of Rolfsen’s classic [25] for an illustrative introduction to knot theory.

2.1 Surfaces
Surfaces are mathematical models of spaces which, when sufficiently zoomed in, look like
a flat plane. Surfaces are commonly used in computer graphics as boundary models of
well-defined 3D shapes. The simplest example of a surface is the unit sphere S2 = {(x, y, z) ∈
R3|x2 + y2 + z2 = 1}. Topologically, a sphere is any space homeomorphic to the unit sphere.
For instance, the underlying spaces of all the meshes constructed in [5] are topological spheres.

The simplest surface topologically distinct from a sphere is a torus. It is commonly
recognized in its standard embedding like the crust of a doughnut (cf. Figure 2a). A torus
can be fairly complicated as a geometric figure. The surface of a regular coffee mug is, for
instance, topologically a torus. Let S1 denote the unit circle in the plane. Formally, a torus T
is a surface homeomorphic to the product space S1×S1. Viewing S1 as the unit circle in the
complex plane, points in a torus can be given coordinates (eiθ, eiφ), for 0 ≤ θ, φ < 2π. In the
standard embedding of the torus (Figure 2a), θ can be understood as the counter-clockwise
rotation with respect to the axis of rotational symmetry, while φ denotes the right-handed
rotation with respect to the core circle of the embedding. A torus is commonly represented
by its fundamental polygon, a square whose parallel edges are identified and glued to form
the torus (compare Figure 3c and 3b). On the square, θ can be understood to go from 0 to
2π along the horizontal edge in the positive x direction, while φ does so along the vertical
edge in the positive y direction.

More complicated surfaces are constructed by joining tori together as follows. The
connected sum of two surfaces F1 and F2 is obtained by removing topological open disks
Di from Fi, for i ∈ {1, 2}, and gluing the resulting surfaces Fi \Di along their boundaries.
For instance, the connected sum of two tori is the 2-torus shown in Figure 2b; the blue
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(a) (b) (c)

Figure 3 A trefoil knot (a) in a torus (b) and in the fundamental square of the torus (c).

curve indicates the location where the two tori are summed. The classification theorem of
(compact, connected, orientable, and without boundary) surfaces states that any surface
is either a sphere, a torus, or the connected sum of n tori, for n ≥ 2. Here, n denotes the
genus of the surface. The sphere is considered to have genus 0 while the torus has genus 1.
As a sample of the classification theorem, three surfaces of genus 1, 2 and 3 are shown in
Figure 2a, 2b and 2c, respectively.

A loop in a surface F is a continuous map β : S1 → F , where S1 is oriented in this setting,
for instance, in the counter-clockwise direction. A loop β is simple if β(s1) 6= β(s2), for all
pair of distinct points s1, s2 in S1. A simple loop β is said to be separating if F \ Im(β)
consists of two disjoint connected components; otherwise it is non-separating. The blue curve
in Figure 2b is a separating loop. Two basic examples of non-separating simple loops are
the longitude and meridian of the torus, drawn in red and violet in Figure 3b, respectively.
The longitude of the torus is the loop βL : S1 → S1 × S1 with βL(eiθ) = (eiθ, 1), while the
meridian is the loop βM : S1 → S1 × S1 with βL(eiφ) = (1, eiφ).

A knot is an embedding of the unit circle in R3. A trefoil knot, which is obtained by
joining the two ends of the everyday overhand knot, is illustrated in Figure 3a. Two knots
are equivalent if there is an orientation preserving self-homeomorphism of R3 taking the first
knot to the second. Intuitively, this represents the fact that two knots are equivalent if and
only if the first knot can be continuously deformed to the second one without crossing itself
during the deformation. A knot is trivial or an unknot if it is equivalent to the unit circle
in the plane. Otherwise it is non-trivial. A knot is trivial if and only if it bounds a disk
(tamely) embedded in R3 (see Theorem 10.6, p. 224 in [3]).

A torus knot is a non-trivial knot that lies in the standard torus. As the sketch in
Figure 3b demonstrates, the trefoil knot is a torus knot; Figure 3c depicts the knot in the
fundamental square of the torus. Loops on the torus belong to homotopy classes that can
be identified by a pair of integers (a, b), where a denotes the number of times the loop goes
around in the positive longitude direction and b denotes the number of times it goes around
the positive meridian direction. A class (a, b) is represented by a simple loop if and only if
both a and b are zero, or gcd(a, b) = 1 [25, p. 19]. A simple loop on a torus is a trivial knot
if |a| ≤ 1 or |b| ≤ 1; otherwise, it is a non-trivial knot. Thus, torus knots can be identified
with a pair of coprime integers (a, b) with absolute values greater than one. The trefoil knot
shown in Figure 3a is a torus knot of type (2, 3).

A longitudinal (Dehn) twist of a torus is a self-homeomorphism hL : T → T with
h((eiθ, eiφ)) = (ei(θ+φ), eiφ). A meridional (Dehn) twist is a self-homeomorphism hM : T → T

with h((eiθ, eiφ)) = (eiφ, ei(φ+θ)). It is to be understood that hL and hM constitute positive
twists while their inverses form negative twists. Intuitively, a longitudinal (resp. meridional)
twist is obtained by cutting the torus along the longitude (resp. meridian), twisting the
resulting cylinder by 360◦ and gluing the cylinder ends together to form a torus. On the
fundamental square of the torus, a longitudinal twist can be visualized as a horizontal shear,
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(a) (b)

Figure 4 A longitudinal twist of a torus sending a (−1, 3) loop in a torus (a) to the (2, 3) torus
knot (b).

as illustrated in Figure 4; the upper triangle protruding from the square is to be understood
as coming back on the left to join with the lower triangle. A meridional twist can analogously
be visualized as a vertical shear of the square. A positive longitudinal twist maps a knot of
class (a, b) to a knot of class (a+ b, b) while a positive meridional twist maps a knot of class
(a, b) to a knot of class (a, a+ b) [25, p. 24]. Negative twists map from class (a, b) to classes
(a− b, b) and (a,−a+ b), respectively. A positive longitudinal twist taking a (−3, 1) unknot
to the (2, 3) trefoil knot is shown in Figure 4; Figure 4a shows the unknot, while the trefoil
knot that is produced by the twist is shown in Figure 4b.

2.2 Graphs
Graphs are natural models to represent the branching of nucleic acids and have been
successfully used to design DNA origami polyhedral wireframes [5, 32]. While a surface
models the set of all points in the boundary of a polyhedron, the wireframe composed of
the corners and edges of a polyhedron constitute the graph that is embedded in the surface.
Here, we briefly recall some basic notions related to graphs. We refer the reader to [12] for a
thorough but accessible introduction to graphs on surfaces.

All graphs under consideration in this paper are finite and undirected but, for brevity
of construction, can contain multiedges and loops. It is assumed that all graphs contain at
least one edge. Each edge in a graph is understood to be composed of two half edges which
are incident to the two endpoints of the edge; in the case of a loop edge, the two half edges
meet the same vertex. The degree of a vertex v is the number of half edges incident to it
and is denoted by d(v). A vertex is said to be even if it has an even degree.

For graphs that are embedded in surfaces, it is convenient to think of graphs as topological
spaces which are endowed a 1-dimensional cell structure, where the 0-cells correspond to
vertices and the 1-cells correspond to edges. An embedding g : G → F of a graph G in a
surface F is a topological embedding of G into F ; that is, the image g(G) is homeomorphic
to the topological space G. In other terms, an embedding of a graph is a drawing of the
graph on the surface where no edges cross. The space F \ g(G) consists of disjoint connected
subspaces called faces. An embedding of a graph in a surface is said to be checkerboard
colorable if the faces can be assigned two colors (e.g. black and white) such that, for every
edge, the two faces on the two sides of the edge are assigned distinct colors; if there is an
edge where one face is present on both sides of the edge, the embedding is not checkerboard
colorable. See Figure 8a for a checkerboard-colorable embedding of K7, the complete graph
on seven vertices.

An embedding g : G→ F is said to be cellular if each face is homeomorphic to the open
unit disk. A cellular embedding of a simple graph is said to be triangular if each face is
bounded by three distinct edges. An embedding g : G→ F determines a counter-clockwise
cyclic order ρv of the half edges incident at a vertex v, for each vertex v in the graph. The
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Figure 5 Smoothing of an even vertex. (a) Neighboring half edges in a vertex, (b) smoothing
one transition composed of the neighboring half edges, (c) a smoothing of the vertex induced by
a non-intersecting Eulerian circuit, (d) a smoothing induced by an A-trail, (e) a splitting away of
transitions where two transitions intersect.

order ρv is called a rotation at v. The collection ρ = {ρv : v ∈ G} of rotations at vertices is
called a rotation system. In a rotation system, each vertex can be treated as rigid (see [7]
for the notion of rigid vertices). Conversely, if each vertex is rigid, it gives rise to a cellular
embedding g : G→ F for some (closed orientable) surface F .

In wireframe DNA origami [5, 32], the fact that the scaffold comprises one strand of each
double-helical domain is conveniently captured by an Eulerian circuit of an underlying graph.
A circuit in a graph is a closed walk (v0, e0, v1, . . . , vl−1, el−1, v0) with no repeated edges,
where l ≥ 1 is the length of the circuit and each ei, for 0 ≤ i ≤ l − 1, is an edge in the graph
with endpoints vi, vi+1 mod l. An Eulerian circuit is a circuit which visits every edge of the
graph. A graph is said to be Eulerian if it contains an Eulerian circuit. A connected graph
is Eulerian if and only if every vertex is of even degree. Closely related to circuits are cycles
and transitions. A cycle is a circuit with no repeated vertices. For a surface-embedded graph,
a cycle corresponds to a simple loop and the separating/non-separating qualification equally
apply to cycles. A transition is an unordered pair of half edges incident to a common vertex.
A circuit C = (v0, e0, v1, . . . , vl−1, el−1, v0) can also be seen as a collection of transitions
{bi, b′i+1 mod l}, where bi is the half edge of ei incident to vi+1 mod l, and b′i is the half edge
of ei incident with vi, for all i ∈ {0, . . . , l − l}. In this sense, we can say that {bi, b′i+1 mod l}
is contained in C.

Let g : G→ F be an embedding of a graph in a surface. Let v be a vertex ofG with d(v) ≥ 4
and let the rotation ρv determined by g be (b0, . . . , bd(v)−1). Let 0 ≤ i, j, k, l ≤ d(v)− 1 with
i < j, k < l, i < k. A pair of disjoint transitions {bi, bj}, {bk, bl} intersect if i < k < j < l

(cf. Figure 5e). An Eulerian circuit of an Eulerian graph G is said to be non-intersecting
with respect to g : G → F if it contains no intersecting transitions with respect to g (cf.
the collection of transitions of the vertex v in Figure 5a suggested by Figure 5c). It has
been shown that a non-intersecting Eulerian circuit can be found in polynomial time for any
Eulerian graph embedded in a sphere [1, 31], or in any other surface [10, 23]. However, the
computational complexity changes when considering a subclass of non-intersecting Eulerian
circuits called A-trails. Two half edges b1, b2 incident to a vertex v are said to be neighbors
if ρv(b1) = b2 or ρv(b2) = b1 (see Figure 5a for an example). An A-trail is a non-intersecting
Eulerian circuit where every transition is composed of neighboring half edges (cf. Figure 5d).
Deciding whether a surface-embedded graph has an A-trail is known to be NP-complete,
even when restricted to embeddings in a sphere [6].

Let g : G→ F be a graph embedded in a surface. Let v be a vertex of G, d(v) ≥ 4, with
rotation ρv determined by g. Let t = {b1, b2} be a transition composed of neighboring half
edges incident to v. A smoothing of a transition t is the graph embedded in F obtained
from (G, g) by deleting v and adding two new vertices u and w such that b1 and b2 become
incident with u and the rest of the half edges become incident with w. The graph obtained
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after smoothing is embedded exactly according to g except in a local disk neighborhood of v
where u and w are embedded in a manner illustrated by the example in Figure 5b. Note that
the two half edges flanking b1 and b2 become neighbors in the new embedding. The notion of
smoothing defined here is a special case of the notion of “splitting away a pair of edges” [10,
p. III.16] catered to non-intersecting Eulerian circuits. Now suppose v is even and its incident
half edges are partitioned into disjoint mutually non-intersecting transitions. The transitions
can be ordered as σ = (t1, . . . , td(v)/2) such that t1 is composed of neighboring half edges,
and each ti+1 is composed of neighboring half edges after ti has been smoothed. A smoothing
of v is the embedded graph g̃v : G̃v → F obtained after such a sequence σ of smoothings of
transitions. Two possible smoothings of the vertex v in Figure 5a are shown in Figures 5c
and 5d. We note that smoothings of a vertex are in bijection with crossingless chord diagrams.
The number of possible smoothings of a vertex v is the Catalan number Ck = 1

k+1
(2k
k

)
, where

k = d(v)
2 . A smoothing of a non-intersecting Eulerian circuit γ is the embedded cycle graph

γ̃ obtained after smoothing all the vertices according to the transitions in γ. The smoothed
Eulerian circuit γ̃ is unique up to isotopy. Figures 5c and 5d illustrate smoothings of a vertex
based on a non-intersecting Eulerian circuit and an A-trail, respectively.

Having established the concepts, the general scheme of discussion is as follows: we are
given an Eulerian graph G embedded in a surface F and a non-intersecting Eulerian circuit
γ; then F is embedded in R3. In notation, this is described as: γ → G

g
↪→ F

f
↪→ R3.

We then ask whether f(γ̃) is an unknot or a non-trivial knot. We present results where
f(γ̃) is an unknot in Section 3 and results where f(γ̃) is a non-trivial knot in Section 4. When
f(γ̃) is an unknot, the regular unknotted scaffold can be routed according to γ; otherwise
either a knotted scaffold must be used, or a different unknotted non-intersecting Eulerian
circuit must be chosen. If all f(γ̃) are non-trivial knots, a knotted scaffold is necessary for
routing the embedded graph using a non-intersecting Eulerian circuit.

3 Unknotted Scaffold Routings

When the available scaffold is unknotted, as typically is the case, we aim to find unknotted
non-intersecting Eulerian circuits. In this section, we show that checkerboard colorability
of an embedding is a sufficient condition for an embedded graph to contain an unknotted
non-intersecting Eulerian circuit, thus allowing design using the typical unknotted scaffold
strand.

It is well-known that a graph embedded in a sphere is Eulerian if and only if the embedding
is checkerboard colorable [10, Theorem III.68]. Although an Eulerian graph embedded in
a positive genus surface may not be checkerboard colorable, we show that checkerboard
colorability affects the topology of Eulerian circuits on surface-embedded graphs. It has
been shown that [24, Theorem 3.6] all A-trails (if any exist) on checkerboard-colorable
torus graphs are unknotted, for any embedding f : T → R3. We first generalize this result
to all non-intersecting Eulerian circuits using a more topological proof. We then show a
general result for all surfaces: every checkerboard-colorable surface-embedded graph admits
an unknotted non-intersecting Eulerian circuit.

Non-intersecting Eulerian circuits are unknotted on a sphere due to the Jordan-Schönflies
theorem [25, p. 9], which states that every simple loop in a sphere is separating and bounds a
disk. On the other hand, simple loops in a torus can either be separating or non-separating.
A separating loop in a torus bounds a disk on one side and thus one strategy to find an
unknotted non-intersecting Eulerian circuit on a torus graph is to search for a separating
non-intersecting Eulerian circuit. In Lemma 2, we show that the checkerboard colorability
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(a) (b)

Figure 6 A checkerboard coloring viewed locally at a vertex (a) and how it induces a checkerboard
coloring when the vertex is smoothed (b).

of a graph embedding is a sufficient criteria for its non-intersecting Eulerian circuits to be
separating. To prove Lemma 2, we first prove in Lemma 1 that checkerboard colorability is
preserved under smoothing and unsmoothing of vertices.

I Lemma 1. Let g : G→ F be an embedding of an Eulerian graph G in a surface F and let
g̃v : G̃v → F be an embedding obtained by smoothing a vertex v of G. Then, g is checkerboard
colorable if and only if g̃v is checkerboard colorable.

Proof. The proof idea is sufficiently illustrated by the example in Figure 6, where a check-
erboard coloring of g (Figure 6a) is extended to a checkerboard coloring of g̃v (Figure 6b).
In words, since any smoothing of v is by definition obtained as a sequence of smoothings of
transitions (composed of neighboring edges), it is sufficient to prove the claim for a smoothing
of a transition. In a checkerboard coloring, if the faces that merge when smoothing a trans-
ition are distinct, they are colored alike before they merge. In this manner, a checkerboard
coloring of g extends to a checkerboard coloring of g̃v when the faces are merged. When
unsmoothing a transition, if a face is split into two faces, the new faces inherit the color of
the parent for a checkerboard coloring of the new embedding. In this way, a checkerboard
coloring of g̃v naturally induces a checkerboard coloring of g. J

We can now prove Lemma 2 that relates checkerboard colorability of graph embeddings
and the separating property of non-intersecting Eulerian circuits.

I Lemma 2. Let g : G→ F be an embedding of an Eulerian graph G in a surface F . The
following claims hold for every smoothed non-intersecting Eulerian circuit γ̃ of (G, g):
(i) If g is checkerboard colorable, then γ̃ is separating;
(ii) If g is not checkerboard colorable, then γ̃ is non-separating.

Proof. (i) Let γ be an arbitrary non-intersecting Eulerian circuit of (G, g). If g is check-
erboard colorable, then γ̃ is checkerboard colorable by Lemma 1. In a checkerboard
coloring of γ̃ the two sides of γ̃ must be colored differently; thus the two sides must be
in distinct faces and γ̃ must be separating.

(ii) By the contrapositive, suppose there exists a separating smoothed non-intersecting
Eulerian circuit γ̃. Since γ̃ is separating, the two separate regions can be colored
distinctly to obtain a checkerboard coloring of γ̃. By Lemma 1, unsmoothing γ̃ to g
gives rise to a checkerboard coloring of g. J

Lemma 2 equips us to generalize Theorem 3.6 of [24] to non-intersecting Eulerian circuits
on checkerboard-colorable torus graphs, as stated in Theorem 3.

I Theorem 3. If g : G→ T is a checkerboard-colorable cellular embedding of an Eulerian
graph in a torus, then f(γ̃) is an unknot for any non-intersecting Eulerian circuit γ of (G, g)
and any embedding f : T → R3.
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(a) (b)

Figure 7 A checkerboard-colorable graph embedding (b) obtained by doubling the edges of a
graph which has a triangular embedding in a torus (a).

Proof. By Lemma 2, any smoothed non-intersected Eulerian circuit γ̃ of (G, g) is separ-
ating. A separating loop in a torus bounds a disk and thus γ̃ bounds a disk. Under any
homeomorphism of T , γ̃ still bounds a disk and thus f(γ̃) is an unknot for any embedding
f : T → R3 of the torus in R3. J

For checkerboard-colorable embeddings on a torus, by Theorem 3, any non-intersecting
Eulerian circuit can be used as a route for an unknotted scaffold strand. Theorem 3 suggests
the existence of graphs where the unknottedness of non-intersecting Eulerian circuits can
be guaranteed purely from the adjacency structure of the abstract graph, i.e., independent
of the graph embedding in the torus and of the torus’ embedding in R3. An infinite family
of graphs with this property is presented in Proposition 4. For such families of graphs, the
possibility of routing using unknotted scaffold strand is completely determined from the
abstract graph.

I Proposition 4. There exist an infinite family G of Eulerian graphs such that for all G ∈ G,
and all g : G→ T , and all f : T → R3, and all non-intersecting Eulerian circuit γ of (G, g),
f(γ̃) is an unknot.

Proof. Let G be the family of graphs obtained by doubling the edges of graphs with triangular
embedding in a torus. Let G be a graph in G. One example is shown in Figure 7b. Consider
any pair e1, e2 of double edges with endpoints u and v. With slight abuse of notation, let ρu
(resp. ρv) denote the cyclic counter-clockwise order of the edges, instead of half edges, incident
with u (resp. v). In any embedding g of G in a torus, either ρu(e1) = e2 or ρu(e2) = e1.
If ρu(e1) = e2 then ρv(e2) = e1; otherwise ρv(e1) = e2. Thus, double edges such as e1, e2
bound faces in g. These faces can be shaded black, while the other faces are left white, to get
a checkerboard coloring of g (cf. Figure 7b). The claim then follows from Theorem 3. J

Theorem 3 crucially depends on the surface being a torus, as a separating loop in a
surface of genus greater than one need not bound a disk. For instance, the blue loop
in the double torus in Figure 2b is separating but bounds punctured tori on both sides.
In Section 4 (Theorem 8), we employ this property to construct families of checkerboard-
colorable embeddings in Fn (n ≥ 2) with knotted non-intersecting Eulerian circuits. Although
checkerboard colorability is not sufficient to guarantee that all non-intersecting Eulerian
circuits are unknotted for embeddings in surfaces of genus at least two, it is sufficient to
ensure that there is at least one unknotted non-intersecting Eulerian circuit, as shown in
Theorem 5. Thus, checkerboard-colorable graph embeddings can generally be routed using
an unknotted scaffold.
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(a)

e′p

e′ e

ep

(b)

e′p

e′ e

ep

(c) (d)

Figure 8 An unknotted non-intersecting Eulerian circuit of K7 in a torus. (a) a checkerboard-
colorable embedding of K7 in a torus, (b) circuits bounding the black faces, (c) merging circuits, (d)
the unknotted non-intersecting Eulerian circuit.

I Theorem 5. If g : G→ F is a checkerboard-colorable cellular embedding of an Eulerian
graph G in a surface F , then there exists a non-intersecting Eulerian circuit γ of G such
that f(γ̃) is unknotted for any embedding f : F → R3.

Proof. Let g : G → F be a checkerboard-colorable embedding of an Eulerian graph in a
surface F . An example is given by the embedding of K7 in the torus shown in Figure 8a. Let
the faces of g be colored with black and white. By the definition of checkerboard coloring,
each edge is incident to exactly one black face and one white face. Thus, the collection
of all the boundary circuits of the black faces form a non-intersecting circuit partition of
G. Because the embedding is cellular, the circuits bound disjoint closed disks after a small
isotopy. This is illustrated in Figure 8b for the embedding of K7 in a torus.

To convert the non-intersecting circuit partition into a non-intersecting Eulerian circuit γ,
we perform a re-splicing of disjoint circuits one by one at each vertex (see Lemma 7 of [23]
for details). We go through the edges incident to the vertex in the cyclic order they appear
in the embedding, and if two neighboring edges e and e′ are not in the same circuit, we
re-splice the two circuits so that e and e′ are paired to each other and e’s previous pair ep is
paired with e′’s previous pair e′p (cf. Figure 8c). This re-pairing merges the two circuits and
reduces the number of circuits in the circuit partition, while keeping the circuit partition
non-intersecting. A repeated application of this operation for every vertex in the graph yields
a non-intersecting Eulerian circuit γ.

Now consider any embedding f : F → R3. To prove f(γ̃) is an unknot, we show by
induction that γ̃ bounds a disk. In particular, we prove that, after each merge of circuits
through a re-pairing of edges, each circuit in the circuit partition, up to isotopy, bounds
a closed disk. The base case is handled by the circuit partition formed from the black
faces. Suppose by induction hypothesis that all the circuits before the pairing of e and e′
bound a disk. The re-pairing joins the two disjoint disks by a band, which results in a new
disk that the new circuit bounds (cf. Figure 8c). For the embedding of K7 in a torus, the
non-intersecting Eulerian circuit, and the disk that it bounds can be seen in Figure 8d. J
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(a) (b) (c)

Figure 9 Knotted Eulerian circuits on an embedding of K5 in the torus. (a) an embedding of K5

in a torus, (b) a non-intersecting Eulerian circuit which is a (4, 5) torus knot, (c) a non-intersecting
Eulerian circuit which is a (2, 3) torus knot.

4 Knotted Scaffold Routings

In Section 3, we saw that checkerboard-colorable embeddings are closely related to the
existence of unknotted scaffold routings. In this section, we study the relationship between
non-checkerboard colorable embeddings and the existence of knotted scaffold routings.

A non-intersecting Eulerian circuit γ on a surface-embedded graph can be knotted due
to the embedding g of the graph in the surface or due to the embedding f of the surface
in R3. Moreover, f(γ̃) can be either an unknot or a non-trivial knot for a fixed embedding
g, depending on f . For instance, consider the Eulerian graph B formed by the crossing of
the meridian and longitude of the torus. That is, B is the bouquet of two circles with one
vertex and two loop edges and its embedding g is the natural one where the vertex is placed
at the crossing point of the meridian and longitude (recall Figure 3b). Note that B has two
Eulerian circuits which have identical structure; let γ be one of these circuits. In a standard
embedding of the torus (Figure 3b), f(γ̃) is an unknot. However, if the torus is embedded in
R3 as a tubular neighborhood of a non-trivial knot K such that the longitude is equivalent
to K, then f(γ̃) is also equivalent to K and thus non-trivial. The construction generalizes to
graph embeddings that are not checkerboard colorable, in the sense described in Theorem 6.

I Theorem 6. Suppose g : G→ F is an embedding of an Eulerian graph G in a surface F
and suppose that g is not checkerboard colorable. Then, for any non-intersecting Eulerian
circuit γ, there exists an embedding f : F → R3 such that f(γ̃) is a non-trivial knot.

Proof. Let g : G → F be an embedding that is not checkerboard colorable, and γ be a
non-intersecting Eulerian circuit. By Lemma 2, γ̃ is a non-separating loop in F . Hence, after
applying a homeomorphism of F , γ̃ can be considered to be positioned as a longitudinal loop
in F (a curve that goes around a hole, just like a longitude of a torus). Then we can choose
an embedding f : F → R3 such that this longitudinal loop γ̃ is knotted.

The observation above, taking γ̃ as longitudinal as a consequence of g being not checker-
board colorable, can be deduced using the first homology groups in homology theory; here
the technical details are omitted. J

We now focus on the case where the embedding of the surface is standard. It has been
shown that the bouquet of two circles can be embedded in a standard torus so that all the
non-intersecting Eulerian circuits are knotted [24, Figure 11]. Figure 9a shows an embedding
of the toroidal graph K5 where all its non-intersecting Eulerian circuits are knotted. A
non-intersecting Eulerian circuit of this embedding of K5 is either a (4, 5) torus knot (e.g.
Figure 9b) or a (2, 3) torus knot (e.g. Figure 9c). Theorem 7 characterizes Eulerian graphs
which admit toroidal embeddings where all the non-intersecting Eulerian circuits are knotted.
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Theorem 7 shows the existence of embeddings of Eulerian graphs where a routing as a
non-intersecting Eulerian circuit would necessitate the use of knotted scaffold strands. It
also supports the suggestion in [9] that knotted scaffolds could expand the possible set of
DNA origami meshes that can be constructed.

I Theorem 7. An Eulerian graph admits a cellular embedding in a standardly embedded
torus where all smoothed non-intersecting Eulerian circuits are knotted if and only if it admits
a cellular embedding in a torus that is not checkerboard colorable.

Proof. ( =⇒ ) By the contrapositive, if all the embeddings of a graph in a torus are
checkerboard colorable, then by Theorem 3, each of these embeddings will contain an
unknotted non-intersecting Eulerian circuit.

( ⇐= ) Let g : G → T be a cellular embedding of an Eulerian graph in a torus such
that the embedding is not checkerboard colorable. The main idea of the proof is to use
self-homeomorphisms of the torus to twist g so that each of the non-intersecting circuits
becomes a non-trivial knot when the torus is embedded in a standard fashion in R3. This is
possible because the number of non-intersecting Eulerian circuits is finite and each smoothed
non-intersecting Eulerian circuit is non-separating (Lemma 2). A concrete combination of
twists is presented next.

Since every (smoothed) non-intersecting Eulerian circuit of (G, g) is non-separating, each
oriented non-intersecting Eulerian circuit can be represented by a pair (a, b) of integers
with (a, b) 6= (0, 0) and gcd(a, b) = 1. Let the ith oriented non-intersecting Eulerian circuit
(in some order) be represented with (ai, bi). Let k, l,m be natural numbers representing
the twists that are to be determined. Applying k longitudinal twists to T converts the
embedding g to an embedding g1 so that the Eulerian circuits become simple loops of type
(ai + kbi, bi). Next, applying l meridional twists converts g1 to an embedding g2 so that
the circuits become simple loops of type (ai + kbi, lai + (lk + 1)bi). Finally, applying m
longitudinal twists converts g2 to an embedding g3 so that the circuits are simple loops of
type ((1 + lm)ai + (k+mlk+m)bi), lai + (k+ 1)bi)). We thus only need to choose k, l,m so
that |(1 + lm)ai + (k +mlk +m)bi)| > 1 and |lai + (k + 1)bi)| > 1, for all i; that is, k, l,m
are to be chosen so that all the circuits become non-trivial knots. For this purpose, we can
choose l = 2,m = 1 and k = maxi:bi 6=0{ 2|ai|

|bi| + 1} if there exists a bi 6= 0, or k = 1 if bi = 0
for all i. Since (ai, bi) 6= (0, 0), we need to consider three cases:
(i) ai = 0 and bi 6= 0. Then, |(1 + lm)ai + (k+mlk+m)bi)| = |(3k+ 1)bi| = (3k+ 1)|bi| ≥

(6 |ai|
|bi| + 4)|bi| = 4|bi| ≥ 4. Additionally, |lai + (k + 1)bi)| = |(k + 1)bi| = (k + 1)|bi| ≥

( 2|ai|
|bi| + 2)|bi| ≥ 2.

(ii) ai 6= 0 and bi = 0. Then |(1 + lm)ai + (k + mlk + m)bi)| = 3|ai| ≥ 3. Moreover,
|lai + (k + 1)bi)| = 2|ai| ≥ 2.

(iii) ai 6= 0 and bi 6= 0. Then |(1 + lm)ai + (k + mlk + m)bi)| = |3ai + (3k + 1)bi| ≥
|(3k + 1)bi| − |3ai| = (3k + 1)|bi| − |3ai| ≥ (6 |ai|

|bi| + 4)|bi| − 3|ai| = 3|ai| + 4|bi| ≥ 7.
And |lai + (k + 1)bi)| = |2ai + (k + 1)bi| ≥ |(k + 1)bi| − |2ai| = (k + 1)|bi| − |2ai| ≥
( 2|ai|
|bi| + 2)|bi| − 2|ai| = 2|bi| ≥ 2. J

Note that the twists in the proof of Theorem 7 need not change the rotation system
determined by the embedding. This highlights the geometric nature of the problem, in
the sense that the existence of knotted non-intersecting Eulerian circuits cannot generally
be completely determined from the combinatorial structure of the embedding. In fact,
the original embedding g may have no knotted non-intersecting Eulerian circuits at all,
as is the case for instance, with the standard embedding of the bouquet of two circles in
the standard torus. Nevertheless, Theorem 7 provides a mechanism to check whether an
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Eulerian graph admits an embedding in a torus where all the non-intersecting Eulerian
circuits are knotted, as one can algorithmically determine whether a graph admits a cellular
embedding in a torus that is not checkerboard colorable. Indeed, this can be done by going
through the finite number of possible rotation systems of the graph, obtaining the cellular
embeddings corresponding to the rotation systems via standard face-tracing algorithms in
topological graph theory [12, p. 115], checking that the embedding is in a torus from the
generalized Euler’s polyhedron formula [12, p. 27, p. 122], and then checking for checkerboard
colorability. Determining checkerboard colorability of a cellular embedding is equivalent to
deciding whether the geometric dual is bipartite, which can be done through a standard
breadth-first-search algorithm.

For surfaces of genus greater than one, even checkerboard-colorable embeddings can
have knotted non-intersecting Eulerian circuits, as demonstrated by the infinite family in
Theorem 8. Note that in Theorem 8, the claim is not that all non-intersecting Eulerian circuits
are knotted but that there is at least one that is knotted. The problem of characterizing
graphs which admit cellular embeddings in a standardly embedded surface Fn, n ≥ 2, so that
all non-intersecting Eulerian circuits are knotted is left for future work. Theorem 8 suggests
that, unlike the case of the torus, checkerboard-colorable embeddings of graphs in surfaces of
genus larger than one can possibly be routed and constructed using knotted scaffold strands.

I Theorem 8. Let Fn be an orientable closed surface of genus n that is standardly embedded
in R3.
(i) For all n ≥ 2, there exist infinitely many Eulerian graphs that have checkerboard-

colorable cellular embeddings in Fn with knotted non-intersecting Eulerian circuits.
(ii) For any non-trivial knot K, there exists an Eulerian graph G cellularly embedded with

a checkerboard coloring in Fn for some n ≥ 1 having K as a non-intersecting Eulerian
circuit of G.

Proof. First consider the case n = 2 for (i). Let S be an orientable surface with a connected
boundary obtained from a disk by attaching two twisted unknotted bands. An example is
depicted in Figure 10. The twists must be full (versus half) twists to obtain an orientable
surface. The boundary ∂S of S is a non-trivial knot K.

Figure 10 Two twisted bands attached to a disk.

Let F = Fn (n = 2) be the surface obtained by thickening S. Figure 11 depicts this
process. In Figure 11a a portion of a band is depicted. The top image of Figure 11a is a
cross sectional view of a part of a band depicted at the bottom. In Figure 11b a thickened
band is depicted with its cross section shown at the top. The boundary after thickening is a
tube. By applying this process to S, we obtain a standard surface F as depicted in Figure 12.
The knot K can be regarded as staying on F as in Figure 12, indicated by a red curve. Note
that K divides F into two parts (in Figure 11b the two parts are the front and back faces).
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(a) (b)

Figure 11 Thickening a band (a) to a tube (b).

Next we construct a graph G cellularly embedded in F by finger moves as depicted in
Figure 13. In Figure 13a, a dotted arc connects two parts of K. Push one end of K along the
arc, and at the other end make it intersect in two double points as indicated in Figure 13b.
After one finger move we obtain a 4-regular graph with two vertices. In Figure 14, it is
shown that a finger move preserves the checkerboard colorability as in Figure 14b, and there
is a choice of a non-intersecting Eulerian circuit that is the original knot K as illustrated in
Figure 14c by a blue curve. By repeating finger moves across non-cellular faces, we obtain a
cellularly embedded graph G with K as a non-intersecting Eulerian circuit.

Figure 12 The boundary surface after thickening contains the original knot.

This construction can be performed for any even n ∈ N. For an odd n, we add a trivial
handle to Fn−1 as indicated in Figure 15a. At this point G becomes non-cellular. To obtain
a new cellularly embedded graph, we perform two finger moves as depicted in Figure 15b.
The new graph retains the checkerboard colorability and the property of having K as a
non-intersecting Eulerian circuit, as desired. The construction allows for infinitely many such
graphs, for example by performing additional finger moves, or by choosing different arcs for
finger moves. This completes the proof of (i).

(a) (b)

Figure 13 A finger move (b) along a dotted arc (a).

(ii) It is known that any knot K can be realized as the boundary of an orientable surface
S, such that a thickened S is a standard handlebody. Hence a similar argument applies. J
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(A) (B) (C)(a)(A) (B) (C)(b)(A) (B) (C)(c)

Figure 14 A checkerboard coloring before (a) and after a finger move (b). A choice of non-
intersecting Eulerian circuit after a finger move (c).

(a) (b)

Figure 15 A handle added to make the genus odd (a) and finger moves to make the embedding
cellular (b).

5 Conclusion

Eulerian circuits are emerging as broadly applicable model of strand routings in biomolecular
technology [4, 5, 20, 21, 32]. For circular strands, the knot type of the strand routing in
the design must conform to the knot type of the strand in solution. Herein, we studied the
knottedness of strand routings modelled by non-intersecting Eulerian circuits of Eulerian
graphs embedded in surfaces.

We showed a strong connection between checkerboard-colorable graph embeddings in
surfaces and the knottedness of non-intersecting Eulerian circuits. We extended the result
of [24] by showing that all non-intersecting Eulerian circuits are unknotted for checkerboard-
colorable torus graphs (Theorem 3). Thus, checkerboard-colorable torus graphs can be
routed (as non-intersecting Eulerian circuits) using unknotted scaffolds but they cannot
be routed using knotted ones. For checkerboard-colorable embeddings in surfaces of genus
greater than one, we showed that there is at least one unknotted non-intersecting Eulerian
circuit (Theorem 5). Thus, all checkerboard-colorable graph embeddings can be routed
using unknotted scaffold strands. We proved that checkerboard-colorable embedded graphs
in surfaces of genus greater than one can have knotted Eulerian circuits (Theorem 8) and
hence knotted scaffolds can potentially be used to construct checkerboard colorable graph
embeddings in non-toroidal (and non-spherical) surfaces. For torus graphs, we characterized
Eulerian graphs which admit an embedding in a standard torus where all non-intersecting
Eulerian circuits are knotted. These are precisely the Eulerian graphs which admit embeddings
in a torus that are not checkerboard colorable (Theorem 7). This shows the existence of
Eulerian graphs embedded in surfaces that require knotted scaffolds for construction. The
results presented can suggest, for instance, reconditioning of graphs to meet checkerboard
colorability so that unknotted scaffold routings can potentially be found. In general, knot
theory of non-intersecting Eulerian circuits is also of theoretical interest, as suggested in [24].

We note that, although the problem was motivated by DNA-origami scaffold routings, the
results presented could be applied for any routing of a circular strand that can be modelled
as a non-intersecting circuit in a surface-embedded graph. This is because a circuit in a
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graph can be considered as an Eulerian circuit of a subgraph. The study of surface-embedded
graphs significantly expands the systematic ways of designing nanostructures, and the study
of the topology of circuits on such graphs can be a useful guide in the design of topologically
complex 3D nanostructures.
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