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—— Abstract

We consider the maximum cardinality matching problem in bipartite graphs. There are a number

of exact, deterministic algorithms for this purpose, whose complexities are high in practice. There
are randomized approaches for special classes of bipartite graphs. Random 2-out bipartite graphs,
where each vertex chooses two neighbors at random from the other side, form one class for which
there is an O(m + nlogn)-time Monte Carlo algorithm. Regular bipartite graphs, where all vertices
have the same degree, form another class for which there is an expected O(m + nlogn)-time Las
Vegas algorithm. We investigate these two algorithms and turn them into practical heuristics with
randomization. Experimental results show that the heuristics are fast and obtain near optimal
matchings. They are also more robust than the state of the art heuristics used in the cardinality
matching algorithms, and are generally more useful as initialization routines.
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1 Introduction

A matching in a graph is a set of edges, such that no two of them share a common vertex.
We consider the mazimum cardinality problem in bipartite graphs which asks for a matching
with maximum cardinality. There are a number of exact algorithms for this problem. The
best known algorithms [21] run in O(m+/n) time for a graph with n vertices and m edges.
Such complexity can be prohibiting for large instances. For this reason, there is significant
interest in algorithms which can find large matchings in linear or near linear time [37]. The
practical use of approximate matchings in applications [33] and as an initialization to exact
algorithms [30] are well known.

We investigate two randomized algorithms by Karp et al. [22] and Goel et al. [18], both
of which run in O(m + nlogn) time. The former algorithm finds, almost surely, maximum
cardinality matchings on random graphs formed by allowing each vertex to select two
vertices from the other side uniformly at random. The latter algorithm finds maximum
cardinality matchings in regular bipartite graphs, where all vertices have equal degree. In
both of these classes of graphs, the bipartite graphs have equal number of vertices in each
part, and the maximum cardinality matchings cover all vertices (such matchings are called
perfect). We investigate these two theoretical algorithms for very special cases of bipartite
graphs and convert them to efficient heuristics for general bipartite graphs. We discuss
our implementations and investigate the performance of the resulting heuristics in terms of
run time and the matching cardinality. Both heuristics run in near linear time and obtain
matchings whose cardinality is more than 0.99 of the maximum, even in cases where the
current state of the art approaches have difficulties.
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The rest of the paper is organized as follows. In Section 2, we give the necessary
background. In Sections 3.1 and 3.2 we review the existing randomized algorithms and then
discuss how we adapt them. Section 4 contains the experimental results, and Section 5
concludes the paper. Appendices A—D provide some additional results and discussion.

2 Background and notation

Let G = (RUC, FE) be a bipartite graph, where R and C' are two disjoint set of vertices, and
E is the set of edges. The bipartite graph G can be represented with a matrix Ag. The
vertex r; € R corresponds to the 7th row, and the vertex c¢; € C corresponds to the jth
column, so that Ag(i,7) =1 if and only if (r;,¢;) € E. We will refer to vertices of R as rows
and to those of C as columns from this point on, and use A to refer to Ag.

Let M be a matching. For (u,v) € M, the vertices u and v are matched, and they are
each other’s mate. A vertex is called free if it is not matched by M. If there are no free
vertices in R or in C, then M is called perfect. An augmenting path with respect to M is a
path which starts with a free vertex and ends at another free vertex, where every second
edge is in M. A matching is maximum if and only if there are no augmenting paths [7].

A square matrix is called doubly stochastic if the sum of entries in each row and column is
equal to one. An n x n matrix A has support if there is a perfect matching in the associated
bipartite graph G. A is said to have total support if each edge in G is used in a perfect
matching. A square matrix is fully indecomposable, if it has total support and cannot be
permuted into a block diagonal matrix. Any nonnegative matrix A with total support can be
scaled with two positive diagonal matrices Dg and D¢ such that Ag = DR ADc is doubly
stochastic, and if A is fully indecomposable, then the matrices Dr and D¢ are unique. The
Sinkhorn-Knopp algorithm [38] is a well-known method for finding such Dg and D¢ for a
given matrix. This is an iterative algorithm, where at each iteration each row is normalized to
have unit length, and then each column is normalized to have unit length. If a given matrix
A has total support, then Sinkhorn-Knopp algorithm finds the unique scaling matrices. If A
has support but not total support, then entries that cannot be put into a perfect matching
tend to zero. The method converges with an asymptotical convergence rate depending on
the second singular value of the final doubly stochastic matrix. There are other iterative,
faster converging methods [1, 10, 28], whose iterations are more sophisticated than that of
Sinkhorn—Knopp’s.

A Ek-out subgraph Gj of a host graph G is defined by allowing each vertex in G to
randomly select uniformly k of its neighbors, and the union of all selections forms the edge
set of G. Walkup [40] shows that in the pure random k-out setting, where the host graph is
the complete bipartite graph, the resulting Gy, has a perfect matching with high probability
for £ > 2. We do not know any general result about properties of G5 sampled from any
arbitrary host graph. Frieze and Johansson [17] investigate some other properties of Gys on
host graphs where the minimum degree of a vertex is at least n/2. Dufossé et al. [16] propose
using the doubly stochastic matrix Ag (scaled version of the matrix representation) for
sampling and show an approximation result for Gy, when A has total support. We give some
experiments in which Gas generated using the same probabilities have perfect matchings in
majority of the cases.

Two popular classes of randomized algorithms are Las Vegas and Monte Carlo algorithms.
Las Vegas algorithms always return a correct answer, but their run time can depend on
random choices, whereas Monte Carlo algorithms can fail with small probability, but their
complexity is independent of the random choices made (see for example [34, p. 70]).
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There are a number of heuristics for the cardinality matching problem [30, 37] (see
Appendix A for a relevant discussion). Among those, that by Karp and Sipser [23] is very
well known and widely used. This heuristic eliminates vertices of degree at most two in the
following way. It matches any degree-1 vertices with their neighbors (and discards both), or
merges the neighbors of a degree-2 vertex (which is then discarded) to a single node, and
removes any parallel edges that occur. If neither operation can be done, it matches a pair of
vertices randomly.

3  Two heuristics

We describe the original Monte Carlo algorithm [22] for finding perfect matchings in 2-out
bipartite graphs in Section 3.1 and the original Las Vegas algorithm [18] for finding perfect
matchings in d-regular bipartite graphs in Section 3.2. These two algorithms are based on
uniform sampling. We generalize these two algorithms to general bipartite graphs within a
common framework. The framework we propose scales the adjacency matrix of the input
bipartite graph and uses the nonzero values of the scaled matrix for sampling. We also
identify and fix an oversight in the description of the Monte Carlo algorithm, and describe
efficient implementations of the two heuristics.

3.1 20utMC: Monte Carlo on 2-out graphs
3.1.1 Description of the algorithm

The Monte Carlo algorithm by Karp et al. [22] finds a perfect matching, with high probability,
in a random 2-out bipartite graph, sampled from the complete bipartite graph. A random
2-out bipartite graph Ba, is constructed by selecting uniformly at random two row vertices
for each column, and two column vertices for each row. These selections form the edges
of By,. Given the edges of Bs,, Karp et al. define two multigraphs. The Column-Graph
(CG) is the multigraph whose vertices are the rows, and whose edges are the choices of the
columns. That is, there is an edge in CG for a column vertex in Bsy,. Parallel edges occur
if two columns select the same rows. The Row-Graph (RG) is defined similarly. The main
idea to show that Bs, has a perfect matching is the following. In a component of CG that
contains a cycle, it is possible to match all rows (vertices in CG) with one of the columns
that have selected them (edges in CG). On the other hand in a tree component of CG, in
any matching (pairing of edges with vertices) there will always be a free row vertex. As a
consequence, when one or more trees appear in CG, the choices of the columns alone do
not suffice to find a perfect matching, and those of the rows must be used. The algorithm
thus keeps track of the tree components of CG and tries to identify one row vertex per tree
component whose selections should be taken into account. The columns selected by such a
row could be used for a set of rows belonging in tree components. Thus one should go back
and forth identifying trees in CG and analyzing components in RG. Karp et al’s algorithm,
which is described in Algorithm 1, formalizes this approach.

The algorithm operates on H;, a copy of CG, and Hs, a copy of RG initially devoid of
edges. It furthermore uses two arrays checked for columns and marked for rows. These two
arrays together signal whether a vertex will be matched with one of its two selections or not.
More specifically, if a row vertex r is marked (i.e., marked[r]=true), then the algorithm will
match r with one of its two selections. On the other hand, if a column ¢ is checked (i.e.,
checked[c]=true), then the algorithm will match ¢ with one of the marked row vertices that
have selected it.

76:3

ESA 2020



76:4

Almost Optimal Algorithms for Bipartite Matching

Initially, all row vertices are unmarked and all column vertices are unchecked. The
algorithm at each step picks a tree from H; and marks one of its vertices x. This signifies
that x can only be matched with one of its choices. Then, the edge of x is inserted in Hs.
The algorithm then finds the component @, in Hy containing the edge z, and selects an
unchecked column y from @Q,. Column vy is checked, which means that it can only be matched
with a marked vertex. As y’s choices are rendered useless now, the corresponding edge is
removed from H7 upon which new trees can arise. For each tree vertex x identified in Hy, one
should be able to find a vertex in the associated component ()., so that x can be matched in
that component. Otherwise, @, has more edges than vertices, and any matching of vertices
with edges in @), will hence leave some edges unpaired. In other words, Algorithm 1 has
decided that all columns that correspond to edges in @, should be matched with one of their
two selections. However, the union of the rows denoted by these selections has cardinality
strictly smaler than the number of such columns, and that is why a column is always left
unmatched by the algorithm if this scenario occurs. The algorithm returns failure upon
detecting this case (Line 10). The algorithm terminates successfully if all trees have a marked
vertex. If this happens, each component in H; will have as many edges as unmarked vertices.
Likewise, each component in Hy will have as many edges as checked vertices. It is therefore
possible to orient the edges in either H; or Hs such that each vertex (excluding marked rows
or unchecked columns) is matched with a unique adjacent edge. This gives a perfect matching
in Bsg,, which can be found by the Karp—Sipser heuristic in linear time. Algorithm 1 finds a
perfect matching with probability 1 — O(n™%), where « is a positive constant.

Algorithm 1 20UuTMC: Monte Carlo on 2-out graphs.

1: H; + CG, Hy < empty graph with columns as vertices;

2: All vertices in H; are unmarked, all vertices in H> are unchecked;

3: CORE < edges in cycles of CG

4: while there exists a tree T in H; with no marked vertex do

5. Let x be a random vertex of T’ » z is a column vertex

6:  marked[z] < true » « must be matched with one of its choices
7 Add the edge of = in Ho

8 Let Q. be the component in Hs2 containing the edge of x

9 if @, has no unchecked vertices then

10: Return Fail » Q. has more edges than vertices (no 1-1 pairing possible)
11:  else

12: Select an unchecked vertex y of Q.. In case of ties, prefer one from CORE
13: checked[y] + true » y will be matched with a row that selected it

14: delete y in Hy » The algorithm forgets y’s choices

15: Create B'2, from Ba, by keeping only edges between marked rows and checked columns
(edges in H>) or unmarked rows and unchecked columns (edges in H;)
16: Apply Karp-Sipser on B’s, to find a perfect matchin

The authors then describe how to efficiently implement the algorithm such that it runs
in O(nlogn) worst case time. They identify two main tasks:

Task A: Keep track of the tree components during edge deletions in Hj.

Task B: Keep track of the connected components during edge insertions in Hs, and the

single unchecked vertex in each component.

Task B can be efficiently done in amortized near linear time (over the course of the
algorithm) by using a union-find data-structure and keeping the identity of the single
unchecked vertex in a component of Hy at the root of the component. For Task A, Karp
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Figure 1 Algorithm 1 does not recognize new trees, if another edge is deleted after (u,v).

et al. propose the following. In the beginning, the edges of CG are labeled as F, if their
deletion creates a tree; T, if they belong to a tree component; and C otherwise. Let c-degree
of a vertex v be the number of C edges incident on v. During deleting the edge (u,v) from
H,, one of the following is performed depending on the label of (u,v).

Case 1: (u,v) is C: The c-degrees of u and v are decreased by one. Then, while there is

a vertex with a single C edge; its C edge is relabeled as F.

Case 2: (u,v) is F: Using a dove-tailed depth-first search, where depth-first searches from

u and v are interleaved, the tree component created can be found in time proportional to

its size. One then changes the labels of all edges in this tree from F to 7.

Case 3: (u,v) is T: Deleting (u,v) creates two trees. As in the previous case, a dove-

tailed DFS is used to find these two trees in time proportional to the size of the smaller

one. The new trees are to be examined by the algorithm.
We identify an oversight in this procedure, where the algorithm fails to keep track of some
trees in Hy. We demonstrate this by an example. In Figure 1, if the edge between vertices u
and v gets deleted, then the connected component is split into two triangles. The c-degree of
both u and v decreases to two, and as both are greater to one, the deletion procedure stops
without any action. However, both triangles are unicylic. If an edge is deleted from either
triangle, then Case-1 does not recognize that the remaining edges should be relabeled as T
not F.

If Algorithm 1 is not able to keep track of all the trees in H;, then it can exit the loop
of Line 4 prematurely. As a consequence Karp—Sipser in Line 16 will return a suboptimal
matching. We propose a fix for this oversight in Lemma 1.

» Lemma 1. Let u be an endpoint of a deleted edge (u,v) with label C. Apply the procedure
of Case-1 until we arrive at a vertexr p with c-degree[p| # 1. If c-degree[p] = 0, then u’s
component has become a tree.

Proof. We claim that if c-degree[p] = 0, then p and v are the same vertex. Each vertex on
the path from u to p had its c-degree affected twice (from 2 to 0), except p. Hence for p to
become 0, its c-degree must have been equal to 1. If p # v, then p should had its C edge
relabeled during another deletion process. Therefore, prior to the deletion of (u,v), there was
a cycle on Hy with all vertices having c-degree equal to 2, and both their C edges participated
in the cycle. Any outgoing edges from vertices of the cycle therefore were labeled F and by
definition, their deletion led to a tree being formed. The component was hence unicyclic
before. <

Case 1-continuation is therefore as follows:
Once there are no vertices with c-degree equal to 1, take the last vertex v whose c-degree
was reduced. If c-degree[v] = 0, then relabel all edges in vs component from F to 7.
This addition has overall O(n) cost, because each edge can change label at most twice.
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3.1.2 Conversion to an efficient general heuristic

Algorithm 1 works well when the random 2-out graph is sampled from K, ,,. However, in the
case of an arbitrary host graph, the underlying theory is not shown to hold, and the algorithm
can make erroneous decisions. Here we discuss how to turn Algorithm 1 into a general
heuristic. Apart from the aim of obtaining a practical heuristic for bipartite matching, there
is another reason to investigate the matching problem in 2-out bipartite graphs. We show in
Appendix D that an O(f(n,m)) time algorithm to find a maximum cardinality matching in
a 2-out bipartite graph can be used to find a maximum cardinality matching in any bipartite
graph with m edges in O(f(m,m)) time, where f is a function on the number of vertices n
and edges m. Such a reduction is important because it shows that an algorithm for finding
maximum cardinality matchings in 2-out graphs with similar complexity to 20uTMC can be
used to obtain an O(mlogm) algorithm for matchings in general bipartite graphs.

If the algorithm reaches Line 10 during execution, it quits immediately before examining
all trees in H;. We instead propose to continue with the execution of the algorithm to make
the returned matching as large as possible. To achieve this efficiently, we keep for each tree T'
a list Ly of unmarked vertices. At Line 5 we randomly sample x from Ly and discard it from
Lp. Contrary to Algorithm 1, we neither mark x nor insert it in Hs yet. Instead, we examine
first whether the component in Hy of either of the two choices of x has an unchecked column
y. If y exists, we mark z, insert it to Hs and continue by deleting y from H;. Otherwise,
we perform the same set of actions with another randomly sampled vertex from Lp. If Ly
becomes empty, and no vertex was marked, we abandon T and proceed to another tree. Each
such tree in the final state of H; decreases the cardinality of the returned matching by one,
as a row is left free. If T is split into two trees, the lists of unmarked vertices for the new
trees contain only those vertices still inside Ly at the moment of splitting. This is necessary
to avoid sampling vertices more than once.

The overall algorithm 20UTMC is as follows. It takes the matrix representation of the
given bipartite graph and scales it with a few steps of the Sinkhorn-Knopp algorithm to
obtain Ag. It then chooses two random neighbors for each column and row using their
respective probability distributions in the corresponding row and column of Ag, which are
given as input to Algorithm 1. Then, the auxiliary graph Bs, is constructed and Karp—Sipser
is run on this graph to retrieve a maximum cardinality matching in Bs,. If one allows vertices
to choose neighbors uniformly, then there are no guarantees on the maximum cardinality of
a matching in Bs,. As an example, consider the graph where the ith row and ith column

are connected for i = 1,...,n, and additionally the first £ rows and columns are connected
with every vertex on the opposite side. Then, in expectation O(% -n) rows (resp. columns)

make both choices from the first £ columns (resp. rows), such that in the generated Bs, the
maximum cardinality matching is of size O(% +¢). Using Ag’s values to perform the random
choices spreads the choices so that the maximum cardinality of the matching in the subgraph
increases (see Theorem 2 and Lemmas 6-8 in [16] that examines the 1-out subgraph model).

In Appendix B we describe two heuristics for 200TMC which can lead to an increase in
the cardinality of the returned matching. The main idea of both heuristics is to reduce the
chance that an edge deletion in H; creates a new tree.

3.2 TruncRW: Truncated random walk with nonuniform sampling

3.2.1 Description of the algorithm for regular bipartite graphs

Goel et al. [18] propose a randomized algorithm (of the Las Vegas type) that finds a perfect
matching in a d-regular bipartite graph with n vertices in each side in O(nlogn) time in
expectation. This algorithm starts a random walk from a randomly chosen free column-vertex.
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At a column vertex ¢, the algorithm selects uniformly at random one of the row-vertices that
are not matched to ¢, and goes to the chosen row vertex r. If r is free, then an augmenting
path is obtained by removing possible loops from the walk. If r is matched, then the random
walk goes to the mate of r. Goel et al. show that the total length of the random walks is
O(nlogn) in expectation, and thus the algorithm obtains a perfect matching in the stated
time [18, Theorem 4]. They also show that one can obtain a Monte Carlo-type algorithm
by truncating the random walks. The expected length of an augmenting path with respect
to a given matching of cardinality j is 2(4 + 2n/(n — j)), and the random walks could be
truncated at this length to obtain near optimal matchings in O(nlogn) time.

A random walk is easy to implement for d-regular bipartite graphs. At a column vertex c,
one can create a random number between 1 and d in O(1) time and choose the neighbor at
that position, and repeat the experiment if the mate of ¢ is chosen. This will take O(1) time

in expectation for each step of the walk, and the run time bound of O(nlogn) is maintained.

Goel et al. show that the random-walk based algorithm will work for finding perfect
matchings in the bipartite graph representation of a doubly stochastic matrix. They also
suggest using an existing data structure [20] when the row and column sums are constant
with nonnegative integer entries bounded by a polynomial in n, to attain an O(nlogn) run
time bound. A more recent paper [32] removes the restriction on the entries, and obtains
an expected constant time per update and sampling. Further investigations and a careful

implementation are necessary to apply the mentioned sampling approaches in our context.

Instead, for general doubly stochastic matrices without any bound on the entries, Goel et
al. propose an augmented binary search tree with which each selection step of the random
walk can be implemented in O(logn) time, and obtain a run time of O(m + nlog®n) in
expectation, with a total of O(m) preprocessing time.

3.2.2 Conversion to an efficient general heuristic

Let ¢ be a free column vertex with respect to a given matching of cardinality j. Assuming
there is a perfect matching, one can find an augmenting path to match ¢, and a random walk
can find it. The O(n—’j]) bound on the expected length of such a path will not hold if the

bipartite graph is not regular. One may perform more than m steps, which is the worst case

time complexity of deterministically finding an augmenting path starting from a free vertex.

We propose two methods to make the random walks more useful and to sample efficiently in
a random walk. We also discuss an efficient implementation of the whole approach.

The first proposed method is to scale the matrix representation A of a given bipartite
graph to obtain a doubly stochastic matrix Ag for random selections. The expected length

of a random walk to find an augmenting path holds when Ag has bounded nonzero entries.

In general, ones does not have any bound on the entries of Ag. Consider the matrix A
associated with an upper Hessenberg matrix of size n. A has a full lower triangular part,
and additional n — 1 entries A(i — 1,4) =1 for ¢ = 2,...,n, and fully indecomposable. The
4 x 4 example along with its unique scaling matrices are shown in Fig. 2. In the resulting
scaled matrix Ag(n,1) = 1/2"~! whose inverse is not bounded polynomially in n.

As highlighted at the end of Section 3.2, one needs an O(logn) time algorithm to select a
row vertex randomly from a given column vertex. The second proposed method is a simple
yet efficient algorithm for this purpose, rather than a sophisticated augmented tree. The
main components of the proposed sampling method are as follows. For each column vertex c,
with d. neighbors, we have:

76:7

ESA 2020



76:8

Almost Optimal Algorithms for Bipartite Matching

V2 . 0 7 /2 1/2 0 0
v 0 7 _ 14 14 172 0
I ( 1 ) 1 ( 18 1/8 1/4 1/2 )

- V3 /8 1/8 1/4 1/2

_ e
[N
—— -

Figure 2 The matrix A associated with a 4 x 4 Hessenberg matrix, the scaling matrices Dr and
Dc, and the resulting doubly stochastic matrix As = DrRADc. In general, Ag(n,1) = 1/2" 1.

adj.[1,...
wghts [1,...,d.]: the weight of the edges incident on ¢. This array is parallel to the first
one so that the weight of the edge (¢, adj,[i]) is wghts_[i].

,d¢]: an array keeping the neighbors of c.

medge[c]: the position of the mate of ¢ in the array adj., or —1 if ¢ is not matched.

At the beginning, we compute the prefix sum of wghts_[1,...,d.]. After this operation, the
total weight of the edges incident on c is wghts_[d.], and the weight of the edge (¢, mate|c])
is wghts [medge[c]] — wghts,[medge[c] — 1], assuming that wghts,[0] signifies zero.

Given the prefix sums in wghts,[1, ..., d.], the position of the mate of ¢ at medge|c|, we
can choose a random neighbor (which is not equal to mate[c]) as shown in Algorithm 2. We
use a binary search function, binSearch, which takes an array, the array’s start and end
positions, a target value, and returns the smallest index of an array element which is larger
than the given value with binary search (we skip the details of this search function). At
Line 5, since ¢ does not have a mate, we search in the whole list. At Line 8, since the prefix
sum just before medge|c] is larger than the target value, we search in the first part of wghts,
until the current mate located at medge[c]. At Line 10, we search on the right of medgelc|,
by a modified target value. This last part is the gist of the algorithm’s efficiency as it avoids
updating the prefix sums when the mate changes.

Algorithm 2 Sampling a random neighbor of the column vertex ¢ with d. neighbors.

.,dc], wghts_[1,...,d.], and medge[c].
: mwght < wghts_[medge[c]] — wghts,[medge[c] — 1] if medge[c] # —1, otherwise 0
: totalW <— wghts_[d.] — mwght » The total weight of the edges that can be sampled

Require: adj_[1,..

1
2
3: create a random value rv between 0 and totalW
4: if medge, = —1 then

5:  return binarySearch(wghts [1,...,d.],rv)
6: else

7 if wghts_[medge |-mwght > rv then

8 return binSearch(wghts_[1, ..., medge[c] — 1],7v)

9 else

10: return binSearch(wghts [medge[c] + 1, ..., d.],7v + mwght) + medge,

The sampling algorithm returns the index of the neighbor in adj, different from the
current mate in time O(logd..), independent of the values of the edges. It thus respects the
required run time bound. If we were to apply the rejection sampling (as discussed before for
the regular bipartite graphs), the run time would depend on the value of the matching edge
that we want to avoid. This could of course lead to an expected run time of more than O(n).

There are two key components of Algorithm 2. The first one is the prefix sum, which
is computed once before the random walks start and does not change. The second one is
medge|c], the position of mate[c] in adj,. The value medge[c] changes and needs to be updated
when we perform an augmentation. We handle this update as follows. We keep the random
walk in a stack by storing only the column vertices, as the row vertices direct the walk to
their mate, or terminate the walk if not matched. We discard the cycles from the random
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walk as soon as they arise — this way we only store a path on the stack, and its length can
be at most n. Storing a path also enables keeping the medge[-] up-to-date. Every time we
sample an outgoing edge from a column vertex ¢, we assign the location of the sampled
row vertex in adj,. to a variable nmedge[c]. When we find a free row, the stack contains the
column vertices of the corresponding augmenting path, whose new mates’ locations are in
nmedge[-] and thus can be used to update medge[-].

The described procedure will work gracefully in expected O(m + nlogn) time for regular
bipartite graphs and for doubly stochastic matrices where the nonzero values do not differ by
large. On the other hand, when there are large differences in edge weights, a random walk can
get stuck in a cycle. That is why truncating the long walks is necessary to make the algorithm
work for any given doubly stochastic matrix. Furthermore, such a truncation is necessary
with the proposed matrix scaling approach for defining random choices. For the overall
approach to be practical, we should not apply the scaling algorithms until convergence. As
in the previous approaches [15, 16], we allot a linear time of O(m + n) for scaling. Applying
Sinkhorn—Knopp algorithm for a few iterations will thus be allowable. The known convergence
bounds for the Sinkhorn—Knopp algorithm [27, Thm. 4.5] apply asymptotically, therefore
we do not have any bounds on the error after a few iterations; it can be large. That is why
truncation makes the random walk based augmenting path search practical.

The overall algorithm TRUNCRW is thus as follows. It takes the matrix representation of

the given bipartite graph and scales it with a few steps of the Sinkhorn—Knopp algorithm.

Then for j = 0 to n — 1, it uniformly at random picks a free column vertex, and starts a
random walk starting from that column, for at most 2(4 + 2n/(n — j)) steps, after which
the walk is truncated. Some follow discussion and experiments with different parameters for
TRUNCRW may be found in Appendix C.

4 Experiments

We implemented 20UTMC and TRUNCRW in C/C++, and the codes are accessible from
https://gitlab.inria.fr/bora-ucar/fast-matching. The codes, all are sequential, were
compiled with “-O3” and run on a machine with 2 x Intel Xeon CPU Gold 6136 CPUs
and 187 GB RAM. We evaluate 20uTMC and TRUNCRW both on real-life and synthetic
bipartite graphs with equal number of vertices in each side. We compared the two algorithms
against KASI, the widely used version of Karp—Sipser which applies degree-1 reduction
(own implementation), and KAS12, the original version of Karp—Sipser with both reduction
rules. We use a publicly available implementation of KASI2 (https://gitlab.inria.fr/
bora-ucar/karp--sipser-reduction) which is the fastest of recent implementations [26,
29]. We note that there are other heuristics (a short summary and further references are
in Appendix A) which deliver very good results in practice. For most of these heuristics,
especially for those based on vertex degree, there are known worst case upper bounds close
to 1/2. We therefore restrict the focus on KASI and KAS12, which are efficient and very
effective in practice [14, 25, 30]. We also investigated if random 2-out bipartite graphs of a
general host graph have perfect matchings if rows and columns select neighbors with the
probabilities in the scaled matrix representation. The quality of a matching refers to the
ratio of the cardinality of the matching to the maximum cardinality of a matching in a given
graph. The practical version of Sinkhorn-Knopp is referred to as SK-t, where ¢ is the number
of allowed iterations. All run times are reported in seconds.
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Table 1 We divide the real-life graphs into five groups. The ith group consists of graphs whose

™ ratio is between 10(7 — 1) and 10s. For each group, we give the number of instances in which a
2-out graph built using the models M; and Mz has a perfect matching and the largest difference

from the maximum cardinality of a matching.

m [0,10) [10,20) [20,30) [30,40) [40,50)
#Instances 27 5 5 1 1
#PM  deficiency | #PM  deficiency | #PM deficiency | #PM deficiency | #PM deficiency
Model My 0 223 0 8 1 20 0 2 1 0
Model M3 27 0 3 3 1 10 0 1 0 1
4.1 Investigation of perfect matchings in 2-out graphs

Here, we investigate the claim that Go will likely have a perfect matching for G, if created
with the probabilities in the scaled matrix. We used a set of 39 large sparse square matrices
from the SuiteSparse Collection [12], whose bipartite graphs have perfect matchings. These
matrices are automatically selected from all square matrices available at the collection with
10% < n < 28 x 10%, and with at least two nonzeros per row or column.

We consider two different models to create Go. In the model My, row choices are
independent of the column choices. Under this model, a row and a column can select each
other resulting in parallel edges — only one of them is kept. The model Mj tries to avoid
parallel edges. In this model, all columns perform their selections. Then, each row r attempts
to randomly choose two columns, only from those that did not select . These selections again
are based on the scaled matrix. In this model, parallel edges can arise (and be discarded)
only when a vertex v is connected in the 2-out graph with all of its neighbors in G, because
it is impossible for v to select otherwise. We experimented three times with each real-life
graph. M;’s result is the maximum of those three experiments. In each test, we first created
the choices of all columns. Then we allowed the two models to generate the choices of the
rows accordingly.

The results are shown in Table 1 for the 39 real-life graphs and are with SK-5. As seen in
this table, the random G graphs generated with the model M; have near perfect matchings,
but they do not contain perfect matchings in most cases. In contrast, the random G5 graphs
generated by My in many cases contain a perfect matching. In only a few graphs this does
not hold true, and in these cases the deficiency is no more than 10.

4.2 On synthetic graphs

In Table 2, we give results with a synthetic family Z of graphs from literature [16], whose
matrix representations do not have total support. To create a member of Z, we separate
the vertex set R into Ry = {r1,...,7,2} and Ry = {r,/o41,..
All vertices of R; are connected to all vertices of Cy. Edges (1, ¢, /24) and (75,24, ¢;) for

.,rn} and likewise for C.

i=1,...,n/2 are added to introduce a perfect matching. A parameter h is used to connect
h vertices from R;, and h vertices from C; to every vertex on the opposite side.

As seen in Table 2, KAST and KAS12 have more and more difficulty with increasing h.
The matching quality drops over 30% between h = 2 and h = 512 for KASI and almost 40%
for KAS12. On the contrary, 20UTMC and TRUNCRW both obtain a near perfect matching,
with SK-5. Even though the matrices associated with the graphs of Z lack total support,
SK-5 sufficed to obtain near optimal matchings. We notice the effect of scaling: if vertices
select without scaling (Uniform), the matching quality reduces. This is particularly true
for 20uTMC, which exhibits the worst overall performance with uniform selection. Family
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Table 2 Average quality of the matchings found by the algorithms on graphs from the synthetic
family Z for n = 30000 and various values of h.

20UuTMC TRUNCRW
h | KASI | KAS12 | Uniform SK-5 | Uniform SK-5
2| 0.93 1.00 0.78 0.99 0.88 0.99
8 | 0.80 0.85 0.59 0.99 0.91 0.99
32 | 0.69 0.72 0.52 0.99 0.83 0.99
128 | 0.64 0.65 0.51 0.99 0.78 0.99
512 | 0.61 0.63 0.52 0.99 0.76 0.99

Table 3 Average quality of the matchings found by the algorithms on graphs from the synthetic
family J for n € {10000, 20000, 30000}.

KAS1 | KaSI2 20UTMC TRUNCRW
n | quality | quality | uniform SK-5 SK-20 | uniform SK-5 SK-20
10000 0.76 0.84 0.81 0.92 0.95 0.97  0.97 0.97
20000 0.73 0.83 0.81 0.92 0.95 0.97 097 0.97
30000 0.73 0.83 0.81 0.92 0.95 0.97 097 0.97

7T shows the importance of scaling, and more importantly highlights the robustness of the
proposed methods. An adversary can create graphs which make degree-based randomized
approaches lose quality — some of those heuristics are briefly mentioned in Appendix A, and
the full details including negative results on KASI2 can be found elsewhere [9]. On the other
hand, the use of scaling helps to avoid such cases for 200TMC and TRUNCRW.

We now discuss another synthetic family of graphs 7 in which the proposed approaches
obtain matchings of much higher quality than KAST and KAS12. A bipartite graph with n
vertices per side belonging to J contains the following edges: (r;,¢;) for all i < j; (r2,¢1),
(rnycn-1); (r3,c1), (rs,c2), (rn,cn—2); and (rp—1,cn—2). The graphs in J are hard for
Karp—Sipser-based heuristics because only few of the edges participate in a perfect matching,
the deterministic rules do not apply, and hence they resort to multiple suboptimal random
decisions. Likewise, due to the large number of entries without support in the matrix
representation, Sinkhorn—Knopp will take many iterations to properly scale the matrix.

In Table 3, we give results of the algorithms for a few graphs from this family. In the
table, we also show the effects of scaling on 20uTMC and TRUNCRW by showing results
without scaling (under column “uniform”, in which a column vertex chooses a neighbor
uniformly at random), with SK-5, and with SK-20. As can be seen, despite the lack of
total support, both 20uTMC and TRUNCRW obtain matchings whose cardinality is more
than 0.92 of the maximum, when SK-5 or SK-20 is used. TRUNCRW in particular is nearly
optimal. These results are always better than that of KASI and KASI2, with the difference
in matching quality being about 20-25% for the former, and 10-15% for the latter. With
increased iterations of Sinkhorn—Knopp, 20UTMC increases the cardinality of its matchings
by 3%. If we do not use scaling (“uniform”), while there’s no noticeable effect on TRUNCRW’s
matchings, 200TMC matchings decrease by roughly 10%. Even so, its results remain better
than KASI’s and on par with those of KASI2.

4.3 On real-life graphs

We compared TRUNCRW and 20UTMC with KAST and KASI2 on all 39 real-life graphs from
Section 4.1. Figure 3a and Figure 3b present the high level picture. For the experiments, we

did not permute the matrices randomly, which generally increases the experimentation time.
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Figure 3 Quality (left) and run time (right) results for all 39 graphs from Section 4.1.

The results for matching quality can be seen in Figure 3a, where we plot the ratio of the
cardinality of the matchings found by different algorithms to the maximum cardinality of
the matching. The graphs are indexed in nondecreasing number of edges. 20UuTMC and
TRUNCRW use SK-3 for scaling. As can be observed, both 20UTMC and TRUNCRW obtain
near perfect matchings. The average matching quality obtained by 20UTMC is 0.9979 and
that obtained by TRUNCRW is 0.9984. Both algorithms never drop below 0.9900 in any of
the 39 cases.

Figure 3a also shows the matching quality of KAS12 and KAS1. KAST obtains matchings
of quality 0.9862 on average, with always smaller cardinality than TRUNCRW and 20UuTMC.
KASI2 fares better and its average quality is 0.9968. Even so, in the majority of cases, it
obtains matchings that are inferior quality-wise to both TRUNCRW and 20uTMC.

While all algorithms obtain matchings of high quality, the absolute different is remarkable
in some cases. For example, the largest difference observed between the matching cardinalities
obtained by 20UTMC and KASI was 346577, in favor of 20uTMC.

Figure 3b shows the run time of all examined heuristics, where the graphs are again
indexed in nondecreasing number of edges. KASI is in general the fastest of these four
algorithms when there are not too many edges. TRUNCRW and 20UTMC are close run-time
wise to KASI and in some instances faster than it. This is especially true in instances with
many edges because KASI depends more on m. KASI2 has the slowest performance overall.

For a detailed study, we show results on the five largest graphs from the mentioned dataset
and Circuit5M, which was identified as a challenging instance in earlier work [25]. Degree-1
vertices from CircuitbM are removed by applying Rule-1 of KASI2 as a preprocessing step —
this is without loss of generality of the heuristics. For each graph we relabeled its row-vertices
randomly and executed five tests with each algorithm.

Table 4 shows the matching quality and the run time of the four heuristics. 20UTMC
and TRUNCRW used SK-3 for this set of experiments for speed. For each graph, we give the
minimum, maximum, and averages over five runs. As already discussed, all heuristics obtain
high quality matchings. On a closer look, we see that TRUNCRW, on average, matched
158410 more edges than KASI, and 50847 more edges than KASI2. Similarly 20uTMC
matched 139220 more edges than KASI on average, and 31652 more edges than KASI2.
Interestingly, on graph Channel-500 TRUNCRW was able to find the maximum matching.
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Table 4 Full run time comparisons with heuristics for the graphs of Section 4.3. The run time of
SK-3 should be added to TRUNCRW and 20UTMC. For each instance we give the minimum, the
average, and the maximum of five runs for all columns regarding the quality and the run time. The
number of vertices n per side is in the order of millions. Hugebub-20 stands for Hugebubbles-0020.

KASI KAS12 SK-3 20UuTMC TRUNCRW
name n statistics | quality | time | quality time | time | quality | time | quality | time
min. 0.99 | 12.67 0.99 26.89 4.59 0.99 8.82 0.99 8.27
cagelb 5.15 avg. 0.99 | 12.81 0.99 27.08 4.68 0.99 8.88 0.99 9.32
max. 0.99 | 13.17 0.99 27.27 4.83 0.99 8.96 0.99 | 10.23
min. 0.99 | 10.12 0.99 20.63 2.74 0.99 7.63 1.00 3.86
Channel-500 4.80 avg. 0.99 | 10.16 0.99 20.94 2.75 0.99 7.66 1.00 4.48
max. 0.99 | 10.18 0.99 21.87 2.75 0.99 7.70 1.00 5.11
min. 0.99 6.57 0.99 24.74 2.45 0.99 4.40 0.99 2.07
CircuitsM  5.55 avg. 0.99 6.76 0.99 24.93 2.84 0.99 4.56 0.99 2.19
max. 0.99 7.03 0.99 25.33 4.16 0.99 4.81 0.99 2.35
min. 0.99 | 11.58 0.99 65.97 4.32 0.99 | 23.34 0.99 | 11.21
Delaunay_24 16.00 avg. 0.99 | 11.61 0.99 68.30 4.44 0.99 | 23.58 0.99 | 11.31
max. 0.99 | 11.66 0.99 72.47 4.48 0.99 | 24.38 0.99 | 11.37
min. 0.99 | 14.97 0.99 91.42 6.26 0.99 | 30.96 0.99 | 14.25
Hugebub-20 21.19 avg. 0.99 | 15.04 0.99 97.77 | 6.29 0.99 | 31.28 0.99 | 14.38
max. 0.99 | 15.15 0.99 | 106.78 6.31 0.99 | 31.59 0.99 | 14.57
min. 0.98 | 98.58 0.99 | 182.08 | 29.77 0.99 | 52.34 0.99 | 34.34
nlpkkt240  27.99 avg. 0.98 | 98.66 0.99 | 183.10 | 29.92 0.99 | 52.53 0.99 | 34.50
max. 0.98 | 98.76 0.99 | 186.08 | 30.27 0.99 | 52.76 0.99 | 34.70

Concerning run time, as KASTI is a linear time heuristic it is expected to be the fastest.
Surprisingly, TRUNCRW even with the scaling time added is faster than KASI in three
instances. This is due to the fact that each iteration of the scaling algorithm takes linear time
with small constants. As an algorithm on its own (without scaling time), TRUNCRW becomes
the fastest one, thanks to its run time not depending on m after the initialization. 20uTMC,
though slower, also exhibits good behavior, except in nlpkkt240. KAS12 has the worst run
time overall. Its initialization takes more time, and its implementation is more involved.
SK-3 is fast except for n1pkkt240 where it requires about 30 seconds. The reason that SK-3
requires 30 seconds for this particular graph is due to the random permutation of its rows,
which is not cache-friendly (if SK-3 is run on nlpkkt240 using the initial ordering of rows, it
finishes in less than 10 seconds). In the other cases and despite the large size of the graphs,
scaling finishes in less than seven seconds. Table 4 additionally shows that TRUNCRW and

20UTMC’s run time performance does not seem to be affected by their random decisions.

The largest difference between the result of the minimum, and the maximum run is no more
than two seconds for both of these algorithms.

Combined with the results in the previous section, we conclude thus that (i) 20uTMC
and TRUNCRW always obtain near perfect matchings, while KAST and KASI2 are not as
robust; (i) 200TMC and TRUNCRW are nearly as fast as the linear time algorithm KAST,
and are much faster than KAS12.

Next, we consider the impact of our heuristics as initialization to an exact algorithm for
finding a maximum cardinality matching. We first run the heuristics to obtain an initial
matching, then call an exact algorithm to augment the initial matchings for maximum
cardinality. We consider three different exact algorithms MC21, PR, and PF+ for the
augmentation steps. MC21 [13] from mmaker [14, 25] visits free vertices one by one and
tries to match the visited vertex with a depth-first search, and hence is closely related
to TRUNCRW. In this setting, differences among the qualities of initial matchings should

76:13

ESA 2020



76:14

Almost Optimal Algorithms for Bipartite Matching

be observable while computing an exact matching. PR [25] is based on the Push-Relabel
method [19], and PF+ which is a depth-first search based method [14, 36]. The last two
algorithms are more elaborate than MC21, and the cardinality difference between two different
initial matchings does not necessarily correlate with the run time.

The statistics of five runs with MC21 are given in Table 5. In this table, the time
spent in augmentations is given in column “augment.”. The overall time to compute a
maximum cardinality matching is given in column “overall’, which includes the time spent in
heuristics — in case of 20UTMC and TRUNCRW it includes the scaling time as well. The
runs on nlpkkt240 did not finish within an hour and are not presented. As seen in the
table, the overall time to obtain a maximum cardinality matching is always the smallest
with TRUNCRW initialization. 20UTMC is usually competitive with the faster of KASI12
and KASI, without a clear winner. It is also interesting to note that in all graphs the worst
behavior of TRUNCRW is better than the best behavior of KASI2 and KAST and in some
cases (see cagelb or Channel-500) significantly so. The same is almost true for 20uTMC as
well except for graphs Delaunay_24 and Hugebbubles-0020 where 20UTMC’s worst result
is only a few seconds slower than KASI’s best result, or cagelb versus KASI2.

In Table 6, we observe the behavior of the heuristics when used for initializing the PF+
algorithm. The table shows the minimum, average, and maximum time over the five runs. As
can be observed, TRUNCRW exhibits the best overall behavior. TRUNCRW has the fastest
performance in four out of six instances, and in the remaining two instances it is very close
to KASI. The largest difference between the two can be observed in nlpkkt240 where KASI
is overall almost 50 seconds slower. The total run time with KASI2 is never better than that
with TRUNCRW. It roughly takes the same amount of time for PF+ to augment 20UTMC’s
initial matching, as it takes for it to augment the matching of TRUNCRW. Therefore, when
20UTMC has a run time similar to TRUNCRW their overall run times are similar. In the
largest of instances 20UTMC’s and TRUNCRW'’s performance diverge, but 200TMC’s overall
behavior is superior to KASI2 and competitive with that of KASI.

In Table 7, we observe the behavior of the heuristics when used for initializing the
PR algorithm. The behavior of KASI in Circuit5M demonstrates the robustness of our
approaches. The average behavior of PR initialized with KASI is 339 seconds with the
maximum run time exceeding 500 seconds. In stark contrast, PR with TRUNCRW’s input
never needs more than 25 seconds, whereas with 20UTMC it never surpasses 150 seconds. In
the remaining instances, the proposed algorithms are competitive with KASI or even faster.

In summary, the effects of the proposed methods as an initialization routine are more
observable with MC21 on all instances. With PF+ we see that the augmentations take
less time on average with 20UTMC and TRUNCRW, but the overall time with KASI can
be sometimes better than that of TRUNCRW slightly thanks to KASI being faster. When
PR is used, the augmentations take less time with KAST in three instances compared to
TRUNCRW,; and in four instances compared to 20UTMC. When 20UTMC and TRUNCRW
serve better than KASTI as an initialization to PR, the difference is more significant. The
above results with three different algorithms demonstrate the merits of the two proposed
algorithms for use as initialization routines in exact matching algorithms.

5 Conclusions

We have examined two randomized algorithms for the maximum cardinality matching problem
in bipartite graphs. These algorithms originally were designed for two very special classes of
bipartite graphs. We have discussed how to convert them into efficient and effective heuristics.
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Table 5 Detailed run times when MC21 is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. We have omitted graph nlpkkt240 for which
MC21 did not finish within a reasonable amount of time. For each instance we give the minimum,

the average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KASI KaS12 20uTMC TRUNCRW
name statistics | augment overall. | augment overall. | augment overall. | augment overall
min. 133.85  146.52 7.42 34.47 27.29 40.75 0.22 14.07
cagelb avg. 140.13  152.94 8.81 35.90 31.44 45.00 1.85 15.84
max. 144.42  157.28 10.70 37.59 37.84 51.47 2.46 16.84
min. 64.29 74.46 9.15 29.81 12.18 22.62 0.04 6.65
Channel-500 avg. 71.61 81.76 10.93 31.86 15.28 25.68 0.14 7.36
max. 78.81 88.98 11.71 33.58 18.84 29.25 0.25 8.11
min. 14.33 20.94 10.51 35.32 4.38 12.21 0.50 5.02
CircuitbM avg. 15.26 22.01 13.11 38.04 5.70 13.09 0.77 5.80
max. 16.00 22.72 14.42 39.43 6.81 13.68 1.31 7.79
min. 49.95 61.54 26.93 94.02 35.10 63.71 26.77 42.49
Delaunay_24 avg. 54.79 66.40 29.99 98.29 36.68 64.70 31.06 46.81
max. 61.23 72.81 32.70  104.13 40.30 68.11 34.09 49.77
min. 68.17 83.14 55.79  148.64 44.83 82.31 42.02 62.56
Hugebub-20 avg. 73.15 88.20 58.95  156.72 50.65 88.21 44.54 65.21
max. 75.99 91.10 61.18  166.98 54.35 91.60 47.11 67.68

Table 6 Detailed run times when PF+ is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the

average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KASI KAaS12 2ouTMC TRUNCRW
name statistics | augment. overall | augment. overall | augment. overall | augment. overall
min. 2.19 14.89 2.11 29.18 1.90 15.46 0.73 14.22
cagelb avg. 2.51 15.33 2.59 29.67 1.97 15.53 1.16 15.15
max. 2.98 16.15 3.16 30.43 2.01 15.69 1.55 15.63
min. 1.70 11.84 1.82 22.50 1.19 11.60 0.04 6.66
Channel-500 avg. 1.91 12.06 2.07 23.01 1.30 11.71 0.04 7.27
max. 2.60 12.77 2.89 23.69 1.40 11.84 0.05 7.90
min. 0.63 7.20 0.45 25.28 0.45 7.34 0.48 5.01
CircuitbM avg. 0.77 7.53 0.62 25.55 0.53 7.93 0.58 5.61
max. 0.97 7.97 0.90 25.92 0.67 9.55 0.64 7.04
min. 18.47 30.06 13.88 80.75 14.24 42.05 14.20 29.92
Delaunay_24 avg. 20.83 32.44 14.89 83.19 15.47 43.49 17.67 33.41
max. 22.33 33.91 16.17 86.35 17.12 44.98 20.40 36.09
min. 23.09 38.09 14.99 106.41 23.27 60.75 21.97 42.54
Hugebub-20 avg. 28.13 43.17 19.63 117.40 26.97 64.53 24.49 45.16
max. 34.11 49.26 23.00 127.49 30.38 68.17 29.65 50.53
min. 27.01  125.69 28.19  210.27 14.91 97.26 13.76 77.87
nlpkkt240 avg. 27.09 125.76 29.63 212.73 17.56  100.01 13.96 78.38
max. 27.24  125.83 30.27 216.15 20.99 103.47 14.09 79.06
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Table 7 Detailed run times when PR is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the
average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KaSt KaS12 20uTMC TRUNCRW
name statistics | augment. overall | augment. overall | augment overall | augment overall
min. 2.15 14.85 3.63 30.52 1.19 14.67 1.10 14.03
cagelb avg. 2.41 15.22 3.80 30.88 1.39 14.95 1.28 15.28
max. 2.68 15.85 4.01 31.08 1.69 15.32 1.69 16.59
min. 1.57 11.75 2.83 23.47 1.63 12.03 0.04 6.68
Channel-500 avg. 1.66 11.81 2.92 23.86 1.75 12.16 0.06 7.28
max. 1.70 11.85 3.01 24.88 2.02 12.44 0.08 7.92
min. 116.67 123.24 107.51 132.34 2.02 8.89 0.74 5.26
CircuitbM avg. 332.29  339.05 235.54  260.47 37.11 44.51 5.37 10.40
max. 559.09  566.09 378.31  403.12 139.61  148.58 18.30 24.78
min. 40.52 52.15 32.09 98.89 41.66 69.52 48.63 64.32
Delaunay_24 avg. 45.48 57.09 36.90 105.20 46.94 74.96 52.48 68.23
max. 52.47 64.06 43.74 110.18 53.19 81.04 58.07 73.91
min. 41.01 56.16 55.22  146.78 44.71 81.96 49.46 70.34
Hugebub-20 avg. 47.53 62.58 58.56  156.33 51.59 89.15 53.16 73.84
max. 52.59 67.56 61.17 166.57 58.54 96.15 54.82 75.36
min. 13.98 112.59 22.87  205.18 15.49 97.63 19.74 84.26
nlpkkt240 avg. 14.13  112.80 24.17  207.27 17.34 99.79 28.70 93.13
max. 14.51 113.27 25.77  211.10 19.01 101.46 47.31  112.28

Our experimental results show that these approaches obtain near perfect matchings in real-life
and synthetic instances and have a near linear time run time. The two approaches are also
shown to be more robust than the state of the art heuristics used in the cardinality matching
algorithms, and are generally more useful as initialization routines.

Our adaptation of 20UTMC is based on the premise that 2-out graphs sampled from
a host graph have perfect matchings, assuming that the matrix representation of the host
graph have total support. We showed evidence that this may be true and even if not, the
sampled graphs have close to perfect matchings. A proof or the disproof of such 2-out graphs
having perfect matchings is certainly welcome. Furthermore, this was the first attempt to
implement 20UTMC, and there is room for improved performance.
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A  Other heuristics for bipartite matching and recent work

In the main text, we compared the proposed heuristics with KAST and KAS12. There are a
few other effective heuristics, which we briefly review here (see a recent survey [37]).

Hopcroft and Karp’s original algorithm [21] proceeds in phases. At each phase, it finds
shortest augmenting paths, and augments the current matching along a maximal set of
disjoint such paths, where each phase runs in O(n + m) time. Stopping when the shortest
augmenting paths is of length 2k + 1 at a phase no larger than & results in an 1 — 1/(k + 1)
approximate matching in O(k(m + n)) time in the worst case. Greedy [39] chooses a random
edge and matches the two endpoints and discards both vertices and the edges incident on
them. Modified Greedy [39] chooses a free vertex and then randomly matches it to one of
the available neighbors. MinGreedy [39] (see also Magun [31] and Langguth et al. [30] for
related algorithms) improves upon Modified Greedy by selecting a random vertex with the
minimum degree at the first step. The Greedy-like algorithms obtain maximal matchings
and therefore are 1/2 approximate. Slight improvements in the form of 1/2 + ¢ are shown
for these algorithms [2, 35], but there are theoretical bounds in the same vicinity [9]. Duff et
al. [14] and Langguth et al. [25, 30] compare these algorithms for initialization in maximum
cardinality matching algorithms and suggest using KASI as initialization for general problems
especially with the push-relabel based algorithms.
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Another class of heuristics use randomization for breaking the 1/2 barrier. RANKING [24]
algorithm achieves an approximation ratio of 1 — 1/e, where e is the base of the natural
logarithm. The same approximation ration is also achieved by a very simple parallel algorithm
[16] whose most involved step is the application of a matrix scaling algorithm. This last
paper also proposes an algorithm based on sampling 1-out subgraphs of a general bipartite
graph (as we did in this paper) to obtain matchings of size about 0.86 times the maximum
cardinality.

Matching has stirred some recent interest in the theoretical computer science community,
with works focusing on parallel and distributed settings [4, 5, 11, 3] or on the fully dynamic
version [6, 8] among others. Among the recent work, a method by Assadi et al. [4] shares
similarities with the 20uTMC algorithm. Their approach similarly sparsifies a given graph
G to produce a subgraph with some approximation guarantees for the maximum cardinality
matching. A detailed experimentation with this sparsification approach will reveal useful.

B Further comments on 20utMC

As demonstrated in the experiments in Section 4, 20UTMC obtains matchings of very high
cardinality. We can improve its matching quality by the following two heuristics. These two
heuristics are not used in the given experiments. We plan to improve their run time.

B.1 Heuristic 1: Delayed tree vertex selection during Line 5

The ideal case at Line 5 of Algorithm 1 is to select an x such that x’s insertion as an edge
to Ho does not lead to a new tree in H; after the deletion of the edge corresponding to the
unchecked vertex of the connected component @),. This is only possible if @), contains an
unchecked column labeled as C in H;. Otherwise, a new tree will be created in H;, and the
algorithm will have to process it in a future step. For the first heuristic, we greedily select
an x such that, if possible, the creation of a tree in H is avoided.

We replace L is with two lists Lt and L2. The lists L1 contains those unmarked
vertices of T' whose insertion in H, leads to a new tree; L2T contains all other L1 vertices
that have not been tried yet. At first, we sample z from L2 and see whether the components
of ’s choices in Hy have an unchecked vertex of type C in Hy. If they have, x is marked and
inserted to Hs. Otherwise, x is inserted in LlT, and we consider another random vertex of
L2. If L2 becomes empty, we start sampling from LL..

With the union-find data structure, this heuristic requires constant amortized time per
sample and each vertex can be sampled at most twice. Therefore the overhead associated
with this heuristic is almost linear in n.

B.2 Heuristic 2: Online creation of the RG multigraph

In this heuristic, the decisions of the rows are not given as input, but are instead defined
during the course of the algorithm. Similar to the previous idea, this heuristic aims to reduce
the possibility that a tree in H; gets created following an edge insertion into Hs.

More specifically, consider a vertex x randomly chosen at Line 5. In this heuristic, x
has not picked its two choices yet, and we let x choose them at this point, in the way that
benefits the algorithm the most. This is done as follows. Initially, we iterate over all of z’s
neighbors in the host graph G. Let ¢ be one of z’s neighbors and ¢* be the sole unchecked
vertex in ¢’s connected component in Hs, or ¢* = —1 if no unchecked vertices exist. We
assign values to z’s neighbors to classify them. If ¢* is equal to —1, ¢’s value is 0. If ¢* has
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label F or T in Hy, c¢’s value is 1. Otherwise, ¢’s value is 2. Based on these assigned values,
we partition the neighbors of x in G into three disjoint sets Cy, C7 and Cy such that C;
contains all neighbors of x with value equal to i. Selecting columns from Cj is preferred, as
they can avoid creating a tree in Hy. Vertex x will attempt to sample first from Cs, and if
needed from Cy or Cy, with a preference for Cy over Cy. The sets Cy, C1 and Cy are kept
implicitly, and each vertex x requires amortized O(d,) to make its choices, where d,. is its
degree. Hence, the overhead associated with this heuristic is almost linear in m.

B.3 Comparison with 2o0utMC

Here, we briefly discuss the effects that the above two heuristics have on the performance of the
20UTMC algorithm. Since 20UTMC obtains high quality results, the two heuristics can only
yield a relatively small improvement. When they are enabled and used with SK-5 20uTMC
finds matchings with average quality of 0.9997 for the real-world graphs from Section 4.3 for
which 20UTMC obtained matchings of quality 0.9983. This difference corresponds to about
13113 additionally matched edges, and hence signals that 13113 augmentations are avoided.

It is also interesting to consider the effects that these heuristics can have on cases where
20UTMC did not deliver near-optimal matchings. As an example, we consider the synthetic
family J from Section 4.2. When scaling was not enabled, 20UTMC found matchings of
average cardinality 0.80 — 0.81% of the maximum. If however one uses the two heuristics
proposed in this section, then there is a significant improvement in performance, and 20UTMC
finds matchings of cardinality 0.89 of the maximum.

C Further comments on TruncRW

We incorporated a known heuristic called look-ahead [13, 14] for speeding up the augmenting
path search in practice. All our experiments with TRUNCRW in Section 4 were with the
look-ahead approach. In this heuristic, before sampling an arbitrary row-vertex from a
column-vertex ¢, we check if there is a free row vertex in the adjacency list of c. If so, such a
row is returned, and the random walk terminates. The implementation of this heuristic has
a total overhead of O(m) for the whole course of the algorithm [13, 14]. We note that the
look-ahead technique trades the quality of TRUNCRW with run time. In our experiments, the
look-ahead heuristic reduced the run time significantly; it interferes with the randomization
though.

We can easily apply TRUNCRW to bipartite graphs with different number of vertices
in each side. This is based on the fact that we can scale a rectangular ny x ny matrix (say
ny > na) so that all columns have sum of 1, and all rows have equal sum of ng/ny, if there
is matching covering all columns, and all entries can be put in such a matching. Then, all
components of TRUNCRW work without any change.

If there is no total support, then Sinkhorn-Knopp works in such a way that the entries
that cannot put into a perfect matching tend to zero. This is helpful in TRUNCRW’s context,
as the corresponding edges will not likely be selected in a random walk. If there is no perfect
matching, then little is known about scaling. It is our experience that the Sinkhorn—Knopp
iterations tend to zero out entries that cannot be put into a maximum cardinality matching.
Therefore, in this case again, scaling, random selection, and truncation should help. We
present some experiments to support this observation and leave the question of showing this
theoretically as an open problem.

We experimented with bipartite graphs without total support which correspond to square
(10000 x 10000) and rectangular matrices (12000 x 10000) with a uniform nonzero distribution.
These matrices are generated with sprand command of Maltab and have about d x 10000
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Table 8 The quality of TRUNCRW on bipartite graphs without perfect matchings.

10000 x 10000 12000 x 10000
d | sprank TRUNCRW | sprank TRUNCRW
2 7787 0.9888 8724 0.9919
3 9266 0.9697 9667 0.9958
4 9761 0.9828 9899 0.9995
5 9918 0.9922 9973 1.0000

nonzeros for d = 2,3,4,5. The matrix representation of the bipartite graphs were scaled with
10 iterations of SK. For each d, we created five random matrices and ran TRUNCRW on the
corresponding five instances. We report the worst quality of the five instances in Table 8. As
seen in this table, TRUNCRW works just fine for this case. We did not report in the table
but with increased SK iterations, the results improve, which is in accordance with earlier
work [16].

C.1 Engineering TruncRW

The experiments here are on real-life instances from Subsection 4.3 and with SK-5.

Recall that TRUNCRW tries to find an augmenting path starting from a column vertex a
certain number of times before giving up and moving to the next column vertex. When we
allowed TRUNCRW just a single attempt, it was unable to find a perfect matching in any
of the cases, and its average matching quality was 0.9984. When we allowed five attempts,
TRUNCRW found a perfect matching for 13 graphs, and its average matching quality was
0.9999. With 10 attempts, it managed to find a perfect matching in 5 additional graphs.

This verifies that allowing more attempts indeed improves the performance of the algorithm.

The drawback, however, was the increased run time, which we did not think worth. That is
why our implementation of TRUNCRW starts a random walk from a vertex only once.

We also test the effects of the look-ahead mechanism. Let us define the walk efficiency of
TRUNCRW as the ratio of the cardinality of the matching found to the total length of the
random walks. The higher this ratio, the more useful the random walks are. We evaluate
the walk efficiency on a set of seven instances (real-life instances having at most 10000000
edges). We test both with and without scaling and report the results of the 14 tests. In 13
cases, the look-ahead mechanism improved the walk efficiency. The geometric mean (of 14
cases) of the ratios of walk efficiencies with look-ahead to that of without was 1.37. In the
case where the look-ahead did not help (ratio was 0.71 in an instance named Hamrle3), the

maximum deviation of a row or column sum from one after SK-5 was 0.28, which is high.

We conclude that the look-ahead mechanism is very helpful.

Finally we test the effects that the length of the augmenting walk has on TRUNCRW. We
doubled the allowed length of a random walk to 4(4 4 2n/(n — j)). On average, the matching
quality rose from 0.9984 to 0.9998. This modification was not able to find a perfect matching
in any of the 39 instances. This led to an increase in the run time, which we deemed too
large. We therefore keep 2(4 + 2n/(n — j)) as the truncation length.

D Reducing bipartite graph matching to matching on 2-out graphs

Here, we prove our claim in Section 3.1 that bipartite matching can be reduced to matching
on a 2-out bipartite graph. Let G = (Vi, Eg), with be a graph with minimum degree at least
two. If G’s minimum degree is one, we can apply the first deterministic rule of Karp—Sipser
to match degree-1 vertices with their neighbors and consider as G the resulting graph.
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We produce a new graph G’ from G in the following way. For any edge e = (a,b) € E
we add edges ' = (a,a.), €’ = (ae,be), and " = (b.,b) to G'. We hence introduce two
new vertices ae, be 8.t dgs(ae) = dgr = 2 for each edge e € Eg. The degree of nodes in Vg
remains unchanged in G’.

» Lemma 2. Let H be a random 2-out subgraph G'. Then H = G'.

Proof. The added vertices a., b have degree two and will select both neighbors, hence no
edge will remain unpicked. |

In what follows, we refer to the second reduction rule of Karp—Sipser which merges the
neighbors of a degree-2 vertex, which is then discarded, as a degree-2 reduction.

» Lemma 3. It is possible to obtain G by doing only degree-2 reductions on G’.

Proof. Let a. be a vertex of G’, introduced due to the edge e = (a,b). Since dg(ae) = 2 we
can apply a degree-2 reduction which will merge a with b, to create a single node ab.. As a
consequence of this merge, the edge (ab.,b) will be created and edges (a, ae), (Ge, be), (be, b)
will be erased. We simply relabel ab. to a again. The proof then follows similarly by applying
degree-2 reduction for all a. corresponding to e € E until we obtain G. <

Now we show that maximum matchings in G’ are related to those on G and vice versa.

» Lemma 4. Any mazimum cardinality matching M’ on G’ corresponds to a mazimum
cardinality matching M on G.

Proof. Let M’ be a maximum cardinality matching on G’. A matching M for G can be
generated in the following way: If both (a,a.) and (b, b) appear in M’ e is added to M.
Hence it suffices to show that any maximum cardinality matching M’ in G’ necessarily
contains |M| pair of matched edges (a,a.) and (b, b.).

First, we have that |M’| = |Eg| + |M|. To see this, note that per Lemma 2 we perform
|Ec| degree-2 reductions, and result in G. Each of this reductions corresponds with a matched
edge in M’. Then, we only need to find the maximum cardinality on G which is |M]|.

Let S, contain all indices e such that (a,ae) is in M’ and (b.,b) is not in M’'. Set S}, is
defined similarly. Set Sy contains all indices e such that (a.,b.) appears in M’. Finally, S
contains all indices e such that (a,a.) and (b,b.) are matched together in M’. Then, since
M’ is a maximum cardinality matching we have

|Sal + 16| + |So| +2 - [Sas| = [Ec| + |M] .

This is true because of the fact that for each edge e exactly one matched edge appears in M’
in case e € S, U S, U Sy and two edges are added if e € Sgp.

However, |S,| + |Ss| + |Sg| + |Sas| = |Ec|, since each edge e must appear in one of those
sets and there exist exactly |Eq| of them.

Hence, |Sqp| = | M| necessarily. As they define a matching in G and their cardinality is
|M]|, the matching is maximum. <

Using the above lemma, we can prove Theorem 5 below.

» Theorem 5. Assume there is an algorithm ALG working in O(f(n,m)) time for finding a
mazximum cardinality matching in a 2-out graph. Then we can find a maximum cardinality
matching in O(f(m,m)) time for any given graph.
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Proof. Let G be any bipartite graph without degree-1 vertices and m = |Eg|. In O(m) time
we generate G'. By Lemma 2, the 2-out subgraph of G’ corresponds to G’ itself. In addition
|Ec|,|Var| € O(m). Using ALG, we can find a maximum cardinality M’ for G’ in O(f(m,m))
time. By Lemma 4 then, we can convert M’ to a maximum cardinality matching M for G in
O(m) time. <

As a byproduct of Lemma 4, we observe that the transformation of G to G’ also eliminates
the need to perform SK as a preprocessing step. We briefly experimented with this method
on the real-world graphs of Section 4.3. For each graph G of the test-set, we generated
its extension G’ and executed the 20UTMC algorithm on 2-out graphs sampled from G’,
with uniform selections. The behavior of 20UTMC was similar with that of the previous
experiments. It was not able to obtain a perfect matching in G’ (and consequently G), but
it always returned near-optimal matchings of quality over 0.99. These matchings, when
converted into matchings of G (following the idea in Lemma 4) yielded also near-optimal
matchings with quality over 0.99.
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