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—— Abstract
A graph is c-closed if every pair of vertices with at least ¢ common neighbors is adjacent. The c-closure
of a graph G is the smallest number ¢ such that G is c-closed. Fox et al. [SIAM J. Comput. "20]
defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can
be applied in kernelization algorithms for several classic graph problems. We show that DOMINATING
SET admits a kernel of size k°(¢), that INDUCED MATCHING admits a kernel with O(c”k®) vertices,
and that IRREDUNDANT SET admits a kernel with O(c®/2k?®) vertices. Our kernelization exploits the
fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show.
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1 Introduction

Parameterized complexity [10, 15] aims at understanding which properties of input data
can be used in the design of efficient algorithms for problems that are hard in general. The
properties of input data are encapsulated in the notion of a parameter, a numerical value
that can be attributed to each input instance I. For a given hard problem and parameter k,
the first aim is to find a fized-parameter algorithm, an algorithm that solves the problem
in f(k) - |[I|°M time. Such an algorithm is efficient when f grows moderately and k takes on
small values. A second aim is to provide a kernelization. This is an algorithm that given
any instance (I, k) of a parameterized problem computes in polynomial time an equivalent
instance of size g(k). If g grows not too much and & takes on small values, then a kernelization
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Table 1 A comparison of the c-closure with the number n of vertices, number m of edges, and
the maximum degree A in social and biological networks.

Instance name n m A c
adjnoun-adjacency 112 425 49 14
arenas-jazz 198 2742 100 42
ca-netscience 379 914 34 5
bio-celegans 453 2025 237 26
bio-diseasome 516 1188 50 9
soc-wiki-Vote 889 2914 102 18
arenas-email 1133 5451 71 19
bio-yeast 1458 1948 56 8
ca-CSphd 1882 1740 46 3
soc-hamsterster 2426 16630 273 77
ca-GrQc 4158 13422 81 43
soc-advogato 5167 39432 807 218
bio-dmela 7393 25569 190 72
ca-HepPh 11204 117619 491 90
ca-AstroPh 17903 196972 504 61
soc-brightkite 56739 212945 1134 184

provably shrinks large input instances and thus gives a guarantee for the efficacy of data
reduction rules. A central part of the design of good parameterized algorithms is thus the
identification of suitable parameters.

A good parameter should have the following advantageous traits. Ideally, it should be
easy to understand and compute.! It should take on small values in real-world input data. It
should describe input properties that are not captured by other parameters. Finally, many
problems should be amenable to parameterization using this parameter. In other words, the
parameter should help when designing fixed-parameter algorithms or kernelizations.

Fox et al. [19] recently introduced the graph parameter c-closure which describes a
structural feature of many real-world graphs: When two vertices have many common
neighbors, it is likely that they are adjacent. More precisely, the c-closure of a graph is
defined as follows.

» Definition 1.1 ([19]). A graph G = (V, E) is c-closed if every pair of vertices u € V
and v € V with at least ¢ common neighbors is adjacent. The c-closure of a graph is the
smallest number ¢ such that G is c-closed.

The parameter has many of the desirable traits mentioned above: It is easy to understand
and easy to compute. Moreover, social networks are c-closed for relatively small values
of ¢ [19] (see also Table 1). In addition, the c-closure of a graph gives a new class of graphs
which are not captured by other measures. This follows from the observation that every
complete graph is 1-closed. Hence, a graph can have bounded c-closure but, for example,
unbounded degeneracy and thus unbounded treewidth. Conversely, the graph consisting
of two vertices v and v and many vertex-disjoint u-v-paths of length two is 2-degenerate,

1 This cannot always be guaranteed. For example, the important parameter treewidth is hard to compute
and not as easily understood as simpler parameters.
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has treewidth two, and unbounded c-closure. Generally, one may observe that c-closure
is different from many common parameterizations which measure, in different ways, the
sparseness of the input graph. In this sense, the structure described by the c-closure is novel.
The aim of this work is to show that c-closure also has the final, most important trait: it
helps when designing fixed-parameter algorithms.

Fox et al. [19] applied c-closure to the enumeration of maximal cliques, showing that

2 maximal cliques. In combination with

a c-closed graph may have at most 3(c=1/3 . p
known clique enumeration algorithms this implies that all maximal cliques of a graph can be
enumerated in O*(3%/?) time. We are not aware of any further fixed-parameter algorithms
that make use of the c-closure parameter.

An easy example for how parameterization by c-closure helps can be seen for the INDE-
PENDENT SET problem. In INDEPENDENT SET we are given an undirected graph G = (V, E)
and an integer k£ and want to determine whether G contains a set of k vertices that are
pairwise nonadjacent. INDEPENDENT SET is W[1]-hard when parameterized by k [15, 10].
When one uses the maximum degree of G as an additional parameter, then INDEPENDENT
SET has a trivial kernelization: Any graph with at least (A + 1)k vertices has an independent
set of size at least k. With the following data reduction rule, we can obtain a kernelization
for the combination of ¢ and k.

» Reduction Rule 1.2. If G contains a vertez v of degree at least (¢ — 1)(k — 1) + 1, then
remove v from G.

To see that Reduction Rule 1.2 is correct, we need to show that the resulting graph G’ has
an independent set I of size k if and only if the original graph G has one. The nontrivial
direction to show is that if G has an independent set I of size k, then so does G’. Since this
clearly holds for v ¢ I, we assume that v € I. To replace v by some other vertex, we make
use of the c-closure: Every vertex w in I\ {v} has at most ¢ — 1 neighbors in common with v
since u and v are nonadjacent. Thus, at most (¢ — 1)(k — 1) neighbors of v are also neighbors
of some vertex in I\ {v}. Consequently, some neighbor w of v has no neighbors in I\ {v}
and, therefore, (I'\ {v})U {w} is an independent set of size k in G'.

Applying Reduction Rule 1.2 exhaustively results in an instance with maximum degree
less than ck which, due to the discussion above, directly gives the following.

» Proposition 1.3. INDEPENDENT SET admits a kernel with at most ck® vertices.

Motivated by this simple result for a famous graph problem, we study how c-closure can be
useful for further classic graph problems when they are parameterized by a combination of ¢
and the solution size parameter k. We obtain the following positive results. In Section 4,
we show that DOMINATING SET admits a kernel of size k9(®) computable in O*(2°) time
and show that this kernelization is asymptotically optimal with respect to the dependence of
the exponent on ¢. Our results also hold for the more general THRESHOLD DOMINATING
SET problem where each vertex needs to be dominated r times. In Section 5, we show that
INDUCED MATCHING admits a kernel with O(c"k®) vertices by means of LP relaxation of
VERTEX COVER. Finally in Section 6, we show that IRREDUNDANT SET admits a kernel
with O(c®/2k?) vertices. All kernelizations exploit a bound on Ramsey numbers for c-closed
graphs, which we prove in Section 3. This bound is — in contrast to Ramsey numbers of
general graphs — polynomial in the size of a sought clique and independent set. We believe
that this bound on the Ramsey numbers is of independent interest and that it provides a
useful tool in the design of fixed-parameter algorithms for more problems on c-closed graphs.
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2 Preliminaries

For m < n € N, we write [m,n] to denote the set {m,m + 1,...,n} and [n] for [1,n].
For a graph G, we denote its vertex set and edge set by V(G) and E(G), respectively.
Let X,Y C V(G) be vertex subsets. We use G[X] to denote the subgraph induced by X.
We also use G[X,Y] := (X UY,{zy € E(G) | x € X,y € Y}) to denote the bipartite
subgraph induced by X,Y for X NY = (). We let G — X denote the graph obtained by
removing vertices in X. We denote by Ng(X) := {y € V(G)\ X | 2y € E(G),z € X}
and Ng[X] := Ng(X) U X, the open and closed neighborhood of X, respectively. For all
these notations, when X is a singleton {x} we may write z instead of {z}. Let v € V(G).
We denote the degree of v by degq(v). We call v isolated if deg(v) = 0 and non-isolated
otherwise. We also say that v is a leaf vertex if degy(v) = 1 and a non-leaf vertex if
deg(v) > 2. Moreover, we say that v is simplicial if Ng(v) is a clique. The maximum
and minimum degree of G' are Ag = max,cy (@) degg(v) and dg = min,cy () degg(v),
respectively. The degeneracy of G is dg := maxgcy(a) dgs). We say that G is c-closed for
¢ = max({0} U {|Ng(u) N Ng(v)| | uv ¢ E(G)}) + 1. In particular, any cluster graph (a
disjoint union of complete graphs) is 1-closed. We drop the subscript -¢ when it is clear from
context. A graph G has girth g if the shortest cycle in G has length g.

In this paper, we investigate the parameterized complexity of various problems whose
input comprises of a graph G and an integer k. A problem is fized-parameter tractable if
it can be solved in f(k) - n®® time where n := |V (G)| and f is some computable function.
Instances (G, k) and (G', k') are equivalent if (G, k) is a Yes-instance if and only if (G', k') is a
Yes-instance. A kernelization algorithm is a polynomial-time algorithm which transforms an
instance (G, k) into an equivalent instance (G’, k") such that |[V(G")| + k' < g(k), where g is
some computable function. It is well-known that a problem is fixed-parameter tractable if and
only if it admits a kernelization algorithm. Our kernelization algorithms consist of a sequence
of reduction rules. Given an instance (G, k), a reduction rule computes an instance (G, k’).
We will develop kernelization algorithms for c-closed graphs. For our purposes, we say that a
reduction rule is correct if the input instance (G, k) for a c-closed graph G is equivalent to
the resulting instance (G’, k') and G’ is also c-closed. For more information on parameterized
complexity, we refer to the standard monographs [10, 15].

We will make use of the following observations throughout this work.

» Observation 2.1. If G is c-closed, then G — v is also c-closed for any v € V(G).

» Observation 2.2. Let C' be a mazimal clique in a c-closed graph G. Then |C N N(v)| < ¢
for everyv € V(G)\ C.

» Observation 2.3. Let G be a c-closed graph and let C be a

clique of size at most ¢ — 1 in G or

a maximal clique in G.
Then, the graph G’ obtained by attaching a simplicial vertex v to C (that is, Ng/(v) = C)
is c-closed.

Some proofs are deferred to a full version of this work.

3 On Ramsey Numbers of c-Closed Graphs

Ramsey’s theorem states that there is a function R such that any graph G with at least R(a, b)
vertices contains a clique of size a or an independent set of size b, for any a,b € IN. The
numbers R(a,b) are referred to as Ramsey numbers. It is known that R(t,t) > 2Y/2 for
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any t > 3 [17, 23] and hence R(t,t) grows exponentially with ¢. Here, we show that the
Ramsey number R(a,b) is actually polynomial in a@ and b in c-closed graphs. Let R.(a,b) :=
(c=1)- ("3 + (a—1)(b—1) + 1.

» Lemma 3.1. Any c-closed graph G on at least R.(a,b) vertices contains a clique of size a
or an independent set of size b.

Proof. Assume to the contrary that G has no clique of size a and no independent set of
size b. Let I = {v1,...,v|;/} be a maximum independent set of G. Also let C; be the set
of vertices adjacent to v; (including v;) and nonadjacent to any other vertex in I (that
is, C; = N[v;] \ N(I\ {v;})) for each i € [|I|]. Suppose that there exist u # v’ € C;
with wu’ ¢ E(G). Then, (I \ {v;}) U {u,u'} is an independent set of size |I| + 1, which
contradicts the choice of I. Hence, we see that C; is a clique. Note that every vertex of G is
adjacent to some vertex in I due to the maximality of I. It follows that

VA< D ICiI+ D IN@) NNl

i€l 1] i<je[l1]]

Note that |C;| < a — 1 for each ¢ € [|I|] and |[N(v;) " N(v;)] < ¢c—1fori < j € [|I]] by
the c-closure of G. Since |I]| < b, we have a contradiction on |V (G)|. <

The bound in Lemma 3.1 is essentially tight: Consider a graph G consisting of a disjoint
union of b — 1 complete graphs, each of order a — 1. Note that G is c-closed for any ¢ € IN
and that G has no clique of size a or independent set of size b. Thus, we have a tight bound
for ¢ = 1. This example also suggests that the bound in Lemma 3.1 cannot be asymptotically
improved for a > cb.

4 (Threshold) Dominating Set

In this section we show that THRESHOLD DOMINATING SET admits a kernel with k©(cr)
vertices. The problem is defined as follows.

THRESHOLD DOMINATING SET

Input: A graph G and r, k € IN.

Question: Is there a vertex set D C V(G) such that |D| < k and each vertex v € V(G)
is dominated by D at least r times, that is, |[N[v] N D| > r?

DOMINATING SET is the special case of THRESHOLD DOMINATING SET when r = 1.

DOMINATING SET is W[2]-hard when parameterized by k even in bipartite or split
graphs [30]. Furthermore, DOMINATING SET was shown to remain NP-hard on graphs with
girth at least ¢ for any constant ¢ [2]. Hence, DOMINATING SET is NP-hard even on 2-closed
graphs.

There are several fixed-parameter tractability results in restricted graph classes: When
the graph G contains no induced C3 or Cy, DOMINATING SET admits a kernel of O(k?)
vertices and THRESHOLD DOMINATING SET is fixed-parameter tractable [30]. Furthermore,
DOMINATING SET in d-degenerate graphs can be solved in k©(#)p, time [3]. This result was
extended to an algorithm with running time O*(k©(4¥")) for THRESHOLD DOMINATING SET
in d-degenerate graphs [21].

When the graph G does not contain the complete bipartite graph Kj; ; for fixed j <1 as
a (not necessarily induced) subgraph, DOMINATING SET admits a kernel of O((j + 1)"1k%")
vertices which can be computed in O(n?) time [29]. Since d-degenerate graphs do not contain
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a Kgy1,4+1 as a subgraph, DOMINATING SET admits a kernelization of O(k(d+1)2) vertices
computable in O*(29) time [29]. This kernel size is essentially optimal since DOMINATING
SET in d-degenerate graphs admits no kernel of size O(k(4=3(d=1=¢) for any e > 0 unless
NP C coNP/poly [11]. When G does not contain the complete bipartite graph K, , as a
(not necessarily induced) subgraph, DOMINATING SET can be solved in 20(tk*(4k)") ime [31].
Since each d-degenerate graph does not contain a Kg41,44+1 as a subgraph, this extends the
result of [3]. Nomne of the above kernelizations and fixed-parameter algorithms implies a
tractability result on c-closed graphs, since the respective structural restrictions on G all
exclude cliques of some size. Moreover, since any graph without induced C3 or Cjy is 2-closed,
our results extend the kernelization algorithms for these graphs to a more general class of
graphs.

To obtain a kernel for THRESHOLD DOMINATING SET in c-closed graphs we first provide
a kernelization for a more general, colored variant defined as follows. The input graph is a
bw-graph, where the vertex set V(G) is partitioned into black vertices B and white vertices .
We only require to dominate black vertices r times. The problem is defined as follows.

BW-THRESHOLD DOMINATING SET

Input: A bw-graph G and r, k € IN.

Question: Does G contain a bw-threshold dominating set D C V(G), that is, a set
such that |[N[v] N D| > r for each vertex v € B, of size at most k?

Clearly, each instance (G, k) of THRESHOLD DOMINATING SET is equivalent to the
instance (G, k) of BW-THRESHOLD DOMINATING SET where each vertex is black.

4.1 Polynomial Kernel in c-closed Graphs

We first develop a kernelization algorithm for BW-THRESHOLD DOMINATING SET and then
we will remove colors at the end. Before we present our reduction rules, we prove the following
lemma, which will simplify some proofs later in this section.

» Lemma 4.1. Let (G, k) be a Yes-instance of BW-THRESHOLD DOMINATING SET and let v
be a simplicial vertex with at least r neighbors. Then, there exists a bw-threshold dominating
set D of size at most k such that v ¢ D.

Proof. Suppose that G has a bw-threshold dominating set D of size at most k. We are
immediately done if v ¢ D, so we can assume that v € D. If N[v] C D, then D\ {v} is a
bw-threshold dominating set of size at most k. Otherwise, there is a vertex u € N(v) \ D
and (D \ {v})U{u} is a bw-threshold dominating set of size at most k not containing v. <

We first aim to bound the number of black vertices. Our first reduction rule exploits the
fact that any bw-threshold dominating set includes at least r vertices in C', where C' is a
maximal clique containing sufficiently many black vertices.

» Reduction Rule 4.2. Let C be a maximal clique containing at least ck black vertices.
Then,

1. add a vertex u and add an edge uv for each v € C,

2. color u black, and

3. color all the vertices in C white.

Note that Reduction Rule 4.2 does not add new maximal cliques. Hence, Reduction
Rule 4.2 can be applied exhaustively in O*(3¢/3) time, because all maximal cliques can be
enumerated in O*(3¢/3) time [19)].



T. Koana, C. Komusiewicz, and F. Sommer

» Lemma 4.3. Reduction Rule 4.2 is correct.

Proof. Let D be a bw-threshold dominating set of G of size at most k. We claim that
|DNC|>r. Assume to the contrary that |D N C| < r — 1. By Observation 2.2, each vertex
in D\ C dominates at most c—1 vertices in C'. Since C contains at least ck black vertices, there

is a black vertex in C' that is not dominated r times by D, a contradiction. Thus, |[DNC| > r.

Let G’ be the graph obtained as a result of Reduction Rule 4.2. Since wv € E(G) for
each v € C, we see that |[Ng/(u) N D| > r and thus D is also a bw-threshold dominating set
of the graph G’. The other direction of the equivalence follows from Lemma 4.1. Finally,
note that Reduction Rule 4.2 maintains the c-closure by Observation 2.3. <

We will assume henceforth that Reduction Rule 4.2 has been applied exhaustively. Recall
that each c-closed graph on at least R.(a,b) = (¢ — 1)(b;1) + (a—1)(b—1) + 1 vertices
contains a clique of size a or an independent set of size b by Lemma 3.1. Since G does not
contain any black clique of size at least ck, each subgraph of G with at least p :== R.(ck, k+1)
black vertices contains an independent set of at least k£ + 1 black vertices. We take advantage
of this observation in the following two reduction rules.

» Reduction Rule 4.4. Suppose that r < c— 1. We define Reduction Rule 4.4.1 for each
i € [1,¢—r] as follows: Let C be a clique of size exactly ¢ —i and let P := BN{v € V(G) |
C C N(v)} be the set of common black neighbors of C. If |P| > k'~1p, then

1. add a vertex u and add an edge uv for each v € C,

2. color u black, and

3. color all the vertices in C' and P white.

Apply Reduction Rule 4.4.i in increasing order of i.

Since |P| > k~1p, the common black neighbors P of C' include an independent set I of
size k + 1. To apply Reduction Rule 4.4.i exhaustively, we consider each pair of vertices v, v’

from V and then we consider each clique in the common neighborhood N(v) N N(v').

Since |N(v) N N(v")] < ¢, Reduction Rule 4.4 can be applied exhaustively in O*(2°) time.
» Lemma 4.5. Reduction Rule 4.4 is correct.

Proof. Let C be a clique of size exactly ¢ — i which has more than k*~!p common black
neighbors P. We prove the following claim for increasing i € [1,¢ — r].

> Claim. If Reduction Rule 4.4.5 has been applied exhaustively for each j € [i — 1], then
any bw-threshold dominating set D of size at most k includes at least r vertices of C.

Proof. Suppose that ¢ = 1. We assume to the contrary that |DNC| < r—1. Recall that there
is no clique of at least ck black vertices by Reduction Rule 4.2. Since |P| > p, we see from
Lemma 3.1 that P contains an independent set I of at least k + 1 vertices. By pigeon-hole
principle, there exists a vertex w € D\ C' which is adjacent to at least two vertices « and y
in I. Hence, x and y have at least ¢ common neighbors C'U {w}, contradicting the c-closure
of G. It follows that D contains at least r vertices of C.

Suppose that ¢ € [2,¢ — r]. Again we assume to the contrary that [DNC| < r — 1.

Since |P| > k'~ !p, there exists a vertex w € D\ C that dominates at least k~2p vertices

of P. Observe that w and each vertex in C have at least k*~2p > ¢ common neighbors in P.

Hence, we have vw € E(G) for each v € C. Thus, C U {w} is a clique of size ¢ — i + 1 with
at least k~2p common black neighbors. However, this contradicts the fact that Reduction
Rule 4.4.(i — 1) has been applied exhaustively. Therefore, we obtain |[D N C| > r. <
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Let G’ be the graph obtained as a result of Reduction Rule 4.4. By the above claim, any
bw-threshold dominating set in G is also a bw-threshold dominating set in G’. The other
direction follows from Lemma 4.1. Finally, note that G’ is c-closed by Observation 2.3. <

» Reduction Rule 4.6. Suppose that r > c. Let C be a clique of size exactly c — 1 and let
P:=Bn{veV(G)|C C N(v)} be the set of common black neighbors of C. If |P| > p,
then return No.

» Lemma 4.7. Reduction Rule 4.6 is correct.

Proof. Suppose that G has a bw-threshold dominating set D of size at most k. We show that
for each clique C of size ¢ — 1, there are at most p common black neighbors. Assume to the
contrary that |P| > p for P:= BN{v € V(G) | C C N(v)}. Then, there is an independent
set I C P of size k + 1 by Lemma 3.1. Since r > ¢, there are two vertices x,y € I that are
adjacent to a vertex v € D\ C. Now, we have a contradiction to the c-closure of G, because x
and y have |C' U {v}| = ¢ neighbors. <

Note that Reduction Rule 4.6 also can be applied exhaustively in O*(2¢) time. Hereafter, we
will assume that Reduction Rules 4.4 and 4.6 have been applied exhaustively. In the next
lemma, we show that the number of black neighbors is upper-bounded for each vertex.

» Lemma 4.8. Each vertex has at most k" 1p black neighbors for any Yes-instance (G, k).

Proof. First, suppose that r < ¢ — 1. To prove the lemma, we prove the following more
general claim:

> Claim. Let i € [r] and let C' be a clique of size exactly ¢ with the set P of common black
neighbors. Then, |P| < k¢ip.

Proof. We prove the claim by induction on decreasing ¢. By Reduction Rule 4.4, the claim
holds for the base case i = r. Suppose that i < r. Since |C| =i < r — 1, for any bw-threshold
dominating set D of size at most k, there is a vertex v € D\ C that dominates at least |P|/k
vertices of P. As |P|/k > ¢, the set C'U{v} is a clique with |P|/k common black neighbors.
By induction hypothesis, we obtain |P|/k < k°"~!p and equivalently, |P| < k¢~ip. N

Observe that the lemma follows from the above claim for ¢ = 1. Using Reduction Rule 4.6,
the lemma can be proven analogously for the case r > ¢ as well. |

By Lemma 4.8, there are at most k°p black vertices for any Yes-instance (G, k):
» Reduction Rule 4.9. If G contains more than kp black vertices, then return No.
To compute a kernel it remains to upper-bound the number of white vertices in G.

» Reduction Rule 4.10. Let w be a white vertex in G. If there exist at least r ver-
tices v1,. .., v, such that N(w)N B C Nv;] N B for each i € [r], then remove w.

It is easy to see that Reduction Rule 4.10 can be applied exhaustively in polynomial time.
» Lemma 4.11. Reduction Rule 4.10 is correct.

Proof. Let G’ := G — w. Suppose that G has a bw-threshold dominating set D of size
at most k. If w ¢ D, then D is also a bw-threshold dominating set of G’. Hence, we
can assume that w € D. If v; € D for all ¢ € [r], then D \ {w} is a bw-threshold
dominating set for G and hence also for G'. Otherwise, there exists some i € [r] with v; ¢ D.
Since N(w) N B C N[v;] N B, the set (D \ {w}) U {v;} is a bw-threshold dominating set of
size at most k of G and G’. The other direction follows trivially. Since Reduction Rule 4.10
only deletes white vertices the c-closure is maintained. <
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In the following, we will assume that Reduction Rule 4.10 has been applied exhaustively.
Now, we obtain a bound on the number of white vertices in G.

» Lemma 4.12. The graph G contains O(c|B|* + |B|"~1) white vertices.

Proof. Since Reduction Rule 4.10 has been applied exhaustively, G contains at most r white
vertices w such that N(w) C W. Hence, it remains to bound the number of white vertices
with at least one black neighbor. Observe that by the c-closure of G, there are O(c|B|?)
white vertices that are neighbors of two nonadjacent vertices u,v € B.

Note that for all remaining white vertices w, the set B,, := N(w) N B of black neighbors
is a clique. Since Reduction Rule 4.10 has been applied exhaustively, we have |B,,| < r.
Moreover, for each clique C C B of size i € [r — 1], there are at most r — ¢ white vertices
with B, = C. Thus, the number of white vertices w such that B,, is a clique is

r—1
i _ IBI(B["—1) |B| 1
Bl = - B ).
;” | (‘B‘—1)2 |B|_1T€O(| ‘ )

Overall, there are O(c|B|? + |B|"~!) white vertices. <

Recall that there are kp € O(ck¢2) black vertices by Reduction Rule 4.9. Hence, the
overall number of vertices is O(c*k2¢T4 4+ "~ k(e+2)("=1)) resulting in the following theorem:

» Theorem 4.13. BW-THRESHOLD DOMINATING SET has a kernel with k(") vertices
computable in O*(2°) time.

To obtain a kernel for THRESHOLD DOMINATING SET, it remains to show that any
BW-THRESHOLD DOMINATING SET instance can be transformed into an equivalent instance
of THRESHOLD DOMINATING SET.

» Theorem 4.14. THRESHOLD DOMINATING SET has a kernel with k©(¢") vertices computable
in O*(2°) time.

Proof. To obtain an k©(¢")-vertex kernel for THRESHOLD DOMINATING SET, we first con-
struct an equivalent instance (G, k) of BW-THRESHOLD DOMINATING SET using The-
orem 4.13. Then, we transform (G, k) into an equivalent instance (G’, k') of THRESHOLD
DOMINATING SET in k©(¢")-closed graphs as follows.

We start with a copy of G. We add a clique @ := {wy,..., w11} of 7+ 1 vertices. Then,
for each white vertex w we add edges wws, ..., ww,. Then, we remove all vertex colors. We
call the resulting graph G’. Let C' = {w1,...w,} and let ¥’ = k + r. We show that (G, k) is
a Yes-instance if and only if (G’, k') is a Yes-instance.

Let D be a bw-threshold dominating set of G. By construction, D U C' is a threshold
dominating set of size at most k' of G’. Conversely, suppose that G’ has a threshold
dominating set D’ of size at most k¥’. By Lemma 4.1, we can assume that w,11 ¢ D'
Since dege (wy41) = r, it holds that Ng/(w,41) = C C D’. Hence, all white vertices of G
are dominated r times by C in G’. Thus, D := D’ \ C' is a bw-threshold dominating set of
size at most k for G. <

Since the kernelization does not change the parameter r, it also gives a kernelization for
DOMINATING SET.

» Corollary 4.15. DOMINATING SET has a kernel with k() vertices which is computable in
0*(2°) time.
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To complement this result, we show that there is no kernel for DOMINATING SET
significantly smaller than that of Corollary 4.15 under a widely believed assumption.

» Theorem 4.16. For ¢ > 3, DOMINATING SET has no kernel of size O(k°17¢) unless
coNP C NP /poly.

Proof. We will show the theorem by a reduction from A\-HITTING SET.

A-HITTING SET

Input: A set family F over an universe U, where each S € F has size ), and
ke IN.

Question: Is there a subset X C U of size at most k such that for each S € F we
have X N S # (7

For any A > 2, \-HITTING SET does not have a kernel of size O(k*~¢) unless coNP C
NP/poly [13, 14]. Let (U, F, k) be an instance of A-HITTING SET. We will construct a A + 1-
closed graph G as follows: The vertex set V(G) is U UF. We add edges such that U forms a
clique in G. We also add an edge between v € U and S € F if and only if v € S. Finally, we
set k' = k. Since deg(S) = A for each S € F the graph G is A + 1-closed.

By construction, each hitting set X of size at most k is also a dominating set of size
at most k of G. For the converse direction, we may assume by Lemma 4.1 that there is a
dominating set D of size at most k for G not containing any vertex from F. Thus, D is also
a hitting set of (U, F, k).

Observe that our reduction preserves the parameter (that is, k = k). Thus, it follows from
the result of Hermelin and Wu [22] that if DOMINATING SET admits a kernel of size O(k*~17¢)
for some € > 0, then A-HITTING SET admits a kernel of size O(k*~¢), implying that coNP C
NP /poly [13, 14]. |

We also obtain an algorithm for THRESHOLD DOMINATING SET which is faster than
brute-force search on the kernel of Theorem 4.14 and an improved kernel on bipartite graphs.

» Theorem 4.17. THRESHOLD DOMINATING SET can be solved in O* (3% + (ck)©R)) time
and DOMINATING SET can be solved in O*((ck)®®)) time.

» Theorem 4.18. DOMINATING SET in bipartite graphs has a kernel with O(c*k*) vertices.

5 Induced Matching

In this section, we develop kernelizations for INDUCED MATCHING in c-closed graphs.

INDUCED MATCHING

Input: A graph G and k € IN.

Question: Is there a set M of at least k edges such that endpoints of distinct edges
in M are pairwise nonadjacent?

INDUCED MATCHING is W([1]-hard when parameterized by k, even in bipartite graphs [26].
In terms of kernelizations, INDUCED MATCHING admits a kernel with O(A?k) vertices [26]
and O(k?) vertices [18, 24]. The latter kernelization result is essentially tight: Unless coNP
C NP /poly, INDUCED MATCHING has no kernel of size O(k?~3¢) for any £ > 0 [11]. Despite
the lower bound in degenerate graphs, we discover in this section that INDUCED MATCHING
in c-closed graphs has a polynomial kernel when parameterized by k + c.
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5.1 Ramsey-like Bounds for Induced Matchings

Dabrowski et al. [12] derived fixed-parameter tractability for INDUCED MATCHING in
(Kq, Kpp)-free graphs. At the heart of their algorithm lies a Ramsey-type result for in-
duced matchings: For a,b € N, there exists an integer (), such that any bipartite graph
with a matching of size at least ), contains a biclique K, , or an induced matching of size b.
In this subsection, we present analogous results for c-closed graphs where the number @, 4 is
polynomial in a and b. We begin with two preliminary lemmas.

» Lemma 5.1. Any graph G with a matching M of size at least 2Ab has an induced matching
of size b.

Proof. We prove by induction on b. The lemma clearly holds for the base case b = 0. For b > 0,
let uv be a matched edge in M and let G’ := G — N[{u,v}]. Since |N[{u,v}]|| < 2A¢, there
is a matching of size at least 2Agb — 2Ag > 2Aq/(b— 1) in G'. Consequently, there is an
induced matching M’ of size b — 1 in G’ by induction hypothesis. Thus, G has an induced
matching M’ U {uv} of size b. <

» Lemma 5.2. Suppose that G is a c-closed bipartite graph. If there are at least 2b vertices
of degree at least cb, then G contains an induced matching of size at least b.

Proof. Let A, B be a bipartition of G. Without loss of generality, assume that A contains a
set A" of exactly b vertices of degree at least cb. Since G is c-closed, |[N(v) N N(v')| < ¢ for
all v,v" € A’. Tt follows that each v € A’ has a neighbor u € N(v) such that u ¢ N(v’) for
all o' € A”\ {v}. Thus, G contains an induced matching of size b. <

In the following lemma, we obtain a Ramsey-type result for induced matchings in c-closed
bipartite graphs.

» Lemma 5.3. Let Q.(b) := 2cb? +2b € O(cb?). Let G be a c-closed bipartite graph. If G has
a matching M of size at least Q.(b), then G contains an induced matching of size at least b.

Proof. If there are at least 2b vertices of degree at least ¢b in G, then Lemma 5.2 yields an
induced matching of size b. Thus, we can assume that |S| < 2b for the set S of vertices of
degree at least cb. Observe that G — S has a matching of size 2c¢b? and that Ag_g < cb.
Thus, G — S has an induced matching of size b by Lemma 5.1. <

We extend Lemma 5.3 to non-bipartite c-closed graphs in the subsequent two lemmas.
Recall that each c-closed graph G with at least R.(a,b) € O(cb? + ab) vertices contains
a clique of a vertices or an independent set of b vertices by Lemma 3.1. Our proofs for
Lemmas 5.4 and 5.5 put Lemmas 3.1 and 5.3 together.

» Lemma 5.4. Let Q.(a,b) := Re(a,Q.(b)) € O(cab® + 3b*). Any c-closed graph G with an
independent set I of size at least Q' (a,b) and a matching M saturating I contains a clique
of size a or an induced matching of size b.

Proof. Suppose that G contains no clique of size a. We show that there is an induced
matching of size b in G. Let H := V(M) \ I be the set of vertices matched to I in M.
Since |H| > Rc(a, Q.(b)), it follows from Lemma 3.1 that there is an independent set H' C H
of size at least Q.(b) in G’. Let I’ C I be the set of vertices matched to H' in M. Then,
there is an induced matching of size at least b in G[H' UI'] by Lemma 5.3. Thus, G contains
an induced matching of size b. <
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» Lemma 5.5. Let QY (a,b) := R.(a,QL(b)) € O(c2a?b* + c"b%). Any c-closed graph G with
a matching M of size at least Q! (a,b) contains a clique of size a or an induced matching of
size b.

Proof. Suppose that G contains no clique of size a. We will show that there is an induced
matching of size b in G. Let I and H be disjoint vertex sets such that I and H consist of
distinct endpoints of each edge in M. Since |I| > R.(a, QL(b)), it follows from Lemma 3.1
that there is an independent set I’ C I of size QL(b). Let H' C H be the set of vertices
matched to I’ and let G’ := G[H' U I']. Since I is an independent set of size at least Q~(b),
it follows from Lemma 5.3 that there is an induced matching M’ of size at least b in G’.
Consequently, G contains an induced matching of size b. |

5.2 Polynomial Kernel in c-closed Graphs

In this subsection, we prove that INDUCED MATCHING in c-closed graphs admits a kernel
with O(c"k®) vertices. Our kernelization is based on Lemmas 5.4 and 5.5. To utilize these
lemmas, we start with a reduction rule that destroys large cliques.

» Reduction Rule 5.6. Let v € V(G) and let M, be a maximum matching in G[N (v)].
If IM,| > 2ck, then remove v.

» Lemma 5.7. Reduction Rule 5.6 is correct.

Proof. Let v € V(G), let M, be a maximum matching in G[Ng(v)] of size at least 2ck,
and let G’ := G — v. Suppose that G has an induced matching M of size at least k. We
show that G’ contains an induced matching of size at least k as well. We are done if M
does not use v, because M is also an induced matching in G’. So we can assume that M
uses v. Let viva,...,v9k_1V2; be k edges of M such that vor, = v. By the definition of
induced matching, v; ¢ N¢(v) holds for each i € [2k — 2]. Thus, the c-closure of G yields
that |[Ng(v) N Ng(vi)| < ¢ for each i € [2k — 2]. Since M, is of size at least 2ck, there is an
edge e in M, neither whose endpoint is adjacent to any vertex v; for i € [2k — 2]. Hence, the
edges V1V, ..., Uok_3U2k_2, e form an induced matching of size k in G’. The other direction
follows trivially. Note that the c-closure is maintained by Observation 2.1. |

Henceforth, we assume that Reduction Rule 5.6 has been applied for each vertex. In the
next lemma, we verify that there is no large clique.

» Lemma 5.8. There is no clique of size 4ck + 1 in G.

Proof. Suppose that G contains a clique C of size at least 4ck + 1 and let v € C. Note
that C C N[v]. Let M, be a maximum matching in G[N (v)]. Also, let N} C N(v) be the set of
vertices incident with M, and let N? := N (v)\N_.. Since M, is a maximum matching, N? is an
independent set in G[N (v)]. Thus, C includes at most one vertex of NO, that is, [CNN?| < 1.
Moreover, it follows from Reduction Rule 5.6 that |M,| < 2ck — 1 and hence |N}| < 4ck — 2.
Now, we have a contradiction because |C| = |C'N N2| + |C NN} + 1 < 4ck. <

Once we show that the graph has a sufficiently large matching, Lemma 5.5 tells us that we
can find a sufficiently large induced matching as well. Note, however, that a graph may not
have a sufficiently large matching, even if it contains sufficiently many vertices (consider a
star K; ,, with n leaves). Our way around this obstruction is the LP (Linear Programming)
relaxation of VERTEX COVER (henceforth, we will abbreviate it as VCLP). It is well-known
in the theory of kernelization that VCLP almost trivially yields a linear-vertex kernel for
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VERTEX COVER [7] due to the Nemhauser-Trotter theorem [28]. Here, we will exploit VCLP
to ensure that after we apply some reduction rules, either the size of G is upper-bounded
or the minimum vertex cover size (or equivalently the maximum matching size) of G is
sufficiently large.

Recall that VERTEX COVER can be formulated as an integer linear program as follows,
using a variable z, for each v € V(G):

min Z Ty subject to x, +x, > 1 Yuv € E(G),
veV(G) z, € {0,1} Yo e V(Q).

In VCLP, the last integral constraint is relaxed to 0 < x,, < 1 for each v € V(G). It is known
that VCLP admits a half-integral optimal solution (that is, x, € {0,1/2,1} for each v € V(G))
and such a solution can be computed in O(m+/n) time via a reduction to MAXIMUM
MATCHING (see, for instance, [4] or [10, Section 2.5]). Suppose that we have a half-integral
optimal solution (z,)yev (). Let Vo := {v € V(G) | 2, = 0}, V1 := {v € V(G) | z, = 1},
and Vy /9 :={v € V(G) | v, = 1/2}.

We will bound the sizes of Vo, V1, and Vj /5 in the upcoming rules. We begin with V /5.

We use the bound Q7 as specified in Lemma 5.5.
» Reduction Rule 5.9. If |V} 5| > 3Q/(4ck 4 1,k), then return Yes.

To show the correctness, we will use the fact that VC + MM > 2LP for any graph G [20,
Lemma 2.1]. Here, VC, MM, and LP refer to the minimum vertex cover size, the maximum
matching size, and the optimal VCLP cost of G.

» Lemma 5.10. Reduction Rule 5.9 is correct.

Proof. Observe that the optimal cost of VCLP for G[V} ] is [V}/2|/2. Let X be a minimum
vertex cover and M be a maximum matching in G[V/5]. Then, it follows that |X| 4 [M| >

[V /2] [20, Lemma 2.1]. Since V(M) is a vertex cover in G[V /5], we also have 2|M| > |X|.
Thus, [M| > |Vi/2]/3 > Q7 (4ck, k). Recall that there is no clique of size 4ck+-1 by Lemma 5.8.

Hence, Lemma 5.5 yields that G contains an induced matching of size at least k. |
We next upper-bound the size of V3. See Lemma 5.4 for the definition of Q.
» Reduction Rule 5.11. If |V1| > Q.(4ck + 1, k), then return Yes.

To prove the correctness of Reduction Rule 5.11, let us introduce the notion of crowns [9].

For a graph G, a crown is an ordered pair (I, H) of vertex sets of G with the following
properties:

1. T # 0 is an independent set in G,

2. H=N(I), and

3. there is a matching saturating H in G[H, I].

Crowns are closely related to VCLP — in fact, (Vp, V) is a crown [1, 8].

» Lemma 5.12. Reduction Rule 5.11 is correct.

Proof. Since (Vp, V1) is a crown in G, there is a matching M saturating V; in G[Vy, V1]. By
definition, I := Vo NV (M) is an independent set of size |V1| > QL(4ck + 1,k) in G. Now, it
follows from Lemma 5.4 that G[I U V] contains an induced matching of size k. <

To deal with Vj, we introduce some additional rules which may add or remove vertices.

Let us start with a simple rule. Basically, if there are multiple leaf vertices with the same
neighborhood, then only one of them is relevant.
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» Reduction Rule 5.13. If v; € Vi has more than one leaf neighbor, then remove all but
one of them.

The correctness of Reduction Rule 5.13 is obvious and thus we omit the proof.

» Reduction Rule 5.14. Let vy € Vy and let v € V. If Ng[vg] C Nglvi] and there is no
leaf vertex attached to vy, then attach a leaf vertex £ to vy.

» Lemma 5.15. Reduction Rule 5.14 is correct.

Proof. Let G’ be the graph obtained by adding a leaf vertex £ to v;. The forward direction
is trivial. For the other direction, note that any induced matching M’ in G’ is an induced
matching in G if M’ does not include v1£. Hence, it suffices to show that if there is an
induced matching M’ in G’ such that |[M’'| > k and v1£ € M’, then there is an induced
matching of size k in G as well. By the definition of induced matching, M’ \ {v1£} includes
no edge incident with a neighbor of v1. Since Ng[vg] C Nglv1], the same holds for vy.
Thus, (M’ \ {v1€}) U {vov1} is an induced matching of size at least k in G.

For ¢ > 1, Reduction Rule 5.14 maintains the c-closure by Observation 2.3. Note that
INDUCED MATCHING can be solved in linear time when G is 1-closed: Since G is a disjoint
union of complete graphs, (G, k) is a Yes-instance if and only if G contains at least k cliques
of size at least two. |

» Reduction Rule 5.16. Let vy € V; be a non-leaf vertex. If each vertex vy € Ng(vo) has a
leaf neighbor, then remove vy.

» Lemma 5.17. Reduction Rule 5.16 is correct.

Proof. Let G’ = G — vg. Suppose that G has an induced matching M of size at least k.
If M does not use vy we are done. So assume that M includes vovy for v € Ng(vg). Since
there is a leaf vertex ¢ attached to vy, the set (M \ {vov1}) U {v1£} is an induced matching
of size at least k in G’. The other direction follows trivially. The c-closure is maintained by
Observation 2.1. |

» Theorem 5.18. INDUCED MATCHING has a kernel with O(c"k®) vertices.

Proof. We apply Reduction Rules 5.6, 5.9, 5.11, 5.13, 5.14 and 5.16 exhaustively. We also
remove all isolated vertices. It is easy to verify that all these rules can be exhaustively
applied in polynomial time.

Note that |V /5| € O(c"k®) and [Vi| € O(c*k*) by Reduction Rules 5.9 and 5.11. We
show that [Vp| € O(c|Vi|?) = O(c"k®). Note that there are at most |Vi| leaf vertices in V;
by Reduction Rule 5.13. All other vertices in Vj are adjacent to at least two nonadjacent
vertices in Vi: If there exists a vertex vy € Vp such that Ng(vo) is a clique of size at least
two, then Reduction Rule 5.14 adds a leaf vertex to each vertex in Ng(vg) and Reduction
Rule 5.16 removes vg. Since G is c-closed, there are c(l‘gl) non-leaf vertices in V4. It follows

that |Vo| < [Vi| +¢("21) € O(cTk®). <

We also obtain smaller kernels in bipartite graphs. Our kernelization is based on the
following lemma, proven by a meet-in-the-middle approach on vertex degrees. Interestingly,
this lemma will also play a central role in the kernelization for IRREDUNDANT SET in
Section 6.

» Lemma 5.19. Any bipartite graph G with at least 6A3/2b + 2Ab non-isolated vertices has
an induced matching of size b.

» Theorem 5.20. INDUCED MATCHING in bipartite graphs has a kernel with O(A3/%k)
vertices and a kernel with O(c3/?k5/?) vertices.
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6 Irredundant Set

A vertex set S C V(@) is irredundant if there is a private neighbor for each vertex v in S.
Here, a private neighbor of v € S is a vertex v' € N[v] (possibly v' = v) such that v' ¢ N(u)
for each u € S\ {v}.

IRREDUNDANT SET
Input: A graph G and k € IN.
Question: Is there an irredundant set S of at least k vertices in G?

IRREDUNDANT SET is W[1]-hard in general [16] but it admits a kernel with at most (d+1)k
vertices in d-degenerate graphs. This is because any d-degenerate graph on at least (d + 1)k
vertices contains an independent set and thus an irredundant set of at least k vertices. In
this section, we show that IRREDUNDANT SET admits a kernel with O(c®/2k?) vertices. Our
kernelization relies on the Ramsey bound (Lemma 3.1) and the bound on induced matchings
(Lemma 5.19). We show that the following reduction rule suffices to obtain a polynomial
kernel.

» Reduction Rule 6.1. If u,v € V(G) are simplicial vertices such that Ng[u] = Ng[v], then
remove v.

» Lemma 6.2. Reduction Rule 6.1 is correct.

Proof. Let u,v € V(G) be vertices such that Ng[u] = Ng[v]. Let G’ be the graph obtained
by removing v as specified in Reduction Rule 6.1. Suppose that (G, k) is a Yes-instance with
a solution S. It must hold that u ¢ S or v ¢ S by the definition of irredundant sets. Without
loss of generality, assume that v ¢ S. If v is a private neighbor of w € S (possibly w = u),
then u is also a private neighbor of w. Thus, (G’,k) is also a Yes-instance. The other
direction follows trivially. The c-closure is maintained by Observation 2.1. |

We prove that Reduction Rule 6.1 yields a kernelization of the claimed size.
» Theorem 6.3. IRREDUNDANT SET in c-closed graphs has a kernel with O(c®/?k®) vertices.

Proof. We assume that Reduction Rule 6.1 has been applied exhaustively.

To simplify notation, let o’ := 6¢3/2k+2ck+1 € O(c*/?k) and a := R.(o/, k) € O(c*/%k?).
We claim that any instance (G, k) with at least R.(ca + 1,k) € O(c%/2k?) vertices is a Yes-
instance. By Lemma 3.1, G has a clique of size ca + 1 or an independent set of size k. Since
any independent set is also an irredundant set, (G, k) is a Yes-instance when G contains an
independent set of size k. Thus, we assume that there is no independent set of size k in G.

It remains to show that if G has a maximal clique C of size greater than ca, then (G, k)
is a Yes-instance. Let C' = {v € C' | Ng(v) \ C # 0} be the set of vertices in C that have
at least one neighbor outside C. There exists at most one vertex v with Ng[v] = C by
Reduction Rule 6.1 and thus |C’| > |C| =1 > ca. Let G' = G — (C'\ C'). That is, G’ is a
graph obtained by removing a vertex adjacent to all vertices in C| if such a vertex exists.
For each i € [o], we will choose vertices x; € C' and y; € Ng/(C’) as follows: Let x; be
an arbitrary vertex in €'\ U;¢;_1) Ner(y;) and let y; be an arbitrary vertex in Ner ().
Note that C" \ Uj¢;_1) N (y;) # 0 for each i € [a], because |C’| > ca and y; has less
than ¢ neighbors in C’ for all j € [i — 1] by Observation 2.2.

Since G has no independent set of size k, Lemma 3.1 gives us a clique of size o’
among Y1, - - . , Yo Without loss of generality, let Y = {y1,...,yo } be a clique of size o' and
let X ={z1,...,20}. For X' = X\ {21} and Y’ =Y \ {31}, we prove that the bipartite
graph G[X’,Y’] has an induced matching of size k, using Lemma 5.19. First we show
that Agx/,y,) < c. All vertices in Y’ have less than c neighbors in X’ by Observation 2.2.
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By the choice of z; and y;, we have x; ¢ Ng(y1) for all i € [2,a]. It follows from the c-closure
of G that x; has less than c neighbors in Y” for each i € [2,a']. Thus, we have Agpx/y < c.
Note that we choose z; and y; such that there is an edge x;y; € E(G) for each i € [2,¢/]. So
G[X',Y’] has no isolated vertices. Therefore, it follows from Lemma 5.19 that there is an
induced matching {x;, y;,, ..., ;. Yi, } of size k in G[X',Y’]. Now, the set {x;,,...,2;, } is
an irredundant set in G, where y;, is a private neighbor of z;; for each j € [k]. <

7 Conclusion

We have demonstrated that the c-closure of a graph can be exploited in the design of
parameterized algorithms for well-studied graph problems. We believe that the c-closure
could become a standard secondary parameter just as the maximum degree A or the
degeneracy d of the input graph and that studying problems with respect to this parameter
may often lead to useful tractability results. In essence, whenever one obtains a fixed-
parameter algorithm that uses A as one of its parameters, one should ask whether A can
be replaced by the c-closure of the input graph. As concrete applications of the c-closure
parameterization, one could consider further graph problems that are hard with respect to
the solution size. For example, is PERFECT CODE [6] fixed-parameter tractable with respect
to ¢ + k where k is the size of the code and does it admit a polynomial kernelization for
this parameter? Further problems to investigate could be r-REGULAR INDUCED SUBGRAPH
which is W[1]-hard when parameterized by the subgraph size [27] or cardinality constrained
optimization problems in graphs such as computing a maximum cut where the number of
vertices in one part is constrained to be k [5]. These problems are often fixed-parameter
tractable for the combination of the cardinality constraint k£ and the maximum degree A [5, 25].
Which of these problems is also fixed-parameter tractable for the combination of k£ and ¢?
For answering such questions, the Ramsey bound of Lemma 3.1 could prove useful.
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