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Abstract
We consider the problem of building Distance Sensitivity Oracles (DSOs). Given a directed graph
G = (V, E) with edge weights in {1, 2, . . . , M}, we need to preprocess it into a data structure, and
answer the following queries: given vertices u, v, x ∈ V , output the length of the shortest path from u

to v that does not go through x. Our main result is a simple DSO with Õ(n2.7233M2) preprocessing
time and O(1) query time. Moreover, if the input graph is undirected, the preprocessing time can
be improved to Õ(n2.6865M2). Our algorithms are randomized with correct probability ≥ 1− 1/nc,
for a constant c that can be made arbitrarily large. Previously, there is a DSO with Õ(n2.8729M)
preprocessing time and polylog(n) query time [Chechik and Cohen, STOC’20].

At the core of our DSO is the following observation from [Bernstein and Karger, STOC’09]: if
there is a DSO with preprocessing time P and query time Q, then we can construct a DSO with
preprocessing time P + Õ(Mn2) ·Q and query time O(1). (Here Õ(·) hides polylog(n) factors.)
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1 Introduction

Suppose we are given a directed graph G = (V,E), and we want to build a data structure
that, given any three vertices u, v, x ∈ V , outputs the length of the shortest path from u to
v that does not go through x. Such a data structure is called a Distance Sensitivity Oracle
(or DSO for short).

The problem of constructing DSOs is motivated by the fact that real-life networks often
suffer from failures. Suppose we have a network with n nodes and m (directed) links, and we
want to route a package from a node u to another node v. Normally, it suffices to compute
the shortest path from u to v. However, if some node x in this network fails, then our route
cannot use x, and our task becomes to find the shortest path from u to v that does not go
through x. Usually, there is only a very small number of failures. In this paper, we consider
the simplest case, in which there is only one failed node.

The problem of constructing a DSO is well-studied: Demetrescu et al. [6] showed that
given a directed graph G = (V,E), there is a DSO which occupies O(n2 logn) space, and
can answer a query in O(1) time. Duan and Zhang [8] improved the space complexity to
O(n2), which is optimal for dense graphs (i.e. m = Θ(n2)).
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Unfortunately, the oracle in [6] requires a large preprocessing time (O(mn2 + n3 logn)).
In real-life applications, the preprocessing time of the DSO is also very important. Bernstein
and Karger [2, 3] improved this time bound to Õ(mn). Note that the All-Pairs Shortest
Paths (APSP) problem, which only asks the distances between each pair of vertices u, v, is
conjectured to require mn1−o(1) time to solve [13]. Since we can solve the APSP problem by
using a DSO, the preprocessing time Õ(mn) is optimal in this sense.

However, if the edge weights are small positive integers (that do not exceed M), then the
APSP problem can be solved in Õ(n2.58M0.7) time [20], which is significantly faster than
O(mn) for dense graphs with small weights (e.g. M = O(1)). Thus it might be possible to
obtain better results than [3] in the regime of small integer edge weights. Weimann and Yuster
[19] showed that for any constant α ∈ (0, 1), we can construct a DSO in Õ(n1−α+ωM) time.
Here ω < 2.3728639 is the exponent of matrix multiplication [10]. However, the query time
for this oracle is Õ(n1+α), which is superlinear. Later, Grandoni and Williams [12] showed
that for every constant α ∈ [0, 1], we can construct a DSO in Õ(nω+1/2M + nω+α(4−ω)M)
time, which answers each query in Õ(n1−α) time.

Recently, in an independent work, Chechik and Cohen [4] showed that a DSO with
polylog(n) query time can be constructed in Õ(Mn2.873) time, achieving both subcubic
preprocessing time and polylogarithmic query time. The space complexity for their DSO is
Õ(n2.5).

1.1 Our Results
In this work, we show improved and simplified constructions of DSOs. We start with an
observation.

I Observation 1 (informal version). If we have a DSO with preprocessing time P and query
time Q, then we can build a DSO with preprocessing time P + Õ(M · n2) ·Q and query time
O(1).

For α = 0.2, the oracle in [12] already achieves Õ(n2.8729M) preprocessing time and
O(n0.8) query time. Observation 1 implies that this query time can be brought down to
O(1).

Observation 1 can be proven by a close inspection of [3]: The algorithm in [3] for
constructing a DSO picks Õ(n2) carefully chosen queries (u, v, x), such that the answers of
all these queries can be computed in Õ(mn) time. Then from these answers, we can easily
compute a DSO with O(1) query time. If, instead of computing these answers in Õ(mn) time,
we use the given DSO to answer these queries, the preprocessing time becomes P + Õ(n2) ·Q.
As the proof essentially repeats the arguments in [3], we leave it in Appendix A.

Our main result is a simple construction of DSOs with preprocessing time Õ(n2.7233M2)
and query time O(1). If the input graph is undirected, we can achieve a better preprocessing
time of Õ(n2.6865M2).

I Theorem 2. We can construct a DSO with Õ(n2.7233M2) preprocessing time and O(1)
query time. Moreover, if the input graph is undirected, then we can construct a DSO with
Õ(n(3+ω)/2M2) = Õ(n2.6865M2) preprocessing time and O(1) query time. The construction
algorithms are randomized and yield valid DSOs w.h.p.1

1 We say that an event happens with high probability (w.h.p.), if it happens with probability 1− 1/nC ,
for some constant C that can be made arbitrarily large.
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We remark that two drawbacks of our results compared to [4, 12, 19] are that it does not
handle negative edge weights, and it has a worse (quadratic) dependence on M . However,
our results have the currently best dependence on n, and is conceptually simple. Also, the
space complexity of our DSO is Õ(n2), which is better than [4].

Non-unique shortest paths. A subtle technical issue is that the shortest paths in G may
not be unique. Normally, if we perturb every edge weight by a small random value, then we
can ensure that shortest paths are unique w.h.p. by the isolation lemma [15,18]. However, the
subcubic-time algorithms for shortest paths [16,17,20] depend crucially on the assumption
that edge weights are small integers, so we cannot perform the random perturbation.

Therefore, we have to work without assuming the uniqueness of shortest paths. It turns
out that Observation 1 is affected. Actually, if we assume the shortest paths are unique, we
can build a DSO with preprocessing time P + Õ(n2) ·Q in the conclusion of Observation 1,
regardless of the edge weights. However, without this assumption, Observation 1 somehow
needs Õ(Mn2) queries to the slower DSO, instead of Õ(n2). See Remark 5 and Remark 6
for more details.

1.2 Notation

We mainly stick to the notation used in [7], namely:
If p is a path, then |p| denotes the number of edges in it, and ‖p‖ denotes its length
(i.e. the total weight of its edges).
We use uv to denote the shortest path from u to v in the original graph, and uv � x the
shortest path from u to v that does not go through x. In the case that there are multiple
shortest paths, we will use e.g. “a path of the form uv �x” to denote an arbitrary shortest
path from uv in G− x (i.e. the graph G with vertex x deleted). Note that if x is not in
the original path uv, then ‖uv � x‖ = ‖uv‖.
Let p be a path from u to v. For two vertices a, b ∈ p such that a appears earlier than
b, we say the interval p[a, b] is the subpath from a to b, and p(a, b) is the path p[a, b]
without its endpoints (a and b). If the path p is known in the context, then we may omit
p and simply write [a, b] or (a, b).

We define MM(n1, n2, n3) as the complexity of multiplying an n1 × n2 matrix and
an n2 × n3 matrix. Let a, b, c be real numbers, we define ω(a, b, c) be the infimum over
all real numbers α such that MM(na, nb, nc) = O(nα). For any real number r, we have
ω(1, 1, r) = ω(1, r, 1) = ω(r, 1, 1) [14], and we denote ω(r) = ω(1, 1, r).

We also need the following adaptation of Zwick’s APSP algorithm [20] (see also [12,
Corollary 1]):

I Theorem 3. Given a directed graph G = (V,E) with edge weights in {1, 2, . . . ,M}, and
an integer r, we can compute the distances between every pair of nodes whose shortest path
uses at most r edges, in Õ(rM ·MM(n, n/r, n)) time.

Proof Sketch. We simply run the first dlog3/2 re iterations of the algorithm rand-short-
path in [20]. The correctness of this algorithm is guaranteed by [20, Lemma 4.2]. J
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2 Constructing a DSO in Õ(n2.7233M2) Time

In this section, we prove Theorem 2.

I Theorem 2. We can construct a DSO with Õ(n2.7233M2) preprocessing time and O(1)
query time. Moreover, if the input graph is undirected, then we can construct a DSO with
Õ(n(3+ω)/2M2) = Õ(n2.6865M2) preprocessing time and O(1) query time. The construction
algorithms are randomized and yield valid DSOs w.h.p.

Given an integer r and a graph G = (V,E), we define an r-truncated DSO to be a data
structure that, when given a query (u, v, x), outputs the value min{‖uv � x‖, r}. In other
words, an r-truncated DSO is a DSO which only needs to be correct when the path uv � x
has length at most r. If this length is greater than r, it outputs r instead.

Inspired by Zwick’s APSP algorithm [20], our main idea is to compute an r-truncated
DSO for every r = (3/2)i. Our strategies for small r and large r are completely different.

When r is small, the sampling approach in [12,19] already suffices. Fix a particular query
(u, v, x), we assume that ‖uv � x‖ ≤ r. In particular, if we fix any path of the form uv � x,
then this path contains at most r + 1 vertices. Suppose we sample a graph by discarding
each vertex w.p. 1/r. With probability Ω(1/r), the resulting graph would “capture” this
query in the sense that x is not in it but uv � x is completely included in it. Therefore, if we
take Õ(r) independent samples, and compute APSP for each sampled subgraph, we can deal
with all queries w.h.p.

For large r, our idea is to compute a (3/2)r-truncated DSO from an r-truncated DSO.
More precisely, given an r-truncated DSO with O(1) query time, we can compute a (3/2)r-
truncated DSO with Õ(Mn/r) query time. First we sample a bridging set (cf. [20]) H of
size Õ(Mn/r). Let (u, v, x) be a query such that r ≤ ‖uv � x‖ ≤ (3/2)r, then w.h.p. there is
a “bridging vertex” h ∈ H such that h is on some path of the form uv � x, and both of the
queries (u, h, x) and (h, v, x) are captured by the r-truncated DSO. If we iterate through H,
we can answer the query (u, v, x) in Õ(Mn/r) time. Then we use an “r-truncated” version of
Observation 1 to transform this (3/2)r-truncated DSO into a new one with O(1) query time.

2.1 Case I: r is Small
We make r̃ = d4Cr lnne independent samples of graphs G1, G2, . . . , Gr̃, where C is a large
enough constant. The vertex set V (Gi) of each graph is sampled by including each vertex
independently w.p. 1− 1/r. The graph Gi is simply the induced subgraph of G on vertices
V (Gi). Then, for each 1 ≤ i ≤ r̃, we compute all-pairs shortest paths of the graph Gi, but
we only compute the shortest paths that use at most r edges. By Theorem 3, this step can
be done in Õ(rM ·MM(n, n/r, n)) time for each graph Gi. Alternatively, if the input graph
is undirected, then this step can be done in Õ(Mnω) time [16,17] for each Gi.

Consider a query (u, v, x), assume that ‖uv � x‖ ≤ r, and fix any path of the form uv � x.
Let 1 ≤ i ≤ r̃, we say i is good for the query (u, v, x), if both of the following hold.

The graph Gi does not contain the failed vertex x.
The graph Gi contains the path uv � x entirely.

For every i (1 ≤ i ≤ r̃), the probability that i is good for the particular query (u, v, x) is
at least

(1/r) · (1− 1/r)r ≥ 1/4r (if r ≥ 2).
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Given a query (u, v, x), we iterate through every i’s such that x 6∈ V (Gi), and take the
smallest value among the distances from u to v in these graphs Gi. With high probability,
there are only Õ(1) valid i’s such that x 6∈ V (Gi), and we can preprocess this set of i’s for
every x ∈ V . Therefore the query time is Õ(1).

The algorithm succeeds at a query (u, v, x) if there is an i that is good for (u, v, x). Since
the Gi’s are independent, the probability that there is an i good for (u, v, x) is at least

1− (1− 1/4r)r̃ ≥ 1− 1/nC .

By a union bound over all n3 triples of possible queries (u, v, x), it follows that our data
structure is correct w.p. at least 1− 1/nC−3, which is high probability.

In conclusion, there is an r-truncated DSO with Õ(1) query time, whose preprocessing
time is Õ(r̃ · rM ·MM(n, n/r, n)) for directed graphs, and Õ(r̃ ·Mnω) for undirected graphs.

2.2 An Observation
We need the following observation (“r-truncated” version of Observation 1), which roughly
states that given an r-truncated DSO with preprocessing time P and query time Q, we can
build an r-truncated DSO with preprocessing time P + Õ(Mn2) ·Q and query time O(1).
More formally, we have:

I Observation 4. Let r be an integer, G = (V,E) be an input graph whose edge weights are
in {1, 2, . . . ,M}, and D be an arbitrary r-truncated DSO. We can construct Fast(D), which
is an r-truncated DSO with O(1) query time and a preprocessing algorithm as follows.

It first computes the distance matrix of G, and the outgoing shortest path trees rooted at
each vertex.
Then it invokes the preprocessing algorithm of D on the input graph G.
At last, it makes Õ(Mn2) queries to D, and spends Õ(Mn2) additional time to finish the
preprocessing algorithm.
We emphasize the following technical details that are not reflected in the informal

statement of Observation 1. First, we need to compute the distance matrix and outgoing
shortest path trees of G (henceforth the “APSP data” of G) before using D. The APSP data
can be computed in Õ(Mn2.58) time [20], and in particular, the wit-to-suc algorithm in
[20] describes how to compute the shortest path trees efficiently. Second, the preprocessing
algorithm of D is called only once, and on the same graph G (on which we have already
computed the APSP data). The reason that the second detail is important is: Suppose we
have another routine that given an r-truncated DSO D, constructs Extend(D) which is a
(3/2)r-truncated DSO with a possibly large query time. Then given an 1-truncated DSO
Dstart, we can construct a (normal) DSO as follows:

Dfinal = Fast(Extend(Fast(Extend(. . .Extend(Dstart)))))︸ ︷︷ ︸
O(logn) times

.

However, even if the preprocessing algorithm of Fast(D) invokes the preprocessing al-
gorithm of D twice, the preprocessing algorithm of Dfinal would invoke a polynomial times
the preprocessing algorithm of Dstart, which is too many. In contrast, if the preprocessing
algorithm of both Fast(D) and Extend(D) only invokes the preprocessing algorithm of D
once, then the preprocessing algorithm of Dfinal would also invoke the preprocessing algorithm
of Dstart only once, which is okay.

ESA 2020



79:6 Improved DSOs with Subcubic Preprocessing Time

2.3 Case II: r is Large
Suppose we have an r-truncated DSO D, which has preprocessing time P and query time
O(1). We show how to construct a (3/2)r-truncated DSO, which we name as Extend(D),
with preprocessing time P +O(n2) and query time Õ(nM/r). This is done by the following
bridging set argument.

Let P be a set of paths that contains exactly one path of the form uv � x, for every u, v, x
such that r ≤ ‖uv � x‖ < (3/2)r. This corresponds to the paths that D cannot deal with,
but Extend(D) has to output the correct answer. Let p = uv � x ∈ P, mid(p) be the set of
vertices y ∈ p such that ‖p[u, y]‖ < r and ‖p[y, v]‖ < r. (See Figure 1.) For every y ∈ mid(p),
as p[u, y], p[y, v] are of the form uy � x and yv � x respectively, it follows that D can find
‖uy � x‖ and ‖yv � x‖ correctly. Moreover, |mid(p)| ≥ r/3M .

r

r
︸ ︷︷ ︸

mid(p)

u
y

v

v

Figure 1 Example of a path p = uv � x. If we can find a vertex y ∈ mid(p), then we can use D to
compute ‖uy � x‖ and ‖yv � x‖, thus to compute the length of p.

Fix a large enough constant C, the preprocessing algorithm of Extend(D) is as follows:
We preprocess D, and then randomly sample a set H of vertices, where every vertex v ∈ V is
in H with probability min{1, 3CM lnn/r} independently. We have |H| = Õ(nM/r) w.h.p.

Fix u, v, x ∈ V , suppose p = uv � x and r ≤ ‖p‖ < (3/2)r. Then the probability that H
hits mid(p) (i.e. H ∩mid(p) 6= ∅) is at least

1− (1− 3CM lnn/r)r/3M ≥ 1− 1/nC .

By a union bound over O(n3) paths in P, it follows that w.h.p. H hits mid(p) for every
path p ∈ P.

The query algorithm for Extend(D) is as follows: Given a query (u, v, x), if D(u, v, x) < r,
then we output D(u, v, x); otherwise we output

min
{

(3/2)r,min
h∈H
{D(u, h, x) +D(h, v, x)}

}
.

It is easy to see that Extend(D) is a correct (3/2)r-truncated DSO, has preprocessing time
P +O(n2) and query time Õ(nM/r).

2.4 Putting it Together
Let a ∈ [0, 1] be a constant that we pick later, and r = na. To start, we invoke Section 2.1 to
build an r-truncated DSO for r = na, which costs Õ(r2M ·MM(n, n/r, n)) time for directed
graphs or Õ(r ·Mnω) for undirected graphs. Then for every 1 ≤ i ≤ dlog3/2(Mn/r)e, suppose
we have an r(3/2)i−1-truncated DSO Di−1, we can construct Di = Fast(Extend(Di−1)) which
is an r(3/2)i-truncated DSO. This step costs Õ(n3M2/(r(3/2)i)) time. The preprocessing
algorithm terminates when i = i? = dlog3/2(Mn/r)e = O(logn), and we obtain an r(3/2)i? -
truncated DSO which is a (normal) DSO.
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Case 1: the input graph is undirected. The total preprocessing time is

Õ
(
r ·Mnω + n3M2/r

)
= Õ

(
nmax{ω+a,3−a}M2

)
.

When a = (3− ω)/2, this time complexity is Õ(n(3+ω)/2M2) = Õ(n2.6865M2).
Therefore, given an undirected graph G = (V,E), there is a DSO with Õ(n2.6865M2)

preprocessing time and O(1) query time.

Case 2: the input graph is directed. The total preprocessing time is

Õ
(
r2M ·MM(n, n/r, n) + n3M2/r

)
= Õ

(
n2a+ω(1−a)M + n3−aM2

)
.

(Recall that ω(1− a) is the exponent of multiplying an n× n1−a matrix and an n1−a × n
matrix.)

Let a = 0.276724, then 1− a = 0.723276. By convexity of the function ω(·) [14], we have

ω(1− a) ≤ (a− 0.25)ω(0.7) + (0.3− a)ω(0.75)
0.75− 0.7 .

We substitute ω(0.7) ≤ 2.154399 and ω(0.75) ≤ 2.187543 [11], and obtain:

ω(1− a) ≤ 20 · ((a− 0.25) · 2.154399 + (0.3− a) · 2.187543) ≤ 2.169829.

Therefore, given a directed graph G = (V,E), there is a DSO with

Õ
(
nmax{2a+ω(1−a),3−a}M2

)
= Õ(n2.723277M2).

preprocessing time and O(1) query time.

3 Open Questions

The main open problem after this work is to improve the preprocessing time for DSOs. We
believe it should be possible to overcome the issue that shortest paths are not unique, and
improve the preprocessing time of the oracle specified in Observation 1 and Observation 4 to
P + Õ(n2) ·Q (dropping the M factor). Then, we can build DSOs with O(1) query time,
and Õ(n2.7233M) preprocessing time (for directed graphs), or Õ(n(3+ω)/2M) preprocessing
time (for undirected graphs).

Can we improve the preprocessing time for directed graphs to Õ(n2.58M), matching the
current best algorithm for APSP in directed graphs [20]? Can we improve the preprocessing
time for undirected graphs to Õ(nωM), matching the nearly-optimal algorithm for APSP in
undirected graphs [16,17]?
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A Proof of Observation 4 and Observation 1

In this section, we prove Observation 4. Note that Observation 1 follows from Observation 4
by setting r = +∞.

I Observation 4. Let r be an integer, G = (V,E) be an input graph whose edge weights are
in {1, 2, . . . ,M}, and D be an arbitrary r-truncated DSO. We can construct Fast(D), which
is an r-truncated DSO with O(1) query time and a preprocessing algorithm as follows.

It first computes the distance matrix of G, and the outgoing shortest path trees rooted at
each vertex.
Then it invokes the preprocessing algorithm of D on the input graph G.
At last, it makes Õ(Mn2) queries to D, and spends Õ(Mn2) additional time to finish the
preprocessing algorithm.
Let Tout(u) be the outgoing shortest path tree rooted at u. In this section, the notation

uv denotes the shortest path from u to v in the tree Tout(u). In particular, for any x ∈ uv,
the path ux is guaranteed to be a subpath of uv.

A.1 The Preprocessing Algorithm
We review and slightly modify the preprocessing algorithm of [3]. For convenience, we denote
‖p‖r = min{‖p‖, r} for any path p and number r.

We define a path to be good if it is a subpath of some shortest path in the shortest path
trees. In other words, for any vertices u, v, x ∈ V such that x ∈ uv, we say the subpath
(uv)[x, v] is good. Note that if the shortest paths in G are unique, then the set of good paths
coincides with the set of shortest paths in G. Also note that there are only O(n3) good paths
even if the shortest paths are not unique.

Assigning priorities. We assign each vertex a priority, which is independently sampled from
the following distribution: for any positive integer c, each vertex has priority c w.p. 1/2c.
Denote c(v) the priority of the vertex v. With high probability, all of the following are true:

The maximum priority is O(logn).
For every c ≤ O(logn), there are Õ(n/2c) vertices with priority c.
Let C be a large enough constant. For every good path p with at least C · 2c logn edges,
there is a vertex on p whose priority is greater than c.

In the following discussions, we will assume that all of the above assumptions hold.
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Fix a pair u, v ∈ V , let si be the first vertex in uv with priority ≥ i, and ti be the last
such vertex. Then we can write the path uv as

u s1  s2  . . . sO(logn)  tO(logn)  . . . t1  v.

We say that the vertices u, v, si, ti are key vertices, and the i-th key vertex is denoted as ki.
Then the path uv can also be written as

u = k0  k1  . . . kO(logn) = v.

It is important to see that

|(uv)[ki, ki+1]| ≤ C · 2min{c(ki),c(ki+1)} logn (1)

for every valid i, as otherwise there will be another key vertex between ki and ki+1.

Data structure for quick location. Suppose we are given a query (u, v, x), the first thing we
should do is to “locate” x, i.e. find the key vertices ki, ki+1 ∈ uv such that x ∈ (uv)[ki, ki+1].
We will utilize the following data (cf. [2]).

For every u, v ∈ V , we compute
CL[u, v, c] (for “center left”): the first vertex in uv with priority at least c; and
CR[u, v, c] (for “center right”): the last vertex in uv with priority at least c.

It is easy to compute these numbers in Õ(n2) time: for each priority c and each vertex
u ∈ V , we simply perform a depth-first search on the outgoing shortest path tree Tout(u)
rooted at u to compute all CL[u, ·, c] and CR[u, ·, c].

We also compute a structure called BCP (for “biggest center priority”). In this structure,
for each vertex u ∈ V , we preprocess the outgoing shortest path tree Tout(u) rooted at u
in Õ(n) time such that given any vertices x, y ∈ V , we can find the biggest priority of any
vertex on the path from x to y in Tout(u) in O(1) time [5]. Then, given any good path p (p is
specified by vertices u, v, x and p = (uv)[x, v]), we can find the biggest priority of any vertex
on p in O(1) time.

In addition, for every u, v ∈ V , we store the key vertices on uv into a hash table of size
O(logn). Given a vertex x, we can output whether x is among these key vertices on uv in
O(1) worst-case time [9].

Data structure for avoiding a failure. We use D to preprocess the input graph. Then we
compute the following data:
(Data a) For every u, v ∈ V , and every 1 ≤ i ≤ min{M · C · 2c(u) logn, |uv|}, let xi be the

i-th vertex in the path uv. (Here u is the 0-th vertex.) We compute and store
the value ‖uv � xi‖r. Symmetrically, let x−i be the last i-th vertex in the path vu
(not uv!), for every 1 ≤ i ≤ min{M · C · 2c(u) logn, |vu|}, we compute and store
‖vu � x−i‖r.

(Data b) For every u, v ∈ V and consecutive key vertices ki, ki+1 ∈ uv, let y be the vertex in
the portion ki  ki+1 that maximizes ‖uv � y‖r. We compute and store ‖uv � y‖r.

(Data c) For every u, v ∈ V and key vertex ki ∈ uv, we compute and store ‖uv � ki‖r.

For each priority c ≤ Õ(1), there are Õ(n/2c) vertices u whose priority is exactly c.
In (Data a), we make Õ(nM2c) queries for each such u (Õ(M2c) queries for each v ∈ V ).
Therefore in total, we make Õ(Mn2) queries in (Data a). We will show in Appendix A.3
that we can compute (Data b) using Õ(n2) queries to D and Õ(n2) additional time. (Data
c) can be computed in Õ(n2) queries easily.
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I Remark 5. If shortest paths in G are unique, then in (Data a) we only need to store
‖uv � xi‖r and ‖vu � x−i‖r for i ≤ C · 2c(u) logn (shaving off a factor of M). The reason will
be evident when we see the query algorithm.

A.2 The Query Algorithm
Let (u, v, x) be a query. We check whether x ∈ uv in O(1) time on the shortest path tree
Tout(u). If x 6∈ uv, then it is easy to see that ‖uv � x‖r = ‖uv‖r.

We check whether x is a key vertex on uv (that is, x = ki for some i), using the hash
tables. If this is the case, we return ‖uv � x‖r stored in (Data c) immediately.

Otherwise, we start by finding two consecutive key vertices ki, ki+1 ∈ uv such that
x ∈ [ki, ki+1]. Recall that, if ` is the biggest priority of any vertex on uv, then the key
vertices on uv are

(u =)CL[u, v, 1] CL[u, v, 2] . . . CL[u, v, `] CR[u, v, `] . . . CR[u, v, 2] CR[u, v, 1](= v).

Therefore, we can find ki in O(1) time using the following procedure. Let c1 be the biggest
priority of any vertex in ux (which coincides the [u, x] portion of uv), and c2 be the biggest
priority of any vertex in the [x, v] portion of uv. We can compute c1, c2 from the structure
BCP in O(1) time. If c2 = `, then x is in the range (u,CR[u, v, `]), so ki = CL[u, v, c1].
Otherwise, x is in the range (CR[u, v, `], v), so ki = CR[u, v, c2 + 1]. We can find ki+1
similarly.

By (1), if ki = u, then |(uv)[u, x]| ≤ C ·2c(u) logn, and we can look up the value ‖uv �x‖r
from (Data a) directly. Similarly, if ki+1 = v then we can also look up ‖uv � x‖r from
(Data a).

Now we assume that ki 6= u and ki+1 6= v. A crucial observation is that

‖uv � x‖ = min{‖uki+1 � x‖+ ‖ki+1v‖, ‖uki‖+ ‖kiv � x‖, ‖uv � y‖}, (2)

where y is the vertex in [ki, ki+1] that maximizes ‖uv � y‖. The proof of (2) is as follows:
(i) If there is a path of the form uv�x that goes through ki, then ‖uv�x‖ = ‖uki‖+‖kiv�x‖.
(ii) If there is a path of the form uv � x that goes through ki+1, then ‖uv � x‖ = ‖uki+1 �

x‖+ ‖ki+1v‖.
(iii) If every path of the form uv � x does not through either ki or ki+1, then every path

of the form uv � x avoids the entire portion of ki  ki+1, thus also avoids y. We have
‖uv �x‖ ≥ ‖uv �y‖. But ‖uv �y‖ ≥ ‖uv �x‖ by definition of y, thus ‖uv �x‖ = ‖uv �y‖.

It is easy to see that a similar equation holds for r-truncated DSOs:

‖uv � x‖r = min{‖uki+1 � x‖r + ‖ki+1v‖, ‖uki‖+ ‖kiv � x‖r, ‖uv � y‖r, r}, (3)

where y is any vertex in [ki, ki+1] that maximizes ‖uv � y‖r.
Recall that we already know the values ‖uki‖ and ‖ki+1v‖. To compute ‖uki+1 � x‖r, we

note that if x is the last j-th vertex in uki+1, then j ≤ C · 2c(ki+1) logn. Therefore we can
look up the value of ‖uki+1 � x‖r from (Data a). Similarly, to compute ‖kiv � x‖r, we note
that if x is the j-th vertex in the ki  v portion of the path uv, then j ≤ C · 2c(ki) logn.
However, kiv may be different from the ki  v portion of the path uv. Nevertheless, since
‖kix‖ = ‖(uv)[ki, x]‖ ≤ M · C · 2c(ki) logn, we also have |kix| ≤ M · C · 2c(ki) logn, so we
can still look up the value ‖kiv � x‖r in (Data a). Finally, we can look up ‖uv � y‖r from
(Data b).

We can see that the query time is O(1).

ESA 2020



79:12 Improved DSOs with Subcubic Preprocessing Time

I Remark 6. If shortest paths in G are unique, then the path kiv actually coincides with the
ki  v portion of the path uv. Therefore, |kix| = |(uv)[ki, x]| ≤ C · 2c(ki) logn. In this case
we do not need to “sacrifice” a factor of M in (Data a): We can look up ‖kiv � x‖r even if
we only stored the values ‖kiv � xi′‖r for i′ ≤ C · 2c(ki) logn, as in Remark 5.

A.3 Computing (Data b)
We will use the following notation. Let p be a path from u to v which is fixed in context,
and a, b be two vertices in p. We will say that a < b if |p[u, a]| < |p[u, b]|, i.e. a appears
strictly before b on the path p. Similarly, a > b, a ≤ b, a ≥ b mean |p[u, a]| > |p[u, b]|,
|p[u, a]| ≤ |p[u, b]|, |p[u, a]| ≥ |p[u, b]| respectively.

Let u, v ∈ V and s < t be two vertices on the path uv. Let y ∈ (uv)[s, t] be the vertex
in (uv)[s, t] which maximizes ‖uv � y‖r. We first show that assuming we have built some
oracles, we can find this vertex y in O(logn) oracle calls and O(logn) additional time. The
idea is to use a binary search described in [3, Section 6].

I Lemma 7. Let r be an integer, u, v ∈ V , p be the path uv, and s, t be two vertices on p
such that u < s < t < v. Suppose we have the following oracles, each with O(1) query time:

an oracle that given a vertex x ∈ p[s, t], outputs ‖ut � x‖r;
an oracle that given a vertex x ∈ p[s, t], outputs ‖sv � x‖r;
an oracle that given an interval p[s′, t′] such that s ≤ s′ ≤ t′ ≤ t, outputs a vertex
x ∈ p[s′, t′] that maximizes the value ‖ut � x‖r.

Then we can find a vertex y ∈ p[s, t] which maximizes ‖uv � y‖r in O(logn) time.

u vs ts′ t′qy

Figure 2 If every path of the form sv � y does not go through t, then every path of the form
sv � y does not go through the whole interval p[q, t′].

Proof. For any y ∈ p[s, t], we denote

h(y) = min{‖ut � y‖r + ‖tv‖, ‖us‖+ ‖sv � y‖r, r}.

By (3), we have ‖uv � y‖r = min{h(y), ‖uv � y?‖r} where y? is some vertex independent of y.
Thus it suffices to find some y ∈ p[s, t] that maximizes h(y).

We use a binary search. Assume that we know the optimal y is in some interval p[s′, t′],
where s ≤ s′ < t′ ≤ t. (Initially we set s′ = s and t′ = t.) If |p[s′, t′]| = O(1) then we can use
brute force to find a vertex y ∈ p[s′, t′] that maximizes h(y). Otherwise let q be the middle
point of p[s′, t′], and we use the third oracle to find a vertex y ∈ p[s′, q] that maximizes
‖ut � y‖r. There are two cases:

If min{‖ut � y‖r + ‖tv‖, r} = h(y), then we can restrict our attention to the interval
p[q, t′]. This is because for every vertex x ∈ p[s′, q],

h(x) ≤ min{‖ut � x‖r + ‖tv‖, r} ≤ min{‖ut � y‖r + ‖tv‖, r} ≤ h(y).

Otherwise, h(y) = ‖us‖+‖sv �y‖r, and every path of the form sv �y does not go through
t. Therefore every path of the form sv � y avoids every vertex in p[q, t′]. (See Figure 2.)
For every vertex x ∈ p[q, t′],

h(x) ≤ ‖us‖+ ‖sv � y‖ ≤ h(y).



H. Ren 79:13

It follows that we can restrict our attention to the interval [s′, q] now.
Therefore, we can always shrink the length of our candidate interval p[s′, t′] by a half. It
follows that we can find the desired vertex y in O(logn) time. J

Now we show how to compute (Data b) in Õ(n2) time (assuming that (Data a) is ready).
The most crucial ingredient is the following Range Maximum Query (RMQ) structures (used
in the third item of Lemma 7).

For every u, v ∈ V , consider the following sequence (of length ` = min{|uv| − 1, C ·
2c(v) logn}):

(‖uv � x−1‖r, ‖uv � x−2‖r, . . . , ‖uv � x−`‖r),

where x−i denotes the last i-th vertex in the path uv (v is the last 0-th). We build an
RMQ structure of this sequence, which given a query (s, t) (1 ≤ s ≤ t ≤ `), outputs a
number i ∈ [s, t] that maximizes ‖uv � x−i‖r. After we compute the above sequence, this
data structure can be preprocessed in O(`) time, and each query costs O(1) time [1].

For every priority c ≤ O(logn), there are Õ(n/2c) vertices v of this priority, and for each
vertex v we construct n RMQ structures (one for each u ∈ V ) on length-Õ(2c) sequences.
The total size of these RMQ structures is

O(logn)∑
c=1

Õ(n/2c) · n · Õ(2c) = Õ(n2).

Therefore, these RMQ structures can be preprocessed in Õ(n2) time. (Note that every
element ‖uv � x−i‖r is already computed in (Data a).)

To compute (Data b), we enumerate u, v, ki, ki+1 where ki, ki+1 are consecutive key
vertices in uv. There are Õ(n2) possible combinations of (u, v, ki, ki+1). As argued in
Appendix A.2, we know that the following data are already computed in (Data a):
‖uki+1 � x‖r, for any x ∈ (uv)[ki, ki+1];
‖kiv � x‖r, for any x ∈ (uv)[ki, ki+1].

Since uki+1 is a prefix of uv (as defined in the outgoing shortest path trees), we also have
the following RMQ oracles constructed above:

An oracle that given any interval [s′, t′] on the path uv such that ki ≤ s′ ≤ t′ ≤ ki+1,
finds the vertex y ∈ [s′, t′] that maximizes ‖uki+1 � y‖r in O(1) time.

It follows from Lemma 7 that we can find a vertex y ∈ (uv)[ki, ki+1] that maximizes
‖uv � y‖r in O(logn) time. The total time for computing (Data b) is thus Õ(n2).
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