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Abstract
Given a graph G and an integer k, the H-free Edge Editing problem is to find whether there exist
at most k pairs of vertices in G such that changing the adjacency of the pairs in G results in a graph
without any induced copy of H. The existence of polynomial kernels for H-free Edge Editing
(that is, whether it is possible to reduce the size of the instance to kO(1) in polynomial time) received
significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are
known to exist for some graphs H with at most 4 vertices (e.g., path on 3 or 4 vertices, diamond,
paw), but starting from 5 vertices, polynomial kernels are known only if H is either complete or
empty. This suggests the conjecture that there is no other H with at least 5 vertices were H-free
Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set H of nine 5-vertex
graphs such that if for every H ∈ H, H-free Edge Editing is incompressible and the complexity
assumption NP 6⊆ coNP/poly holds, then H-free Edge Editing is incompressible for every graph
H with at least five vertices that is neither complete nor empty. That is, proving incompressibility
for these nine graphs would give a complete classification of the kernelization complexity of H-free
Edge Editing for every H with at least 5 vertices.

We obtain similar result also for H-free Edge Deletion. Here the picture is more complicated
due to the existence of another infinite family of graphs H where the problem is trivial (graphs
with exactly one edge). We obtain a larger set H of nineteen graphs whose incompressibility would
give a complete classification of the kernelization complexity of H-free Edge Deletion for every
graph H with at least 5 vertices. Analogous results follow also for the H-free Edge Completion
problem by simple complementation.
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1 Introduction

In a typical graph modification problem, the input is a graph G and an integer k, and the
task is to make at most k allowed editing operations on G to make it belong to a certain
graph class or satisfy a certain property. For example, Vertex Cover (remove k vertices
to make the graph edgeless), Feedback Vertex Set (remove k vertices to make the graph
acyclic), Odd Cycle Transversal (remove k edges/vertices to make the graph bipartite),
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and Minimum Fill-in (add k edges to make the graph chordal) are particularly well-studied
members of this problem family. Most natural graph modification problems are known to
be NP-hard, in fact, there are general hardness results proving hardness for many problems
[19, 21, 22]. On the other hand, most of these problems are fixed-parameter tractable (FPT)
parameterized by k: it can be solved in time f(k)nO(1), where f is a computable function
depending only on k [3, 8, 17, 18]. Looking at the parameterized complexity literature, one
can observe that, even though there are certain recurring approaches and techniques, these
FPT results are highly problem specific, and often rely on a very detailed understanding of
the graph classes at hand.

A class of problems that can be treated somewhat more uniformly is H-free Edge
Editing. This is a separate problem for every fixed graph H: given a graph G and an
integer k, the task is to find whether there exist at most k pairs of vertices in G such that
changing the adjacency of the pairs in G results in a graph without any induced copy of H.
Aravind et al. [2] proved that H-free Edge Editing is NP-hard for every graph H with
at least 3 vertices. However, a simple application of the technique of bounded-depth search
trees shows that H-free Edge Editing is FPT parameterized by k for every fixed H [3].

Graph modification problems were explored also from the viewpoint of polynomial
kernelization: is there a polynomial-time preprocessing algorithm that does not necessarily
solve the problem, but at least reduces the size of the an instance to be bounded by a
polynomial of k? The existence of a polynomial kernelization immediately implies that the
problem is FPT (after the preprocessing, one can solve the reduced instance by brute force
or any exact method). Therefore, one can view polynomial kernelization as a special type
of FPT result that tries to formalize the question whether the problem can be efficiently
preprocessed in a way that helps exhaustive search methods. There is a wide literature on
algorithms for kernelization (see, e.g., [14]). Conversely, incompressibility results can show,
typically under the complexity assumption NP 6⊆ coNP/poly, that a parameterized problem
has no polynomial kernelization.

Most of the highly nontrivial FPT algorithms for graph modification problems do not
give kernelization results and, in many cases, it required significant amount of additional
work to obtain kernelization algorithms. In particular, the FPT algorithm for H-free Edge
Editing based on the technique of bounded-depth search trees does not give polynomial
kernels. For the specific case when H = Kr is a complete graph, it is easy to see that there
is a solution using only deletions. Now the problem essentially becomes a Hitting Set
problem with sets of bounded size: we have to select at least one edge from the edge set of
each copy of Kr. Therefore, known kernelization results for Hitting Set can be used to
show that Kr-free Edge Editing has a polynomial kernel for every fixed r. A similar
argument works if H is an empty graph on r vertices.

Besides cliques and empty graphs, it is known for certain graphs H of at most 4 vertices
(diamond [5, 9], path [6, 15, 16], paw [7, 13], and their complements) that H-free Edge
Editing has a polynomial kernel, but these algorithms use very specific arguments exploiting
the structure of H-free graphs. As there is a very deep known structure theory of claw-free
(i.e, K1,3-free) graphs, it might be possible to obtain a polynomial kernel for Claw-free
Edge Editing, but this is currently a major open question [4, 10, 12]. However, besides
cliques and empty graphs, no H with at least 5 vertices is known where H-free Edge
Editing has a polynomial kernel and there is no obvious candidate H for which one would
expect a kernel. This suggests the following conjecture:

I Conjecture 1. If H is a graph with at least 5 vertices, then H-free Edge Editing has
a polynomial kernel if and only if H is a complete or empty graph.
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We are not able to resolve this conjecture, but make substantial progress towards it by
showing that only a finite number of key cases needs to be understood. Our main result for
H-free Edge Editing is the following.

I Theorem 1. There exists a set HE of nine graphs, each with five vertices such that if
H-free Edge Editing is incompressible for every H ∈ HE, then for a graph H with at least
five vertices H-free Edge Editing is incompressible if and only if H is neither complete
nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

The set HE of nine graphs are shown in Figure 1a. Note that a simple reduction by
complementation shows that H-free Edge Editing and H-free Edge Editing have
the same complexity. Therefore, for each of these nine graphs, we could put either it or
its complement into the set HE . As it will be apparent later, we made significant efforts
to reduce the size of HE as much as possible. However, the known techniques for proving
incompressibility do not seem to work for these graphs. Let us observe that most of these
graphs are very close to the known cases that admit a polynomial kernel: for example, they
can be seen as a path, paw, or diamond with an extra isolated vertex or with an extra
degree-1 vertex attached. Thus resolving the kernelization complexity of H-free Edge
Editing for any of these remaining graphs seems to be a particularly good research question:
either one needs to extend in a nontrivial way the known kernelization results, or a significant
new ideas are needed for proving hardness.

The reader might not be convinced of the validity of Conjecture 1 and may wonder about
the value of Theorem 1 when the conjecture is false. However, we can argue that Theorem 1
is meaningful even in this case. It shows that if there is any H violating Conjecture 1, then
one of the 9 graphs in HE also violates it. That is, if we believe that there are kernelization
results violating the conjecture, then we should focus on the 9 graphs in HE , as these are the
easiest cases where we may have a kernelization result. In other words, Theorem 1 precisely
shows the frontier where new algorithmic results are most likely to exist.

H-free Edge Deletion is the variant of H-free Edge Editing where only edge
removal is allowed. For the same fixed graph H, it seems that H-free Edge Deletion
should be a simpler problem than H-free Edge Editing, but we want to emphasize that
H-free Edge Deletion is not a special case of H-free Edge Editing. There is no
known general reduction from the former to the latter, although the technique of completion
enforcers (see Section 5 and [4]) can be used for many specific graphs H. There is a known
case where H-free Edge Deletion seems to be strictly easier: if H has at most one edge,
then there is only one way of destroying a copy of an induced H by edge removal, making
the problem polynomial-time solvable. Aravind et al. [1] showed that having at most one
edge is the only condition that makes H-free Edge Deletion polynomial-time solvable:
if H has at least two edges, then the problem is NP-hard. Therefore, the counterpart of
Conjecture 1 for H-free Edge Deletion should take this case also into account.

I Conjecture 2. If H is a graph with at least 5 vertices, then H-free Edge Deletion
has a polynomial kernel if and only if H is a complete graph or has at most one edge.

Working toward this conjecture, we show that only a finite number of cases needs to be
shown incompressible.

I Theorem 2. There exists a set HD of nineteen graphs, each with either five or six vertices
such that if H-free Edge Deletion is incompressible for every H ∈ HD then for a graph
H with at least five vertices, H-free Edge Deletion is incompressible if and only if H

is a graph with at least two edges but not complete, where the incompressibility assumes
NP 6⊆ coNP/poly.

ESA 2020



72:4 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

# H H # H H # H H

1 4 7

2 5 8

3 6 9 same

(a) The set H of graphs.

# A A # A A # A A

1 4 same 7

2 5 same 8

3 6 9

(b) The set A of graphs.

# D D # B B # B B

1 1 3

2 2

(c) The sets D and B of graphs.

Figure 1

(a) P3. (b) P3. (c) P4. (d) claw. (e) claw.

(f) paw. (g) paw. (h) diamond. (i) diamond. (j) 2K2. (k) C4.

Figure 2 All non-empty and non-complete graphs with at most four vertices.

The set HD contains the graphs in set HE , as well their complements. This seems reasonable
and hard to avoid: if we do not have an incompressibility result for H-free Edge Editing
for some H ∈ HE , then it is unlikely that we can find such a result for H-free Edge
Deletion (even though, as discussed above, there is no formal justification for this). Together
with these 17 graphs (note that H9 is the same as its complement), we need to include into
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HD the two graphs D1 and D2 shown in Figure 1c. In the case of editing, we can prove
incompressibility for these two graphs by a reduction from H-free Edge Editing where H

is the graph with 5 vertices and one edge. However, H-free Edge Deletion for this H is
polynomial-time solvable.

Finally, let us consider the H-free Edge Completion problem, where we have to make
G induced H-free by adding at most k edges. As H-free Edge Completion is essentially
the same problem as H-free Edge Deletion, we can obtain a counterpart of Theorem 2
by simple complementation:

I Theorem 3. There exists a set HC of nineteen graphs, each with either five or six vertices
such that if H-free Edge Completion is incompressible for every H ∈ HC then for a
graph H with at least five vertices, H-free Edge Completion is incompressible if and
only if H is a graph with at least two nonedges but not empty, where the incompressibility
assumes NP 6⊆ coNP/poly.

Our techniques. We crucially use two earlier results. First, Cai and Cai [4] proved that
H-free Edge Editing is incompressible (assuming NP 6⊆ coNP/poly) when H or H is a
cycle or a path of length at least 4, or 3-connected but not complete. While these result
handle many graphs and prove to be very useful for our proofs, they do not come close to a
complete classification. Second, we use a key tool in the polynomial-time dichotomy result of
Aravind et al. [1]: if V` is the set of lowest degree vertices of H, then (H − V`)-free Edge
Editing can be reduced to H-free Edge Editing. The same statement holds for the set
Vh of highest degree vertices.

Our proofs of Theorems 1–3 introduce new incompressibility results and new reductions,
which we put together to obtain an almost complete classification by a graph-theoretic
analysis. Additionally, to make the arguments simpler, we handle small graphs by an
exhaustive computer search. In the following, we highlight some of the main ideas that
appear in the paper.

Analysis of graphs. Our goal is to prove Theorem 1 by induction on the size of H.
First we handle the case when H is regular: we show that this typically implies that
either H or H is 3-connected, and the result of Cai and Cai [4] can be used. If H is not
regular, then the graphs H − V` and H − Vh are nonempty and have stricly fewer vertices
than H. If one of them, say H − V`, has at least 5 vertices and is neither complete nor
empty, then the induction hypothesis gives an incompressibility result for (H − V`)-free
Edge Editing, which gives an incompressibility result for H-free Edge Editing by
the reduction of Aravind et al. [1]. Therefore, we only need to handle those graphs H

where it is true for both H−V` and H−Vh that they are either small, complete, or empty.
But we can obtain a good structural understanding of H in each of these cases, which
allows us to show that either H or H is 3-connected, or H has some very well defined
structure. With these arguments, we can reduce the problem to the incompressibility of
H-free Edge Editing for a few dozen specific graphs H and for a few well-structured
infinite families (such as K2,t).
For H-free Edge Deletion, we have the additional complication that one or both
of H − V` and H − Vh can be near-empty (i.e., has exactly one edge), which is not an
incompressible case for this problem. We need additional case analysis to cover such
graphs, but the spirit of the proof remains the same.
Computer search. Our analysis of graphs becomes considerably simpler if we assume
that H is not too small. In this case, we can assume that at least one of H − V` and
H − Vh is a complete or empty graph of certain minimum size, which is a very helpful

ESA 2020



72:6 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

starting point for proving the 3-connectivity of H or H̄, respectively. Therefore, we
handle every graph with at most 9 vertices using an exhaustive computer search and
assume in the proof that H has at least 10 vertices. The list provided by McKay [20]
shows that there are 288266 different graphs with at most 9 vertices, which is feasible
for a computer search. In principle, it would be possible to extend our case analysis to
avoid this computer search, but it would significantly complicate the proof and is not
clear what additional insight it would give.
Reductions. We investigate different reductions that allow us to reduce H ′-free Edge
Editing to H-free Edge Editing when H ′ is an induced subgraph of H satisfying
certain conditions. With extensive use of such reductions, we can reduce the remaining
cases of H-free Edge Editing that needs to be handled to a smaller finite set.
Incompressibility results. We carefully revisit the proof of Cai and Cai [4] showing
the incompressibility of H-free Edge Editing when H is 3-connected, and observe
that, with additional ideas, it can be made to work also for certain 2-connected graphs
that are not 3-connected (the set A of graphs shown in Figure 1b and the set B of graphs
shown in Figure 1c). This allows us to handle every graph, except those finite sets that
are mentioned in Theorems 1–3. A key step in many of these incompressibility results
is to establish first incompressibility for the Restricted H-free Edge Deletion
problem, which is the generalization of H-free Edge Deletion where some of the
edges of G are marked as forbidden in the input, and the solution is not allowed to delete
forbidden edges. Then we use deletion and completion enforcer gadgets specific to H to
reduce Restricted H-free Edge Deletion to H-free Edge Editing.

The paper is organized as follows. Preliminaries are in Section 2. Section 3 presents the
churning procedure, our main technical tool in the analysis of graphs, and shows that it
reduces the problem to a finite number of graphs, plus a few well-defined infinite families.
Section 4 presents reductions (old and new) that allow us to further reduce the number of
graphs we need to handle. Finally, in Setion 5, we give new incompressibility results, showing
that only the cases stated in Theorems 1–3 need to be proved incompressible to complete
the exploration of the complexity landscape of the problems. All proofs have been moved to
a full version of the paper due to space constraints.

2 Preliminaries

Graph-theoretic notation and terminology. For a graph G, V (G) and E(G) denote the set
of vertices and the set of edges of G respectively. For a set V ′ ⊆ V (G), G− V ′ denotes the
graph obtained by removing all vertices in V ′ and their incident edges from G. For a set F

of pairs of vertices and a graph G, G4F denotes the graph G′ such that V (G′) = V (G) and
E(G′) = {(u, v) | ((u, v) ∈ E(G) and (u, v) /∈ F ) or (u, v ∈ V (G), (u, v) /∈ E(G), and (u, v) ∈
F )}. Whenever we say that a set of (non)edges F is a solution of an instance (G, k) of a
problem, we refers to a subset of F containing all (non)edges where both the end vertices
are in V (G). A graph is empty if it does not have any edges. A graph is near-empty if it
has exactly one edge. A graph is complete if it has no nonedges. A component of a graph
is a largest component if it has maximum number of vertices among all components of the
graph. Similarly, a component of a graph is a smallest component if it has minimum number
of vertices among all components of the graph. For a graph H which is not complete, the
vertex connectivity of H is the minimum integer c such that there exists a set S ⊆ V (H)
such that |S| = c and H − S is disconnected. For a graph H with vertex connectivity 1, a
vertex v in H is known as a cut vertex if H − v is disconnected. A graph is k-connected, if
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the vertex connectivity of it is at least k. An induced subgraph H ′ of H is known as a 2-
connected component if H ′ is a maximal 2-connected induced subgraph of H. The adjectives
“largest” and “smallest” can be applied to 2-connected components as done for components.
A twin-star graph T`1,`2 for `1, `2 ≥ 0 is defined as the tree with two adjacent vertices u and
v such that |N(u) \ {v}| = `1, |N(v) \ {u}| = `2, and every vertex in N(u) ∪N(v) \ {u, v}
has degree 1. A graph G is H-free if G does not contain any induced copy of H. For two
graphs G1 and G2, the disjoint union of G1 and G2 denoted by G1 ∪G2 (or G2 ∪G1) is the
graph G such that V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2). For two graphs G1
and G2, the join of G1 and G2 denoted by G1 �G2 (or G2 �G1), is the graph G such that
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {(x, y) |x ∈ V (G1), y ∈ V (G2)}. A
complete graph, a cycle, and a path with t vertices are denoted by Kt, Ct, and Pt respectively.
By Kt − e, we denote the graph obtained by deleting an edge from a complete graph on t

vertices. We call a graph non-regular if it is not regular. A modular decomposition M of a
graph G is a partitioning of its vertices into maximal sets, known as modules, such that for
every set M ∈M, every vertex in M has the same neighborhood outside M . LetM′ ⊆M.
Let V ′ =

⋃
M∈M′ M . Then we say thatM′ corresponds to V ′. For a set S of graphs, by S

we denote the set of complements of graphs in S. Figure 2 shows all graphs with at most
four vertices which are neither empty nor complete.

For t ≥ 3, let Jt be the graph obtained from K2 � tK1 and C4 by identifying an edge of
C4 with the edge between the highest degree vertices in K2� tK1. Let Qt be the graph graph
obtained from K2,t, for some t ≥ 3, by adding a path of length three between the highest
degree vertices in K2,t. Let H, A, D, B, S denote the graphs (H, A, D, B, S respectively)
shown in Figures 1a, 1b, 1c, and 3a. Let F be the union of graphs in the classes of graphs
shown in column F of Figure 3b. The graphs in S and F are handled in Section 4 and the
graphs in A and B are handled in Section 5. For all these classes of graphs, we use subscripts
to identify each graph/graph class. For example H1 is P3 ∪ 2K1 and F1 is the class of graphs
K1,t. Let W be the set H ∪H ∪A ∪A ∪D ∪ D ∪ B ∪ B ∪ S ∪ S ∪ F ∪ F . We observe that
W =W.

Parameterized problems and transformations. A parameterized problem is a classical
problem with an additional integer input known as the parameter. A parameterized problem
admits a polynomial kernel if there is a polynomial-time algorithm which takes as input an
instance (I, k) of the problem and outputs an instance (I ′, k′) of the same problem, where
|I ′|, k′ ≤ p(k), where p(k) is a polynomial in k, such that (I, k) is a yes-instance if and only
if (I ′, k′) is a yes-instance. A parameterized problem is incompressible if it does not admit a
polynomial kernel. A Polynomial Parameter Transformation (PPT) from one parameterized
problem Q to another parameterized problem Q′ is a polynomial-time algorithm which takes
as input an instance (I, k) of Q and produces an instance (I ′, k′) of Q′ such that (I, k) is
a yes-instance of Q if and only if (I ′, k′) is a yes-instance of Q′, and k′ ≤ p(k), for some
polynomial p(.). It is known that if there is a PPT from Q to Q′, then if Q is incompressible,
then so is Q′. We refer to the book [11] for various concepts in parameterized algorithms
and complexity.

The parameterized problems we deal with in this paper are listed below.

H-free Edge Editing: Given a graph G and an integer k, do there exist at most
k edges such that editing (adding or deleting) them in G results in an H-free graph?
Parameter: k

ESA 2020
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H-free Edge Deletion: Given a graph G and an integer k, do there exist at most k

edges such that, deleting them from G results in an H-free graph? Parameter: k

H-free Edge Completion: Given a graph G and an integer k, do there exist at most
k edges such that, adding them in G results in an H-free graph? Parameter: k

Basic results. Proposition 4 follows from the observations that (G, k) is a yes-instance of
H-free Edge Editing(Deletion) if and only if (G, k) is a yes-instance of H-free Edge
Editing(Completion). It enables us to focus only on H-free Edge Editing and H-free
Edge Deletion.

I Proposition 4 (folklore). Let H be any graph. Then H-free Edge Deletion is incom-
pressible if and only if H-free Edge Completion is incompressible. Similarly, H-free
Edge Editing is incompressible if and only if H-free Edge Editing is incompressible.

For graphs H and H ′, by “H simulates H ′” and by “H ′ is simulated by H”, we mean
that, there is a PPT from H ′-free Edge Editing to H-free Edge Editing, there is
a PPT from H ′-free Edge Deletion to H-free Edge Deletion, and there is a PPT
from H ′-free Edge Completion to H-free Edge Completion. We observe that this
is transitive, i.e., if H simulates H ′ and H ′ simulates H ′′, then H simulates H ′′. A set of
graphs H is called a base for a set G of graphs if for every graph H ∈ G there is a graph
H ′ ∈ H such that H simulates H ′. The objective of the rest of the paper is to find, for each
of the problems, a base H ∪ X for all graphs with at least five vertices, except the trivial
cases, such that the following conditions are satisfied: (i) H is finite and the incompressibility
is not known for any graph in it; (ii) for every graph in X , the problem is known to be
incompressible.

Proposition 4 implies Corollary 5 and Proposition 6 can be deduced directly from the
definitions.

I Corollary 5. Let H and H ′ be graphs such that H simulates H ′. Then H simulates H ′.

I Proposition 6. Let H be a base for a set G of graphs. Assume that for every graph H ′ ∈ H,
H ′-free Edge Editing (Deletion) is incompressible. Then for every graph H ∈ G,
H-free Edge Editing (Deletion) is incompressible.

Intuitively, if H ′ is an induced subgraph of H, then H-free Edge Editing (Deletion)
seems harder than H ′-free Edge Editing (Deletion). However, there is no general argu-
ment why this should be true: there does not seem to be a completely general reduction that
would reduce H ′-free Edge Editing (Deletion) to H-free Edge Editing (Deletion).
There is, however, a fairly natural idea for trying to do such a reduction: we extend the graph
by attaching copies of H −H ′ at every place where a copy of H ′ can potentially appear. The
following construction is essentially the same as the main construction used in [2].

I Construction 1 (see [2]). Let (G′, k, H, V ′) be an input to the construction, where G′ and
H are graphs, k is a positive integer and V ′ is a subset of vertices of H. We construct a
graph G from G′ as follows. For every injective function f : V ′ −→ V (G′), do the following:

Introduce k + 1 sets of vertices V1, V2, . . . , Vk+1, each of size |V (H) \ V ′| , and k + 1
bijective functions gi : V (H) −→ (f(V ′) ∪ Vi), for 1 ≤ i ≤ k + 1, such that gi(v′) = f(v′)
for every v′ ∈ V ′;



D. Marx and R. B. Sandeep 72:9

For each set Vi, introduce an edge set Ei ={(u, v) |u∈(f(V ′)∪Vi), v∈Vi, (g−1
i (u), g−1

i (v))∈
E(H)}.

This completes the construction. Let the constructed graph be G.

For convenience, we call every set Vi of vertices introduced in the construction as a
satellite and the vertices in it as satellite vertices. This reduction works correctly in one
direction: it ensures that the operations that make the new graph G H-free should ensure
that the copy of G′ inside G is H ′-free.

I Proposition 7 (see Lemma 2.6 in [2]). Let G be obtained by Construction 1 on the input
(G′, k, H, V ′), where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then, if
(G, k) is a yes-instance of H-free Edge Editing (Deletion), then (G′, k) is a yes-instance
of H ′-free Edge Editing (Deletion), where H ′ is H[V ′].

However, the other direction of the correctness of the reduction does not hold in general (this
is easy to see for example for H = K1,2 and H ′ = K2). As we shall see, there are particular
cases where we can prove the converse of Proposition 7, for example, when H −H ′ consists
of exactly the highest- or lowest-degree vertices. Application of such arguments will be our
main tool in reducing the complexity of H-free Edge Editing (Deletion) to simpler
cases. Propositions 8 to 11 summarize the major results on the incompressibility of H-free
edge modification problems known so far.

I Proposition 8 ([4]). Assuming NP 6⊆ coNP/poly, H-free Edge Editing, H-free Edge
Deletion, and H-free Edge Completion are incompressible if H is either of the following
graphs.
(i) C` for any ` ≥ 4;
(ii) P` for any ` ≥ 5;
(iii) 2K2.

We observe that Proposition 8(iii) follows from Proposition 8(i) and Proposition 4.

I Proposition 9 ([4]). Assuming NP 6⊆ coNP/poly, for 3-connected graphs H, H-free Edge
Editing and H-free Edge Deletion are incompressible if H is not complete and H-free
Edge Completion is incompressible if H has at least two nonedges.

I Proposition 10 ([4], folklore). If H is a complete or empty graph, then H-free Edge
Editing admits polynomial kernelization. If H is complete or has at most one edge then
H-free Edge Deletion admits polynomial kernelization. If H is an empty graph or has
at most one nonedge then H-free Edge Completion admits polynomial kernelization.

I Proposition 11. H-free Edge Editing, H-free Edge Deletion, and H-free Edge
Completion admit polynomial kernels when H is a P3 [6, 15], P4 [16], paw [7, 13], or a
diamond [5, 9].

3 Churning

In this section, we introduce and analyze the churning procedure. The main result of the
section is that assuming incompressibility for the class W of graphs defined in the previous
section explains incompressibility for every graph with at least five vertices, except the trivial
cases. Recall that W is not finite, as it contains the infinite families shown in Figure 3b. In
Sections 4 and 5, we will further reduce W to a finite set.
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# S S # S S # S S # S S

1 10 19 28

2 11 20 29

3 12 same 21 30

4 13 22 31

5 14 23 32

6 15 24 same 33

7 16 25 34

8 17 26 35

9 18 27 36

(a) The set S of graphs.

# F F Comment # F F Comment

1 K2,t Kt ∪K2 4 ≤ t 6 (Kt − e) ∪K2 (Kt − e) ∪K2 4 ≤ t

2 K1,t Kt ∪K1 5 ≤ t 7 K1,t ∪K2 K1,t ∪K2 4 ≤ t

3 K2 � tK1 Kt ∪ 2K1 4 ≤ t 8 (Kt − e) ∪K1 (Kt − e) ∪K1 6 ≤ t

4 Tt,1 Tt,1 4 ≤ t 9 Jt Jt 3 ≤ t

5 (Kt − e) ∪ 2K1 (Kt − e) ∪ 2K1 4 ≤ t 10 Qt Qt 3 ≤ t

(b) The set F of infinite sets of graphs.

Figure 3

I Lemma 12. If H-free Edge Editing is incompressible for every H ∈ W, then H-free
Edge Editing is incompressible for every H having at least five vertices but is neither
complete nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

I Lemma 13. If H-free Edge Deletion is incompressible for every H ∈ W, then H-
free Edge Deletion is incompressible for every H having at least five vertices and at least
two edges but not complete, where the incompressibility assumes NP 6⊆ coNP/poly.

Corollary 14 follows from Lemma 13, Proposition 4 and from the fact that W =W.

I Corollary 14. If H-free Edge Completion is incompressible for every H ∈ W, then
H-free Edge Completion is incompressible for every H having at least five vertices and
at least two nonedges but not empty, where the incompressibility assumes NP 6⊆ coNP/poly.
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By XE we denote the set of all graphs (and their complements) listed in Proposition 8,
Proposition 9, and Theorem 18 for which the incompressibility is known (assuming NP 6⊆
coNP/poly) for H-free Edge Editing. By YE , we denote the set of all graphs (and their
complements) listed in Proposition 10 and 11 for which there exist polynomial kernels for
H-free Edge Editing; additionally, we include into YE the claw and its complement (as
we do not want to conjecture the incompressibility for these cases). Similarly, we define the
set XD of “hard” and the set YD of “nonhard” cases for H-free Edge Deletion. More
formally,

XD = {C`, C` for all ` ≥ 4,

P`, P` for all ` ≥ 5,

H such that H is regular but is neither complete nor empty,
H such that either H is 3-connected but not complete
or H is 3-connected with at least two nonedges}

XE = XD ∪ {H such that H has at most one edge and at least five vertices}
YE = {Kt, Kt for all t ≥ 1,

P3, P3, P4,

diamond,diamond,paw,paw, claw, claw}
YD = YE ∪ {H such that H has at most one edge and at least five vertices}

Additionally we define Y ′ = {P3, P3, P4, claw, claw,paw,paw,diamond,diamond}. We
observe that Y ′ ⊆ YE ∩ YD and the set of graphs with at most four vertices is a subset
of XE ∪ YE and XD ∪ YD. Further, we observe that near-empty graphs with at least five
vertices are in YD but their complements are 3-connected and are in XD. We also note that
both these graphs and their complements are in XE .

The main technical result of the section is the following lemma. It states that if a graph
is not in the set YD of “easy” graphs, then it simulates a “hard” graph in XD or W (and
there is a similar result for XE and YE).

I Lemma 15. If H /∈ YD, then H simulates a graph in XD ∪ W. If H /∈ YE, then H

simulates a graph in XE ∪W.

In the rest of the paper, integer ` and set V` denote the lowest degree and the set of lowest
degree vertices in H respectively; integer h and set Vh denote the highest degree and the set
of highest degree vertices in H respectively; and set Vm denotes the set V (H) \ (V` ∪ Vh).
By h∗ we denote the degree of vertices of Vh in H, i.e., h∗ = |V (H)| − h− 1.

Now we introduce a procedure (Churn) which is similar to the one used to obtain
dichotomy results on the polynomial-time solvable and NP-hard cases of these problems
(see Section 5 in [2]). The basic observation is that H can simulate the graphs H − V` and
H − Vh. This follows from proving that Construction 1 gives a PPT in these cases.

I Proposition 16 (Corollary 2.9 in [2]). Let H ′ be H − V` or H − Vh. Then H simulates H ′.

To deal with both H-free Edge Editing and H-free Edge Deletion in a uniform
way, we define X = XE and Y = YD. We observe that X ∪ Y = X ∪ Y and X ∪ Y =
XE ∪ YE = XD ∪ YD.
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Churn(H):
Step 1: If H is regular, then return H.
Step 2: If H − V` /∈ Y, then return Churn(H − V`).
Step 3: If H − Vh /∈ Y, then return Churn(H − Vh).
Step 4: Return H.

Proposition 16 implies Corollary 17.

I Corollary 17. Let H ′ be the output of Churn(H). Then H simulates H ′.

We prove Lemma 15 by analyzing Churn() and showing that the graph returned by it
always satisfies the requirements of the lemma. The procedure first handles the case when
H is regular. In Section 3.1, we show that if H is regular, then it is safe to return H, as it
is already in XD ⊆ XE . If H is not regular, then H − V` and H − Vh are both defined. If
one of these two graphs is not in Y, then Proposition 16 allows us to proceed by recursion
on that graph. Step 4 is reached when both H − V` and H − Vh are in Y. However, at this
point the conditions on H − V` and H − Vh give us important structural information about
the graph H, which can be exploited to show that it is in XD ∪W. Recall that Y is the
union of complete, empty, near-empty, and the finite graphs in Y ′. This means we can split
the problem into 4 · 4 different cases, with very strict structural restrictions on H in each
case. These cases are analysed in a sequence of lemmas/corollaries (Lemma 19 to Lemma 34
in Sections 3.2–3.5).

3.1 Regular graphs
In this section, we handle the case when H is regular.

I Theorem 18. Let H be a regular graph. Then H-free Edge Deletion, H-free Edge
Completion, and H-free Edge Editing are incompressible if and only if H is neither
complete nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

3.2 Small graphs
If both H − V` and H − Vh are in the in the finite set Y ′ of graphs, then H has bounded
size. An exhaustive computer search showed the correctness of the procedure in this case.

I Lemma 19. Let H /∈ X ∪Y be such that both H −V` and H −Vh are in Y ′. Then H ∈ W.

3.3 Cliques and empty graphs
In this section, we consider the cases when both H − V` and H − Vh are cliques or empty
graphs. In this case, the structure of H is very limited. In principle, we need to consider
four cases separately depending on the type of H − V` and H − Vh. However, a simple
complementation argument shows that the case when both of them are cliques is equivalent
to the case when both of them are empty.

I Lemma 20. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are complete graphs.
Then H ∈ W.

Corollaries in this section and in Sections 3.4 and 3.5 use the facts that various sets we
consider are self-complementary, i.e., X ∪ Y = X ∪ Y,W =W,Y ′ = Y ′.
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I Corollary 21. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are empty graphs.
Then H ∈ W.

I Lemma 22. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh is an
empty graph. Then H ∈ W.

Our last case is when H − V` is empty and H − Vh is complete. Let us observe that this
case does not follow from Lemma 22 by complementation. If V` and Vh are the lowest- and
highest-degree vertices in H, then V` = Vh, Vh = V` and hence H − V` is empty and H − Vh

is a clique, that is, we have the same condition as for H. Fortunately, this last case is very
simple to handle.

I Lemma 23. There exists no graph H /∈ X ∪ Y such that H − V` is an empty graph and
H − Vh is a complete graph.

3.4 Cliques/empty graphs plus small graphs
Next we consider the cases when one of H − V` or H − Vh is a clique or an empty graph,
while the other is a graph from the finite set Y ′. Assuming that H is not too small, this
means that H is essentially a clique or an empty graph, and intuitively it should follow that
H or H is 3-connected, respectively. However, this requires a detailed proof considering
several cases.

I Lemma 24. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is a complete graph.
Then H ∈ W.

I Corollary 25. Let H /∈ X ∪ Y be such that H − V` is an empty graph and H − Vh ∈ Y ′.
Then H ∈ W.

I Lemma 26. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is an empty graph.
Then H ∈ W.

I Corollary 27. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh ∈ Y ′.
Then H ∈ W.

3.5 Near-empty graphs
Finally, we consider the cases when one of H − V` or H −Hh is near empty. These cases are
similar to the corresponding ones for empty graphs, but more technical and a higher number
of corner cases need to be handled. Let us remark that this part of the proof is needed only
for the H-free Edge Deletion problem: near-empty graphs are not in YE , hence if our
goal is to prove Theorem 1 for H-free Edge Editing, then the churning procedure can
recurse on such graphs.

I Lemma 28. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh is a
near-empty graph. Then H ∈ W.

I Lemma 29. There exists no H /∈ X ∪ Y such that H − V` is a near-empty graph and
H − Vh is a complete graph.

I Lemma 30. Let H /∈ X ∪Y such that H−V` is an empty graph and H−Vh is a near-empty
graph. Then H ∈ W.

I Lemma 31. Let H /∈ X ∪ Y such that H − V` is a near-empty graph and H − Vh is an
empty graph. Then H ∈ W.
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I Lemma 32. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are near-empty graphs.
Then H ∈ W.

I Lemma 33. Let H /∈ X ∪ Y be such that H − V` is a near-empty graph and H − Vh ∈ Y ′.
Then H ∈ W.

I Lemma 34. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is a near-empty graph.
Then H ∈ W.

4 Reductions

Recall that we defined W = H ∪H ∪A ∪A ∪D ∪D ∪ B ∪ B ∪ S ∪ S ∪ F ∪ F and Section 3
reduced our main questions to assuming incompressibility for the set W. In this section, we
further refine the result and show that incompressibility needs to be assumed only for the
finite set W ′ = H∪H∪A∪A∪B ∪D. That is, we recall and introduce some further simple
reductions and use them to prove that every graph in W \W ′ simulates a graph in W ′ ∪XD.
To begin with, we observe that deleting the lowest degree vertices in the graphs in B ∪ D
results in 3-connected graphs which are not complete. Then by Proposition 16, we have:

I Proposition 35. If H ∈ B∪D, then H-free Edge Editing and H-free Edge Deletion
are incompressible, assuming NP 6⊆ coNP/poly.

The following reductions are based on Construction 1 and a few other similar constructions.

4.1 Reductions based on Construction 1
The following lemma can be proved using a straight-forward application of Construction 1.

I Lemma 36. Let H be J ∪Kt, for some graph J and integer t ≥ 1, where the Kt is induced
by V`. Let V ′ be V (H) \ {v}, where v is any vertex in the Kt. Let H ′ be H[V ′]. Then H

simulates H ′. In particular, H simulates J ∪K1.

I Corollary 37.
(i) Let H be Kt ∪K2, for t ≥ 4 (∈ F1). Then H simulates Kt ∪K1 (∈ {H5} ∪ F2).
(ii) Let H be (Kt − e) ∪ K2, for t ≥ 4 (∈ F6). Then H simulates (Kt − e) ∪ K1 (∈
{H8, D2} ∪ F8).

Next we consider the removal of a path of degree-2 vertices. We can prove the correctness
of the reduction only under a certain uniqueness condition on the path.

I Lemma 38. Let H be a graph with minimum degree two and let p ≥ 2 be an integer such
that there is a unique induced path P of length p with the property that all the internal vertices
of the path are having degree exactly two in H. Let H ′ be obtained from H by removing all
internal vertices of P . Then H simulates H ′.

I Corollary 39. Let H be Jt, for some t ≥ 3 (∈ F9). Then H simulates K2 � tK1 (∈
{H3} ∪ F3).

I Corollary 40. Let H be Qt, for some t ≥ 3 (∈ F10). Then H simulates K2,t (∈ {S1}∪F1).

I Corollary 41. (i) S5 simulates C4.
(ii) S9 simulates H4.
(iii) Let H be S15. Then H simulates H9 ∪K1. Further H simulates H9 (Proposition 16).
(iv) S22 simulates diamond ∪K2 (∈ F6).
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Lemma 42 essentially says the following: If H has vertex connectivity 1 and has a unique
smallest 2-connected component which is a “leaf” in the tree formed by the 2-connected
components, then H simulates a graph obtained by removing all vertices in the 2-connected
component except the cut vertex.

I Lemma 42. Let H be a graph with vertex connectivity 1 and be not a complete graph. Let
C be the set of all 2-connected components of H having exactly one cut vertex of H. Assume
that there exists a unique smallest (among C) 2-connected component J in C. Let v be the
cut vertex of H in J . Let H ′ be H − {J \ {v}}. Then H ′ is simulated by H.

I Corollary 43.

(i) S20 simulates K2,4 (∈ F1). (ii) S27 simulates (K5 − e) ∪K2 (∈ F6).

I Lemma 44. Let H be S35. Then H simulates a 3-connected graph, which is not complete
(∈ XD).

4.2 Reductions based on Construction 2
The following is a simplified version of Construction 1.

I Construction 2. Let (G′, k, `) be an input to the construction, where G′ is a graph and k

and ` are positive integers. For every set S of ` vertices in G′ introduce a clique C of k + 1
vertices and make all the vertices in C adjacent to all the vertices in S.

As before, we call every clique C introduced during the construction as a satellite and
the vertices in it as satellite vertices. Lemma 45 can be proved using a straight-forward
application of Construction 2. It says that if H satisfies some properties, then H simulates
H ′ where H ′ is obtained by removing one vertex from each module of H contained within V`.

I Lemma 45. Let H be a non-regular graph such that the following conditions hold true:
(i) 1 ≤ ` ≤ 2, |V (H)| ≥ 5;
(ii) V` is an independent set, Vh ∪ Vm induces a connected graph, and every vertex in Vh is

adjacent to at least one vertex in V`;
(iii) Every vertex in Vm has at least ` + 1 neighbors outside Vm or there exists no pair u, v

of adjacent vertices in Vm such that N(u) \ {v} = N(v) \ {u}.
Consider a modular decomposition M of H. Let M′ ⊆ M corresponds to V`. Let H ′

be the graph obtained from H by removing one vertex from each module in M′. Then H

simulates H ′.

The following corollary lists many graphs that can be handled by Lemma 45.

I Corollary 46.

(i) S7 simulates H9.
(ii) S8 simulates A1.
(iii) S10 simulates C4.
(iv) S11 simulates H7.
(v) S12 simulates S2.
(vi) S13 simulates S3.
(vii) S14 simulates B1.

(viii) S18 simulates A1.
(ix) S19 simulates S3.
(x) S21 simulates H4.
(xi) S23 simulates A7.
(xii) S24 simulates S7.
(xiii) S25 simulates H1.
(xiv) S26 simulates S8.

(xv) S28 simulates A9.
(xvi) S29 simulates S17.
(xvii) S30 simulates S19.
(xviii) S32 simulates S16.
(xix) S33 simulates K1,4 ∪K2 ∈ F7.
(xx) S34 simulates K1,5 ∪K2 ∈ F7.
(xxi) S36 simulates S14.
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The following three corollaries are obtained by application of Lemma 45: they show that
in certain families of graphs, every member simulates the simplest member. Corollary 47
deals with star graphs (K1,t). For every graph H in this class, V` is a single module of the
graph and H simulates a graph H ′, where H ′ is obtained by removing one vertex from V`.
Corollary 48 handles K2 � sK1, where V` forms a single module of the graph. As in the
previous case, H ′ is obtained by removing one vertex from V`. Corollary 49 deals with the
set of twin-star graphs (Tt1,t2). For every graph H in this class, there are two modules of
H in V` : t1 vertices adjacent to one vertex in H − V` and t2 vertices adjacent to the other
vertex in H − V`. Then H simulates a graph H ′, where H ′ is obtained by removing one
vertex each from the two modules.

I Corollary 47 (see Lemma 6.4 in [2] for a partial result). Let H be K1,t, for any t ≥ 5 (∈ F2).
Let H ′ be K1,t−1. Then H simulates H ′. Furthermore, H simulates H5 (K1,4).

I Corollary 48 (see Lemma 4.5 in [1] for a partial result). Let H be K2 � sK1, for any s ≥ 4
(∈ F3) and let H ′ be K2 � (s− 1)K1. Then H simulates H ′. Furthermore, H simulates H3
(K2 � 3K1).

I Corollary 49 (see Lemma 6.6 in [2] for a partial result). Let H be a twin-star graph Tt1,t2 ,
such that t1, t2 ≥ 1. Let H ′ be Tt1−1,t2−1. Then H simulates H ′. In particular, if H is Tt,1,
for some t ≥ 4 (∈ F4), then H simulates K1,t (∈ {H5} ∪ F2).

I Lemma 50. K2,3 (= S1) simulates C4.

4.3 Reductions based on Construction 3

Now we give another construction that will be used in a few reductions.

I Construction 3. Let (G′, k, t) be an input to the construction, where G′ is a graph and
k and t are positive integers. For every set S of t vertices in G′ introduce an independent
set IS of k + 2 vertices such that every vertex in IS is adjacent to every vertex in G′ except
those in S. Let

⋃
S⊆V (G′),|S|=t IS = I. Let the resultant graph be G.

I Lemma 51. Let H be a graph such that Vh forms a clique and for every pair of vertices
u, v ∈ Vh, H −u is isomorphic to H − v. Further assume that there exists no independent set
S of size s ≥ 2 where each vertex in S has degree at least h− s + 1 in H. Then H simulates
H − u, where u is any vertex in Vh.

Additional results used by Corollary 52 are shown in parenthesis.

I Corollary 52.

(i) S2 simulates H7.
(ii) S3 simulates H6.
(iii) S16 simulates S3 (Proposition 16).

(iv) S17 simulates H1 (Proposition 16).

(v) S31 simulates S3 (Proposition 16)

I Lemma 53. Let H be (Kt − e) ∪K1 for t ≥ 6 (F8). Let H ′ be Kt−2 ∪K1 (∈ {H5} ∪ F2).
Then H simulates H ′.
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4.4 Other reductions
To resolve graphs in F7 (= K1,t ∪K2), we resort to a known reduction. There is a PPT in [2]
from H ′-free Edge Editing to H-free Edge Editing, where H ′ is a largest component
in H. It is a composition of two reductions: one from H ′-free Edge Editing to H ′′-free
Edge Editing and another from H ′′-free Edge Editing to H-free Edge Editing,
where H ′′ is the union of all components in H isomorphic to H ′. The first reduction uses a
simple construction (take a disjoint union of the input graph and join of k + 1 copies of H ′)
and the second reduction uses Construction 1.

I Proposition 54 (see Lemma 3.5 in [2]). Let H ′ be a largest component of H. Then H

simulates H ′.

I Corollary 55. Let H be K1,t∪K2, for t ≥ 4 (∈ F7). Then H simulates K1,t (∈ {H5}∪F2).

The following statement consider reduction that involve the removal of independent
vertices.

I Lemma 56. Let H be J ∪ tK1, for any t ≥ 2 such that J has no component which is a
clique. Let H ′ be J ∪ (t− 1)K1. Then H simulates H ′. In particular, H simulates J ∪K1.

I Corollary 57.
(i) S4 simulates H2.
(ii) S6 simulates H6.
(iii) Let H be (Kt − e) ∪ 2K1, for t ≥ 4 (∈ F5). Then H simulates (Kt − e) ∪ K1

(∈ {H8, D2} ∪ F8).

Summary of results in this section handling graphs in S and F are given in Figure 4a
and 4b respectively. Lemma 58 follows from Corollary 5, Proposition 35, the transitivity of
PPTs, and other results in this section (see Figures 4a and 4b) for details.

I Lemma 58. Let H ∈ W \W ′. Then H simulates a graph in W ′ ∪ XD.

5 Incompressibility results for the graphs in A and B

In this section, we prove that for every graph H ∈ A ∪A, all three problems H-free Edge
Editing, H-free Edge Deletion, and H-free Edge Completion are incompressible,
assuming NP 6⊆ coNP/poly. With the same assumption, we prove that H-free Edge Dele-
tion is incompressible for every graph H ∈ B; Proposition 4 then implies incompressibility
of H-free Edge Completion for every H ∈ B.

I Theorem 59. Assuming NP 6⊆ coNP/poly:
(i) Let H ∈ A. Then H-free Edge Editing is incompressible.
(ii) Let H ∈ A ∪A ∪ B. Then H-free Edge Deletion is incompressible.
(iii) Let H ∈ A ∪A ∪ B. Then H-free Edge Completion is incompressible.

We apply the technique used by Cai and Cai [4] by which they obtained a complete
dichotomy on the incompressibility of H-free edge modification problems on 3-connected
graphs H. We will give a self-contained summary of their proof technique, with only a few
references to proofs of formal statements. The reader is referred to [4] for a more detailed
exposition of terminology and concepts discussed in this section.

The first step in the proof is to establish incompressibility for the restricted versions of
H-free Edge Deletion and H-free Edge Completion, where only allowed edges can
be deleted/added. Then deletion and completion enforcer gadgets can be used to reduce
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H Simulates By H Simulates By H Simulates By

S1 C4 Lemma 50 S13 S3 Corollary 46 S25 H1 Corollary 46

S2 H7 Corollary 52 S14 B1 Corollary 46 S26 S8 Corollary 46

S3 H6 Corollary 52 S15 H9 Corollary 41 S27 a graph in F6 Corollary 43

S4 H2 Corollary 57 S16 S3 Corollary 52 S28 A9 Corollary 46

S5 C4 Corollary 41 S17 H1 Corollary 52 S29 S17 Corollary 46

S6 H6 Corollary 57 S18 A1 Corollary 46 S30 S19 Corollary 46

S7 H9 Corollary 46 S19 S3 Corollary 46 S31 S3 Corollary 52

S8 A1 Corollary 46 S20 a graph in F1 Corollary 43 S32 S16 Corollary 46

S9 H4 Corollary 41 S21 H4 Corollary 46 S33 a graph in F7 Corollary 46

S10 C4 Corollary 46 S22 a graph in F6 Corollary 41 S34 a graph in F7 Corollary 46

S11 H7 Corollary 46 S23 A7 Corollary 46 S35 a graph in XD Lemma 44

S12 S2 Corollary 46 S24 S7 Corollary 46 S36 S14 Corollary 46

(a) Summary of results in Section 4 handling graphs in S.

H ∈ Simulates a graph in By H ∈ Simulates a graph in By

F1 {H5} ∪ F2 Corollary 37 F6 {H8, D2} ∪ F8 Corollary 37

F2 {H5} Corollary 47 F7 {H5} ∪ F2 Corollary 55

F3 {H3} Corollary 48 F8 {H5} ∪ F2 Lemma 53

F4 {H5} ∪ F2 Corollary 49 F9 {H3} ∪ F3 Corollary 39

F5 {H8, D2} ∪ F8 Corollary 57 F10 {S1} ∪ F1 Corollary 40

(b) Summary of results in Section 4 handling graphs in F .

Figure 4

the restricted problems to the original versions. Cai and Cai [4] presented constructions
that were proved to work correctly when H is 3-connected. We show, by careful inspection,
that the same technique works for certain graphs H that are not 3-connected. For certain
graphs H, we can prove incompressibility of the restricted problem, but enforcer gadgets of
the required form provably do not exist. In these cases, we use ad hoc ideas to reduce the
restricted version to the original one. In yet further cases, we need even trickier reductions,
where we reduce H ′-free Edge Deletion to H-free Edge Deletion for some H ′ 6= H.

5.1 Incompressibility results for the restricted problems
A graph is called edge-restricted if a subset of its edges are marked as forbidden. All edges
other than forbidden are allowed. A graph is called nonedge-restricted if a subset of its
nonedges are marked as forbidden. All nonedges other than forbidden are allowed.

Restricted H-free Edge Deletion: Given a graph G, an integer k, and a set R of
edges of G, do there exist at most k edges disjoint from R such that deleting them from
G results in an H-free graph? Parameter: k

Restricted H-free Edge Completion: Given a graph G, an integer k, and a set R

of nonedges of G, do there exist at most k nonedges disjoint from R such that adding
them in G results in an H-free graph? Parameter: k
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Propagational formula satisfiability. A ternary Boolean function f(x, y, z) (where x, y, and
z are either Boolean variables or constants 0 or 1) is propagational if f(1, 0, 0) = 0, f(0, 0, 0) =
f(1, 0, 1) = f(1, 1, 0) = f(1, 1, 1) = 1. This has the meaning: if x is true then either y is true
or z is true.

Propagational-f Satisfiability: Given a conjunctive formula ϕ of a propagational
ternary function f with distinct variables in each clause of ϕ, find whether there exists a
satisfying truth assignment with weight at most k. The parameter we consider is k.

I Proposition 60 (Theorem 3.4 in [4]). For any propagational ternary Boolean function
f , Propagational-f Satisfiability on 3-regular conjunctive formulas (every variable
appears exactly three times) admits no polynomial kernel, assuming NP 6⊆ coNP/poly.

Satisfaction-testing components. For H-free Edge Deletion, a satisfaction-testing
component SD(x, y, z) is a constant-size edge-restricted H-free graph with exactly three
allowed edges {x, y, z} such that there is a propagational Boolean function f(x, y, z) such
that f(x, y, z) = 1 if and only if the graph obtained from SD(x, y, z) by deleting edges in
{x, y, z} with value 1 is H-free. For H-free Edge Completion, a satisfaction-testing
component SC(x, y, z) is a constant-size nonedge-restricted H-free graph with exactly three
allowed nonedges {x, y, z} such that there is a propagational Boolean function f(x, y, z) such
that f(x, y, z) = 1 if and only if the graph obtained from SC(x, y, z) by adding edges in
{x, y, z} with value 1 is H-free.

There is an easy construction (Lemma 4.3 in [4]) showing that SD(x, y, z) exists for every
connected graph H with at least four vertices but not complete and SC{x, y, z} exists for
every connected graph with at least four vertices and at least two nonedges. The construction
for this is as follows. SD{x, y, z}: Let x be a nonedge, and y and z be two edges in H. Then
H + x is a SD(x, y, z) where x, y, z are the only allowed edges. SC{x, y, z}: Let x be an edge,
and y and z be two nonedges in H. Then H − x is a SC(x, y, z) where x, y, z are the only
allowed nonedges.

Truth-setting components. For H-free Edge Deletion, a truth-setting component
(TD(u)) is a constant-sized, edge-restricted H-free graph such that it contains at least three
allowed edges x, y, z without a common vertex and admits exactly two deletion sets ∅ and
the set of all allowed edges. For H-free Edge Completion, a truth-setting component
(TC(u)) is a constant-sized, nonedge-restricted H-free graph such that it contains at least
three allowed nonedges x, y, z without a common vertex and admits exactly two completion
sets ∅ and the set of all allowed nonedges.

There is a construction given in [4] for TD(u) and TC(u) when H is 3-connected but not
complete. The constructions are given below.

Construction of TD(u): Let e′, e be a nonedge and an edge sharing no common vertex in
H. Let the basic unit U = H + e′ and set all edges except e and e′ in U as forbidden. Let p

be the number of vertices in H. Take p copies U1, U2, . . . , Up of U . Identify the edge e of Ui

with the edge e′ of Ui+1 to form a chain of U ’s. This is a basic chain B(u). Let us call the
unidentified edge e′ of U1 as the left-most allowed edge of B(u) and unidentified edge of Up

as the right-most allowed edge of B(u). Take three basic chains B0, B1, and B2. Attach them
in a cyclic fashion: Identify the right-most allowed edge of Bi with the left-most allowed
edge of Bi+1, where indices are taken mod 3. This is the claimed truth-setting component
TD(u). Let us call the allowed edges thus identified as variable edges. We note that there are
exactly three variable edges in TD(u).
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It is easy to see that, for every H, there are only two possible deletion sets in TD(u):
the empty set and the set of all allowed edges. To see this, observe that if we remove any
of the allowed edges, then it creates a copy of H in one of the units, forcing us to remove
the next allowed edge as well. However, it is not clear if these two deletion sets really make
the graph H free. As Cai and Cai [4] show, this construction for TD(u) works correctly for
3-connected graphs H: Since the “cycle” of basic units is long enough, every subgraph having
vertices from different basic units and having at most |V (H)| vertices has vertex connectivity
at most 2. In general, the construction may not give correct truth-setting components for
2-connected graphs H. But, as we shall see later, by carefully choosing e and e′ in these
constructions, we can obtain truth-setting components for many 2-connected graphs H.

Construction of TC(u): Let e′, e be a nonedge and an edge sharing no common vertex in
H. Let the basic unit U = H−e and set all nonedges except e and e′ in U as forbidden. Let p

be the number of vertices in H. Take p copies U1, U2, . . . , Up of U . Identify the nonedge e of
Ui with the nonedge e′ of Ui+1 to form a chain of U ’s. This is a basic chain B(u). Let us call
the unidentified nonedge e′ of U1 as the left-most allowed nonedge of B(u) and unidentified
nonedge of Up as the right-most allowed nonedge of B(u). Take three basic chains B0, B1,

and B2. Attach them in a cyclic fashion: Identify the right-most allowed nonedge of Bi with
the left-most allowed nonedge of Bi+1, where indices are taken mod 3. This is the claimed
truth-setting component TC(u). Let us call the allowed nonedges thus identified as variable
nonedges. We note that there are exactly three variable nonedges in TC(u). Similarly to
TD(u), we can argue that for any H, there are only two potential completion sets (the empty
set and the set of all allowed nonedges), and for 3-connected H, these two sets are indeed
completion sets.

The following is the construction used in the reduction from Propagational-f Satis-
fiability to Restricted H-free Edge Deletion (Completion).

I Construction 4. Let (ϕ, k, H) be an input to the construction, where ϕ is a 3-regular
conjunctive formula on a propagational ternary Boolean function f , and k is a positive integer.
The construction gives a graph Gϕ, an integer k′, and a set of restricted (non)edges in Gϕ.

For every clause in ϕ, introduce a satisfaction-testing component SD(x, y, z) (SC(x, y, z))
for H-free Edge Deletion (Completion).
If c ∈ {x, y, z} is 1, then the corresponding allowed (non)edge is deleted(added) and if
c = 0 then the corresponding allowed (non)edge is set as forbidden.
For every variable u in f , introduce a truth-setting component TD(u) (TC(u)) for H-free
Edge Deletion (Completion)
For every variable u, identify each of the variable (non)edges in TD(u) (TC(u)) with an
allowed (non)edge in a satisfaction-testing component corresponds to a different clause in
which u appears – since ϕ is 3-regular, u appears in exactly three clauses.

Let the graph obtained be Gϕ and let k′ = 3|V (H)|k. For the deletion problem the set R

of forbidden edges is all the edges in Gϕ except the allowed edges in the units. For the
completion problem, the set R of forbidden nonedges contains every nonedge of Gϕ except
the allowed nonedges in the units.

Let H be a graph and (ϕ, k) be an instance of a Propagational-f Satisfiability
problem. Let (Gϕ, k′, R) be the output of the Construction 4 applied on (ϕ, k, H). The
construction works correctly in one direction: If (Gϕ, k′, R) is a yes-instance of Restricted
H-free Edge Deletion (Completion), then (ϕ, k) is a yes-instance of Propagational-f
Satisfiability. To see this, let F be a solution of (Gϕ, k′, R). By the definition of TD(u)
(TC(u)), if an allowed (non)edge is in F then so is every allowed (non)edge in it. Therefore,
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since |F | ≤ k′ = 3k|V (H)| and every truth-setting component has exactly 3|V (H)| many
allowed (non)edges, only at most k (non)edges of satisfaction-testing components are in F .
By the definition of SD(x, y, z) (SC(x, y, z)), if x ∈ F then either y or z is in F , otherwise
there is an induced H in Gϕ + F . Therefore, setting the variables to 1 corresponding to the
(non)edges, which are part of F , in satisfaction-testing components, we obtain that (ϕ, k) is a
yes-instance of Propagational-f Satisfiability. Thus we have the following Proposition.

I Proposition 61 (see Lemma 5.1 in [4]). Let (ϕ, k) be an instance of Propagational-f
Satisfiability. For a graph H, let (Gϕ, k′, R) be obtained by applying Construction 4 on
(ϕ, k, H). Then, if (Gϕ, k′, R) is a yes-instance of Restricted H-free Edge Deletion
(Completion) then (ϕ, k) is a yes-instance of Propagational-f Satisfiability.

We remark that the proof of Proposition 61 works even if we use a gadget for the
truth-setting component which satisfies only a weak property: it has at most two deletion
(completion) sets, the ∅ and the set of all allowed (non)edges. As we have seen, the
construction of TD(u) and TC(u) discussed above satisfies this weak property. To prove
the other direction, one needs to show that there is no induced H in the “vicinity” of a
satisfaction-testing component after deleting (adding) the (non)edges corresponding to the
variables being set to 1 in ϕ. This can be done very easily for 3-connected graphs H. Proving
this direction for 2-connected graphs H (if provable) requires careful structural analysis of
the constructed graph Gϕ. In Figure 5, we give various gadgets required for the proofs of
this section. We use unit as a general term to refer to a satisfaction-testing component or a
basic unit.

I Lemma 62. Let H ∈ {A1, A2, A3, A3, A4, A5, A7, A9}. Then Restricted H-free Edge
Deletion is incompressible, assuming NP 6⊆ coNP/poly.

The following corollary follows from the fact that there is no subgraph isomorphic to a
C4 where all edges are allowed in the graph Gϕ constructed in the proof of Lemma 62 for
Restricted H-free Edge Deletion, when H is a A1. We will be using this result later
to handle A7.

I Corollary 63. Let H be A1. Then, assuming NP 6⊆ coNP/poly, Restricted H-free
Edge Deletion is incompressible even if input graphs does not contain a subgraph (not
necessarily induced) isomorphic to H where all the side-edges of the diamond (a side-edge
of a diamond is an edge incident to a degree-2 vertex in the diamond) in the subgraph are
allowed.

I Lemma 64. Let H ∈ {A2, A7, A8, A9, B1, B2, B3}. Then Restricted H-free Edge
Completion is incompressible, assuming NP 6⊆ coNP/poly.

5.2 Using enforcers to reduce to the unrestricted problems
If we want to reduce Restricted H-free Edge Deletion to H-free Edge Deletion,
then there is a fairly natural idea to try: for each restricted edge e′ = x′y′, we introduce a
copy of H on set U of new vertices and identify x′y′ with xy, where x, y ∈ U are nonadjacent
vertices. Now U induces a copy of H plus an extra edge, but as soon as e′ is deleted, it
becomes a copy of H, effectively preventing the deletion of e′.

There are two problems with this approach. First, the solution could delete other edges
from the new copy of H, and then it is not necessarily true that the removal of e′ automatically
creates an induced copy of H. However, this problem is easy to avoid by repeating this
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Graph Deletion Completion

S(x, y, z) Basic unit Enforcer S(x, y, z) Basic unit Enforcer

A1

A2

A3

A3

A4

A5

A6

A7

A8

A9

B1

B2

B3

Figure 5 Various gadgets used in the proofs of this section. In a satisfaction-testing component
SD(x, y, z) (SC(x, y, z)), x is the darkened (non)edge added(deleted) in H to obtain the gadget,
and y and z are the other two darkened (non)edges. Both the allowed (non)edges in basic units
are darkened. The distinguished edge in a deletion enforcer and the distinguished nonedge in a
completion enforcer are darkened.
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gadget construction k + 1 times: a solution of size at most k cannot interfere with all k + 1
gadgets. The second problem is more serious: it is possible that attaching the new vertices
creates a copy of H, even when e is not deleted. For certain graphs H, with a careful choice
of x and y we can ensure that this does not happen: no induced copy of H can go through
the separator x, y.

An H-free deletion enforcer (X, e) consists of an H-free graph X and a distinguished
edge e in X such that (a) X − e contains an induced H, and (b) for any graph G vertex
disjoint with X, and any edge e′ of G, all induced copies of H in the graph obtained by
attaching X to G through identifying e with e′ reside entirely inside G. Similarly, an H-free
completion enforcer (X, e) consists of an H-free graph X and a distinguished nonedge e such
that (a) X + e contains an induced H, and (b) for any graph G vertex disjoint with X, and
any nonedge e′ in G, all induced copies of H in the graph obtained by attaching X to G

through identifying e with e′ reside entirely inside G. It can be shown that if we can come up
with enforcer gadgets satisfying these conditions, then the ideas sketched above can be made
to work, and we obtain a reduction from the restricted problem to the unrestricted version.

I Proposition 65 (See Lemma 6.5 in [4]). For a graph H:
(i) If Restricted H-free Edge Deletion is incompressible and there exists an H-free

deletion enforcer, then H-free Edge Deletion is incompressible.
(ii) If Restricted H-free Edge Completion is incompressible and there exists an

H-free completion enforcer, then H-free Edge Completion is incompressible.
(iii) If H-free Edge Deletion is incompressible and there exists an H-free completion

enforcer, then H-free Edge Editing is incompressible.

In the rest of the section, we establish the existence of enforcer gadgets for certain graphs
H.

I Lemma 66. Let H ∈ {A1, A2, A3, A3, A4, A5}. Then the gadget X with a distinguished
edge e shown in the corresponding cell in the column “Enforcer” (under Deletion) in
Figure 5 is an H-free deletion enforcer.

I Lemma 67. Let H ∈ {A1, A2, A3, A4, A5, A6, A7, A8, A9, B1, B2, B3}. Then the gadget X

with a distinguished nonedge e shown in the corresponding cell in the column “Enforcer”
(under Completion) in Figure 5 is an H-free completion enforcer.

I Lemma 68. Let H ∈ {A1, A2, A3, A3, A4, A5}. Then H-free Edge Deletion and
H-free Edge Editing are incompressible, assuming NP 6⊆ coNP/poly.

Similarly, we can prove Lemma 69. The cases of H being A4 or A5 follows from the fact
that H and H are isomorphic (see Proposition 4).

I Lemma 69. Let H ∈ {A2, A4, A5, A7, A8, A9, B1, B2, B3}. Then H-free Edge Comple-
tion is incompressible, assuming NP 6⊆ coNP/poly.

5.3 Further tricky reductions
There are graphs for which we can show that no completion/deletion enforcers, as defined
in the previous section, exist (this can be checked by going through every pair x, y of
(non)adjacent vertices). For some of these graphs, we can find a different way of enforcing
that certain edges are forbidden; typically, we introduce some vertices that are used globally
by every enforcer gadget. Furthermore, there are graphs H, where we were unable to obtain
a reduction from Restricted H-free Edge Deletion (Completion), but could choose
an induced subgraphs H ′ ⊆ H and obtain a reduction from Restricted H ′-free Edge
Deletion (Completion), whose incompressibility was established earlier.
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I Lemma 70. Assuming NP 6⊆ coNP/poly, H-free Edge Editing and H-free Edge
Deletion are incompressible, when H ∈ {A6, A7, A8, A9} and H-free Edge Completion
is incompressible when H ∈ {A1, A6}.

Now, Theorem 59(i) follows from Lemma 68, Lemma 70, and Proposition 4. Similarly,
Theorem 59(ii) follows from Lemma 68, 70, 69, and Proposition 4. Theorem 59(iii) follows
from Theorem 59(ii) and Proposition 4. Theorem 1 follows from Lemma 12, 58, Theorem 59(i),
and Proposition 6. Similarly, Theorem 2 follows from Lemma 13, 58, Theorem 59(ii), and
Proposition 6.
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