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Abstract
We present the first fine-grained complexity results on two classic problems on strings. The first one
is the k-Median-Edit-Distance problem, where the input is a collection of k strings, each of length
at most n, and the task is to find a new string that minimizes the sum of the edit distances from
itself to all other strings in the input. Arising frequently in computational biology, this problem
provides an important generalization of edit distance to multiple strings and is similar to the multiple
sequence alignment problem in bioinformatics. We demonstrate that for any ε > 0 and k ≥ 2, an
O(nk−ε) time solution for the k-Median-Edit-Distance problem over an alphabet of size O(k) refutes
the Strong Exponential Time Hypothesis (SETH). This provides the first matching conditional lower
bound for the O(nk) time algorithm established in 1975 by Sankoff.

The second problem we study is the k-Center-Edit-Distance problem. Here also, the input is a
collection of k strings, each of length at most n. The task is to find a new string that minimizes
the maximum edit distance from itself to any other string in the input. We prove that the same
conditional lower bound as before holds. Our results also imply new conditional lower bounds for
the k-Tree-Alignment and the k-Bottleneck-Tree-Alignment problems studied in phylogenetics.
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1 Introduction

Recent years have seen a remarkable increase in our understanding of the hardness of
problems in the complexity class P . By establishing conditional lower bounds based on
popular conjectures, researchers have been able to identify which problems are unlikely
to yield algorithms significantly faster than what is known, at least not without solving
other long-standing open questions. We contribute to this growing body of research here
by establishing tight conditional hardness results for the k-Median-Edit-Distance problem.
This generalizes the seminal work by Backurs and Indyk in STOC 2015, which showed that
conditioned on the Strong Exponential Time Hypothesis (SETH), there does not exist a
strongly subquadratic algorithm for computing the edit distance between two strings [10].
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I Problem 1 (k-Median-Edit-Distance). Given a set S of k strings, each of length at most n,
find a string s∗ (called a median string) that minimizes the sum of edit distances from the
strings in S to s∗. This sum is called the median edit distance.

When k = 2 this problem is equivalent to the well-known edit distance problem, whose
famous dynamic programming solution was first given in 1965 by Vintsyuk [44]. An algorithm
for solving this problem on k strings in time O(nk) was then given by Sankoff in 1975 [41] in
the more general context of tree alignment (mutation trees). Since Sankoff’s solution, no
algorithms with significantly better time complexity have been developed. This is despite the
problem being of practical importance as well as the subject of extensive study [29, 30, 33, 38].
Compelling reasons for this were finally given 25 years later by Higuera and Casacuberta in
2000 who showed the NP-completeness of the problem over unbounded alphabets [20]. This
result was later strengthened to finite alphabets in [42] and then even to binary alphabets in
[39]. In [39] it was also shown that the problem is W[1]-hard in k. This last result implies it
is highly unlikely to find an algorithm with time complexity of the form f(k) ·NO(1), where
N is the sum of the lengths of the k strings. None of these hardness results, however, rule
out the possibility of algorithms where the time complexity is of the form O(nk−ε). Nearly
five decades after its creation, this paper gives a convincing argument as to why a significant
improvement over Sankoff’s algorithm is unlikely. Specifically, we show that an O(nk−ε) time
algorithm for any ε > 0 would refute SETH. We also prove that the same lower bound holds
for a related problem known as the k-Center-Edit-Distance.

I Problem 2 (k-Center-Edit-Distance). Given a set S of k strings, each of length at most n,
find a string s∗ (called a center string) that minimizes the maximum of edit distances from
the strings in S to s∗. The maximum edit distance from s∗ to any string in S is called the
center edit distance.

Like k-Median-Edit-Distance, the k-Center-Edit-Distance problem is known to be NP-
complete and W[1]-hard in k [39]. Additionally, k-Center-Edit-Distance has been shown to
have an O(n2k) time solution [39]. However, ours are the first fine-grained complexity results
for both these problems. Finally, we note that our results imply similar conditional lower
bounds for two classic tree alignment problems from phylogenetics called k-Tree-Alignment
and k-Bottleneck-Tree-Alignment [18, 28, 43, 45]. The k-Tree-Alignment (resp. k-Bottleneck-
Tree-Alignment) problem is defined as follows: given a tree T with k leaves where each leaf
is labeled with a string of length n, find an assignment of strings to all internal vertices of T
such that the sum (resp. max) of edit distances between adjacent strings/vertices over all
edges is minimal. Note that the median (resp. center) edit distance problem on k strings
is a special case of the k-Tree-Alignment (resp. k-Bottleneck-Tree-Alignment) problem,
specifically when the tree has only one internal vertex.

1.1 Related Work
Recent progress in the field of fine-grained complexity has given us conditional hardness
results for many popular problems. The list of problems includes those related to graphs,
computational geometry, and strings [1, 3, 4, 6, 7, 8, 10, 15, 17, 19, 21, 24, 23, 31, 32].
Reductions based on SETH, such as the one considered here, tend to have a very similar
structure. The Orthogonal Vectors problem [46] is typically used as an intermediate step in
the reduction. The proof we provide here works off a generalized variant of the Orthogonal
Vectors problem as used in [2]. Our work contributes to a growing list of conditional lower
bounds for string problems which we describe in more detail below.
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Along with the SETH-based lower bound for edit distance by Backurs and Indyk in [10],
there has been a number of newly appearing conditional lower bounds for string related
problems [9, 12, 14, 16]. Bringmann and Künnemann created a framework by which any
string problem which allowed for a particular gadget construction has similar SETH-based
lower bounds proven for it [13]. This framework includes the problems of the longest common
subsequence, dynamic time warping, and edit distance under a binary alphabet (less than
the four symbols used in the original reduction by Backurs and Indyk). Further work to
extend these types of lower bounds to more than two strings was undertaken in [2], where it
was shown that an algorithm which could find the longest common subsequence on k strings
in time O(nk−ε) for any ε > 0 would refute SETH. The study of conditional hardness of
problems on k strings also includes [22], where the longest common increasing subsequence
on k strings, k-LCIS, was studied. Likewise in [7] the local alignment problem on k strings
under sum of pairs was considered. In both of the last two works mentioned, it was shown
that an O(nk−ε) algorithm would refute SETH.

Another notable achievement in this direction is in [5], where it was shown that it is
possible to weaken the assumptions used to achieve many of these results. They showed
that under much weaker conjectures than SETH regarding circuit complexity, many of the
same hardness results still hold. In fact, for any problem where the gadgetry of Bringmann
and Künnemann can be applied, having a strongly sub-quadratic time algorithm would have
drastic implications for our ability to solve satisfiability problems on Boolean circuits much
more complex than those required for 3-SAT. Furthermore, their work also demonstrated that
if one could shave off arbitrarily large logarithmic factors, it would have drastic implications
in the field of circuit complexity. In this same work, they showed that their reduction from
branching programs to string problems can be adapted to k-LCS, implying circuit-based
hardness results apply for LCS on k strings.

There exists a close relationship between LCS and edit distance on two strings. Namely,
on two strings of lengths n and m, the edit distance with only the insertion and deletion
operations is equal to n + m − 2`, where ` is the length of the strings’ longest common
subsequence. For more than two strings, such a clear relationship (in terms of just lengths
and number of edits) seems unlikely. In fact, there exist collections of k strings where the
lengths of the longest common subsequences are equal, but the median edit distances are
not, e.g., with k = 3 and n ≥ 1, the sets {an, an, bn} and {an, bn, cn} both have a longest
common subsequence of length zero, while the first has median edit distance n and the
second has median edit distance 2n. Because of this, it seems difficult to parlay the hardness
results proven for k-LCS into hardness results for k-Median-Edit-Distance, even under only
insertions and deletions. Hence, the hardness of k-Median-Edit-Distance was left open. On
the other hand, a 2-approximation for k-Median-Edit-Distance can be easily obtained in
O(k2n2) time: simply choose the string within the collection that minimizes the sum of edit
distances from itself to the other strings.

The problem of finding the center string of a set of k strings, the string which minimizes
the maximum distance from itself to any string in the set, has more often been studied under
the Hamming distance metric than the edit distance metric. In this context the problem is
typically called the closest string problem [25, 27, 35, 36]. The problem under the Hamming
distance metric is NP-complete [34], whereas the median version under Hamming distance
can be easily solved in polynomial time. In the cases where this problem has been studied
under the edit distance metric, it has made use of a parameter d, the maximum distance any
solution is allowed to have from an input string. The problem is fixed parameter tractable in
d, which is the basis of many solutions [11, 26, 37].

ESA 2020
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2 Hardness for k-Median-Edit-Distance

Our reduction will be from the k-Most-Orthogonal-Vectors problem, which was first intro-
duced in [2]. It was shown that if it could be solved in O(nk−ε) time for some constant ε > 0,
it would imply new upper bounds for MAX-CNF-SAT that would violate SETH.

I Problem 3 (k-Most-Orthogonal-Vectors). Given k ≥ 2 sets S1, S2, . . . , Sk each containing n
binary vectors v ∈ {0, 1}d, and an integer r < d, are there k vectors v1, v2, . . . , vk with vi ∈ Si

such that their inner product, defined as
∑d

h=1
∏

t∈[1,k] vt[h], is at most r? A collection of
vectors that satisfies this property will be called r-far, and otherwise called r-close.

Modifying the Vectors. In our reduction we apply a modification to the vectors in our
input sets S1, S2, . . . , Sk. We prepend (r + 1) 0’s to each vector v ∈ S1 and (r + 1) 1’s to
each vector v ∈ Si where i > 1. Every vector is now of dimension d+ r + 1 ≤ 2d and the
k-Most-Orthogonal-Vectors problem is identical on the original and modified sets.

2.1 Technical Overview
Given sets S1, S2, . . . , Sk of binary vectors, we will design strings T1, T2, . . . , Tk such that if
there exists a collection of r-far vectors in the input, then their median edit distance will be
at most a constant E−. Otherwise, if there does not exist any collection of r-far vectors in
the input, their median edit distance will be equal to E+, where E− < E+. Our strings will
be constructed in three levels of increasing scope: coordinate level, vector level, and set level.
We use EDIT(x1, x2, . . . , xk) to denote the median edit distance of k strings x1, x2, . . . , xk.

Coordinate Level: Given k bits b1, b2, . . . , bk, we construct coordinate gadget strings
CGi(bi) that can distinguish between the case when b1b2 · · · bk = 0 and b1b2 · · · bk = 1.
Specifically, we will show that there exist constants C− and C+ with C− < C+ such
that if b1b2 · · · bk = 0, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C−, and else if
b1b2 · · · bk = 1, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C+.
Vector Level: Given vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1, we construct vector gadget
strings VGi(vi) for i ∈ [2, k] and a slightly more complicated decision gadget string
DG1(v1) out of our coordinate gadgets. Together these gadgets can determine if the k
vectors are r-far or not. Specifically, we will show that if v1, v2, . . . , vk are r-far, then
EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≤ D− and else if v1, v2, . . . , vk are r-close, then
EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+, where D+ and D− < D+ are constants.
Our construction here is a generalization of the work in [10] to k strings.
Set Level: In the set level step of the reduction, we will build our final strings
T1, T2, . . . , Tk by concatenating our vector level gadgets and adding special $i symbols. Our
final strings will be designed so that if there is an r-far collection of vectors v1, v2, . . . , vk

with vi ∈ Si, then the corresponding gadgets DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)
will align in an optimal edit sequence of our strings. These vector gadgets will have
a lower median edit distance, resulting in EDIT(T1, T2, . . . , Tk) ≤ E−. Otherwise,
EDIT(T1, T2, . . . , Tk) = E+, where E− < E+.

We now present a definition and an associated fact.

I Definition 4 (Alignment). Given a particular edit sequence (a sequence of insertions,
substitutions, and deletions) on strings x1, x2, . . . , xk, we say symbol α in xi is aligned with
symbol β in another string xj if neither α nor β is deleted but are instead preserved or
substituted to correspond to the same symbol. We say a substring s of xi is aligned with
substring t of xj, if there exists a pair of aligned characters in s and t.
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The following observation will be used implicitly throughout.

I Fact 5 (No criss-crossed alignments). Consider an edit sequence on a set of strings containing
strings x and y. Let i1 < j1 and i2 < j2 be indices on these strings. If x[i1] is aligned with
y[j2], then x[i2] cannot be aligned with y[j1].

2.2 Coordinate level reduction
For i ∈ [1, k], we define coordinate gadget strings CGi over the alphabet Σ = {21, 22, . . . , 2k, 3,
4}. Let `1 = 10k2. For bits b1, b2, . . . , bk ∈ {0, 1}, we define

CGi(bi) := fi(bi) ◦ 4`1 ◦ gi(bi) ◦ 4`1 ◦ hi(bi) for i ∈ [1, k], where

fi(bi) =


2k−1

i+1 if bi = 1, i < k

2k−1
1 if bi = 1, i = k

2k−1
i if bi = 0

gi(bi) =

{
3k−1 if bi = 1
2k−1

i if bi = 0
hi(bi) =

{
2k

i if bi = 1
©k

j=12j if bi = 0

We present the following examples on k = 3 to aid in the understanding of our CGi(bi).

b1, b2, b3 f1(b1), f2(b2), f3(b3) g1(b1), g2(b2), g3(b3) h1(b1), h2(b2), h3(b3) EDIT(CG1(b1), ·, ·)
1, 1, 1 2222, 2323, 2121 33, 33, 33 212121, 222222, 232323 4 + 0 + 6 = 10
0, 1, 1 2121, 2323, 2121 2121, 33, 33 212223, 222222, 232323 2 + 2 + 4 = 8
0, 0, 0 2121, 2222, 2323 2121, 2222, 2323 212223, 212223, 212223 4 + 4 + 0 = 8

I Lemma 6. Let C− = 2(k − 1)2 and let C+ = C− + (k − 1) = (2k − 1)(k − 1). Then

EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) =
{
C+ if b1b2 · · · bk = 1
C− otherwise

Proof. For the remainder of this proof, let π = b1 + b2 + · · ·+ bk ∈ [0, k].

B Claim 7. The median edit distance of our fi gadgets is

EDIT(f1(b1), . . . , fk(bk)) =
{

(k − 1)2 if π = 0 or k
(k − 1)(k − 2) otherwise

B Claim 8. The median edit distance of our gi gadgets is

EDIT(g1(b1), . . . , gk(bk)) =
{

(k − 1)2 if π = 0
(k − 1)(k − π) otherwise

B Claim 9. The median edit distance of our hi gadgets is EDIT(h1(b1), . . . , hk(bk)) = (k−1)π.

We have chosen `1 to be sufficiently large that all fi, gi, and hi gadgets align only with
gadgets of their own type. Therefore,

EDIT(CG1(b1), . . . ,CGk(bk)) =


(k − 1)2 + (k − 1)2 + 0 π = 0
(k − 1)(k − 2) + (k − 1)(k − π) + (k − 1)π 0 < π < k

(k − 1)2 + 0 + (k − 1)k π = k

A simple calculation will show that EDIT(CG1(b1), . . . ,CGk(bk)) is C− when π < k (and
hence b1b2 · · · bk = 0) and is C+ when π = k (and hence b1b2 · · · bk = 1). J

ESA 2020
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2.3 Vector level reduction
At this step of the reduction we are given binary vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1 and
we want to determine whether or not they are r-far. We accomplish this by constructing
vector level gadgets that will have a “lower” median edit distance if the vectors are r-far.
Let integer parameters `2 = 10d`1 and `3 = (10`2)2. For vectors v1, v2, . . . , vk, we define

VGi(vi) := 6`3 ◦Mi(vi) ◦ 6`3 where Mi(vi) :=©j∈[1,d+r+1](5`2 ◦ CGi(vi[j]) ◦ 5`2 )

Observe that the vector gadget of a vector vi is just the concatenation of the coordinate
gadgets corresponding to each coordinate in vi, along with some additional padding symbols.
It follows that the median edit distance of VG1(v1),VG2(v2), . . . ,VGk(vk) will be proportional
to the inner product of v1, v2, . . . , vk. This is promising because we can now argue about
whether or not v1, v2, . . . , vk are r-far based on the median edit distance of the VGi(vi)’s (a
“lower” distance implies the vectors are r-far and a “higher” distance implies the vectors are
r-close). Unfortunately, vectors with a very large inner product will result in a large median
edit distance, which could interfere with our ability to detect r-far vectors in the next step
of our reduction. What is desired here is to have vector level gadgets with a fixed “higher”
median edit distance when the vectors are r-close. We achieve this by replacing VG1(v1)
with a decision gadget DG1(v1) that will ensure that no matter how large the inner product
of a collection of r-close vectors, the median edit distance of their corresponding gadgets will
be a constant D+. For vector v1, we define

DG1(v1) := 7`3 ◦M1(v1) ◦ 6`3 ◦M1(θ) ◦ 7`3 , θ ∈ {0, 1}d+r+1 and θ[i] =

{
1 i ≤ r + 1
0 else

The key properties of our vector level gadgets are captured in Lemma 10 and Lemma 11.
In both proofs we let m = |Mi| = (d + r + 1)(2`2 + 2`1 + 3k − 2), and we define D− =
2`3 +m+ (d+ 1)C− + rC+ and D+ = D− + (k − 1).

I Lemma 10. For any given r-far vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,
EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) ≤ D−.

Proof. To upper bound the median edit distance of our k strings by D−, we must give a
complete edit sequence of our strings that requires D− or fewer edits. Let v1, v2, . . . , vk be
r-far vectors. We decide to align VG2(v2),VG3(v3), . . . ,VGk(vk) with the 7`3 ◦M1(v1) ◦ 6`3

substring of DG1(v1) as in Figure 1.

Mi(v)i i

M1(v)1 M1(  )

Figure 1 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-far.

First we delete M1(θ) ◦ 7`3 from DG1(v1) in m+ `3 edits. Then we substitute all the 7
symbols in the 7`3 prefix of DG1(v1) to 6 symbols in `3 edits. Finally, we must edit substrings
M1(v1),M2(v2), . . . ,Mk(vk) to be the same. Each Mi(vi) contains d + r + 1 coordinate
gadgets, and for j ∈ [1, d+ r + 1], we choose to align the jth leftmost coordinate gadgets of
all Mi(vi) for i ∈ [1, k]. Note that the inner product of v1, v2, . . . , vk is less than or equal to
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r because the vectors are r-far. It follows that we will have no more than r alignments of
coordinate gadgets with cost C+ and at least d+1 alignments with cost C− (recall Lemma 6).
Then EDIT(M1(v1),M2(v2), . . . ,Mk(vk)) ≤ (d + 1)C− + rC+. The total number of edits
performed in this edit sequence is at most 2`3 +m+ (d+ 1)C− + rC+ = D−. J

We note that if v1, v2, . . . , vk are r-close and as a result have an inner product greater
than r, the optimal edit sequence of DG1(v1),VG2(v2), . . . ,VGk(vk) will align strings
VG2(v2),VG3(v3), . . . ,VGk(vk) with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) as in Fig. 2.

Mi(v)i i

M1(v)1 M1(  )

Figure 2 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-close.

I Lemma 11. For any given r-close vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,
EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) = D+.

Proof. The proof of Lemma 11 is a straightforward generalization of the vector gadget proof
in [10] to k strings. In the course of this proof we will make use of the fact that for any subset
xi1 , xi2 , . . . , xij

of strings x1, x2, . . . , xk, EDIT(xi1 , xi2 , . . . , xij
) ≤ EDIT(x1, x2, . . . , xk).

B Claim 12. EDIT(DG1(v1),VG2(v2),VG3(v3) . . . ,VGk(vk)) ≤ D+

Subproof. Note that the inner product of θ, v2, v3, . . . , vk is equal to r+1 by the definition of θ
and our modifications to the input vectors. Then we can align VG2(v2),VG3(v3), . . . ,VGk(vk)
with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) in a manner analogous to our edit sequence
in Lemma 10. C

Now we “just” need to prove that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+. We
proceed by cases on the alignments of the Mi(vi) substrings.

B Claim 13. EDIT(DG1(v1),VG2(v2),VG3(v3) . . . ,VGk(vk)) ≥ D+

Subproof. We have the following cases to consider.
Case 1: The Mi(vi) substring of some VGi(vi) gadget with i > 1 has alignments with
both substrings 7`3 ◦M1(v1) and M1(θ) ◦ 7`3 of DG1(v1). In this case, the cost induced
by the symbols in the 7`3 prefix and suffix of DG1(v1) and the 6`3 substring of DG1(v1)
is `3 each, so EDIT(VGi(vi),DG1(v1)) ≥ 3`3 > D+. Our lower bound is satisfied. Note
that since the inequality is strict, this case will not occur in an optimal edit sequence.
Case 2: The Mi(vi) substring of some VGi(vi) gadget with i > 1 does not have any
alignments with the 7`3 ◦M1(v1) substring of DG1(v1).
Case 2.1: The Mj(vj) substring of some VGj(vj) gadget with j > 1 does not have any
alignments with substring M1(θ) ◦ 7`3 of DG1(v1). We will consider
EDIT(VGi(vi),VGj(vj),DG1(v1)), which is the same as EDIT(VGi(vi),DG1(v1)) when
i = j. The Mi(vi) substring of VGi(vi) has no alignments with the 7`3 ◦M1(v1) substring
of DG1(v1). Therefore at least D1 = `3 + m edits need to be performed between the
6`3 prefix of VGi(vi) and the 7`3 ◦ M1(v1) prefix of VG1(v1). Likewise, the Mj(vj)
substring of VGj(vj) has no alignments with the M1(θ) ◦ 7`3 substring of DG1(v1), and
so at least D1 edits need to be performed between the 6`3 suffix of VGj(vj) and the
M1(θ) ◦ 7`3 suffix of DG1(v1). The above edit costs are disjoint, and it follows that
EDIT(VGi(vi),VGj(vj),DG1(v1)) ≥ 2D1 > D+. Our lower bound is satisfied.

ESA 2020
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Case 2.2: We consider the complement of Case 2.1: the Mi(vi) substrings of all VGi(vi)
gadgets with i > 1 have alignments with the substring M1(θ) ◦ 7`3 of DG1(v1). By our
analysis in Case 1, we may now assume that the Mi(vi) substrings of all VGi(vi) gadgets
with i > 1 do not have alignments with the 7`3 ◦M1(v1) substring of DG1(v1). Then
by our argument in Case 2.1, at least D1 edits must be performed on the 6`3 prefix of
VGi(vi) and the 7`3 ◦M1(v1) prefix of VG1(v1). Additionally, note that all VGi(vi) share
the suffix 6`3 , whereas DG1(v1) has suffix 7`3 . It follows that at least D2 = `3 edits
are needed to edit DG1(v1),VG2(v2), . . . ,VGk(vk) to have the same suffix. Furthermore,
these edits are disjoint from the D1 edits performed on the prefixes of DG1(v1) and the
VGi(vi). We have shown that at least D1 + D2 = 2`3 + m edits are required to align
DG1(v1),VG2(v2), . . . ,VGk(vk). Now all we must do is lower bound the edits internal
to our Mi(vi) substrings. Recall that our Mi(vi) substrings are composed of d+ r + 1
coordinate gadgets CGi(vi[j]).

Case 2.2.1: There is some VGi(vi) gadget with i > 1 such that there are some
j, ` ∈ [1, d+ r + 1] with j 6= ` such that the jth leftmost coordinate gadget of Mi(vi)
is aligned with the `th leftmost coordinate gadget of the M1(θ) in VG1(v1). Then we
incur an edit cost of at least 2`2 from the 5 symbols between the coordinate gadgets.
It follows that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D1 + D2 + 2`2 > D+. Our
lower bound is satisfied.
Case 2.2.2: We now consider the complement of Case 2.2.1. For all i ∈ [1, d+ r + 1],
the ith leftmost coordinate gadget of Mj(vj) for all j > 1 is either aligned with the
ith leftmost coordinate gadget of M1(θ) or it’s not aligned with any coordinate gadget
of M1(θ).

∗ For all i ∈ [1, d + r + 1] we analyze the edit costs of the ith leftmost coordinate
gadgets in M1(θ),M2(v2), . . . ,Mk(vk). If the ith leftmost coordinate gadgets of all
Mj(vj) for j > 1 are aligned with the ith leftmost coordinate gadget ofM1(θ). Then
by the transitivity of the alignment relation, we have that the ith coordinate gadgets
of M1(θ),M2(v2), . . . ,Mk(vk) are aligned. By our analysis of the coordinate gadgets
in Lemma 6, this alignment of coordinate gadgets will incur cost at least C− if
θ[i]v2[i]v3[i] . . . vk[i] = 0, and else incur cost at least C+ if θ[i]v2[i]v3[i] . . . vk[i] = 1.

∗ Else for someMj(vj) with j > 1, the ith leftmost coordinate gadget CGj(vj [i]) is not
aligned with any coordinate gadget of M1(θ), then it incurs cost |CGj(vj [i])| ≥ C+.

Combining our case analysis for all d + r + 1 coordinate gadgets, we see that they
collectively incur a cost of at least D3 = (r + 1)C+ + dC−, since the inner product of
vectors θ, v2, v3, . . . , vk is r + 1 (follows from our modification of the input vectors and
our definition of θ). Then D1 +D2 +D3 = D+, and since the edits from D1, D2, and D3
are all necessarily disjoint, we have that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.

Case 3: The Mi(vi) substring of some VGi(vi) with i > 1 does not have alignments with
the M1(θ) ◦ 7`3 substring of DG1(v1). This case is symmetric to Case 2, with the only
difference being that we have substring M1(v1) as opposed to M1(θ). Since we assumed
that v1, v2, . . . , vk are r-close and hence have an inner product greater than or equal to
r + 1, it must be the case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.

We have shown in every case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+, so we
conclude that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+. C

This completes the proof of Lemma 11. J
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2.4 Set level reduction
In this step of the reduction we will construct our final strings T1, T2, . . . , Tk that can detect
r-far vectors in our input sets S1, S2, . . . , Sk. We will accomplish this by embedding in string
Ti the vector level gadgets of the vectors belonging to set Si for i ∈ [1, k]. Then if an r-far
collection of vectors exists, we can align their corresponding vector gadgets and give our
strings T1, T2, . . . , Tk a “lower” median edit distance.

We will construct our final strings in several steps. We start by padding our vector level
gadgets to discourage them from aligning with more than one vector level gadget in any given
string. We define integer parameter `4 = 10000k4d`3, and we add a new padding symbol 8
to our alphabet. For all v ∈ {0, 1}d+r+1, let

DG′1(v) := 8`4 ◦DG1(v) ◦ 8`4 and VG′i(v) := 8`4 ◦VGi(v) ◦ 8`4 for i ∈ [1, k]

We now concatenate our vector level gadgets DG′1 and VG′i. Define

P1 :=©v∈S1 DG′1(v) and Pi :=©v∈Si
VG′i(v) for i ∈ [2, k]

Strings P1, P2, . . . , Pk now contain all the vectors from our input sets. However, they
are not sufficient to complete the reduction. To solve k-Most-Orthogonal-Vectors we must
be able to check all nk collections of vectors in S1 × S2 × · · · × Sk for r-far-ness. Likewise,
we must be able to align all nk corresponding vector level gadgets in our final strings. In
P1, P2, . . . , Pk this is not always possible without incurring a large additional edit cost. For
example, there is no optimal edit sequence of P1, P2, . . . , Pk that aligns the leftmost vector
level gadget of a string Pi with the rightmost vector level gadget of another string Pj – the
number of insertions or deletions necessary would be too high.

Our strings P1, P2, . . . , Pk are rigid, but we can give them the freedom to slide around by
making the lengths of all strings distinct. Specifically, we will add a varying number of vector
level gadgets to each string so that Pi+1 will have more vector level gadgets than Pi for all
i ∈ [1, k− 1]. We define the dummy vector φ to be a vector of all ones of length d+ r+ 1. Let

L1 := VG′1(φ)(50k+1)n ◦DG′1(φ)50kn

Li := VG′i(φ)(100k+i)n

and
and

R1 := DG′1(φ)50kn ◦VG′1(φ)(50k+1)n

Ri := VG′i(φ)(100k+i)n for i ∈ [2, k]

Strings Li and Ri will pad the left side and the right side of our Pi.

P ′i := Li ◦ Pi ◦Ri for i ∈ [1, k]

Observe that string P ′i+1 has 2nmore (dummy) vector level gadgets than P ′i for i ∈ [1, k−1].
This gives P ′1, P ′2, . . . , P ′k a pyramid-like shape as in Figure 3. We will see that this allows
the sort of sliding between strings necessary to complete our reduction.

$1

$2

$3

$4

$1

$2

$3

$4

Figure 3 Final strings T1, T2, . . . , Tk when k = 5 shown from top to bottom. The vector gadgets
corresponding to vectors from our input sets are shown in black, whereas the vector gadgets
corresponding to dummy vectors φ are shown in gray. The special $i symbols are shown in white.

However, because our strings P ′1, P ′2, . . . , P ′k are of different lengths, any complete edit
sequence will require inserting or deleting vector level gadgets. This is problematic because
it is difficult to reason about the edit costs of our vector level gadgets if they are inserted or
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deleted in the optimal edit sequence. To solve this problem we add special $i symbols to our
strings. We will see that the $i symbols “absorb” all the edits needed to make the lengths
of the final strings equal and that no vector level gadgets will be inserted or deleted in the
optimal edit sequence. We add $1, $2, . . . , $k−1 to our alphabet, and we let `5 = 1000kn`4.
Define

Ti := $`5
i ◦ P

′
i ◦ $`5

i for i ∈ [1, k − 1] and Tk := P ′k

This completes the construction of our final strings T1, T2, . . . , Tk. The length of each string
as well as the time for their construction is O(ndO(1)). Their properties are summarized in
Lemma 14 and Lemma 15 (proofs are deferred to Section 2.5 and Section 2.6, respectively).

I Lemma 14. For any given sets S1, . . . , Sk such that there is some collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where
E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.

I Lemma 15. For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+, where E+ =
E− + (k − 1).

I Theorem 16. If there is an ε > 0, an integer k ≥ 2, and an algorithm that can solve
k-Median-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)
in O(nk−ε) time, then SETH is false.

Proof. Follows from Lemma 14 and Lemma 15. J

2.5 Proof of Lemma 14
Statement: For any given sets S1, S2, . . . , Sk such that there is some collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where
E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.

To upper bound the median edit distance of T1, T2, . . . , Tk by E−, we must give an edit
sequence of at most E− edits. Initially, we will only edit the substrings P ′1, P ′2, . . . , P ′k and
thus exclude the $i symbols from consideration. We start by aligning the vector level gadgets.

Vector Level Gadget Alignment. We have assumed vectors v1, v2, . . . , vk are r-far, and we
choose to align their corresponding vector level gadgets DG1(v1),VG2(v2), . . . ,VGk(vk). We
then align the rest of our vector level gadgets using the following rules:
1. Each vector level gadget in Ti aligns to exactly one vector level gadget in Tj for j > i.
2. If two vector level gadgets are adjacent in Ti, then they will be aligned to adjacent vector

level gadgets in Tj for j > i.

Feasibility. We must demonstrate that this alignment is always achievable no matter how
the vector level gadgets of v1, v2, . . . , vk are embedded in strings T1, T2, . . . , Tk. Recall that
the vector level gadgets corresponding to vectors from our input sets are located in substrings
Pi of Ti for all i ∈ [1, k]. Our construction gives paddings Li+1 and Ri+1 exactly n more
dummy vector level gadgets than Li and Ri respectively for i ∈ [1, k − 1]. It follows that
even if the leftmost (resp. rightmost) vector level gadget in Pi is aligned with the rightmost
(resp. leftmost) vector level gadget in Pi+1, the rules above remain satisfied.
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Edit Cost for Vector Level Gadgets. There are 100kn+ n decision gadgets DG1 in T1, so
our edit sequence will yield 100kn+ n alignments of DG1,VG2, . . . ,VGk, of which at least
one such alignment will have cost D− and the rest at most D+. This gives an edit cost of at
most E−1 = D−+ (100kn+n− 1)D+. At this point, all vector level gadgets in P1, P2, . . . , Pk

have been edited (refer to Figure 4).

gadgets

gadgets gadgetsgadgets

Figure 4 Strings P ′1 and P ′2. All vector gadgets in P2 align with decision gadgets DG1 in P ′1.

Then there are exactly 2(50k + 1)n alignments of VG1(φ),VG2(φ), . . . ,VGk(φ) gadgets,
and for all i ∈ [2, k] there are exactly 2n alignments containing precisely the gadgets
VGi(φ),VGi+1(φ), . . . ,VGk(φ). We will count the minimal number of edits needed to make
these dummy vector gadgets identical. Let Fi = (d+ r + 1)(2k − 1)(k − i).

B Claim 17. For all i ∈ [1, k], EDIT(VGi(φ),VGi+1(φ), . . . ,VGk(φ)) = Fi.

Proof. Each dummy vector gadget VGj(φ) is composed of d+ r+ 1 coordinate gadgets. Each
alignment of the coordinate gadgets CGi(1),CGi+1(1), . . . ,CGk(1) will incur (2k − 1)(k − i)
total edits, with (k − 1)(k − i) edits from f gadgets and k(k − i) edits from h gadgets. C

Denote the sum of the internal edit costs of all alignments of VGi,VGi+1, . . . ,VGk gadgets
for i ∈ [1, k] by

E−2 = 2(50k + 1)n · F1 +
∑

i∈[2,k]

2n · Fi = 101k(k − 1)(2k − 1)(d+ r + 1)n

This completes our edits on all vector level gadgets.

Total Edit Cost. All substrings P ′1, P ′2, . . . , P ′k have been edited to P ∗1 , P ∗2 , . . . , P ∗k , respect-
ively, so that P ∗i is a substring of P ∗j for all i < j. We will now edit the $i symbols in order
to complete the edit sequence of T1, T2, . . . , Tk. In particular, we will edit all k strings to
be equal to P ∗k by substituting and deleting $i symbols. For the ith string, we will perform
substitutions on |P ∗k |−|P ∗i | of the $i symbols in Ti and delete the remaining $i symbols. Since
we substitute or delete every $i symbol, this will incur an edit cost of E−3 = 2(k − 1)`5. The
total number of edits performed in our edit sequence is no more than E−1 + E−2 + E−3 = E−.
This completes the proof.

2.6 Proof of Lemma 15
Statement: For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+ = E− + (k − 1).

B Claim 18. EDIT(T1, T2, . . . , Tk) ≤ E+

Proof. We can achieve this upper bound by giving an edit sequence identical to the edit
sequence in Lemma 14. Note that the only difference now is that there is no longer an r-far
collection of vectors, so the edit cost of D− in Lemma 14 is now D+. This yields a complete
edit sequence with E− + (D+ −D−) = E+ edits, so our inequality holds. C
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We must now prove that EDIT(T1, T2, . . . , Tk) ≥ E+. Our lower bound on the number
of edits comes from two disjoint sources: the edits incurred by the $i symbols and the edits
incurred by alignments between vector level gadgets.

B Claim 19. The $i symbols for i ∈ [1, k − 1] incur a cost of at least E+
1 = 2(k − 1)`5 edits

in a complete edit sequence of T1, T2, . . . , Tk.

Proof. First note that symbols $i for i ∈ [1, k − 1] have E+
1 = 2(k − 1)`5 occurrences in

T1, T2, . . . , Tk. We will show that each of these $i symbols incurs one edit and that this edit
is disjoint from the edits of any other $j symbol. If a $i symbol is deleted or substituted, then
it certainly incurs one edit. Furthermore, these deletions and substitutions are necessarily
disjoint. Otherwise, suppose that a $i symbol is not substituted or deleted, but remains
unmodified in the edit sequence. Then because there are no $i symbols in string Tk, we must
incur at least one edit in Tk. This edit must be disjoint from any other edits incurred by
other $i symbols. C

Now we will reason about the lower bound on the edits incurred by vector level gadgets
by considering every possible configuration of alignments between vector level gadgets. In
order to do this, we define a graph G whose vertices correspond to vector level gadgets.
More specifically, for the jth leftmost vector level gadget in Ti, we add a vertex xj

i to G for
i ∈ [1, k]. Thus vertices x1

i , x
2
i , . . . , x

(200k+2i+1)n
i correspond to the 2(100k + i)n+ n vector

level gadgets in Ti from left to right. Now for a particular edit sequence, we define G to have
an unordered edge (xj1

i1
, xj2

i2
) if the j1th vector level gadget of Ti1 is aligned with the j2th

vector level gadget of Ti2 in the edit sequence. Also, we say that xj1
i1

and xj2
i2

are from the
same row if i1 = i2.

Every edit sequence now corresponds to a graph G. This graph can be decomposed
into a set of connected components C. For a component c ∈ C, we define #(c, i) as the
number of vertices belonging to string Ti in c. We say that width(c) of a component c
is maxi∈[1,k] #(c, i). We let |c| denote the number of vertices in a component c. We now
partition C into the following sets:
C1 is the set of all components c with width(c) > 1
C2 is the set of all components c with width(c) = 1 and #(c, k) = 0
C3 is the set of all components c with width(c) = 1 and #(c, k) = 1

We now lower bound the edit costs of components in C1, C2, and C3. Let Q = 10kd`3.

I Lemma 20. Every component c in C1 incurs at least Q · width(c) edits.

Proof. Because our component c is connected, the case illustrated in Figure 5 must occur at
least width(c)− 1 times. Then at least 2`4(width(c)− 1) edits must be performed on the
padding 8 symbols between the vector level gadgets of c. Observe that because `4 > Q, this
cost is greater than Q ·width(c). These edits are disjoint from the edits of the $i symbols. J

Figure 5 Case: one vector gadget in a string Ti is aligned with two vector gadgets in a string Tj .
This alignment requires 2`4 edits of 8 symbols.

I Lemma 21. Every component c in C2 incurs at least Q edits.
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Proof. By definition, the vector level gadgets in component c have no alignments with
any vector level gadget VGk in Tk. It follows that we incur a cost of at least |VGk | > Q.
Furthermore, this edit cost is disjoint from the E+

1 edit cost of our $i symbols because there
are no $i symbols in Tk. J

We have given lower bounds for the edit costs of every component in C1 and C2, and these
edit costs are disjoint by nature. Now we bound the costs of every component in C3. It will
be useful to partition the components in C3 into the following sets:
C3.1 is the set of all components c containing a vertex corresponding to a DG1 gadget
C3.2 is the remaining components in C3.

I Lemma 22. All components c in C3.1 incur an edit cost of D+.

Proof. Our proof makes use of the following claim.

B Claim 23. No optimal edit sequence aligns a decision gadget DG1 with any $i symbol.

Subproof. Suppose some decision gadget DG1 is aligned with a $i symbol in string Ti

for some i ∈ [2, k − 1]. We will show that this incurs an edit cost greater than our
upper bound E+ established in Claim 18, implying this cannot occur in an optimal edit
sequence. We may assume w.l.o.g. that DG1 is aligned with a $i symbol on the left side
of Ti. It follows that the substring VG′1(φ)(50k+1)n of T1 must occur to the left of the
alignment, and the substring P ′i of Ti must occur to the right of the alignment (see Figure
4). Then this alignment of T1 and Ti has a combined length greater than or equal to
|VG′1(φ)(50k+1)n|+ |P ′i |. We observe that |VG′1(φ)(50k+1)n| > 100kn`4 and |P ′i | > 400kn`4,
so our alignment of T1 and Ti has a combined length greater than 500kn`4. On the other
hand, |Tk| = (202k + 1)n|VG′k | < 203kn(3`3 + 2`4). Our alignment of T1 and Ti must be
edited to have the same length as Tk in every complete edit sequence, so it follows that
EDIT(T1, Ti, Tk) > 500kn`4− 203kn(3`3 + 2`4) = kn(94`4− 609`3) > 1000k4dn`3. Then our
edit sequence requires 1000k4dn`3 + E+

1 > E+ edits, so this alignment cannot occur in an
optimal edit sequence. C

Let c be a component in C3.1. Suppose #(c, i) = 0 for some i ∈ [2, k − 1]. Then by
definition, our gadgets in c have no alignments with any vector level gadget in Ti. It follows
that we must perform at least |VGi | > D+ edits among the vector gadgets in c. This is
because the vector gadgets in c are either aligned with no symbols in Ti and therefore require
at least |VGi | insertions or deletions in c to make all strings the same length, or the vector
gadgets in c are aligned exclusively with 8 symbols in Ti and therefore require at least |VGi |
substitutions to make them the same. Note that the vector gadgets in c cannot be aligned
with any $i symbols in Ti by Claim 23. This is key for proving that these edits are disjoint
from the E−1 cost of editing the $i symbols.

Now consider the case that #(c, i) 6= 0 for all i ∈ [2, k− 1]. Then we have that #(c, i) = 1
for all i ∈ [1, k], and by our analysis in Lemma 14, the edit cost of aligning the k vector level
gadgets is at least D+. J

I Lemma 24. Let c be a component in C3.2 and let λ = |c|, then the edit cost incurred by
the vector gadgets in c is (d+ r + 1)(2k − 1)(λ− 1).

Proof. Here we make use of the following claim, which has proof similar to Claim 23.

B Claim 25. Let vi ∈ Si for some i ∈ [2, k], then no optimal edit sequence aligns the vector
gadget VGi(vi) in Ti with a $1 symbol in T1, nor a dummy vector gadget VG1(φ) in T1.
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Subproof. Suppose some vector gadget VGi(vi) in string Ti with i ∈ [2, k] and vi ∈ Si is
aligned with a dummy vector gadget VG1(θ) in string T1. We will show that this incurs an
edit cost greater than our upper bound E+, implying this cannot occur in an optimal edit
sequence. We may assume w.l.o.g. that VGi(vi) is aligned with a VG1(θ) gadget on the left
side of T1. It follows that the substring Li of Ti must occur to the left of the alignment and
the substring DG′1(φ)50kn ◦ P1 ◦R1 of T1 must occur to the right of the alignment. Then we
can consider this alignment of Ti and T1 to have a combined length greater than or equal to
|Li|+ |DG′1(φ)50kn ◦ P1 ◦R1|.

We observe that |Li| > 200kn`4 and |DG′1(φ)50kn ◦P1 ◦R1| > 400kn`4, so our alignment
of Ti and T1 has a combined length greater than 600kn`4. On the other hand, |Tk| =
(202k + 1)n|VG′k | < 203kn(3`3 + 2`4).

Our alignment of Ti and T1 must be edited to have the same length as Tk in every
complete edit sequence, so it follows that EDIT(T1, Ti, Tk) > 600kn`4 − 203kn(3`3 + 2`4) =
kn(194`4 − 609`3) > 1000k4dn`3. Then our edit sequence requires 1000k4dn`3 + E+

1 > E+

edits, so this alignment cannot occur in an optimal edit sequence. It follows that VGi(vi) in
Ti cannot align with a VG1(θ) gadget (and by extension a $1 symbol) in T1. C

Let c be in C3.2. Suppose there is some vi ∈ Si for i ∈ [2, k] such that vector gadget
VGi(vi) corresponds to a vertex in component c. Then the gadgets in our component cannot
align with any decision gadgets DG1, vector gadgets VG1(φ), or $1 symbols in T1. It follows
that we must perform at least |VGi | > (d+ r + 1)(2k − 1)(λ− 1) insertions in Ti. Else, all
vertices in component c correspond only to vector gadgets VGi(φ) for i ∈ [1, k]. By a similar
argument as in Claim 17, the edit cost of component c is (d+ r + 1)(2k − 1)(λ− 1). J

We have lower bounded the edit cost of all components in C1, C2, and C3. Now we must
combine our component level arguments to obtain an overall lower bound on the edit cost.
Let W =

∑
c∈C1∪C2

width(c). Then we know that the components in C1 ∪ C2 incur a cost of
at least E+

2 = WQ edits by Lemma 20 and Lemma 21.
We now lower bound the total number of edits from components in C3. Note that

components in C3.1 incur a much higher cost than components in C3.2. Then to lower bound
the edits in C3, we must assume the least possible number of components in C3.1. There are
(100k + 1)n decision gadgets DG1 in our final strings and at most W decision gadgets in
components in C1 ∪ C2, so there must be at least Z1 = (100k + 1)n−W components in C3.1.
Note that if W ≥ (100k+ 1)n, then E+

1 +E+
2 ≥ E+, so we may assume Z1 is positive. Then

components from C3.1 incur a cost of at least E+
3 = Z1D

+ by Lemma 22.
There are at most V0 = kW vertices in components in C1 ∪ C2, and there are at most

V1 = kZ1 vertices in C3.1. Furthermore, there are k(201k + 2)n vertices in our graph G. It
follows that there must be at least V2 = k(201k + 2)n− V1 − V0 = k(101k + 1)n vertices in
all components in C3.2.

Because our edit cost lower bound for every component in C3.2 is linear in the component
size, we have the following.

B Claim 26. Suppose there are Z components in C3.2 and a total of V vertices in all
components in C3.2. Then the components in C3.2 incur (d+ r + 1)(2k − 1)(V − Z) edits.

Proof. By Lemma 24, each component of size λ in C3.2 incurs cost (d+ r+ 1)(2k− 1)(λ− 1).
Let zi denote the size of the ith component in C3.2 for i ∈ [1, Z]. Then we may sum the edit
costs of all components in C3.2:∑

i∈[1,Z]

(d+ r + 1)(2k − 1)(zi − 1) = (d+ r + 1)(2k − 1)(V − Z)

where zi > 0 for i ∈ [1, Z] and z1 + z2 + · · ·+ zZ = V . C
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Claim 26 proves that the edit cost of all the components in C3.2 decreases with the number
of components Z. Then to achieve our lower bound we must upper bound the number of
components in C3.2. There are exactly (202k + 1)n vector level gadgets in Tk, so there can
be at most Z2 = (202k + 1)n − Z1 components in C3.2. It follows that the total edit cost
contributed by the components of C3.2 is at least E+

4 = (d+ r + 1)(2k − 1)(V2 − Z2).
Then since the edit costs contributed by E+

1 , E
+
2 , E

+
3 , and E+

4 are disjoint, we achieve a
lower bound EDIT(T1, T2, . . . , Tk) ≥ E+

1 +E+
2 +E+

3 +E+
4 . Straightforward calculation will

show that E+
1 +E+

2 +E+
3 +E+

4 ≥ E+ for all W > 0. It follows that EDIT(T1, . . . , Tk) = E+.

3 Reduction from k-Median-Edit-Distance to k-Center-Edit-Distance

We now provide a simple, yet previously unknown reduction from k-Median-Edit-Distance to
k-Center-Edit-Distance. Given a set of strings X = {x1, x2, . . . , xk}, each of length at most
n over an alphabet Σ, we define another set of strings Y = {y1, y2, . . . , yk} over an alphabet
Σ′ = Σ ∪ {$} (where $ 6∈ Σ) as follows (fix ` = k2n):

y1 = x1 ◦ $` ◦ x2 ◦ $` ◦ · · · ◦ $` ◦ xk−1 ◦ $` ◦ xk

y2 = x2 ◦ $` ◦ x3 ◦ $` ◦ · · · ◦ $` ◦ xk ◦ $` ◦ x1

...
yk = xk ◦ $` ◦ x1 ◦ $` ◦ · · · ◦ $` ◦ xk−2 ◦ $` ◦ xk−1

Let CENTER-EDIT(y1, y2, . . . , yk) denote the center edit distance of strings y1, y2, . . . , yk.
We will prove the following, which will complete the reduction.

I Lemma 27. EDIT(x1, x2, . . . , xk) = CENTER-EDIT(y1, y2, . . . , yk)

Proof. Suppose that EDIT(x1, x2, . . . , xk) = E, and there is an optimal edit sequence on
x1, x2, . . . , xk that performs Ei edits on xi for i ∈ [1, k]. It follows that E1 +E2 +· · ·+Ek = E.

B Claim 28. EDIT(y1, y2, . . . , yk) = kE

Subproof. It can be seen that EDIT(y1, y2, . . . , yk) ≤ kE since we may align all $ symbols
in the yi in zero edits, and then we have k alignments of x1, x2, . . . , xk substrings, each
incurring E edits, for a total of kE edits.

Now note that no optimal edit sequence of y1, y2, . . . , yk will delete an entire series of $
symbols because it would incur cost ` greater than kE, our upper bound. It follows that for
all i 6= j the hth leftmost series of $ symbols in yi is aligned with the hth leftmost series of $
symbols in yj for h ∈ {1, . . . , k − 1}. Then the $ alignments “lock” the xi substrings into
place so that we have k alignments of x1, x2, . . . , xk substrings, and because no xi contains
the $ symbol, it follows that each alignment of the xi incurs cost greater than or equal to E.
Then EDIT(y1, y2, . . . , yk) ≥ kE. C

We now have that EDIT(y1, y2, . . . , yk) = kE. Furthermore, there is an optimal edit
sequence that performs exactly E edits on every string in y1, y2, . . . , yk. This can be seen
because in every alignment of substrings x1, x2, . . . , xk in our edit sequence of y1, y2, . . . , yk, we
may choose to perform Ei edits on each xi. Then there exists an optimal edit sequence where
for every string yi with i ∈ [1, k], we perform Ei +Ei+1 + · · ·+Ek +E1 +E2 + · · ·+Ei−1 = E

edits on yi.
It follows that CENTER-EDIT(y1, y2, . . . , yk) ≤ E. Furthermore, suppose that

CENTER-EDIT(y1, y2, . . . , yk) < E. Then EDIT(y1, y2, . . . , yk) < kE, a contradiction. We
conclude that CENTER-EDIT(y1, y2, . . . , yk) = E and our reduction is complete. Note that
for all i ∈ [1, k], |yi| = (k − 1)k2n+ kn = O(n). J
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Lemma 27 directly implies the following result.

I Theorem 29. If there is an ε > 0, a constant k ≥ 2, and an algorithm that can solve
k-Center-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)
in O(nk−ε) time, then SETH is false.

4 Discussion

Based on SETH, we have shown conditional hardness results for median string, center string,
tree alignment, and bottleneck tree alignment problems, all under edit distance. These
results suggest that the algorithms for the median string and tree-alignment problems are
optimal (up to logarithmic factors). However, for the center string and bottleneck tree
alignment problem, they leave an intriguing gap between the best known upper bounds. For
center string (or the star instance of the bottleneck tree alignment) the best known dynamic
programming algorithm works in time O(n2k) [40], and as far as the authors know, no such
algorithm exists for bottleneck tree alignment on more general trees. We conclude by asking:
is an O(nk) algorithm waiting to be found for these problems, or does there exist a more
efficient reduction which can prove that an O(n2k−ε) algorithm is highly improbable?
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