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Abstract
In the Boolean maximum constraint satisfaction problem – Max CSP(Γ) – one is given a collection
of weighted applications of constraints from a finite constraint language Γ, over a common set
of variables, and the goal is to assign Boolean values to the variables so that the total weight
of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion
on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard.
We study the NP-hard cases through the lens of kernelization and provide a complete characterization
of Max CSP(Γ) with respect to the optimal compression size. Namely, we prove that Max CSP(Γ)
parameterized by the number of variables n is either polynomial-time solvable, or there exists
an integer d ≥ 2 depending on Γ, such that:
1. An instance of Max CSP(Γ) can be compressed into an equivalent instance with O(nd log n)

bits in polynomial time,
2. Max CSP(Γ) does not admit such a compression to O(nd−ε) bits unless NP ⊆ co-NP/poly.

Our reductions are based on interpreting constraints as multilinear polynomials combined with
the framework of constraint implementations. As another application of our reductions, we reveal
tight connections between optimal running times for solving Max CSP(Γ). More precisely, we show
that obtaining a running time of the form O(2(1−ε)n) for particular classes of Max CSPs is as hard
as breaching this barrier for Max d-SAT for some d.
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1 Introduction

Background and motivation. The framework of constraint satisfaction problems (CSPs)
allows the computational complexity of a large class of problems to be studied through
a common lens [11]. A typical instance of such a problem asks whether it is possible to
assign each of the variables x1, . . . , xn a value from a finite domain D, such that a given list
of constraint applications is satisfied. A constraint is applied to a fixed number of variables,
and indicates which combinations of values are legal. In the Max CSP problem, the goal is
to maximize the number of satisfied constraints. See Section 2 for formal definitions.
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The investigation of CSPs has led to deep theorems characterizing the complexity of a CSP
based on the type of constraints allowed in the instance [7, 24]. For example, the long-
awaited CSP dichotomy theorem [6, 35] provides a criterion separating the NP-complete from
the polynomial-time solvable CSPs; the work of Khanna, Sudan, Trevisan, and Williamson
characterizes how well the maximization version of a Boolean CSP can be approximated [21]
(see [13, 20] for larger domains; see [12, 27] for optimal approximation factors); and Cai and
Chen [8] present a dichotomy that separates CSPs for which the number of complex-weighted
solutions can be counted in polynomial time, from those where the problem is #P-hard.

In this work we analyze the complexity of constraint satisfaction in an algorithmic regime
that is currently far from understood: polynomial-time compression and kernelization [15].
Here, the goal is to analyze how much (in terms of the number of variables n) an instance can be
compressed by a polynomial-time algorithm without changing the answer, and to understand
how the compressibility depends on the type of available constraints. A compression is
a polynomial-time algorithm that reduces instances of one problem to equivalent, small
instances of a potentially different problem; a kernelization compresses to an instance
of the same problem (see Section 2.4). A kernelization of small size allows an instance to be
stored, manipulated, and solved more efficiently. It is therefore of interest to find the smallest
possible kernelizations. Since every kernelization yields a compression, one can prove lower
bounds on the size of kernelizations by establishing lower bounds on compressions.

In recent years, there have been a number of advances in the understanding of compress-
ibility of CSPs [9, 14, 18, 25]. A foundational result by Dell and van Melkebeek [14] states
that for d ≥ 3, CNF-SAT with clauses of size at most d (d-CNF-SAT) parameterized by
the number of variables n admits no (polynomial-time) compression of size O(nd−ε) for
any ε > 0, unless NP ⊆ co-NP/poly (which is known to imply a collapse of the polynomial
hierarchy [34]). As an instance of d-CNF-SAT can trivially be compressed to O(nd) bits
via a bitstring that encodes for each of the O(nd) possible clauses whether or not it is present
in the instance, the d-CNF-SAT problem does not admit any non-trivial compression. The
situation is different for the related problem d-Not-All-Equal SAT (d-NAE-SAT), which
is the variant where a clause is satisfied when its literals do not all evaluate to the same
value. Jansen and Pieterse showed [17, 18] that for d ≥ 3, the d-NAE-SAT problem has
a compression of size O(nd−1 logn), but not of size O(nd−1−ε) unless NP ⊆ co-NP/poly.
This example shows that the type of constraints affects the compressibility of a CSP.

The notion of a constraint language is used to rigorously analyze how the complexity
of a CSP depends on the type of constraints. In this work, we will only consider CSPs over
the Boolean domain: we work exclusively with Boolean constraints and constraint languages.
A constraint is therefore a function of the form f : {0, 1}k → {0, 1}, where k ≥ 1 is the arity
of the constraint, also denoted as ar(f). A constraint language Γ is a finite set of constraints.
The input of the corresponding decision problem, denoted CSP(Γ), consists of a set of con-
straint applications of the form f(xj1 , . . . , xjar(f)) = 1 over n common variables, where f is
some constraint from Γ. The question is whether there is an assignment {x1, . . . , xn} → {0, 1}
satisfying all the constraint applications.

In this terminology, Chen, Jansen, and Pieterse [9] characterized for all (Boolean) con-
straint languages Γ consisting of constraints of arity at most three, what the optimal
compression size is for CSP(Γ). Lagerkvist and Wahlström [25] gave universal-algebraic
conditions on Γ which ensure that CSP(Γ) has a compression of size O(n logn), and a char-
acterization is known of the constraint languages Γsym consisting entirely of symmetric
functions for which CSP(Γsym) has a compression of near-linear size [9, §5]. Hence there is
some understanding of the optimal compressibility of CSP(Γ).
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However, when we move from the question of whether all constraints can be satisfied
to the task of maximizing the number of satisfied constraints (Max CSP), the situation
is much less understood. To the best of our knowledge, no non-trivial compressions are
known for any Max CSP(Γ), and no compression lower bounds are known for Max
CSP(Γ) other than those already implied from CSP(Γ). In this paper, we therefore analyze
the compressibility of Max CSP(Γ).

Before presenting our results, we briefly summarize the main algorithmic approach for
compressing CSP(Γ) and illustrate why it fails completely for Max CSP. Consider for
example 3-NAE-SAT. The number of constraint applications in an n-variable instance of this
problem can be reduced to O(n2) without changing the solution space, which allows it to be
encoded in O(n2 logn) bits. The sparsification to O(n2) constraint applications is achieved by
a linear-algebraic approach. Note that a not-all-equal constraint on variables (x, y, z) ∈ {0, 1}3
is satisfied if and only if x+ y + z − xy − xz − yz − 1 = 0. Observe that if p1(x1, . . . , xn) =
0, . . . , pm(x1, . . . , xn) = 0 are polynomial equalities which are satisfied by an assignment
to x1, . . . , xn, then also

∑m
i=1 αi · pi(x1, . . . , xn) = 0 holds for any linear combination as

determined by α1, . . . , αm. To sparsify a 3-NAE-SAT instance with this insight, proceed
as follows. Transform each constraint ci into an equality pi(x1, . . . , xn) = 0 for a degree-2
polynomial pi, substituting 1 − v for negated variables ¬v in the constraint. This yields
a system of equations of degree-2 polynomials in n variables, which have O(n2) distinct
monomials. The rank of a corresponding vector space is therefore O(n2), which yields
a basis of O(n2) equalities such that all others can be expressed as their linear combinations.
All constraints not corresponding to an element of this basis can be safely omitted from
an instance of 3-NAE-SAT, since they will be automatically satisfied by any assignment that
satisfies all basis constraints. This yields the claimed sparsification of O(n2) constraints.
Note, however, that this approach fails completely for the variant Max 3-NAE-SAT: if
an assignment does not satisfy all constraints of the basis, this does not give any satisfaction
guarantees on the linearly-dependent constraints. Hence the sparsification approach for
CSP(Γ) is not applicable for Max CSP(Γ).

Our results. We provide a new route to compression for Max CSP(Γ), and prove that
the resulting compressions are essentially optimal for all constraint languages Γ, assuming
NP 6⊆ co-NP/poly. Our results characterize the optimal compressibility of all Boolean Max
CSPs in terms of degrees of characteristic polynomials, and uncover a wide range of Max
CSP(Γ) problems that admit a non-trivial compression. For a Boolean function f : {0, 1}k →
{0, 1}, its characteristic polynomial is the unique k-variate multilinear polynomial Pf (x)
over R that agrees with f on all x ∈ {0, 1}k. The fact that this representation is unique is
well-known (cf. [29]). For a constraint language Γ, define deg(Γ) = maxf∈Γ deg(Pf ). We
prove that deg(Γ) characterizes the compressibility of Max CSP(Γ).

To state our results precisely, we have to address a feature of the problem that is particular
to the maximization variant: repetitions of constraint applications. While such repetitions
are irrelevant in the CSP setting when all constraint applications have to be satisfied, they
become relevant when maximizing the number of satisfied constraint applications. The
standard approach in the Max CSP literature is therefore to give each constraint application
a positive integer weight value [11, 21]. The decision problem Max CSP(Γ) then takes as
input a system of Γ-constraint applications with weights from N, and a threshold value t,
and asks whether there is an assignment such that the weight of the satisfied constraint
applications is at least t.

ESA 2020
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Let Γ be a (finite, Boolean) constraint language.1 Our main positive result is the following.

I Theorem 1.1. Max CSP(Γ) parameterized by the number of variables n, with positive
integer weights bounded by nO(1), admits a compression of size O

(
ndeg(Γ) logn

)
.

In fact, we are even able to reduce any instance of Max CSP(Γ) to an equivalent instance
of the same problem, having O

(
ndeg(Γ)) weighted constraint applications. We prove matching

lower bounds whenever Max CSP(Γ) is NP-complete. It is known [10, 11, 21] that for
inputs with positive integer weights, Max CSP(Γ) is polynomial-time solvable if Γ is 0-valid,
1-valid, or 2-monotone (see Section 2.1), and NP-complete otherwise.

I Theorem 1.2. If Γ is not 0-valid, 1-valid, or 2-monotone, then assuming NP 6⊆ co-NP/poly,
Max CSP(Γ) parameterized by the number of variables n, with positive integer weights
bounded by nO(1), does not admit a compression of size O

(
ndeg(Γ)−ε

)
for any ε > 0.

Our results uncover an interesting contrast in compressibility between decision CSPs
and maximization CSPs. While both involve the analysis of the degrees of polynomials,
the type of polynomials which is used differs, leading to differences in compressibility.
For example, while d-NAE-SAT has a compression of size O(nd−1 logn) for all d ≥ 3,
the corresponding Max d-NAE-SAT problem with weights of absolute value nO(1) has
a compression of size O(nd−1 logn) for odd d ≥ 3, but no compression of size O(nd−ε) for
even d. Another example is d-Exact SAT, where we require exactly one literal in each
clause to be true. Whereas d-Exact SAT admits a compression of size O(n logn) for every
fixed d [9], we show that Max d-Exact SAT cannot be compressed to O(nd−ε) bits.

Techniques. On a high level, our results are obtained by combining two ingredients: (1)
a characterization of the complexity of a constraint language as deg(Γ), via the degree
of the characteristic polynomials, and (2) reductions between different problems Max
CSP(Γ) and Max CSP(Γ′) by implementing constraints of one language by combinations
of constraints from the other. While both ingredients have been used in isolation [10, 11,
21, 26, 33], their combination is novel and is the key to understanding compressibility. To
comprehend how characteristic polynomials help to compress an instance of Max CSP(Γ),
observe that since the characteristic polynomial gives 1 when a constraint is satisfied and 0
otherwise, the total value of satisfied constraint applications can be written as a weighted
sum of applications of characteristic polynomials. If deg(Γ) = k, then this weighted sum
contains O(nk) distinct monomials. An instance can therefore be compressed by expanding
this weighted sum, and storing the coefficient of each monomial. If all weights in the input
instance are bounded by nO(1), each coefficient will have value nO(1) and can therefore be
encoded in O(logn) bits.

Our lower bounds are obtained by parameterized reductions between Max CSPs in
which the number of variables does not grow significantly. By a careful analysis of the terms
of the characteristic polynomial, we show that if deg(Γ) = deg(Γ′), then constraint applic-
ations from Γ can effectively be simulated by combinations of constraints from Γ′. Here,
we use the framework of implementations from an earlier work [21]. Since the characteristic
polynomial of d-CNF clauses has degree d, this yields a reduction from d-CNF-SAT to
Max CSP(Γ) for deg(Γ) = d that preserves the asymptotic size of the variable set, therefore
transferring the cited lower bound for d-CNF-SAT [14] to Max CSP(Γ). A similar reduction
is also used for our positive results, to turn the monomial-based compression sketched above
into a self-reduction which outputs an instance of the original problem.

1 While some recent work on sparsification for CSPs allows infinite constraint languages Γ [18], they are
not interesting from our perspective as deg(Γ) = +∞.
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Consequences for exponential-time algorithms. The framework we develop for paramet-
erized reductions among Max CSPs also has consequences for exponential-time algorithms,
which we believe to be of independent interest. The Max 3-SAT Hypothesis [26] states
that Max 3-CNF-SAT with n variables cannot be solved in time O(2(1−ε)n) for any ε > 0
(cf. [1, 5]). Our reductions imply that this hypothesis is equivalent to the version where Max
3-CNF-SAT is replaced by Max CSP(Γ) for any constraint language Γ with deg(Γ) = 3 in
which negated literals can be expressed (§2.2). In particular, the Max 3-SAT hypothesis is
equivalent to the statement that Max E3-Lin cannot be solved in time O(2(1−ε)n). What is
more, for any k ≥ 2, our reductions uncover an equivalence class of NP-hard problems whose
optimal exponential-time running times coincide with the one for Max k-SAT.

Related work. Representations of Boolean functions by characteristic polynomials have
been studied frequently in the literature [3, 4, 26, 28, 29, 31, 32] revealing, e.g., a relation
between the degree of the representation and the decision tree complexity [29]. Algorithms for
CSPs via their characteristic polynomials were first given by Williams [33]. He used the split-
and-list technique to give accelerated exponential-time algorithms for Max 2-SAT and Max
CSP(Γ) for deg(Γ) = 2. In recent work, Lincoln, Williams, and Vassilevska Williams [26] give
an exponential-time split-and-list reduction from Max CSP(Γ) for deg(Γ) = k to detecting
an `-hyperclique in a k-uniform hypergraph, for ` > k, in support of the (k, `)-Hyperclique
Hypothesis, which states that detecting such a hyperclique in an n-vertex input requires
time n`−o(1) on a Word-RAM with O(logn)-bit words. If this hypothesis fails for some k
and `, their reduction implies that each Max CSP(Γ) problem with deg(Γ) = k can be
solved in time O(2(1−ε)n) for some ε > 0. Their reductions run in exponential time and are
very different from ours.

Alon et al. [2] used a different representation of Boolean functions as polynomials in
the work on Max r-SAT parameterized above the guarantee. Here, the goal is to find
an assignment satisfying at least ((2r − 1)m+ k)/2r clauses, where m is the total number
of clauses and k is the parameter. They have shown that the problem is FPT and admits
a polynomial kernel.

Organization. We begin with Section 2 containing the necessary definitions and properties
of CSPs, including the implementation framework. In Section 3 we explain the idea of rep-
resenting constraints by polynomials and provide an algebraic background for our reductions.
It is followed by Section 4, where the notion of a reduction between constraint systems
is formalized, and the main reductions are presented. It serves as a toolbox for proving
the main results for compression (Section 5) and exponential-time algorithms (Section 6).
The proofs of statements indicated with (F) can be found in the full version [19].

2 Preliminaries

For a set S and integer d ≥ 0, let
(

S
d

)
be the set of all size-d subsets of S. We use [n]

as a shorthand for {1, . . . , n}. A k-ary constraint is a function f : {0, 1}k → {0, 1}. We
refer to k as the arity of f , denoted ar(f). We always assume that the domain is Boolean.
A constraint f is satisfied by an input s ∈ {0, 1}k if f(s) = 1. A constraint language
(sometimes called constraint family) Γ is a finite collection of constraints {f1, f2, . . . , f`},
potentially with different arities. A constraint application, of a k-ary constraint f to a set
of n Boolean variables, is a triple 〈f, (i1, i2, . . . ik), w〉, where the indices ij ∈ [n] select k
of the n Boolean variables to whom the constraint is applied, and w is a weight, described
formally below. The variables can be repeated in a single application.

ESA 2020
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I Definition 2.1. A constraint system is a pair CS(Γ,W), where Γ is a constraint language
and W (for weight range) is either Z or N. An instance (or formula) of CS(Γ,W) is a set
of constraint applications from Γ over a common set of variables, each application having
a weight from W.

We denote the number of constraint applications in a formula Φ by |Φ| and the sum
of absolute values of all weights in Φ by ||Φ||. For an assignment x, that is, a mapping
from the set of variables to {0, 1}, the integer Φ(x) is the sum of weights of the constraint
applications satisfied by x.

In the decision problem Max CSP(Γ,W, c) we are given a formula Φ from CS(Γ,W)
over n variables such that ||Φ|| ≤ nc, together with the integer t, and we ask if there is
an assignment x such that Φ(x) ≥ t. We specify the constant c to be accurate about
the specific decision problems for which we show hardness results (the formal definitions of
parameterized problems and compression are given in Section 2.4). When it does not lead to
confusion, e.g., when some property holds for all c, we refer to this family of problems shortly
as Max CSP(Γ,W). Whenever we use the O-notation, we do it with respect to a fixed
problem, that is, we treat Γ and c as constants. The most commonly studied case is expressed
by W = N [13, 21, 27], where the weights can be interpreted as repetitions of constraint
applications. It is important to make this distinction because it can be the case that Max
CSP(Γ,N) is polynomially solvable whereas Max CSP(Γ,Z) is NP-hard [20]. Although our
main reduction framework works for W = Z, we are able to transfer the compression lower
bounds to the case W = N as long as Max CSP(Γ,N) is NP-hard.

Another decision problem that is related to constraint systems is Exact CSP(Γ,W),
where we ask whether there is an assignment for which the satisfied weights sum up exactly
to a given integer [26, 33]. Even though we focus on the maximization variant, we formulate
our reductions so that they could be employed for other problems over constraint systems or
larger weight domains.

2.1 Types of constraints
We start by formally defining the most important constraints and constraint properties.
They allow us to formulate the dichotomy theorem for Max CSP. We use the Boolean notation
for negation, i.e., ¬x = 1− x for x ∈ {0, 1}.

A constraint is trivial if it is either always 1 or always 0 regardless of the arguments.
The unary constraints T and F are given by T (x) = x and F (x) = ¬x.
ORk and ANDk are k-ary constraints, such that ORk(x1, . . . , xk) =

∨k
i=1 xi and ana-

logously ANDk(x1, . . . , xk) =
∧k

i=1 xi. The Not-All-Equal constraint is defined as
NAEk(x1, . . . , xk) = ORk(x1, . . . , xk) ∧ORk(¬x1, . . . ,¬xk).
XORk is a k-ary constraint defined as XORk(x1, . . . , xk) = x1 + . . . + xk mod 2. We
abbreviate XOR = XOR2.
A constraint f is 0-valid (resp. 1-valid) if f(0, 0, . . . , 0) = 1 (resp. f(1, 1, . . . , 1) = 1).
A constraint f is 2-monotone if f(x1, x2, . . . , xk) = (xi1 ∧ xi2 ∧ · · · ∧ xip

)∨ (¬xj1 ∧¬xj2 ∧
· · · ∧ ¬xjq ), for some p, q ≥ 0, (p, q) 6= (0, 0), i.e., f is equivalent to a DNF-formula with
at most two terms: one containing only positive literals and the other containing only
negative literals.
A constraint f is C-closed (complementation-closed) if for every assignment x ∈ {0, 1}ar(f),
f(x) = f(x̄), where x̄ stands for the bit-wise complement of x.
A constraint f is symmetric if for any two assignments x1, x2 ∈ {0, 1}ar(f) having the same
number of ones, it holds that f(x1) = f(x2).
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A constraint language Γ is called 0-valid, 1-valid, 2-monotone, C-closed, or symmetric,
if all non-trivial constraints in Γ satisfy the respective property. We call Γ non-trivial if
it contains at least one non-trivial constraint. This regime is convenient for formulating
the fundamental dichotomy theorem for Boolean Max CSP. For our purposes it is only
important that APX-hardness entails NP-hardness.

I Theorem 2.2 ([21, Theorem 2.11], cf. [10]). Max CSP(Γ,N) is solvable in polynomial
time if Γ is either 0-valid, 1-valid, or 2-monotone. Otherwise, the problem is APX-hard.

2.2 Closures of constraint languages
In some CSPs we are allowed to write constraint applications containing constants or negations
of variables, which makes them more convenient to process. We formalize these properties
with the notion of a language closure.

I Definition 2.3. Let f be a k-ary constraint and let g be a d-ary constraint. We say that
g is expressible by f with constants if the identity g(x1, x2, . . . , xd) = f(ξ1, ξ2, . . . , ξk) holds
for a tuple (ξ1, ξ2, . . . , ξk), where each ξj is either a variable xi for some i ∈ [d] or one
of the constants 0, 1.

We say that g is expressible by f with literals if such an identity holds for a tuple
(ξ1, ξ2, . . . , ξk), where each ξj is a literal: either a variable xi or its negation ¬xi for i ∈ [d].

For a constraint language Γ we introduce the following closures:
the language ΓT,F contains all functions expressible by f ∈ Γ with constants,
the language ΓLIT contains all functions expressible by f ∈ Γ with literals,
the language ΓNEG is the negation-wise closure of Γ, i.e., ΓNEG =

⋃
f∈Γ{f,¬f}.

It is easy to see that the closures satisfy (ΓT,F )T,F = ΓT,F , (ΓLIT )LIT = ΓLIT ,
(ΓNEG)NEG = ΓNEG. We will be particularly interested in those constraint languages
in which negated literals can be expressed, as in, e.g., d-CNF-SAT or d-NAE-SAT. These
are the languages that satisfy Γ = ΓLIT . Below we present examples on how to express
important CSPs using our definitions.

d-CNF-SAT = CSP(Γd-SAT) for Γd-SAT = {ORd}LIT ,
d-NAE-SAT = CSP({NAEd}LIT ),
Max Ed-Lin = Max CSP({XORd}NEG,N),
Max Cut = Max CSP({XOR},N),
Max DiCut = Max CSP({f},N) for f(x1, x2) = x1 ∧ ¬x2.

2.3 Constraint implementations
We describe the technique behind Theorem 2.2 [21]. The idea is to implement a constraint
f by a collection of other constraints, so that satisfying f is equivalent to maximizing
the number of satisfied constraints in that collection. It allows us to express formulas from
Max CSP(Γ1,N) by those from Max CSP(Γ2,N), as long as constraints in Γ1 can be
implemented by those in Γ2.

The caveat is that each implementation may introduce new auxiliary variables whereas for
our purposes we need reductions that increase the number of variables only by a multiplicative
constant. Therefore the reductions by Khanna et al. [21] do not transfer compressibility
bounds; we will use the implementations in a different way. On the other hand, our reductions
do not preserve approximation factors.

ESA 2020
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I Definition 2.4 ([21, Definition 3.1]). A collection of unit-weighted constraint applications
C1, C2, . . . Cm over a set of variables x = {x1, x2, . . . , xp} called primary variables and
y = {y1, y2, . . . , yq} called auxiliary variables, is an α-implementation of a constraint f(x)
for a positive integer α if the following conditions hold.

1. Any assignment to x and y satisfies at most α constraint applications from C1, C2, . . . Cm.
2. ∀x such that f(x) = 1, ∃y such that exactly α constraint applications are satisfied.
3. ∀x, y such that f(x) = 0, at most α − 1 constraint applications are satisfied.

An α-implementation is called strict if for every assignment of the primary variables x
such that f(x) = 0, there exists an assignment of the auxiliary variables y such that exactly
α − 1 constraint applications are satisfied.

We say that a constraint language Γ implements a constraint f if there exists an α-
implementation of f using constraints of Γ for some constant α. We use Γ =⇒ f to denote
that Γ implements f and Γ s=⇒ f when Γ strictly implements f . The above notation is also
extended to allow the target to be a family of constraints. The following lemma encapsulates
a toolbox of implementations which we will rely on.

I Lemma 2.5. If Γ is a non-trivial constraint language such that
1. Γ is C-closed and not 0-valid (or equivalently not 1-valid), then Γ =⇒ XOR,
2. Γ is neither 0-valid, 1-valid, nor C-closed, then Γ =⇒ {T, F},
3. Γ is neither 0-valid, 1-valid, nor 2-monotone, then Γ =⇒ XOR.

In order to prove it, we need to refer to several statements from [21], beginning from the
transitivity of strict implementations. Then we restate three lemmas that imply points (1, 2)
directly, and point (3) is obtained via transitivity.

I Lemma 2.6 ([21, Lemma 3.5]). If Γ1
s=⇒ Γ2 and Γ2

s=⇒ Γ3, then Γ1
s=⇒ Γ3.

I Lemma 2.7 ([21, Lemma 4.5]). Let f be a non-trivial constraint which is C-closed and is
not 0-valid (or equivalently not 1-valid). Then {f} s=⇒ XOR.

I Lemma 2.8 ([21, Lemma 4.6]). Let f0, f1, and g be non-trivial constraints, possibly identical,
which are not 0-valid, not 1-valid, and not C-closed, respectively. Then {f0, f1, g}

s=⇒ {T, F}.

I Lemma 2.9 ([21, Lemma 4.11]). Let f be a constraint which is not 2-monotone. Then
{f, T, F} s=⇒ XOR.

Proof of Lemma 2.5. Claims (1, 2) follow from Lemmas 2.7 and 2.8, respectively. To see
claim (3), first observe that if Γ is C-closed, then we can again use Lemma 2.7. Otherwise,
by Lemma 2.8 we have Γ s=⇒ {T, F}. Next, we take advantage of transitivity (Lemma 2.6)
and implement XOR with Lemma 2.9. J

2.4 Parameterized complexity
A parameterized problem is a decision problem in which every input has an associated positive
integer parameter that captures its complexity in some well-defined way. In our study
of CSPs we use the number of variables as the parameter, but other choices have been
considered [16, 22, 23]. For a parameterized problem A ⊆ Σ∗×N, a decision problem B ⊆ Σ∗,
and a function f : N → N, a compression of A into B of size f is an algorithm that, on
input (x, k) ∈ Σ∗ ×N, takes time polynomial in |x|+ k and outputs an instance y ∈ Σ∗ such
that (x, k) ∈ A if and only if y ∈ B, and such that |y| ≤ f(k). A kernelization algorithm
of size f for problem A reduces any instance (x, k) to an f(k)-sized equivalent instance
of the same problem in polynomial time.
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3 Characteristic polynomials

In this section we provide the technique necessary for expressing one constraint system
by another without introducing too many auxiliary variables. This insight is based on
interpreting constraints as multilinear polynomials.

I Definition 3.1. For a k-ary constraint f : {0, 1}k → {0, 1} its characteristic polynomial Pf

is the unique k-ary multilinear polynomial over R satisfying f(x) = Pf (x) for any x ∈ {0, 1}k.

It is easy to construct Pf . First define Ps(x1, x2, . . . , xk) =
∏k

i=1R
s
i (xi) for a vector

s ∈ {0, 1}k, where Rs
i (x) = x if si = 1 and Rs

i (x) = 1− x otherwise. Formally, Ps is given by
the sequence of coefficients obtained by expanding all parentheses; they are all integers. It
holds that Ps(s) = 1, while Ps(x) = 0 for any x 6= s. For a constraint f its characteristic
polynomial is given as Pf (x1, x2, . . . , xk) =

∑
s: f(s)=1 Ps(x1, x2, . . . , xk). It is known that no

other multilinear polynomial can take identical values on {0, 1}k [29, 33]. This also means
we can interchangeably analyze polynomials as formal objects and as functions on {0, 1}k.

I Observation 3.2. The coefficients of any characteristic polynomial Pf are integers.

Let deg(f) = deg(Pf ) and deg(Γ) = maxf∈Γ deg(f). For a k-ary constraint f we refer to
the coefficient at the unique k-ary monomial in Pf as the leading coefficient. The leading
coefficient is non-zero if and only if deg(Pf ) = k. If g is expressible by f with literals,
then we can obtain Pg from Pf by replacing each literal with negation ¬xi by 1− xi and
expanding the parentheses within monomials. If g is expressible by f with constants, then
we just substitute 0 or 1 for particular variables and remove monomials containing 0. These
transformations imply deg(ΓT,F ) = deg(ΓLIT ) = deg(ΓNEG) = deg(Γ).

As an example, consider Max 3-NAE-SAT. The function NAE3(x1, x2, x3) has the degree-
2 characteristic polynomial x1 + x2 + x3 − x1x2 − x1x3 − x2x3, which allows us to construct
a compression for Max 3-NAE-SAT of size O(n2 logn) by summing coefficients at all O(n2)
monomials. On the other hand, OR2(x1, x2) = x1 + x2 − x1x2 = NAE3(x1, x2, 0), which
indicates that solving Max 3-NAE-SAT should not be easier than Max 2-CNF-SAT. We
will formalize these arguments in the next section.

We show that the set of characteristic polynomials of all constraints expressible by f
with constants spans the linear space of multilinear polynomials over Q with degrees at most
deg(f). We first prove that this set contains polynomials of all degrees up to deg(f) and
then use them to express a basis of the linear space.

I Lemma 3.3 (F). Let f be a k-ary constraint. For any 1 ≤ d ≤ deg(f) there exists a d-ary
constraint g expressible by f with constants, such that its characteristic polynomial Pg has
degree exactly d, i.e., its leading coefficient is non-zero.

I Lemma 3.4. Let f be a non-trivial constraint and P be a multilinear polynomial over Q
on ` variables of degree 0 ≤ d ≤ deg(f). There exists a sequence of constraint applications
〈fi, (j1

i , . . . , j
ar(fi)
i ), αi〉Mi=1 on ` variables, where each constraint fi is expressible by f with

constants, and αi ∈ Q, such that the following polynomial identity holds.

P (x1, . . . , x`) =
M∑

i=1
αi · Pfi

(xj1
i
, . . . , x

j
ar(fi)
i

).
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Before proving this claim, let us demonstrate it on a less obvious example than the one
from above with NAE3 and OR2. Let P (x1, x2, x3) be the characteristic polynomial of the con-
straint OR3(x1, x2,¬x3), derived using the method described below Definition 3.1:

P (x1, x2, x3) = x1x2x3 + (1− x1)x2x3 + x1(1− x2)x3 + x1x2(1− x3)
+ (1− x1)x2(1− x3) + x1(1− x2)(1− x3) + (1− x1)(1− x2)(1− x3)
= 1− x3 + x1x3 + x2x3 − x1x2x3.

We will represent it with characteristic polynomials from {EX3}T,F , where EX3(x1, x2, x3) = 1
if and only if exactly one variable is 1. Its characteristic polynomial Q is given as:

Q(x1, x2, x3) = x1(1− x2)(1− x3) + (1− x1)x2(1− x3) + (1− x1)(1− x2)x3

= x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 3x1x2x3.

We can express P as the following linear combination where, e.g., Q(x1, x2, 0) is the charac-
teristic polynomial for EX3(x1, x2, 0), which is a binary constraint expressible by EX3 with
constants:

P (x1, x2, x3) =− 1
3Q(x1, x2, x3) + 1

3Q(x1, x2, 0)− 1
6Q(x1, x3, 0)− 1

6Q(x2, x3, 0)

+ 1
6Q(x1, 0, 0) + 1

6Q(x2, 0, 0)− 1
3Q(x3, 0, 0) +Q(1, 0, 0).

Proof of Lemma 3.4. We proceed by induction over the degree of P . Since f is non-trivial,
it admits a satisfying assignment sT . If P is constant, then P (x) = α · f(sT ) for some
α ∈ Q. Suppose now d = deg(P ) ≥ 1. For each S ∈

([`]
d

)
let αS denote the (potentially

zero) coefficient in P at the monomial
∏

i∈S xi. By Lemma 3.3 there is a d-ary constraint
fd, which is expressible by f with constants and deg(Pfd

) = d. Let βd denote the leading
coefficient of Pfd

. The polynomial

P ′(x1, . . . , x`) = P (x1, . . . , x`)−
∑

{i1,...,id}=S∈([`]
d )

i1<...<id

αS

βd
· Pfd

(xi1 , . . . , xid
)

has no monomials of degree d, since each term in the sum subtracts exactly one of them.
The polynomial P ′ has degree at most d− 1, so we can apply the induction hypothesis to it
and represent P ′ as a linear combination of characteristic polynomials of constraints from
{f}T,F . We obtain the claim by adding these polynomials to the sum above. J

Since fi and Pfi coincide as functions on {0, 1}ar(fi), Lemma 3.4 allows us to represent
any constraint of degree at most deg(f) as a linear combination of constraints from {f}T,F .

I Proposition 3.5. Let g, f be constraints, such that f is non-trivial and deg(g) ≤ deg(f).
There exists a sequence of constraint applications 〈fi, (j1

i , . . . , j
ar(fi)
i ), αi〉Mi=1 on ar(g) vari-

ables, where each constraint fi is expressible by f with constants, and αi ∈ Q, such that
g(x1, . . . , xar(g)) =

∑M
i=1 αi · fi(xj1

i
, . . . , x

j
ar(fi)
i

) for all Boolean assignments.

This resembles the idea of implementation, where we additionally equip constraints with
(potentially negative) rational weights, but does not require introducing new variables.
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4 Reductions between constraint systems

We first formalize our notion of reduction. The objects we work with are constraint systems
and the reductions between them imply analogous relations between the associated decision
problems. The reduction is crafted in such a way that it preserves the numbers of variables
and constraints up to a constant factor, and the total weight up to a polynomial factor.

I Definition 4.1. A linear transformation from a constraint system CS(Γ1,W1) to an-
other constraint system CS(Γ2,W2) is a polynomial-time procedure that given a formula Φ1
of CS(Γ1,W1) over n1 variables and integer t1, returns a formula Φ2 ∈ CS(Γ2,W2) over n2
variables and integer t2, so that the following conditions hold:
1. n2 = O(n1),
2. |Φ2| = O(|Φ1|+ n1),
3. ||Φ2|| ≤ ||Φ1|| · nO(1)

1 ,
4. ∃xΦ1(x) = t1 ⇐⇒ ∃yΦ2(y) = t2,
5. ∃xΦ1(x) ≥ t1 ⇐⇒ ∃yΦ2(y) ≥ t2.

If there exists a linear transformation from CS(Γ1,W1) to CS(Γ2,W2), we write concisely
CS(Γ1,W1) ≤LIN CS(Γ2,W2). If (1) can be replaced with the stronger condition n2 =
n1 +O(1), we call the transformation additive and write CS(Γ1,W1) ≤ADD CS(Γ2,W2).

Before moving forward, let us explain the importance of linear and additive transforma-
tions. We formulate two claims, which follow from the properties in Definition 4.1.

I Proposition 4.2. If CS(Γ1,W1) ≤LIN CS(Γ2,W2) and Max CSP(Γ2,W2, c) admits
a compression of size O(nd), then Max CSP(Γ1,W1, c−O(1)) also admits a compression
of size O(nd).

I Proposition 4.3. If CS(Γ1,W1) ≤ADD CS(Γ2,W2) and Max CSP(Γ2,W2, c) admits
an algorithm with running time T (n), then Max CSP(Γ1,W1, c−O(1)) admits an algorithm
with running time T (n+O(1)).

In particular, additive transformations preserve running times of the form 2(1−ε)nnO(1).

I Lemma 4.4 (F). Linear transformations (resp. additive transformations) are transitive.

We continue with two simple additive transformations, which will allow us to use negations
of constraints as an alternative to setting negative weights.

I Lemma 4.5 (F). For every constraint language Γ we have
1. CS(ΓNEG,Z) ≤ADD CS(Γ,Z),
2. CS(ΓNEG,Z) ≤ADD CS(ΓNEG,N).

The rest of this section contains four lemmas that form a chain of reductions from
CS(Γ1,Z) to CS(Γ2,N), which is valid as long as deg(Γ1) ≤ deg(Γ2) and Max CSP(Γ2,N)
is NP-hard. First, we translate Proposition 3.5 into the language of additive transformations.
In the proof we justify that one can replace rational coefficients with integer ones.

I Lemma 4.6 (F). Let Γ1,Γ2 be non-trivial constraint languages satisfying deg(Γ1) ≤
deg(Γ2). Then CS(Γ1,Z) ≤ADD CS(ΓT,F

2 ,Z).

Now, we formalize an intuitive notation for combining formulas. Consider two formulas
Φ1,Φ2 over the sets of variables V1, V2, respectively, which might have a non-empty inter-
section. We define the sum of these formulas, Φ1 + Φ2, over the set of variables V1 ∪ V2 by
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taking the union of their sets of constraint applications and merging pairs of applications
that share the same constraint and the same tuple of variables, i.e., replacing the pair with
a single application with a weight being the sum of the respective weights. For an integer α,
the formula α · Φ has the same constraint applications as Φ, with weights multiplied by α.

I Lemma 4.7. Let Γ be a non-trivial constraint language, which is neither 0-valid nor 1-valid.
Then CS(ΓT,F ,Z) ≤ADD CS(Γ,Z).

Proof. Given a formula Φ ∈ CS(ΓT,F ,Z), we add two auxiliary variables xT , xF and we trans-
late each constraint application 〈f̂ , (j1, . . . , jk), w〉, where f̂ is expressible by f ∈ Γ with
constants, into an application of f by replacing constants 0, 1 with variables xT , xF . Let us
refer to this formula as Φ1 ∈ CS(Γ,Z) and note that |Φ1| = |Φ| and ||Φ1|| = ||Φ||.

In the next step, we will use implementations to impose particular conditions on xT , xF .
We refer to xT , xF and all the new variables introduced within the implementations as
auxiliary. Let a = O(1) denote their number. In the new formula we assume that the first
n variables x1, . . . , xn are the primary variables and xn+1, . . . , xn+A are auxiliary. For
x ∈ {0, 1}n+A let x|n stand for the projection on the first n coordinates.

Assume first that Γ is not C-closed. Then by Lemma 2.5, point (2), we know that
Γ α1-implements function T and α2-implements function F for some integers α1, α2. Let
α = α1 +α2. We implement constraint applications T (xT ) and F (xF ), that is, we construct
formulas ΦT ,ΦF ∈ CS(Γ,N) over the set of auxiliary variables, such that satisfying α

constraint applications in ΦT + ΦF is only possible when xT = 1 and xF = 0. Let W =
2·||Φ||+1. We define Φ2 = Φ1+W ·ΦT +W ·ΦF , that is, we copy all the constraint applications
from Φ1 and add the applications from ΦT + ΦF with weights multiplied by W . Recall that
we have (−||Φ||) ≤ Φ(x) ≤ ||Φ|| for all x. By the definition of implementation, any assignment
to Φ2 which does not satisfy xT = 1 or xF = 0 has value at most (α −1)·W+||Φ|| < αW−||Φ||.
If the assignment x satisfies xT = 1, xF = 0, it holds that Φ2(x) = α W+Φ(x|n) ≥ α W−||Φ||.

Now, if Γ is C-closed, then by Lemma 2.5, point (1), Γ α-implements function XOR
for some constant α. We implement XOR(xT , xF ), that is, we construct formula ΦXOR ∈
CS(Γ,N) over the set of auxiliary variables, such that satisfying α constraint applications in
ΦXOR is only possible when XOR(xT , xF ) = 1. As before, we define Φ2 = Φ1 +W · ΦXOR,
whereW = 2 · ||Φ||+1. Any assignment to Φ2 which does not satisfy XOR(xT , xF ) has value
at most (α − 1) ·W + ||Φ|| < α W − ||Φ||. For an assignment x satisfying xT = 1, xF = 0, it
holds that Φ2(x) = α W+Φ(x|n) ≥ α W−||Φ||. It might also be the case that xT = 0, xF = 1.
Then, by C-closedness we have Φ2(x) = Φ2(x̄) = α W + Φ(x̄|n) ≥ α W − ||Φ||, where x̄ is
the bit-wise complement of x.

We summarize the transformation properties for both considered cases: the new number
of variables is n + O(1), |Φ2| = |Φ| + O(1), and ||Φ2|| = ||Φ|| · O(1). If t < −||Φ||, then
we know that all assignments x satisfy Φ(x) > t and in such case we could return an empty
formula over a singleton variable set (so the only possible value is 0) and set threshold
t′ = −1: this is an equivalent instance. To see properties (4, 5) observe that, assuming
t ≥ −||Φ||, Φ(x) = t (resp. Φ(x) ≥ t) holds for some assignment x iff. Φ2(y) = t′ (resp.
Φ2(y) ≥ t′) holds for some assignment y, where t′ = α W + t. J

I Corollary 4.8. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2)
and Γ2 is neither 0-valid nor 1-valid. Then CS(Γ1,Z) ≤ADD CS(Γ2,Z).

So far we have established a relation between Γ1 and Γ2, which allows us to transform one
constraint system to another by adding only a constant number of new variables. However,
it works only when we allow negative weights. The next two lemmas explain how to get
rid of them, so that the hardness results can be applied to the natural setting with only
non-negative weights.
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I Lemma 4.9 (F). If Γ is a non-trivial constraint language, then CS(Γ,Z) ≤ADD

CS(ΓLIT ,N).

I Lemma 4.10 (F). Suppose non-trivial Γ is neither 0-valid, 1-valid, nor 2-monotone. Then
CS(ΓLIT ,N) ≤LIN CS(Γ,N).

In the proof of Lemma 4.9 we increase weights of all the constraint applications at once, in
such a way that it changes each value of Φ(x) by the same quantity. The proof of Lemma 4.10
is similar in spirit to that of Lemma 4.7, but this time the implementation framework is used
to implement a negated copy of each variable. As all the transformation above are linear,
by transitivity we can summarize them into the following statement connecting constraint
languages of the same degree.

I Corollary 4.11. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2)
and Γ2 is neither 0-valid, 1-valid, nor 2-monotone. Then CS(Γ1,Z) ≤LIN CS(Γ2,N).

5 Consequences for compression

Having an upper bound on deg(Γ) already provides compression for Max CSP(Γ,Z, c),
since we can represent all constraint applications as polynomials, sum the coefficients at all
O
(
ndeg(Γ)) monomials, and store the weights in O(logn) bits. Corollary 4.11 transforms the

monomial-representation back into a small equivalent instance of Max CSP(Γ).

I Theorem 5.1 (Formalization of Theorem 1.1). Max CSP(Γ,N, c) parameterized by the num-
ber of variables n admits a compression of size O(nd logn) for all c, where d = deg(Γ). Fur-
thermore, there is a polynomial-time algorithm that reduces any instance of Max CSP(Γ,N, c)
to an equivalent instance of Max CSP(Γ,N, c+O(1)) of size O(nd logn). The analogous
statements for Max CSP(Γ,Z, c) also hold.

Proof. If Γ is either trivial, 0-valid, 1-valid, or 2-monotone, then Max CSP(Γ,N, c) can be
solved in polynomial time, so the compression is trivial. Suppose that it does not have any
of these properties. We will prove both claims by compressing a formula Φ1 ∈ CS(Γ,Z) on n
variables into a formula Φ2 ∈ CS(Γ,N) satisfying |Φ2| = O(nd).

First we interpret each constraint application in Φ1 as a polynomial of degree at most
d. After summing these terms, we obtain a polynomial P with O(nd) monomials, each
associated with an integer weight of absolute value bounded by ||Φ1||. A monomial Πk

i=1xi is
the characteristic polynomial for the constraint ANDk(x1, . . . , xk), therefore P can be treated
as a formula of CS(Γd-AND,Z) for Γd-AND being the language consisting of functions ANDk

for all k ≤ d. Since deg(Γd-AND) = d, we can apply Corollary 4.11 to obtain an equivalent
formula Φ2 ∈ CS(Γ,N) on O(n) variables, such that |Φ2| = |Φ1| · O(1) +O(n) = O(nd) and
||Φ2|| = ||Φ1|| · nO(1), so each weight can be stored in O(logn) bits. J

The self-reduction in Theorem 5.1 is almost, but not quite, a kernelization: the formal
decision problem we reduce to is not the same as the original one, due to the increase in weight
values. Our lower bounds are based on reducing Max d-CNF-SAT to Max CSP(Γ,N) for
deg(Γ) = d. For d ≥ 3 it is known that even the non-maximization variant d-CNF-SAT
does not admit a compression of size O

(
nd−ε

)
[14]. However, the 2-CNF-SAT problem is

solvable in polynomial time and only its maximization version becomes NP-hard. We first
note that Max 2-CNF-SAT also cannot have any non-trivial compression.

I Lemma 5.2 (F). Max CSP(Γ2-SAT,N, 3) does not admit a compression of size O
(
n2−ε

)
for any ε > 0, unless NP ⊆ co-NP/poly.
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I Theorem 5.3 (Formalization of Theorem 1.2). Let non-trivial Γ be neither 0-valid, 1-valid,
nor 2-monotone, and let d = deg(Γ). Then there is a constant c such that Max CSP(Γ,N, c)
does not admit a compression of size O

(
nd−ε

)
for any ε > 0, unless NP ⊆ co-NP/poly.

Proof. First observe that a characteristic polynomial of a constraint with d = 1 is linear.
Since this polynomial is 0/1-valued, it can depend only on one variable, which means that
the constraint is 2-monotone. Hence we can assume that d ≥ 2.

We know that there is a constant cd so that Max CSP(Γd-SAT,N, cd) does not admit
compression of size O

(
nd−ε

)
unless NP ⊆ co-NP/poly: for d = 2 it is due to Lemma 5.2 and

for d ≥ 3 it follows from the lower bound for the non-maximization variant of d-CNF-SAT [14].
As noted in Proposition 4.2, if we had such a compression for Max CSP(Γ,N, c) with
sufficiently large c, then by Corollary 4.11 it would transfer to Max CSP(Γd-SAT,N, cd). J

Applications to specific CSPs. Having established both the lower and the upper bound,
we can refer to deg(Γ) as the optimal compression exponent for Max CSP(Γ,N). We are now
equipped with a handy but powerful tool for determining the optimal compressibility of Max
CSP(Γ,N) as this task reduces to computing the degrees of characteristic polynomials in Γ.

As an example, we apply this technique to compute the optimal compression exponent to
the following three problems, which are all NP-hard for k ≥ 2:

Max k-NAE-SAT = Max CSP({NAEk}LIT ,N),
Max Ek-Lin = Max CSP({XOR}NEG,N),
Max k-Exact-SAT = Max CSP({EXk}LIT ,N), where EXk(x1, . . . , xk) = 1 if and
only if there is exactly one 1 in (x1, . . . , xk).

Since deg(ΓLIT ) = deg(ΓNEG) = deg(Γ) it suffices to analyze the characteristic polynomials
for functions NAEk, XORk, and EXk. Let ei(x1, . . . , xk) denote i-th elementary symmetric
polynomial, i.e., the sum of all degree-i monomials on k variables.

NAEk(x1, . . . , xk) =
∑k−1

i=1 (−1)i−1ei(x1, . . . , xk) for odd k,
NAEk(x1, . . . , xk) =

∑k
i=1(−1)i−1ei(x1, . . . , xk) for even k,

XORk(x1, . . . , xk) =
∑k

i=1(−2)i−1ei(x1, . . . , xk) for all k,
EXk(x1, . . . , xk) =

∑k
i=1 i · (−1)i−1ei(x1, . . . , xk) for all k.

It is easy to check these formulas using the binomial theorem. We present the argument
for XORk as an example. Suppose the number of 1s in the vector (x1, . . . , xk) is `. Then
ei(x1, . . . , xk) equals

(
`
i

)
for i ≤ ` and 0 for i > `. The formula for XORk(x1, . . . , xk) becomes∑`

i=1(−2)i−1(`
i

)
= (− 1

2 ) ·
(∑`

i=0(−2)i
(

`
i

)
− 1
)

= (− 1
2 ) · ((−1)` − 1) which is 1 for odd `

and 0 for even `, as expected. By these identities we deduce that the optimal compression
exponent for Max k-NAE-SAT is k in the even case, k− 1 in the odd case, and the optimal
compression exponent for both Max Ek-Lin and Max k-Exact-SAT is k.

An example of a non-symmetric constraint with a non-trivial upper bound on its degree
is fk, with ar(fk) = 3k, defined recursively: f0(x) = x, and

fk(x1, . . . x3k ) = NAE3
(
fk−1(x1, . . . x3k−1 ), fk−1(x3k−1+1, . . . x2·3k−1 ), fk−1(x2·3k−1+1, . . . x3k )

)
.

Because deg(NAE3) = 2, we have deg(fk) = 2k = ar(fk)log3(2) [29].
It is tempting to seek a concise characterization of Γ for which one can obtain a non-trivial

bound on deg(Γ) and therefore a non-trivial compression for Max CSP(Γ,N), where by
non-trivial we mean a bound of the form deg(f) ≤ ar(f)− 1 for functions depending on all
the coordinates. By generalizing the argument for NAEk, it can be shown that deg(f) ≤



B.M.P. Jansen and M. Włodarczyk 63:15

ar(f)− 1 when the number of vectors that satisfy f and have an even number of 1s, is equal
to the number of satisfying vectors with an odd number of 1s. Unfortunately, as far as we are
aware no characterization is known describing all Γ with a non-trivial bound on deg(Γ),
not even for symmetric polynomials induced by symmetric constraints. There exist some
interesting partial results though, e.g., that if the number of variables k is a prime minus
one then the degree is always k, and in general deg(f) ≥ k −O(k0.548) [32]. On the other
hand, there are infinitely many symmetric functions for which deg(f) = ar(f) − 3 [32].
When it comes to non-symmetric functions, there exist infinitely many examples with
deg(f) ≤ log(ar(f)) [30], which is asymptotically the lowest upper bound possible [29].

Compression lower bound for negative weights. For the sake of completeness, we show
that Max CSP(Γ,Z) admits an analogous classification as Max CSP(Γ,,N) that is, whenever
Max CSP(Γ,Z) is NP-hard, then the upper bound from Theorem 5.1 is essentially tight.
The dichotomy theorem for W = Z can be stated in a simpler manner, as the problem
becomes NP-hard whenever deg(Γ) ≥ 2 [20] and the case deg(Γ) = 1 reduces to linear
function maximization. This dichotomy will follow also from the reduction below. First,
we show that we can drop the assumption on the language being non 0-valid/1-valid in
Corollary 4.8.

I Lemma 5.4. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2).
Then CS(Γ1,Z) ≤ADD CS(Γ2,Z).

Proof. Since f and ¬f cannot be 0-valid (or 1-valid) at the same time, the language ΓNEG
2 is

neither 0-valid nor 1-valid. As we also have deg(Γ2) = deg(ΓNEG
2 ), we can apply Corollary 4.8

to Γ1 and ΓNEG
2 , obtaining CS(Γ1,Z) ≤ADD CS(ΓNEG

2 ,Z). By Lemma 4.5, point (1), we
get CS(ΓNEG

2 ,Z) ≤ADD CS(Γ2,Z), which proves the claim. J

I Theorem 5.5. Let non-trivial Γ be such that d = deg(Γ) ≥ 2. Then there is a constant c
such that Max CSP(Γ,Z, c) does not admit a compression of size O

(
nd−ε

)
for any ε > 0,

unless NP ⊆ co-NP/poly.

Proof. From Lemma 5.4 we know that CS(Γd-SAT,Z)≤ADD CS(Γ,Z). Therefore anO
(
nd−ε

)
-

size compression for Max CSP(Γ,Z, c) with sufficiently large c entails the same for Max
CSP(Γd-SAT,Z, c−O(1)), which implies NP ⊆ co-NP/poly (Lemma 5.2 for d = 2 and [14]
for d ≥ 3). J

6 Consequences for exponential-time algorithms

As mentioned before, our framework of reductions can be used to preserve the exponential
running time as well. Namely, if CS(Γ1,W1) ≤ADD CS(Γ2,W2), then an algorithm for
Max CSP(Γ2,W2, c) with running time T (n) entails an algorithm for Max CSP(Γ2,W2, c−
O(1)) with running time T (n + O(1)). All the constructed transformations, except from
CS(ΓLIT ,N) ≤LIN CS(Γ,N) (Lemma 4.10), are additive and in particular they work as long
as negative weights are allowed. Alternatively, we can take advantage of other properties
of particular constraint languages to remove the negative weights.

I Lemma 6.1. Let d = deg(Γ) ≥ 2. Then CS(Γd-SAT,N) ≤ADD CS(Γ,Z) ≤ADD

CS(Γd-SAT,N), that is, these constraint systems are equivalent with respect to the relation
≤ADD.
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Proof. We take advantage of the fact that Γd-SAT can express negated literals, i.e.,
(Γd-SAT)LIT = Γd-SAT. We have the following cycle of reductions.

CS(Γd-SAT,Z) ≤ADD CS(Γd-SAT,N) Lemma 4.9 for (Γd-SAT)LIT = Γd-SAT

≤ADD CS(Γ,Z) Lemma 5.4
≤ADD CS(Γd-SAT,Z) Lemma 5.4 J

I Theorem 6.2. For each d ≥ 2 and any constant α > 1 either all the following problems
admit an αnnO(1) algorithm for all c, or none of them do:
1. Max CSP(Γd-SAT,N, c),
2. Max CSP(Γ,Z, c) for any Γ with deg(Γ) = d,
3. Max CSP(Γ,N, c) for any Γ with deg(Γ) = d such that ΓNEG = Γ or ΓLIT = Γ.

Proof. As noted in Proposition 4.3, if CS(Γ1,W1) ≤ADD CS(Γ2,W2) and
Max CSP(Γ2,W2, c) admits an algorithm with running time αnnO(1), then the same
holds for Max CSP(Γ1,W1, c−O(1)). The equivalency between (1) and (2) has been proven
in Lemma 6.1. Since (2) is more general than (3), it suffices to reduce (2) into (3). Lemma 4.5,
point (2), provides the reduction CS(Γ,Z) ≤ADD CS(ΓNEG,N) for the case ΓNEG = Γ and
Lemma 4.9 provides the reduction CS(Γ,Z) ≤ADD CS(ΓLIT ,N) for the case ΓLIT = Γ. J

First corollary of this theorem is that problems of form Max CSP(Γ,Z) are divided into
equivalence classes with respect to the optimal running time. In particular, solving any Max
CSP(Γ,Z) with deg(Γ) ≥ 3 in time O(2(1−ε)n) for any ε > 0 contradicts the Max 3-SAT
Hypothesis. Also, the hypothesis remains equivalent if we replace Max 3-CNF-SAT
with Max 3-Lin SAT or Max 3-Exact SAT with only positive weights, because their
constraint languages satisfy ΓNEG = Γ and ΓLIT = Γ, respectively. Another corollary is that
improving the running time O

(
2 ω n

3
)
for Max Cut or Max DiCut with integer weights or

Max 3-NAE-SAT with positive weights would imply an analogous breakthrough for Max
2-CNF-SAT.

Alman and Williams [1] have noted that it is not known how to improve the running time
for Max 3-CNF-SAT, even for instances with a linear number of clauses. They have therefore
formulated a stronger hypothesis. The Sparse Max 3-SAT Hypothesis states that there
exists c > 0 such that Max 3-CNF-SAT with cn clauses does not admit an O(2(1−ε)n)-time
algorithm for any ε > 0. Similarly, their Sparse Max 2-SAT Hypothesis states that one
cannot beat running time O

(
2 ω n

3
)
for Max 2-CNF-SAT with cn clauses. Observe that our

reductions preserve the property of having O(n) different constraint applications (condition
(2) in Definition 4.1). Therefore as long as we allow negative weights at constraint applications,
we can replace Max 2-CNF-SAT (resp. Max 3-CNF-SAT) in this hypothesis with Max
CSP(Γ,Z) for any constraint language Γ of degree 2 (resp. 3) to obtain an equivalent
statement.

7 Conclusions and open problems

We have provided a complete characterization of the optimal compression for Max CSP(Γ) in
the case of a Boolean domain. A natural question arises about larger domains. Our approach
does not transfer even to the case with a domain of size 3, since there is no unique way to
represent functions {0, 1, 2}k → {0, 1} as polynomials. One may consider, e.g., embedding to
a Boolean domain or using non-multilinear polynomials, but it is not clear which approach
leads to the optimal degree and how to find accompanying lower bounds.
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On the exponential-time front, we have shown that Max d-CNF-SAT is as hard as any
Max CSP of degree d as long as negative weights are allowed. Although we were able to get
rid of the latter assumption in several cases, there is still a gap in this classification: does
improving the running time for any degree-d Max CSP(Γ,N) imply an improvement for
Max d-CNF-SAT?
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