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Abstract
We give a framework for designing prophet inequalities for combinatorial welfare maximization.
Instantiated with different parameters, our framework implies (1) an O(log m/ log log m)-competitive
prophet inequality for subadditive agents, improving over the O(log m) upper bound via item pricing,
(2) an O(D log m/ log log m)-competitive prophet inequality for D-approximately subadditive agents,
where D ∈ {1, . . . , m − 1} measures the maximum number of items that complement each other,
and (3) as a byproduct, an O(1)-competitive prophet inequality for submodular or fractionally
subadditive (a.k.a. XOS) agents, matching the optimal ratio asymptotically. Our framework is
computationally efficient given sample access to the prior and demand queries.
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1 Introduction

Prophet inequalities are a classical topic in stopping theory. The problem is neat and natural:
an agent plays a game, where there are n boxes, each containing a reward (e.g., some amount
of cash). The agent cannot see through the boxes to know precisely the amounts of cash inside
each box. However, she has the prior knowledge that the amounts are drawn independently
for each box, and fortunately, knows the distributions according to which the amounts are
drawn. Now nature opens the boxes one by one. Upon seeing the inside of each box, the agent
gets to make a choice: she can either (1) take the cash in the box and leave, or (2) let the
current box expire (which means she gains nothing from the current box and it disappears),
in which case the game proceeds with the remaining boxes. What is the maximum expected
amount of cash the agent can get, and how to achieve that?

Quite surprisingly, the agent can guarantee half the amount of reward that a prophet is
able to get, who sees through the boxes and therefore always picks the box with the largest
reward [21, 22]. Moreover, the agent can achieve this by executing a simple threshold-based
protocol: accept the first box containing a reward exceeding a pre-calculated amount. The
existence of such 2-approximate protocols lead to the name “prophet inequalities.”

Prophet inequalities were recently rediscovered in computer science and economics. Since
then, they have been drawing increasing interest in both fields. Hajiaghayi et al. [18]
observe the connection between prophet inequalities and a pricing problem in auctions. They
formulate the problem in the following equivalent way: a seller has an indivisible item to
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sell. n buyers arrive one by one, each of which has a value for the item, drawn independently
from a distribution known to the seller. When a buyer arrives, the seller learns the value
of the buyer (or otherwise negotiates with the buyer), and decides whether to sell the item
to the buyer. The buyer then leaves forever (with the item if sold to the buyer). The goal
of the seller is to maximize the utility of the buyer who receives the item, or just the total
utility (i.e., the welfare) of all buyers, since all other buyers have utility 0. Here, each buyer
corresponds to a box in the classical formulation, and the value of the buyer represents
the reward in the box. A threshold-based protocol can then be translated directly into a
take-it-or-leave-it offer – a buyer receives the item (i.e., she buys) iff her value exceeds the
pre-calculated price, and so buying is preferred to not buying.

Given this connection, various forms of auctions have been considered in the prophet
inequality context (see, e.g., the recent survey by Lucier [23]). Examples include (1) the
case where the seller has k identical items to sell and each buyer wants only one of them
(or equivalently, up to k boxes can be accepted) [18], (2) the setting with a knapsack style
constraint, requiring that the total “weight” of sellers who get an item cannot exceed 1 [17],
and (3) the setting where m possibly distinct items are available for sale, and each agent
has a combinatorial (as opposed to additive) valuation function assigning every subset of
items a value [16]. The third setting, known as combinatorial welfare maximization, appears
particularly interesting and general, as it nicely captures the potentially complex interaction
between items. For instance, a Coke and a Pepsi substitute each other, in the sense that
having a Coke or a Pepsi probably gives one roughly the same utility (say 1), whereas having
both likely gives strictly less utility than the sum, 2, of the former values, since one can only
drink so much at a time.

In this paper, we consider combinatorial welfare maximization in the prophet inequality
context. We begin our investigation with subadditive (also known as complement-free) agents,
who regard items only as substitutes but not complements to each other. From there, we
generalize our results to accommodate valuations that are approximately subadditive, which
have remained largely unexplored even in offline environments.

1.1 Our Contributions

1.1.1 Current Landscape of the Problem

Feldman et al. [16] were the first to explicitly study combinatorial welfare maximization with
rich valuations in the prophet inequality context. They give an existential 2-approximate
protocol and a computationally efficient (2e)/(e− 1)-approximate protocol when agents are
submodular or fractionally subadditive (which are strict subclasses of subadditive valuations).
Dütting et al. [10] propose a powerful framework, unifying a number of prophet inequalities,
and yielding a computationally efficient 2-approximate protocol for the same class of valu-
ations, which is optimal given a lower bound inherited from the single-item setting. These
bounds, through a standard approximation result, extend directly to subadditive agents with
a loss of factor O(log m), where m is the number of items. The best known lower bound
for subadditive agents, however, is again 2, leaving a huge gap in between. This gap, as
acknowledged by Feldman et al. [16] and Dütting et al. [10], raises a curious question:

Can we do better than O(log m) for subadditive agents?
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1.1.2 The Logarithmic Barrier for Subadditive Agents
The above question did not have an immediate answer. For subadditive agents, all existing
results essentially build on the same argument: one first computes prices that O(log m)-
approximately “support” the optimal allocation. Such prices have the property, that if
one posts the prices on the items, and let agents, one by one in some arbitrary order,
purchase their utility-maximizing bundles of items, then the resulting allocation O(log m)-
approximately maximizes the expected welfare. With these prices, one can implement an
O(log m)-approximate threshold-based protocol, by running a posted-price auction with the
supporting prices for each arriving agent, and allocating the set of items purchased to the
agent. The bottleneck of this approach is that the O(log m) factor of approximate supporting
prices is tight: there are subadditive valuations for which no o(log m)-approximate supporting
prices exist [2]. Therefore, any protocol relying on supporting prices (including all currently
existing results) cannot possibly give better ratios than O(log m). In fact, given the tightness
of this O(log m) factor, one may even suspect that the right ratio for subadditive agents is
precisely Θ(log m). We show that this is not the case.

1.1.3 A Sublogarithmic Prophet Inequality for Subadditive Agents
We give a framework for designing prophet inequalities for combinatorial welfare maximiza-
tion, which implies an O(log m/ log log m)-approximate prophet inequality for subadditive
agents, breaking the foregoing logarithmic barrier. Our framework is computationally ef-
ficient given: (1) sample access to the prior distributions, and (2) demand queries to the
sample valuations. Unlike previous results, our protocol is not based on pricing items via
approximately supporting prices and running sequential auctions – which enables the protocol
to bypass the obstacle discussed above, at the cost of losing incentive compatibility.1 As a
byproduct, we show that our framework, instantiated with different parameters, also gives an
O(1)-approximately optimal prophet inequality for submodular or fractionally subadditive
agents. Our approach provides an alternative view of combinatorial welfare maximization in
the prophet inequality context, which may be of independent interest.

Very recently, in independent work, Dütting et al. [11] give an O(log log m)-approximate
prophet inequality for combinatorial welfare maximization with subadditive agents using
radically different techniques from ours. Their result is a major breakthrough in the research
of prophet inequalities for combinatorial welfare maximization. In particular, the work of
Dütting et al. significantly improves over our main result in that (1) they “truely” improve
the approximation ratio from O(log m) all the way to O(log log m), and (2) their approach is
based on pricing individual items, which shows that it is possible to beat O(log m) using
item-pricing schemes, which are incentive-compatible.

1.1.4 Generalizing to Approximate Subadditivity
Utilizing the same framework, we give a family of parameters, which imply an
O(D log m/ log log m)-approximate prophet inequality when agents have valuations with
superadditive width at most D > 0 (see Definition 1). As a corollary, we obtain an
O(D log m/ log log m)-approximation algorithm for the offline combinatorial welfare maxim-
ization problem with the same class of valuations. Here, D roughly measures the maximum

1 In some scenarios, incentive incompatibility is not an issue – one such example is a government agency
allocating resources among projects arriving online.
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number of items that may complement each other, and generalizes the notion of subadditivity.
In particular, valuations with superadditive width 0 are precisely valuations that are subad-
ditive. The implication of the above bound is twofold: concretely, to our knowledge, this
is the first nontrivial prophet inequality for valuations that are approximately subadditive;
conceptually, the existence of parameters leading to this bound demonstrates the capacity
of the parametrized framework we propose. We remark that while Feldman et al. [16]
and Dütting et al. [10] present results of a similar flavor, their bounds are based on the
Maximum-over-Positive-Hypergraph (MPH) hierarchy [15], which does not directly model
approximate subadditivity, and thus is incompatible with the goal of this paper.

1.2 Technical Overview
We present a parametrized protocol, which works by rounding online a standard LP relaxation
of the welfare maximization problem. The protocol is inspired by the two-stage offline
rounding procedure by Dobzinski et al. [9], which works roughly as follows:
1. Compute a distribution over sets of items for each agent. These distributions together

satisfy: (1) each item in expectation goes to at most 1 agent, and (2) the total expected
value enjoyed by all agents is maximized.

2. For each agent i, draw i’s tentative set of items according to i’s distribution. Note that
after this step, an item can appear in multiple agents’ tentative sets.

3. Break ties for items, by independently allocating each item j to one of the agents whose
tentative sets contain j, uniformly at random.

Dobzinski et al. [9] show that the above procedure outputs an O(log m)-approximation for
the combinatorial welfare maximization problem when agents are subadditive, and Feige [14]
further proves a tighter bound of O(log m/ log log m).

Intuitively, we wish to carry out Dobzinski’s rounding procedure online. One main
difficulty, however, is to deal with incomplete information, since when handling one agent,
the protocol does not know the actual valuation of any agent yet to arrive. As a result,
it is impossible to round online the solution to the LP with respect to all agents’ actual
valuations. To this end, we create a partially fictitious LP for each agent, by chaining this
agent’s actual valuation (which becomes available to the protocol upon the agent’s arrival)
with independently drawn dummy valuations for all other agents. By doing this, each agent
is intuitively playing against the average case configuration of all other agents. Moreover,
in each agent’s fictitious LP, her share of the fractional allocation gives her precisely the
expected value she would get in the actual optimal fractional allocation. So if we can round
the fictitious LP solutions with mild loss, the resulting welfare will in fact be approximately
optimal.

To achieve this, we need to deal with another difficulty, i.e., instead of breaking ties for
each item simultaneously with all the tentative sets available, we now have to irrevocably
decide which items are being allocated to each agent immediately upon his arrival, before
seeing the valuations of all agents yet to arrive. And still, we need to make sure no item
is allocated twice. This rules out the possibility of the independent uniform tie-breaking
performed in Step 3 of Dobzinski et al.’s rounding procedure, which is crucial in the proofs
for the approximation ratios in both papers.2 To overcome this issue, we break ties in a
correlated way, which pairs gracefully with (approximate) subadditivity. Roughly speaking,

2 With some additional tricks one can simulate online the uniformity and independence conditions required
in those papers, but even then the online version of Feige’s argument works only for exactly subadditive
valuations, and fails for approximately subadditive ones.
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we first draw a (not necessarily uniformly) random integer r from {1, . . . , n}, where n is the
number of agents. We then partition each agent’s tentative set into n subsets according
to the number of times each item has appeared in some agent’s tentative set so far, and
give the agent all items that have appeared exactly r times. The intuition is that, if the
valuations are subadditive, we then know that the sum of the values of these subsets is at
least the value of the tentative set itself, which gives us a way to relate the expected value
of the allocated subset to the value of the tentative set. Also, no item is possibly allocated
twice, since each item can appear the r-th time only once throughout the procedure. Given
the above, by choosing the distribution of r and other parameters in different ways, the
parametrized protocol yields the desired bounds for subadditive, approximately subadditive,
and fractionally subadditive valuations respectively.

1.3 Additional Related Work
Kleinberg and Weinberg [20] study the setting where possible combinations of boxes that can
be accepted satisfy a matroid constraint. Dütting and Kleinberg [12] consider polymatroids,
generalizing the above setting. Rubinstein and Singla [25] further consider subadditive reward
functions. Their setting, while also being combinatorial, is different from combinatorial
welfare maximization considered in this paper.

Another line of research consider revenue maximization in the prophet inequality context.
We list a few results here. Blumrosen and Holenstein [3] give a constant factor protocol in
the single-item setting. When agents are unit-demand – that is, they only want a single
item – Chawla et al. [5] give constant factor posted-price policies. Cai and Zhao [4] study
truthful policies for combinatorial auctions with subadditive agents. Their goal, however, is
to maximize the revenue of the protocol, instead of the welfare as we consider.

Prior to Feldman et al., Chawla et al. [6] and Alaei [1] consider welfare maximization
with unit-demand agents. Cohen-Addad et al. [8] further show that dynamic pricing achieves
optimal welfare for unit-demand agents. Ehsani et al. [13] show that the ratio improves to
e/(e− 1) for combinatorial welfare maximization with submodular or fractionally subadditive
agents, if agents arrive in a random order.

2 Preliminaries

Throughout the paper, we use n to denote the number of agents, and m the number of items.
In general, we use i as the index of an agent, and j as the index of an item.

2.1 Combinatorial Valuations
A combinatorial valuation function f : 2[m] → R+ maps any subset S of the ground set
[m] = {1, 2, . . . m} to a nonnegative real number f(S). In this paper, we consider valuation
functions that are monotone: f is monotone iff for any S ⊆ T ⊆ [m], f(S) ≤ f(T ). The
following subclasses of valuation functions are considered or helpful for our purposes:

subadditive: f is subadditive iff for any S, T ⊆ [m], f(S) + f(T ) ≥ f(S ∪ T ).
additive valuations: f is additive iff for any disjoint S, T ⊆ [m], f(S) + f(T ) = f(S ∪ T ).
submodular valuations: f is submodular iff for any S, T ⊆ [m], f(S) + f(T ) ≥ f(S ∪ T ) +
f(S ∩ T ).
fractionally subadditive (or XOS) valuations: f is fractionally subadditive iff there exist
additive valuations c1, . . . , c`, such that for any S ⊆ [m], f(S) = maxk∈[`] ck(S). Each
such additive valuation ck is called a clause.

ESA 2020



82:6 Improved Prophet Inequalities for Subadditive Agents

It is known that every additive valuation is submodular, every submodular valuation is
fractionally subadditive, and every fractionally subadditive function is subadditive. Beyond
subadditive valuations, we also consider valuations of limited superadditivity, parametrized
by the superadditive width, defined below.

I Definition 1 (Superadditive Width [7]). Fix a ground set M = [m]. A set T ⊆ M is
superadditive w.r.t. a valuation function f , if there exists S ⊆M , such that

f(S | T ) > max
T ′(T

f(S | T ′),

where f(A | B) := f(A ∪ B) − f(B) is the marginal value of A given B for any two sets
A, B ⊆M . The superadditive width of f is defined to be the size of the largest superadditive
set, i.e.,

SAW(f) := max{|T | | T is superadditive w.r.t. f}.

In words, the definition says that the superadditive width of a valuation is the size of the
largest set, which provides strictly more marginal value for another set, than any of its strict
subsets. Intuitively, the smaller this quantity is, the closer a valuation is to being subadditive.
In particular, any subadditive valuation has superadditive width 0.

2.2 Problem Formulation
We formulate the problem in the following way: There are n agents and m items, and a prior
F = F1 × · · · × Fn for the valuations of the agents over the items. All agents are monotone
and subadditive (resp., fractionally subadditive), i.e., for any agent i, any valuation function
fi in the support of Fi is monotone and subadditive (resp., fractionally subadditive). Agents
arrive one by one in an adversarial order. When agent i arrives, we see the realization fi ∼ Fi

of her valuation (through query oracles discussed below), and must allocate irrevocably some
items to the agent. The agent then takes the items and departs, and all items allocated to
the agent become unavailable to subsequently arriving agents.

The goal is to maximize the expected (over the realization of the valuations and the
randomness of the protocol) welfare of all agents. In particular, we wish to compete against
the offline optimal allocation (i.e., the prophet), which has unlimited computational power,
and knows beforehand the realization of all agents’ valuations {fi}i. The competitive ratio
is defined to be the ratio between the expected welfare (denoted OPT) of the offline optimal
allocation3 and the expected welfare produced by the online protocol.

2.3 Oracle Access to Valuation Functions
The representation of a combinatorial valuation function may be exponentially large in the
number of items m. Given this complexity, it is standard to assume that the protocol may
access valuation functions only through query oracles. In particular, the following two types
of queries are commonly allowed (see, e.g., [14, 16, 10]):

value queries: given a valuation function f and a set S, return the value of S, f(S).
demand queries: given a valuation function f and prices {pj}j∈[m], return a utility-
maximizing set (i.e., a demand set) with respect to f under the given prices. That is, the
query returns a set S that maximizes f(S)−

∑
j∈S pj .

In this paper, we assume the protocol has access to both kinds of queries.

3 Note that the offline optimal allocation may be hard to find, computationally and / or information
theoretically.
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2.4 The Welfare Maximizing LP
The following LP relaxation of the welfare maximization problem has been considered in
[9, 24, 14]:

maximize
∑

i∈[n]
∑

S⊆[m] xi,Sfi(S)
s.t.

∑
S⊆[m] xi,S ≤ 1 ∀i ∈ [n]∑
i∈[n],S⊆[m]:j∈S xi,S ≤ 1 ∀j ∈ [m]

xi,S ≥ 0 ∀i ∈ [n], S ⊆ [m].

One may interpret the LP in the following way: xi,S stands for the probability that agent i

receives bundle S. The objective is therefore the total expected value of all agents, which
is the expected welfare. The first constraint requires that each agent i receives at most 1
bundle, and the second requires that each item goes to at most 1 agent, in expectation.

It is known (see, e.g., [9, 24]) that the above LP can be solved with polynomially many
value and demand queries to f1, . . . , fn. Let xi,S({fi′}i′) (parameters omitted when clear
from the context) denote the value of variable xi,S in the optimal solution to the LP with
respect to valuation functions {fi′}i′ .4 Given F , denote the expected value enjoyed by agent
i in this optimal solution by

LPi := E{fi′}i′∼F

 ∑
S⊆[m]

xi,S({fi′}i′) · fi(S)

 ,

and the optimal objective value by

LP :=
∑
i∈[n]

LPi = E{fi′}i′∼F

 ∑
i∈[n],S⊆[m]

xi,S({fi′}i′) · fi(S)

 .

Note that for any prior F , we always have LP ≥ OPT. We will use the welfare maximizing
LP and its solution as a building block of our framework in a blackbox manner.

3 The Framework

In this section, we present our general framework, in the form of a parametrized protocol,
for designing prophet inequalities for combinatorial welfare maximization. The framework
works for any arrival order of agents, but for ease of presentation, we assume agents arrive
according to their indices. That is, agent 1 arrives first, followed by agent 2, etc. We also
let f−i := (f1, . . . , fi−1, fi+1, . . . , fn) (i.e., f−i denotes the valuations of all agents but i) and
use g−i and F−i similarly. Below is our parametrized protocol:
1. For each item j, initialize counter cj ← 0.
2. Draw positive integer r ∈ [n], where Pr[r = k] = pk for any k ∈ [n], and {pk}k∈[n] are

parameters of the protocol.
3. Upon agent i’s arrival:

a. Let fi be agent i’s realized valuation; draw dummy valuations g−i ∼ F−i for all other
agents.5

4 If there are multiple such solutions, let {xi,S({fi′}i′ )}i,S be the one produced by the efficient LP solving
algorithm which we use as a subroutine of the protocol.

5 Note that we abuse notation here, so for any i1 6= i2, g−i1 and g−i2 are independent – they are not
different parts of a same group of valuations.

ESA 2020
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b. Solve the welfare maximizing LP with valuations (fi, g−i), and let {xi′,S(fi, g−i)}i′,S

be the solution.
c. Now view {xi,S}S as a distribution over sets of items.6 Draw set Si ∼ {xi,S}S from

this distribution, where for any S, Pr[Si = S] = xi,S . We say agent i demands set Si.
d. For each item j ∈ Si, let cj ← cj + 1 (i.e., increase the counter for item j). For

any k ∈ [n], let Sk
i be the set of items in Si whose counters are exactly k right after

demanded by agent i.
e. With probability q, where q is a parameter of the protocol, serve agent i by giving i

all items in Sr
i (i.e., item j goes to agent i iff agent i is chronologically the r-th agent

demanding item j and being served); otherwise, for each item j ∈ Si, let cj ← cj − 1
(i.e., undo the increase for all items demanded by i).

For any agent i, let seri = I[i is served] be the indicator variable that i is served in Step 3(e).
Note that the above protocol never allocates an item to more than one agent, since once r

is fixed, at most one agent can be the r-th demanding an item. As a result, the protocol
always produces a valid allocation.

We now present a meta-analysis for the above protocol, which yields a parameter-
dependent welfare guarantee. In later sections, we will show how one can instantiate the
protocol by setting different parameters, so that the general guarantee realizes into specific
bounds for the respective classes of valuations of interest.

I Theorem 2. Let ui be the value enjoyed by agent i. For each agent i, fixing fi and Si, the
above protocol guarantees agent i expected value

ERi [ui | fi, Si] = q ·
∑

k∈[n]

pk · ERi [fi(Sk
i )],

where Ri summarizes all the randomness other than fi, g−i and Si, both from the protocol
and from the realization of the valuations.

Proof. The theorem is essentially a claim regarding independence of random variables. Recall
that for any agent i′, seri′ = I[i′ is served]. Fixing fi and Si, i’s expected value can be
written as

ERi [ui | fi, Si] = ERi

seri ·
∑

k∈[n]

I[r = k] · fi(Sk
i )

∣∣∣∣∣∣ fi, Si

 .

Ri here summarizes {(fi′ , g−i′ , Si′)}i′ 6=i, the choice of r, and whether i′ is served for all i′

(including i′ = i). To simplify this, first observe that the conditioning can be removed,
because the randomness involved in the expectation, Ri, is independent of fi and Si. In
particular, {fi′}i′ 6=i are independent of fi because F is a product distribution. Moreover, the
three factors within the expectation are independent, because whether i is served depends
only on the coin flipping in Step 3(e) when agent i arrives, the choice of r depends only on
the random draw in Step 2, and fixing Si, fi(Sk

i ) depends only on the realization of {fi′}i′<i

and the random bits of the protocol dealing with the agents arriving before i. Given the
above, we have

6 It is possible that
∑

S
xi,S < 1, in which case with probability 1−

∑
S

xi,S , Si = ∅.
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ERi
[ui | fi, Si] = ERi

seri ·
∑

k∈[n]

I[r = k] · fi(Sk
i )


= Pr[seri = 1] ·

∑
k∈[n]

Pr[r = k] · E{(fi′ ,g−i′ ,Si′ ,seri′ )}i′<i
[fi(Sk

i )]

= q ·
∑

k∈[n]

pk · ERi [fi(Sk
i )]. J

Before proceeding to the specific instantiations of the protocol, we note the following
high-level interpretation of the above parameter-dependent bound, which provides important
intuition and leads to our choices of parameters for different classes of valuations. For
concreteness, suppose agents are subadditive. First observe that the share of agent i in the
optimal solution of the welfare maximizing LP is

LPi = E{fi′}i′∼F

[∑
S

xi,S({fi′}i′) · fi(S)
]

= E(fi,g−i)∼F,Si∼{xi,S(fi,g−i)}S
[fi(Si)] = Efi,Si [fi(Si)].

On the other hand, since {Sk
i }k∈[n] is a partition of Si, by the subadditivity of fi, we always

have∑
k∈[n]

ERi
[fi(Sk

i )] ≥ ERi
[fi(Si)] = fi(Si).

So hypothetically, if somehow we were able to set q = 1 and pk = 1 for every k ∈ [n]
simultaneously (which is of course impossible), then fixing any choice of fi and Si, the
above protocol would yield at least fi(Si) as the expected value for agent i. Further taking
expectation over fi and Si, this would imply a 1-approximate prophet inequality against the
welfare maximizing LP.

In reality, however, one cannot set pk to be large for all k simultaneously. In fact, these
probabilities must sum to 1. Still, our goal is to guarantee a decent fraction of fi(Si) for
any choice of fi and Si. This is possible when, for example, the total value of Si, fi(Si),
concentrates in relatively few entries among its n parts, {ERi [fi(Sk

i )]}k∈[n]. In such cases, we
can let r be uniformly distributed over the indices of these entries, leading to a competitive
ratio proportional to the number of such heavy entries. The key step here is analyzing the
distribution of fi(Si) into {fi(Sk

i )}k∈[n], over the randomness in Ri. We will further develop
the above intuition in later sections.

4 Warmup: the Case of Fractionally Subadditive Agents

We start with the relatively simple case of fractionally subadditive agents, the analysis for
which provides tools for the more involved cases to be handled in later sections. Throughout
this section, we consider the following choice of parameters: p1 = 1, pk = 0 for any 1 < k ≤ n,
and q = 1/2. That is, each agent is served with probability 1/2, and whenever an agent is
served, he receives all the items demanded which are not yet taken. We now analyze our
protocol with the above parameters for fractionally subadditive agents.

I Theorem 3. The protocol in Section 3 with p1 = 1, pk = 0 for any 1 < k ≤ n, and q = 1/2
is 4-competitive when agents are fractionally subadditive.

ESA 2020
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Proof. In light of Theorem 2, we only need to show that for any agent i, fixing fi and Si,

ERi [fi(S1
i )] ≥ 1

2fi(Si). (1)

The theorem then follows by plugging the above into Theorem 2 and taking expectation over
fi and Si, which yields

Efi,Si
[ERi

[ui | fi, Si]] = Efi,Si

[
1
2ERi

[fi(S1
i )]
]
≥ 1

4Efi,Si
[fi(Si)] = 1

4LPi.

Summing over the agents, we get the following lower bound on the expected welfare:

E

∑
i∈[n]

ui

 ≥ 1
4
∑
i∈[n]

LPi = 1
4LP ≥ 1

4OPT,

where the expectation is over all the randomness, both from the protocol and from the
realization of agents’ valuations. This gives precisely the desired competitive ratio of 4. The
rest of the proof is dedicated to establishing (1) when i, fi and Si are fixed.

Recall the following property of fractionally subadditive functions.

I Lemma 4. For fractionally subadditive f and any set of items S, let T be such that for
any j ∈ S, j ∈ T with probability at least p. Then

E[f(T )] ≥ p · f(S).

While this is sometimes considered standard, we give below a quick proof for completeness.

Proof. Let ck be the clause of f such that

f(S) = ck(S) =
∑
j∈S

ck({j}).

By the fractional subadditivity of f , for any S′ ⊆ S,

f(S′) ≥ ck(S′).

This is in particular true for T , which implies

E[f(T )] ≥ E[ck(T )]

=
∑
j∈S

E[I[j ∈ T ] · ck({j})]

=
∑
j∈S

Pr[j ∈ T ] · ck({j})

≥ p ·
∑
j∈S

ck({j})

= p · f(S). J

Given Lemma 4, the plan is to show that each item j in Si appears in S1
i with probability

at least 1/2. That is, with probability at least 1/2, no agent i′ < i demands item j and gets
served simultaneously. To see why this is true, consider the unconditional distribution of the
set Si′ demanded by any agent i′. Let yi′,S = Pr[Si′ = S] be the probability that agent i′

demands set S, over fi′ , g−i′ , and the random bits of the protocol. Note that yi′,S is not
random, and depends only on the prior F . We first show that {yi′,S}i′,S form a feasible
solution to the welfare maximizing LP, regardless of the actual valuations of the agents.
This is well-defined, since fixing n and m, the precise values of sets do not appear in any
constraint of the welfare maximizing LP.
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I Lemma 5. {yi′,S}i′,S satisfy:
for any agent i′ ∈ [n],

∑
S⊆[m] yi′,S ≤ 1,

for any item j ∈ [m],
∑

i′∈[n],S⊆[m]:j∈S yi′,S ≤ 1, and
for any i′ ∈ [n], S ⊆ [m], yi′,S ≥ 0.

Proof. Observe that according to the protocol, for any i′, S,

yi′,S = Efi′∼Fi′ ,g−i′∼F−i′ [xi′,S(fi′ , g−i′)] = E{fi′′}i′′∼F [xi,S({fi′′}i′′)].

In other words, yi′,S is the expected value of the variable xi′,S in the optimal solution to the
welfare maximizing LP, when valuations are distributed according to prior F . Now since
for any realization of {fi′′}i′′ , {xi′,S({fi′′}i′′)}i′,S satisfy the LP constraints, it follows from
linearity of expectation that the expected values {yi′,S}i′,S also satisfy the constraints. The
lemma follows. J

For any agent i′ and item j, let dj
i′ be the probability that item j is demanded by agent i′.

That is,

dj
i′ := Pr

fi′ ,g−i′
[j ∈ Si′ ] =

∑
S:j∈S

yi′,S .

The feasibility of yi′,S (Lemma 5) implies: for any j ∈ [m],∑
i′∈[n]

dj
i′ =

∑
i′∈[n],S:j∈S

yi′,S ≤ 1.

Also, whether agent i′ demands j is independent of whether i′ is served, so for any j ∈ [m],

Pr[∃i′ < i : (j ∈ Si′ ∧ i′ is served)] ≤
∑
i′<i

Pr[j ∈ Si′ ∧ i′ is served] (union bound)

≤
∑

i′∈[n]

Pr[j ∈ Si′ ∧ i′ is served]

=
∑

i′∈[n]

dj
i′ · Pr[seri′ = 1]

(independence of Si′ and seri′)

≤ 1 · q = 1
2 , (Lemma 5)

which concludes the proof of the theorem. J

5 The Case of Subadditive Agents

Equipped with tools developed in previous sections, now we proceed to the case of subadditive
agents. Here we choose q = 1 and

pk =
{

1/C, 1 ≤ k ≤ C

0, C < k ≤ n,

where C = min(100 log m/ log log m, n) = O(log m/ log log m). We prove the following bound
for subadditive agents.

I Theorem 6. The protocol in Section 3 with the above parameters is O(log m/ log log m)-
competitive when agents are subadditive.
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Proof. When n ≤ 100 log m/ log log m, the theorem is easy to prove. Below we focus on the
case where C = 100 log m/ log log m < n. Consider any agent i. Fix fi and Si. In light of
Theorem 2, our goal here is to show∑

1≤k≤C

ERi
[fi(Sk

i )] = Ω(fi(Si)). (2)

That is, the first C terms in {fi(Sk
i )}k∈[n] contribute a constant fraction of fi(Si) in expect-

ation. The theorem then again follows by plugging the above into Theorem 2, yielding

ERi
[ui | fi, Si] ≥ q ·

∑
1≤k≤C

pk · ERi
[fi(Sk

i )] = Ω(fi(Si)/C).

Taking expectation over fi and Si, and summing over the agents, we have∑
i

E[ui] ≥ Ω(1/C) ·
∑

i

E[fi(Si)] = Ω(1/C) · LP ≥ Ω(1/C) · OPT.

A competitive ratio of O(C) = O(log m/ log log m) follows. The rest of the proof is dedicated
to establishing (2) when i, fi and Si are fixed.

The plan is to show, with constant probability over Ri, Sk
i = ∅ for all k > C. Denote

this event by Ei. Whenever this happens,
⋃

1≤k≤C Sk
i = Si, and by the subadditivity of fi,∑

1≤k≤C

fi(Sk
i ) ≥ fi(Si).

As a result,∑
1≤k≤C

ERi [fi(Sk
i )] ≥

∑
1≤k≤C

ERi [fi(Sk
i ) | Ei] · Pr[Ei] ≥ Pr[Ei] · fi(Si).

We show below Pr[Ei] = Ω(1).
Fix an item j, and consider the probability that j ∈ Sk

i for some k > C, or equivalently,

Pr
[∑

i′<i

I[j ∈ Si′ ] ≥ C

]
.

To bound the above probability, recall the following fact about independent Bernoulli variables
(see, e.g., [14, 19]).

I Lemma 7. For any n ∈ Z+, independent Bernoulli random variables X1, . . . , Xn where
E
[∑

i∈[n] Xi

]
≤ 1, and any k ∈ Z+,

Pr
[∑

i

Xi ≥ k

]
= O

(
1
k!

)
= k−Ω(k).

The lemma says, that if the sum of independent Bernoulli variables in expectation does not
exceed 1, then the tail of this sum decays factorially fast. Now observe that S1, . . . , Si−1, and
therefore I[j ∈ S1], . . . , I[j ∈ Si−1] are independent. This is because for any i′, Si′ depends
only on fi′ and g−i′ . Also, since

E

[∑
i′<i

I[j ∈ Si′ ]
]

=
∑
i′<i

Pr[j ∈ Si′ ] =
∑
i′<i

di′

j ≤
∑

i′∈[n]

di′

j ≤ 1,
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random variables {I[j ∈ Si′ ]}i′<i satisfy the conditions of Lemma 7. So for large enough
m, we can bound the probability that j ∈ Sk

i for some k > C using Lemma 7. Recall that
C = 100 log m/ log log m. Plugging this in, Lemma 7 then gives

Pr
[∑

i′<i

I[j ∈ Si′ ] ≥ C

]
≤ C−Ω(C) = O

(
1

m2

)
.

Now taking a union bound over all items, we get

Pr[Ei] ≥ 1−
∑

j∈[m]

Pr
[∑

i′<i

I[j ∈ Si′ ] ≥ C

]
= 1−

∑
j∈[m]

O

(
1

m2

)
= 1−O

(
1
m

)
= Ω(1).

This concludes the proof of the theorem. J

6 Generalizing to Approximately Subadditive Agents

In this section, we consider valuations with superadditive width at most D > 0. In order to
utilize the boundedness of the superadditive width, we set q = 1

4D , and

pk =


1
2 + 1

2C , k = 1
1

2C , 1 < k ≤ C

0, C < k ≤ n,

where again C = min(100 log m/ log log m, n) = O(log m/ log log m). One may check that
{pk}k∈[n] in fact sum to 1. We prove the following competitive ratio.

I Theorem 8. The protocol in Section 3 with the above parameters is O(D log m/ log log m)-
competitive when all valuations have superadditive width at most D.

Proof. Again, fix an agent i, fi and Si. Our goal is to show that one of the following two
claims is always true:

Claim (i):

ERi
[fi(S1

i )] = Ω (fi(Si)/C) .

Claim (ii):∑
1≤k≤C

ERi
[fi(Sk

i )] = Ω(fi(Si)).

We first show how the above condition implies the theorem. Again, by applying Theorem 2,

ERi
[ui | fi, Si] ≥ q ·

∑
1≤k≤C

pk · ERi
[fi(Sk

i )]

= Ω(1/D) ·

ERi
[fi(Sk

i )] + 1
C

∑
1≤k≤C

ERi
[fi(Sk

i )]


= Ω(1/D) · Ω(fi(Si)/C)

= Ω
(

D log m

log log m
· fi(Si)

)
.

The theorem then follows by taking expectation over fi and Si, and summing over the agents.
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The rest of the proof is dedicated to establishing the above condition. We consider the
most valuable 2D items for agent i in Si, i.e.,

S∗i := argmaxS:S⊆Si,|S|≤2D fi(S).

We show below that when the value of S∗i , fi(S∗i ), is small, then Claim (i) holds. Otherwise,
Claim (ii) holds. Since fi and Si are fixed, one of the two claims is always true.

First suppose

fi(S∗i ) ≥ fi(Si)/(2C).

In such cases, we show that with constant probability, S∗i ⊆ S1
i . Whenever this happens,

monotonicity implies

fi(S1
i ) ≥ fi(S∗i ) ≥ fi(Si)/(2C).

Taking expectation over Ri, this implies Claim (i).
We now bound the probability that S∗i ⊆ S1

i . Fix j ∈ S∗i . Consider the probability that
j /∈ S1

i , or equivalently,

Pr
[∑

i′<i

I[j ∈ Si′ ∧ i′ is served] ≥ 1
]

.

We upper bound this probability in the following way.

Pr
[∑

i′<i

I[j ∈ Si′ ∧ i′ is served] ≥ 1
]
≤
∑
i′<i

Pr[j ∈ Si′ ∧ i′ is served] (union bound)

=
∑
i′<i

dj
i′ · q ≤

∑
i′∈[n]

dj
i′ · q

≤ q = 1
4D

. (Lemma 5)

So for any j ∈ S∗i ,

Pr[j /∈ S1
i ] ≤ 1

4D
.

Since |S∗i | = 2d, taking a union bound over all items in S∗i , we get

Pr[S∗i ⊆ S1
i ] ≥ 1−

∑
j∈S∗

i

Pr[j /∈ S1
i ] ≥ 1− 2D · 1

4D
= 1

2 .

This implies Claim (i) as argued above.
Now suppose

fi(S∗i ) < fi(Si)/(2C).

Given this, we show Claim (ii) holds. First we need the following property of valuations with
bounded superadditive width.

I Lemma 9 ([7]). Let f : 2[m] → R+ be a valuation function such that SAW(f) ≤ D. For
any S, T ⊆ [m],

f(S | T ) ≤ min
T ′:T ′⊆T,|T ′|≤D

f(S | T ′).
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Consider the prefix unions of {Sk
i }k∈[C]. To be precise, let U0

i = ∅, and for any k ∈ [C],

Uk
i = Uk−1

i ∪ Sk
i .

Recall that for any S, T ⊆ [m], fi(S | T ) = fi(S ∪T )− fi(T ) is the marginal value of S given
T . For any k ∈ [C], we have

fi(Uk
i ) = fi(Sk

i | Uk−1
i ) + fi(Uk−1

i )
≤ fi(Sk

i | X) + fi(Uk−1
i ), where X = argminS:S⊆Uk−1

i
,|S|≤D fi(Sk

i | S)
(Lemma 9)

≤ fi(Sk
i ∪X) + fi(Uk−1

i ) (monotonicity of fi)
= fi(X | Sk

i ) + fi(Sk
i ) + fi(Uk−1

i )
≤ fi(X | Y ) + fi(Sk

i ) + fi(Uk−1
i ), where Y = argminS:S⊆Sk

i
,|S|≤D fi(X | S)

(Lemma 9)
≤ fi(X ∪ Y ) + fi(Sk

i ) + fi(Uk−1
i ) (monotonicity)

≤ fi(S∗i ) + fi(Sk
i ) + fi(Uk−1

i ). (definition of S∗i and |X ∪ Y | ≤ |X|+ |Y | ≤ 2D)

Now recall that Ei is the event that for all k > C, Sk
i = ∅. In the proof of Theorem 6, we

have shown that Pr[Ei] = Ω(1). Also, whenever Ei happens, we have UC
i = Si. As a result,

when Ei happens, we can bound fi(Si) in the following way.

fi(Si) = fi(UC
i ) ≤ fi(S∗i ) + fi(SC

i ) + fi(UC−1
i )

≤ 2fi(S∗i ) + fi(SC
i ) + fi(SC−1

i ) + fi(UC−2
i )

≤ . . .

≤ C · fi(S∗i ) +
∑

1≤k≤C

fi(Sk
i ).

Compared to the subadditive case, here we have the additional term C · fi(S∗i ). However,
as we are in the world where fi(S∗i ) is small, this term does not affect the bound too much.
Concretely, whenever Ei happens, we have∑

1≤k≤C

fi(Sk
i ) ≥ fi(Si)− C · fi(S∗i ) > fi(Si)− C · fi(Si)

2C
= fi(Si)

2 .

Again, since Pr[Ei] = Ω(1), we have∑
1≤k≤C

ERi [fi(Sk
i )] = Ω(fi(Si)),

which is precisely Claim (ii), and therefore concludes the proof of the theorem. J
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