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Abstract
A subset S of nodes in a graph G is a k-connected m-dominating set ((k, m)-cds) if the
subgraph G[S] induced by S is k-connected and every v ∈ V \ S has at least m neighbors in S.
In the k-Connected m-Dominating Set ((k,m)-CDS) problem the goal is to find a minimum
weight (k,m)-cds in a node-weighted graph. For m ≥ k we obtain the following approximation
ratios. For general graphs our ratio O(k lnn) improves the previous best ratio O(k2 lnn) of [26]
and matches the best known ratio for unit weights of [34]. For unit disk graphs we improve the
ratio O(k ln k) of [26] to min

{
m

m−k
, k2/3} ·O(ln2 k) – this is the first sublinear ratio for the problem,

and the first polylogarithmic ratio O(ln2 k)/ε when m ≥ (1 + ε)k; furthermore, we obtain ratio
min

{
m

m−k
,
√
k
}
· O(ln2 k) for uniform weights. These results are obtained by showing the same

ratios for the Subset k-Connectivity problem when the set of terminals is an m-dominating set.
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1 Introduction

All graphs in this paper are assumed to be simple, unless stated otherwise. A (simple)
graph is k-connected if it has k pairwise internally node disjoint paths between every pair
of its nodes; in this case the graph has at least k + 1 nodes. A subset S of nodes in a
graph G is a k-connected set if the subgraph G[S] induced by S is k-connected; S is an
m-dominating set if every v ∈ V \S has at least m neighbors in S. If S is both k-connected
and m-dominating set then S is a k-connected m-dominating set, or (k, m)-cds for
short. A graph is a unit disk graph if its nodes can be located in the Euclidean plane such
that there is an edge between u and v iff the Euclidean distance between u and v is at most 1.
We consider the following problem for m ≥ k both in general graphs and in unit disk graphs.

k-Connected m-Dominating Set ((k,m)-CDS)
Input: A graph G = (V,E) with node weights {wv : v ∈ V } and integers k,m.
Output: A minimum weight (k,m)-cds S ⊆ V .

The problem generalizes several classic problems including Set-Cover (k = 0,m = 1),
Set-Multicover (k = 0), and Connected Dominating Set (k = m = 1). The
Connected Dominating Set problem is closely related to the Node Weighted Steiner
Tree problem, and both problems admit a tight ratio O(logn) [16, 12, 13]. In unit disk
graphs, the problem is NP-hard [5], admits a PTAS for unit weights [3], and ratio 3+2.5ρ+ε for
arbitrary weights [33, 35], where ρ is the ratio for the edge-weighted Steiner Tree problem
in general graphs. The (k,m)-CDS problem models (fault tolerant) virtual backbones in
networks [7, 6], and it was studied extensively, c.f. [1, 3, 10, 12, 13, 21, 32, 26, 33, 31, 34, 35, 36]
for the case m ≥ k and [2, 29] for the case k = 2,m = 1. For further motivation and history
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73:2 Approximating k-Connected m-Dominating Sets

survey we refer the reader to recent papers of Zhang, Zhou, Mo, and Du [31] and of Fukunaga
[10], where they obtained in unit disk graphs ratios O(k3 ln k) and O(k2 ln k), respectively.
This was improved to O(k ln k) in [26], where is also given ratio O(k2 lnn) in general graphs.

Our main results is:

I Theorem 1. (k,m)-CDS with m ≥ k admits the following approximation ratios:
O(k lnn) in general graphs.
min

{
m

m−k , k
2/3
}
·O(ln2 k) in unit disk graphs.

min
{

m
m−k ,

√
k
}
·O(ln2 k) in unit disk graphs with unit weights.

For general graphs our ratio O(k lnn) improves the previous ratio O(k2 lnn) of [26] and
matches (while using totally different techniques) the best known ratio for unit weights of
Zhang et. al. [34]. For unit disk graphs our ratio min

{
k

m−k , k
2/3
}
·O(ln2 k) improves the

previous best ratio O(k ln k) of [26]; this is the first sublinear ratio for the problem, and for
any constant ε > 0 and m = k(1 + ε) the first polylogarithmic ratio O(ln2 k)/ε.

Let us say that a graph with a set T of terminals and a root r ∈ T is k-(T, r)-connected
if it has k internally node disjoint rt-paths for every t ∈ T \ {r}. Similarly, a graph is
k-T -connected if it has k internally node disjoint st-paths for every s, t ∈ T . A reason why
the case m ≥ k is easier than the case m < k is given in the following statement (a proof can
be found in many papers, c.f. [31, 10, 26]).

I Lemma 2. Let T be a k-dominating set in a graph H = (U,F ). If H is k-(T, r)-connected
then H is k-(U, r)-connected; if H is k-T -connected then H is k-connected.

The above lemma implies that in the case m ≥ k (k,m)-CDS has the property that
the union T ∪ S of a partial solution T that is just m-dominating and a node set S such
that G[T ∪ S] is T -k-connected, is a feasible solution – this enables to construct the solution
iteratively. Specifically, most algorithms for the case m ≥ k start by computing just an
m-dominating set T ; the best ratios for m-Dominating Set are ln(∆ +m) in general graphs
[8] and O(1) in unit disk graphs [10], where ∆ is the maximum degree in G. By invoking
just these ratios, Lemma 2 enables to reduce (k,m)-CDS with m ≥ k to following (node
weighted) problem:

Subset k-Connectivity
Input: A graph G = (V,E) with node-weights {wv : v ∈ V }, a set T ⊆ V of terminals,
and an integer k.
Output: A minimum weight k-T -connected subgraph of G.

The ratios for this problem are usually expressed in terms of the best known ratio β for
the following problem (in both problems we assume w.l.o.g. that wv = 0 for all v ∈ T ):

Rooted Subset k-Connectivity
Input: A graph G = (V,E) with node-weights {wv : v ∈ V }, a set T ⊆ V of terminals, a
root node r ∈ T , and an integer k.
Output: A minimum weight k-(T, r)-connected subgraph of G.

We refer the reader to recent surveys [28, 27] on approximation algorithm for node-
connectivity problems and to [16, 22, 25, 9, 24] on approximation algorithm for various
node-weighted connectivity problems and their generalizations. Currently, β = O(k2 ln |T |)
[22]. From previous work it can be deduced that Subset k-Connectivity with |T | ≥ k
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admits ratio β + k2. Add a new root node r connected to a set R ⊆ T of k nodes by edges
of cost zero. Then compute a β-approximate solution to the obtained Rooted Subset
k-Connectivity instance. Finally, augment this solution by computing for every u, v ∈ R a
min-weight set of k internally disjoint uv-paths. For the (k,m)-CDS problem with m ≥ k
this already gives ratio β + k2 = O(k2 ln |T |) in general graphs. For the special case when T
is a k-dominating set the ratio β + k2 was improved in [26] to β + k − 1, since then in the
final step it is sufficient to compute a min-weight set of k internally disjoint uv-paths only
for pairs that form a forest on R (by the Critical Cycle Theorem of Mader [20]).

We now consider unit disk graphs. Zhang et al. [31] showed that any k-connected unit
disk graph has a k-connected spanning subgraph of maximum degree ≤ 5k. This implies that
the node weighted case is reduced with a loss of factor O(k) to the case of node induced edge
costs – when cuv = wu + wv for every edge e = uv ∈ E. The edge costs version of Subset
k-Connectivity admits ratio O(k2 ln k), which gives ratio O(k3 ln k) for (k,m)-CDS with
m ≥ k in unit disk graphs. Independently, Fukunaga [10] obtained ratio O(k2 ln k) using a
different approach – he considered the Rooted Subset Connectivity Augmentation
problem, when G[T ] is `-(T, r)-connected and we seek a minimum weight S ⊆ V \ T such
that G[T ∪ S] is (`+ 1)-(T, r)-connected. In [22] it is shown that the augmentation problem
decomposes into O(k) “uncrossable” subproblems (for precise definitions, see Definition 20
in Section 3), and Fukunaga [10] designed a primal-dual O(1)-approximation algorithm for
such an uncrossable subproblem in unit disk graphs. This gives ratio O(`) for Rooted
Subset Connectivity Augmentation in unit disk graphs. Furthermore, using the so
called “backward augmentation analysis” [11] Fukunaga showed that since his approximation
is w.r.t. an LP, then sequentially increasing the T -connectivity by 1 invokes only a factor of
O(ln k), thus obtaining ratio O(k ln k) for Rooted Subset Connectivity Augmentation.
He then combined this result with a decomposition of the Subset k-Connectivity problem
into k Rooted Subset k-Connectivity problems, and obtained ratio O(k2 ln k). As was
mentioned, in [26] it is proved that ratio β for Rooted Subset k-Connectivity implies
ratio β + k − 1 for (k,m)-CDS with m ≥ k, which improves the ratio to O(k ln k).

However, it seems that previous reductions and methods alone do not enable to obtain
ratio better than O(k2 ln |T |) in general graphs, or a sublinear ratio in unit disk graphs. These
algorithm rely on the ratios and decompositions for the Rooted/Subset k-Connectivity
problems from [22, 23, 19], but these do not consider the specific feature relevant to (k,m)-
CDS with m ≥ k – that the set T of terminals is a k-dominating set; note that then Subset
k-Connectivity is equivalent to the problem of finding the lightest k-connected subgraph
containing T , by Lemma 2. Here we change this situation by asking the following question:

If the set T of terminals is an m-dominating set with m ≥ k, what approximation ratio can
be achieved for (node weighted) Subset k-Connectivity?

Our answer to this question is given in the following theorem, which is of independent interest,
and note that it implies Theorem 1.

I Theorem 3. The (node weighted) Subset k-Connectivity problem such that T is an
m-dominating set with m ≥ k admits the following approximation ratios: O(k lnn) in general
graphs, O(ln2 k) ·min

{
m

m−k+1 , k
2/3
}
in unit disk graphs, and O(ln2 k) ·min

{
m

m−k+1 ,
√
k
}

in unit disk graphs with unit weights.

In the proof of Theorem 3 we use several results and ideas from previous works [22, 23,
31, 10, 26]. As was mentioned, the best ratios for the Subset k-Connectivity are derived
via reductions of [23, 26] from the ratios for the Rooted Subset k-Connectivity problem,
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so we will consider the latter problem; the currently best known ratio for this problem is
O(k2 ln |T |) [22]. The algorithm of [22] has k iterations, where at iteration ` = 0, . . . , k − 1
it considers the augmentation problem of increasing the connectivity from ` to `+ 1. This
is equivalent to “covering” a certain family F of “deficient sets” (see Section 2 for precise
definitions), and the algorithm of [22] decomposes this problem into O(`) uncrossable family
covering problems; the ratio for covering each uncrossable family is O(lnn) in general
graphs [22] and O(1) in unit disk graphs [10].

However, a more careful analysis of the [22] algorithm reveals that in fact the number
of uncrossable families is O(`/q) + 1, where q is the minimum number of terminals in a
deficient set. Instances with q ≥ `+ 1 are often called “T -independence-free” (see Lemmas 6
and 7). In T -independence-free instances the entire family of deficient sets is uncrossable,
hence such instances admit ratio O(lnn) in general graphs and O(1) in unit disk graphs.
The algorithm of [22] has an “inflation phase” that works towards reaching q ≥ `+ 1 – to
make the instance T -independence-free, by repeatedly covering O(`/q) uncrossable families
to double q. Hence if q0 is the initial value of q, the total number of uncrossable families
that the algorithm covers is 1 plus order of `

q0

(
1 + 1

2 + 1
4 + · · ·

)
= O(`/q0). Note that a

large part of the uncrossable families are covered when q is small. One of our contributions
is designing different “lighter” inflation algorithms for increasing the parameter q. These
algorithms just aim to cover the inclusion minimal deficient sets (a.k.a. “cores” – for precise
definition see Definition 14), by adding a light set S of nodes, and then add S to the set T of
terminals; if T is a k-dominating set then adding any set S to T does not make the problem
harder, by Lemma 2.

Our algorithms for covering inclusion minimal deficient sets reduce the problem to a
set covering type problem. In the case of general graphs the reduction is to a special
case considered in [18] of the Submodular Covering problem; the ratio invoked by
this procedure is only O(lnn) and if we apply it p = max{2k −m − 1, 1} times then we
get q ≥ m − ` + p(k − `) ≥ k for all ` = 0, . . . , k − 1. In fact, we apply this procedure
before considering the augmentation problems, but it guarantees that q ≥ k through all
augmentation iterations. The same procedure applies in the case of unit disk graphs, but
to avoid the dependence on n in the ratio we use a different procedure. Specifically, we use
the result of Zhang et. al. [31] that a minimally k-connected unit disk graph has maximum
degree ≤ 5k, to reduce the problem of covering the family of deficient sets to the Set Cover
problem with soft capacities. This approach gives ratio min

{
m

m−k , k
2/3
}
·O(ln2 k).

Our algorithms are simple and combinatorial. We omit the running time analysis, but it
is polynomial and dominated by that of finding k times an approximate solution to Rooted
Subset k-Connectivity in T -independence-free instances [22, 10]. Apart from significantly
improving approximation ratios for (k,m)-CDS and special instances of Subset/Rooted
k-Connectivity, which are extensively studied important fundamental problems, we also
have the following contribution. The framework of approximating k-connectivity problems
via independence-free graphs was very successful in [22] and [4, 30] (see also [14] for the first
paper that used this framework, for an exact algorithm), but these are the only papers that
succeeded to apply it. In general, it is not clear how to find a cheap partial solution to make
the residual instance independence-free. In [22] this was achieved by “merging” deficient
sets, so that at each iteration the minimum number of terminals in a deficient set is doubled.
The method used in [4, 30] constructs an independence free instance in just two iterations,
but it is tailor made for the k-Connected Subgraph problem considered there. We use a
different method that reaches an almost independence-free instance by just repeatedly solving
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a Set Cover (or a Submodular Cover) problem. We believe that the method used here
can be also applied for other problems, maybe for activation network design problems [24, 9],
that generalize node weighted network design problems.

In the rest of the paper we prove Theorem 3; Section 2 considers general graphs and
Section 3 considers unit disk graphs.

2 General graphs

In order to prove our results we need to characterize k-connectivity in terms of “cuts” rather
than in terms of paths. While edge-cuts of a graph correspond to node subsets, a natural
way to represent a node-cut of a graph is by a pair of sets called a “biset”.

I Definition 4. An ordered pair A = (A,A+) of subsets of V with A ⊆ A+ is called a biset;
the set ∂A = A+ \ A is called the cut of A. We say that A is a (T, r)-biset if A ∩ T 6= ∅
and r ∈ V \ A+. For an edge set/graph J let dJ(A) denote the number of edges in J that
have one end in A and the other in V \A+.

Let κG(t, r) denote the maximum number of pairwise internally disjoint tr-paths in G.
In biset terms, the node connectivity version of Menger’s Theorem (that applies also for
non-simple graphs) says that κG(t, r) equals min{|∂A| : t ∈ A, r ∈ V \A+} plus the number
of tr-edges. Here ∂A is a node cut that separates t from r in the graph obtained from G

by removing the tr-edges. It is not hard to verify that if J is an edge set that contains the
tr-edges then κG(t, r) = min{|∂A| : t ∈ A, r ∈ V \A+}+ dJ(A). In particular, we have:

I Lemma 5. Let G = (V,E) be a graph and let {t, r} ⊆ T ⊆ V . Then

κG(t, r) = min
A
{|∂A|+ dG[T ](A) : t ∈ A, r ∈ V \A+} .

Here the nodes in ∂A and the edges in G[T ] that go from A to V \A+ form a “mixed”
st-cut of G that contains both nodes and edges. The original Menger’s Theorem is the case
T = {r, t}, while the case T = V is also widely used in the literature, c.f. [28].

From Lemma 5 we get that G is k-(T, r)-connected iff |∂A|+ dG[T ](A) ≥ k holds for every
(T, r)-biset A. Given a Rooted Subset k-Connectivity instance, we say that a (T, r)-biset
A is a deficient biset if |∂A|+dG[T ](A) ≤ k−1. We use the algorithm from [22] for Rooted
Subset k-Connectivity. Two deficient bisets A,B are T -independent if A ∩ T ⊆ ∂B or
B ∩ T ⊆ ∂A. A Rooted Subset k-Connectivity instance is T -independence-free if
no pair of deficient bisets are T -independent. We have the following from previous work [22].

I Lemma 6 ([22]). T -independence-free Rooted Subset k-Connectivity instances admit
ratio O(k ln |T |).

Clearly, a sufficient condition for an instance to be T -independence-free is:

I Lemma 7. If for a Rooted Subset k-Connectivity instance |A ∩ T | ≥ k holds for
every deficient biset A, then the instance is T -independence-free.

In the next two lemmas we show how to find an O(k lnn)-approximate set S ⊆ V \ T
such that adding S to T result in a T -independence-free instance.

I Lemma 8 (Inflation Lemma for general graphs). There exists a polynomial time algorithm
that given an instance of Rooted Subset k-Connectivity finds S ⊆ V \ T such that
|A ∩ S| ≥ k − (|∂A|+ dG[T∪S](A)) holds for any (T, r)-biset A, and w(S) = O(ln ∆) · opt.

ESA 2020
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Figure 1 Illustration to Lemma 8 Algorithm 1 for k = 3. (a) Rooted Subset k-Connectivity
instance; nodes in T are shown by gray circles. (b) Centered Rooted Subset k-Connectivity
instance constructed in Algorithm 1; added edges are shown by dashed lines. (c) The set S = {s1, s2}
returned by the algorithm and two bisets A,B in G[T ∪ S] (the dashed edges do not belong to
G[T ∪ S]), where A = {t5, t4, s1}, ∂A = {t1} and B = (T ∪ S) \ {r}, ∂B = ∅.

Proof. The Centered Rooted Subset k-Connectivity problem is a particular case
of the Rooted Subset k-Connectivity problem when all nodes of positive weight are
neighbors of the root. This problem admits ratio O(ln ∆) [18], where here ∆ is the maximum
degree of a neighbor of the root. We use this in our algorithm as follows (see Fig. 1):

Algorithm 1 (G = (V,E), w, r, T, k).

1 construct a Centered Rooted Subset k-Connectivity instance
(G′ = (V,E′), w, T, r, k), where G′ is obtained from G by removing edges in
G[(V \ T ) ∪ {r}] and adding an rv-edge for each v ∈ V \ T (see Fig. 1(a,b))

2 compute an O(ln ∆)-approximate solution S ⊆ V \ T for the obtained Centered
Rooted Subset k-Connectivity instance (see Fig. 1(c))

3 return S

Let S∗ and S∗c be optimal solutions to Rooted Subset k-Connectivity and the
constructed Centered Rooted Subset k-Connectivity instances, respectively. For
every t ∈ T fix some set of k internally disjoint rt-paths in the graph G[T ∪ S∗], and obtain
a set Pt by picking for each path the node in S∗ that is closest to t on this path, if such a
node exists. Let P = ∪t∈TPt. Then P is a feasible solution to the constructed Centered
Rooted Subset k-Connectivity instance, since for each t ∈ T , G′ has |Pt| internally
disjoint rt-paths of length 2 each that go through Pt, and k − |Pt| paths that have all nodes
in T . Furthermore, since P ⊆ S∗, w(P ) ≤ w(S∗). Thus w(S∗c ) ≤ w(P ) ≤ w(S∗), implying
that w(S) = O(ln ∆) · w(S∗).

Now let A be a (T, r)-biset on T ∪ S. Then:
dG′[T∪S](A) = |A ∩ S|+ dG[T∪S](A) by the construction.
|∂A|+ dG′[T∪S](A) ≥ k since G′[T ∪ S] is k-(T, r)-connected.

Combining we get that |∂A|+ dG[T∪S](A) + |A ∩ S| ≥ k, as claimed. J

Note that Lemma 8 does not assume that T has any domination properties, and it does
not imply that G[T ∪ S] has higher (T, r)-connectivity than G[T ] – see the example in Fig. 1.
The lemma just states that for every biset A in G[T ∪ S], |A ∩ S| is at least the “deficiency”
k − (|∂A|+ dG[T∪S](A)) of A. E.g., in the example in Fig. 1(c) we have:

A ∩ S = {s1}, k − (|∂A|+ dG[T∪S](A)) = 3− (1 + 1) = 1.
B ∩ S = {s1, s2}, k − (|∂B|+ dG[T∪S](B)) = 3− (0 + 1) = 2.



Z. Nutov 73:7

Hence if we add S to T and T ← T ∪ S will become the new set of terminals, then the new
Rooted Subset k-Connectivity instance will be “closer” to being T -independence-free
than the original instance. And if also T is a k-dominating set (this is not the case in Fig. 1),
then adding S to T does not increase the optimal solution value, by Lemma 2.

Our algorithms use the following simple procedure – Algorithm 2, that sequentially adds
p sets S1, . . . , Sp to an m-dominating set T = T0 with m ≥ k; in the case of general graphs
considered in this section, each Si is as in Lemma 8.

Algorithm 2 (G = (V,E), c, r, T = T0, k, 1 ≤ p ≤ k − 1).

1 for i = 1 to p do
2 T ← T ∪ Si

3 return T

I Lemma 9. Suppose that we are given a Rooted Subset k-Connectivity instance
such that T is an m-dominating set in G with m ≥ k. If at each iteration i at step 2 of
Algorithm 2 we add to T a set S = Si as in Lemma 8, then at the end of the algorithm
w(T \ T0) = O(p ln ∆) · opt, and |A ∩ T | ≥ m− `+ p(k − `) holds for any biset A on T with
|∂A| + dG[T ](A) = ` ≤ k − 1. In particular, if p ≥ max{2k −m − 1, 1} then the resulting
instance is T -independence-free.

Proof. The bound w(T \ T0) = O(p ln ∆) · opt follows from Lemma 2 and the bound
w(S) = O(ln ∆) · opt in Lemma 8.

Let A be a biset as in the lemma. Let Ti = T0 ∪ S1 ∪ · · · ∪ Si be the set stored in T at
the end of iteration i, where T0 is the initial set. Applying Lemma 8 on Ti−1 and Si we get

|A ∩ Si| ≥ k − (|∂A ∩ Ti−1|+ dG[Ti](A)) ≥ k − (|∂A|+ dG[T ](A)) = k − ` .

In particular A∩S1 6= ∅. Any v ∈ A∩S1 has in G[T ] at least m neighbors in T0, and at most
` of them are not in A; thus v has at least m−` neighbors in A∩T0, so |A∩T0| ≥ m−`. Since
T0, S1, . . . , Sp are pairwise disjoint we get |A∩T | ≥ |A∩T0|+

∑p
i=1 |A∩Si| ≥ m−`+p(k−`).

If p ≥ max{2k−m−1, 1} then m−`+p(k− l) ≥ k; thus, by Lemma 7, the resulting instance
is T -independence-free. J

The proof of the following known statement can be found in [17], and the second part
follows from Mader’s Undirected Critical Cycle Theorem [20].

I Lemma 10. Let Hr = (U,F ) be a k-(U, r)-connected graph and R the set of neighbors of
r in Hr. The graph H = Hr \ {r} can be made k-connected by adding a set J of new edges
on R, and if J is inclusion minimal then J is a forest.

Note that an inclusion minimal edge set J as in Lemma 10 can be computed in polynomial
time, by starting with J being a clique on R and repeatedly removing from J an edge e if
H ∪ (J \ e) remains k-connected.

Our algorithm for general graphs is as follows.

ESA 2020
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Algorithm 3 (G = (V,E), w, T ) general graphs.

1 construct a graph Gr by adding to G and to T a new node r connected to a set
R ⊆ T of k nodes by a set Fr = {rv : v ∈ R} of new edges

2 apply the Lemma 9 algorithm with p = max{2k −m− 1, 0}
3 use the algorithm from Lemma 6 to compute an O(k lnn)-approximate set S ⊆ V \ T

such that Hr = Gr[T ∪ S] is k-(T, r)-connected
4 let H = H \ {r} = G[T ∪ S] and let J be a forest of new edges on R as in Lemma 10

such that the graph H ∪ J is k-connected
5 for every uv ∈ J find a minimum weight node set Puv such that G[T ∪ S ∪ Puv] has k

internally disjoint uv-paths; let P =
⋃

uv∈J

Puv

6 return T ∪ S ∪ P

Except step 2, the algorithm is identical to the algorithm of [26] – the only difference is
that step 2 improves the factor invoked by step 3. In [26] it is also proved that at the end of
the algorithm T ∪ S ∪ P is a k-connected set. The dominating terms in the ratio are invoked
by steps 2 and 3, and they are both O(k lnn), while step 5 invokes just ratio k − 1; thus the
overall ratio is O(k lnn).

This concludes the proof of Theorem 3 for general graphs.

3 Unit disk graphs

Our goal in this section is to prove the following:

I Lemma 11. Consider a Subset k-Connectivity instance on a unit disk graph G = (V,E)
where T is an (`,m)-cds in G (so G[T ] is `-connected and every v ∈ V \ T has at least m
neighbors in T ), m ≥ k ≥ `+ 1. Then for any 1 ≤ p ≤ `+ 1 there exists a polynomial time
algorithm that computes S ⊆ V \ T such that G[T ∪ S] is (`+ 1)-connected and

w(S)
opt = O(ln k)

k − `

(
p+ (m+ p)2

(m+ p− `)2

)
.

Furthermore, in the case of unit weights w(S)
opt = O(ln k)

k−`

(
p+ m+p

m+p−`

)
.

Let us show that Lemma 11 implies the unit disk part of Theorem 3. We can apply
the Lemma 11 algorithm sequentially, starting with an O(1)-approximate m-dominating
set T = T0, and at iteration ` = 0, . . . , k − 1 add to T a set S = S` as in the lemma. In
the case of arbitrary weights choosing p = 1 if m − ` ≥ `2/3 and p = `2/3 otherwise gives
w(S`)

opt = O(ln `)
k−` min

{
m

m−` , `
2/3
}
. Then denoting S = S0 ∪ · · · ∪ Sk−1 we get:

w(S)
opt =

k−1∑
`=0

O(ln `)
k − `

min
{

m

m− `
, `2/3

}
= O(ln2 k) ·min

{
m

m− k + 1 , k
2/3
}

In the case of unit weights, choosing p = 1 if m − ` ≥
√
` and p =

√
` otherwise gives

w(S`)
opt = O(ln `)

k−` min
{

m
m−` ,

√
`
}
, and then by a similar analysis we get that

w(S)
opt = O(ln2 k) ·min

{
m

m− k + 1 ,
√
k

}
.
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V \ A

T \ A

V \  T   S

C+

+
(b)(a) v

U

A

A   T A*A

(   U  )

Figure 2 (a) Illustration to the definition of a biset A ∈ DT and a node v that covers A.
(b) Illustration to the proof that if G[T ∪ S] is not (`+ 1)-connected then S does not cover DT .

In the rest of this section we prove Lemma 11, so let G, T , and ` be as in the lemma; in
particular, G[T ] is `-connected. Define the following family of biset on V (see Fig. 2)

DT = {A : A ∩ T 6= ∅ 6= T \A+, dG[T ](A) = 0, |∂A| = `} .

Let A ∈ DT . Then G[T ] \ ∂A is disconnected (since dG[T ](A) = 0), hence ∂A ∩ T is a node
cut of G[T ] that separates between the non-empty sets A ∩ T and T \ A+. Since |∂A| = `

and since G is `-connected, ∂A must be a minimum node cut of G[T ]. Thus we have:

I Corollary 12. A biset A on V belongs to DT if and only if the following holds:
∂A ⊆ T and ∂A is a minimum node cut (of size `) of the graph G[T ].
A ∩ T is a union of some, but not all, connected components of G[T ] \ ∂A.

We say that a node v covers A ∈ DT (see Fig. 2(a)) if v ∈ Γ(A)\T , where Γ(A) ⊆ V \A
is the set of neighbors of A in G; S ⊆ V \ T covers F ⊆ DT if every A ∈ F is covered by
some v ∈ S. Using Menger’s Theorem and Lemma 2, one can see the following (see also [10,
Section 5.2]).

I Lemma 13. Let T be an (`, ` + 1)-cds in a graph G = (V,E). Let S ⊆ V \ T . Then
G[T ∪ S] is (`+ 1)-connected if and only if S covers DT .

Proof. Let A ∈ DT . Then ∂A ⊆ T is a node cut of size ` of the graph G[T ] that separates
between the nonempty sets A∩T and T \A+. If S does not cover A, then S ∩Γ(A) = ∅, and
then ∂A is also a node cut of size ` of the graph G[T ∪ S] that separates between A ∩ T and
(T \A+)∪S; thus G[T ∪S] is not `-connected. Consequently, if G[T ∪S] is (`+ 1)-connected
then S must cover DT .

Suppose that G[T ∪ S] is not (` + 1)-connected (see Fig. 2(b)). Then there is a node
cut C of size ` of G[T ∪ S] that separates some A ⊆ T ∪ S from A∗ = (T ∪ S) \ (A ∪ C).
Since T is an (`+ 1)-dominating set in G[T ∪ S] and since |C| = `, we must have A ∩ T 6= ∅;
otherwise, if A∩T = ∅, then for any u ∈ A, there must exist u′ ∈ A∗ with uu′ ∈ E since T is
an (`+1)-dominating set, which contradicts that C is a node cut separating A from A∗. By a
similar argument, A∗ ∩ T 6= ∅. Let A = (A,A ∪C). Then A ∩ T 6= ∅ 6= T \A+, dG[T ](A) = 0
(since dG[T∪S](A) = 0), and |∂A| = |C| = `. Thus A ∈ DT . Furthermore, in G[T ], C ∩ T
separates between the nonempty node sets A ∩ T and T \A+, hence C = ∂A = Γ(A) ⊆ T ,
since G[T ] is `-connected. Consequently, S does not cover A, and the proof is complete. J

Thus we have the following LP-relaxation for the problem of finding a min-weight cover
of DT (a similar LP was used by Fukunaga in [10, Section 5.2]):

τ(DT ) = min
∑

v∈V \T wvxv

s.t.
∑

v∈Γ(A)\T xv ≥ 1 ∀A ∈ DT

xv ≥ 0 ∀v ∈ V \ T
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Note that if A ∈ DT then Γ(A)\T = Γ(A)\∂A, and thus the constraint
∑

v∈Γ(A)\T xv ≥ 1
is equivalent to

∑
v∈Γ(A)\∂A xv ≥ 1.

I Definition 14. We say that A contains B and write A ⊆ B if A ⊆ B and A+ ⊆ B+.
Inclusion minimal members of a biset family F are called F-cores. The intersection and
the union of two bisets A,B are defined by

A ∩ B = (A ∩B,A+ ∩B+) A ∪ B = (A ∪B,A+ ∪B+) .

I Lemma 15. Let C be the family of DT -cores. Then C ∩ C ′ = ∅ for any distinct C,C′ ∈ C
or |C| ≤ `(`+ 1).

Proof. let F be the family of “deficient bisets” of the `-connected graph G[T ]; namely, F
is the family of those bisets A on T such that ∂A is a minimum node cut (of size `) of the
graph G[T ], and A is a union of some, but not all, connected components of G[T ] \ ∂A. Note
that from Corollary 12 it follows that:
F = {A ∈ DT : A ⊆ T}.
Every DT -core belongs to F , hence C coincides with the family of F-cores.

Thus it is sufficient to prove the lemma with DT replaced by F . The family F has the
following well known “symmetry” and “crossing” properties, c.f. [30].
(i) If A ∈ F then (V \A+, V \A) ∈ F .
(ii) If A,B ∈ F and A ∩B, T \ (A+ ∪B+) are non-empty then A ∩ B,A ∪ B ∈ F .
In [[15], Lemma 3.5, Case II] it is proved that if C ∩ C ′ 6= ∅ for some distinct C,C′ ∈ C then
there is P ⊆ V with |P | ≤ `+ 1 such that P ∩ C 6= ∅ for every C ∈ C. In this case F has at
most `(`+ 1) distinct cores, since:

For every C ∈ C, there is s ∈ P ∩ C, and there is t ∈ P ∩ (V \ C+), by (i).
For each (s, t) ∈ P × P there is at most one such C, by (ii).

Hence if C ∩ C ′ 6= ∅ for some distinct C,C′ ∈ C then |C| ≤ |P |(|P | − 1) ≤ `(`+ 1). J

To obtain an approximation ratio that depends on k rather than on n, we will need the
following result.

I Theorem 16 (Zhang, Zhou, Mo, & Du [31]). Any k-connected unit disk graph has a
k-connected spanning subgraph of maximum degree ≤ 5k.

I Lemma 17 (Inflation Lemma for unit disk graphs). There exists a polynomial time algorithm
that computes S ⊆ V \ T that covers the family C of cores of DT and w(S) = O(ln k) · opt

k−` .

Proof. The problem of covering C is essentially a (weighted) Set Cover problem where for
each v ∈ V \ T the corresponding set has weight wv and consists of the cores covered by v.
Then the greedy algorithm for Set Cover computes a solution of weight O(ln |C|) times the
value of the standard Set Cover LP

τ(C) = min
∑

v∈V \T wvxv

s.t.
∑

v∈Γ(A)\T xv ≥ 1 ∀A ∈ C
xv ≥ 0 ∀v ∈ V \ T

For any S′ ⊆ V \T such that G[T ∪S′] is k-connected, any set A has at least k− ` neighbors
in G[T ∪ S′], hence if x′ is a characteristic vector of S′ then x′

k−` is a feasible solution to the
LP. Consequently, τ(C) ≤ opt

k−` .
In the case |C| ≤ `(`+ 1) we get a solution of weight O(ln `) · τ(C) = O(ln `) · opt

k−` .
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In the case |C| > `(`+ 1), C ∩ C ′ = ∅ for any C,C′ ∈ C, by Lemma 15. Then relying on
Theorem 16 we modify this reduction such that every v ∈ V \ T can cover at most 5k cores;
this is essentially the Set Cover with (soft) capacities problem. Specifically, for each pair
(v, J) where v ∈ V \ S and J is a set of at most 5k edges incident to v, we add a new node
vJ of weight wv with corresponding copies of the edges in J . In the obtained Set Cover
instance the maximum size of a set is at most 5k, since the sets in {C : C ∈ C} are pairwise
disjoint. Note that we do not need to construct this Set Cover instance explicitly to run
the greedy algorithm – we just need to determine for each v ∈ V the maximum number of
at most 5k not yet covered cores that can be covered by v. Since the sets in {C : C ∈ C}
are pairwise disjoint, this can be done in polynomial time. Note that during the greedy
algorithm we may pick pairs (v, J) and (v, J ′) with distinct J, J ′ but with the same node v,
but this only makes the solution lighter. Since in the Set Cover instance the maximum set
size is 5k, the computed solution has weight O(ln k) · τ , where here τ is an optimal LP-value
of the modified instance. Now we argue in the same way as before that τ ≤ opt

k−` . Consider a
feasible solution S′ ⊆ V \T and an edge J ′ such that G[T ]∪S′∪J ′ is a spanning k-connected
subgraph of G[T ∪ S′] and degJ′(v) ≤ 5k for all v ∈ S′; such J ′ exists by Theorem 16. Let
x′ be the characteristic vector of the pairs (v, J ′v) where v ∈ S′ and J ′v is the set of edges in
J ′ incident to v. Any set A has at least k − ` neighbors in G[T ] ∪ S′ ∪ J ′, hence x′

k−` is a
feasible solution to the LP. Consequently, τ ≤ opt

k−` . J

I Corollary 18. If at step 2 of Algorithm 2 we add S = Si is as in Lemma 17, then at the
end of the algorithm w(T \T0) = O(p ln k) · τ∗ and |A∩T | ≥ m− `+ p holds for any A ∈ DT .

Proof. We have |A ∩ Si| ≥ 1 for all i. In particular A ∩ S1 6= ∅. Any v ∈ A ∩ S1 has in G[T ]
at least m neighbors in T0, and at most ` of them are not in A; thus v has at least m− `
neighbors in A ∩ T0, so |A ∩ T0| ≥ m− `. Since T0, S1, . . . , Sp are pairwise disjoint we get
|A ∩ T | ≥ |A ∩ T0|+

∑p
i=1 |A ∩ Si| ≥ m− `+ p. J

Now we decompose the problem of covering DT into several subproblems. For r ∈ T let
D(T,r) = {A ∈ DT : r ∈ T \ A+}; we note the sets in {A : A ∈ D(T,r)} are called “demand
cuts” by Fukunaga [10, Section 5.2].

I Theorem 19 ([23]). Given an `-T -connected graph with |T | ≥ ` + 1, one can find in
polynomial time R ⊆ T of size |R| = O

(
|T |
|T |−` ln `

)
such that DT = ∪r∈RD(T,r).

We now describe how to cover the family D(T,r) for given r ∈ T .

I Definition 20. The biset A \ B is defined by A \ B = (A \ B+, A+ \ B). We say that a
biset family F is:

uncrossable if A ∩ B,A ∪ B ∈ F or if A \ B,B \ A ∈ F for all A,B ∈ F .
T -intersecting if A ∩ B,A ∪ B ∈ F for any A,B ∈ F with A ∩B ∩ T 6= ∅.
T -co-crossing if A\B,B\A ∈ F for any A,B ∈ F with A∩B∗∩T 6= ∅ and B∩A∗∩T 6= ∅.

I Lemma 21 ([22, 10]). D(T,r) is T -intersecting and T -co-crossing for any r ∈ T .

I Theorem 22 ([22]). There exists a polynomial time algorithm that given a T -intersecting T -
co-crossing biset family F sequentially finds O

(
q+`

q

)
T -intersecting uncrossable subfamilies of

F , such that the union of covers of these subfamilies covers F , where q = min{|A∩T | : A ∈ F}
and ` = max

A∈F
|∂A ∩ T |.
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In [10, Theorem 3 and Proof of Corollary 3] Fukunaga proved the following.

I Theorem 23 (Fukunaga [10]). If F is a T -intersecting uncrossable subfamily of D(T,r) then
there exists a polynomial time algorithm that computes a cover S of F of weight w(S) ≤ 15opt

k−` .

Combining Lemma 21 with Theorems 22 and 23 we get:

I Corollary 24. For any r ∈ T , there exists a polynomial time algorithm that computes a
cover Sr of D(T,r) such that if q = min{|A ∩ T | : A ∈ D(T,r)} then

w(Sr)
opt = O

(
q + `

q(k − `)

)
.

The algorithm for unit disk graphs is as follows.

Algorithm 4 (G = (V,E), w, T, p) unit disk graphs.

1 apply Algorithm 2 where at step 2 each Si is as in Lemma 17
2 if G[T ] is (`+ 1) connected then S ← ∅
3 else {comment: now |T | ≥ m+ p and |A ∩ T | ≥ m+ p− ` for all A ∈ DT }
4 find a set R of O

(
|T |
|T |−` ln `

)
roots as in Theorem 19

5 for each r ∈ R compute a cover Sr of D(T,r) as in Corollary 24
6 S ← ∪r∈RSr

7 return T ∪ S

We bound the weight of each of the sets computed. Let T0 denote the initial set stored in
T . By Lemma 17, at the end of step 1 we have

w(T \ T0)
opt = O(ln k)

k − `
· p

Now we bound the weight of the set S computed in steps 3 to 6:

w(S)
opt = |R| ·O

(
q + `

q(k − `)

)
= O(ln `)

k − `
|T |
|T | − `

q + `

q
= O(ln k)

k − `
(m+ p)2

(m+ p− `)2

The last equation is since q = min{|A ∩ T | : A ∈ F} ≥ m− `+ p by Corollary 18 and since
|T | ≥ m+ p. The overall weight of the augmenting set computed is as claimed in Lemma 11.

In the case of unit weights, we add arbitrary ` nodes to T ; this step invokes an additive
term of O(1) to the ratio, and |T | ≥ 2`+ 1 holds after this step. Hence by Theorem 19 we
will have |R| = O

(
|T |
|T |−` ln `

)
= O

(
2`+1
`+1 ln `

)
= O(ln `) and thus

w(S)
opt = |R| ·O

(
q + `

q(k − `)

)
= O(ln `)

k − `
q + `

q
= O(ln k)

k − `
m+ p

m+ p− `
.

The overall weight of the augmenting set computed is as claimed in Lemma 11.
This concludes the proof of Lemma 11, and thus also the proof of Theorem 3.
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