
Fast Preprocessing for Optimal Orthogonal Range
Reporting and Range Successor with Applications
to Text Indexing
Younan Gao
Faculty of Computer Science, Dalhousie University, Halifax, Canada
yn803382@dal.ca

Meng He
Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

Yakov Nekrich
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
yakov.nekrich@googlemail.com

Abstract
Under the word RAM model, we design three data structures that can be constructed in O(n

√
lgn)

time over n points in an n×n grid. The first data structure is an O(n lgε n)-word structure supporting
orthogonal range reporting in O(lg lgn+ k) time, where k denotes output size and ε is an arbitrarily
small constant. The second is an O(n lg lgn)-word structure supporting orthogonal range successor
in O(lg lgn) time, while the third is an O(n lgε n)-word structure supporting sorted range reporting
in O(lg lgn+ k) time. The query times of these data structures are optimal when the space costs
must be within O(npolylogn) words. Their exact space bounds match those of the best known
results achieving the same query times, and the O(n

√
lgn) construction time beats the previous

bounds on preprocessing. Previously, among 2d range search structures, only the orthogonal range
counting structure of Chan and Pǎtraşcu (SODA 2010) and the linear space, O(lgε n) query time
structure for orthogonal range successor by Belazzougui and Puglisi (SODA 2016) can be built in
the same O(n

√
lgn) time. Hence our work is the first that achieve the same preprocessing time for

optimal orthogonal range reporting and range successor. We also apply our results to improve the
construction time of text indexes.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases orthogonal range search, geometric data structures, orthogonal range report-
ing, orthogonal range successor, sorted range reporting, text indexing, word RAM

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.54

Related Version A full version of the paper is available at http://arxiv.org/abs/2006.11978.

1 Introduction

Two dimensional orthogonal range search problems have been studied intensively in the
communities of computational geometry, data structures and databases. The goal of these
problems is to maintain a set, N , of points on the plane in a data structure such that one
can efficiently compute aggregate information about the points contained in an axis-aligned
query rectangle Q. Among these problems, orthogonal range counting and orthogonal range
reporting are perhaps the most fundamental; the former counts the number of points contained
in N ∩Q while the latter reports them. Another well-known problem is orthogonal range
successor, which asks for the point in N ∩Q with the smallest x- or y-coordinate. Range

© Younan Gao, Meng He, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 54; pp. 54:1–54:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yn803382@dal.ca
mailto:mhe@cs.dal.ca
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.54
http://arxiv.org/abs/2006.11978
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

counting, reporting and successor have many applications including text indexing [23, 8, 6, 25],
Lempel-Ziv factorization [4] and consensus trees in phylogenetics [18], to name a few. See [22]
for a survey on the connection between text indexing and various range searching techniques.

Most work on orthogonal range searching [13, 17, 11, 28, 32] focuses on achieving the best
tradeoffs between query time and space, and preprocessing time is often neglected. However,
the preprocessing time of a data structure matters when it is used as a building block of an
algorithm processing plain data, as the total running time includes that needed to build the
structure. Furthermore, an orthogonal range search structures with fast construction time
are preferred when preprocessing huge amounts of data, e.g., when used as components of
text indexes built upon large data sets from search engines and bioinformatics applications.
The work of Chan and Pǎtraşcu [12] is the first that breaks the O(n lgn) bound on the
construction time of 2d orthogonal range counting structures; they designed an O(n)-word
structure with O(lgn/lg lgn) query time that can be built in O(n

√
lgn) time. Their ideas

were further extended to design an O(nlg σ/
√

lgn)-time algorithm to build a binary wavelet
trees over a string of length n drawn from [σ] [26, 2]1, which is a key data structure used in
succinct text indexes. More recently, Belazzougui and Puglisi [4] showed how to construct, in
O(n
√

lgn) time, an O(n)-word data structure supporting range successor in O(lgε n) time,
and applied this algorithm to achieve new results on Lempel-Ziv parsing.

The previous work on constructing orthogonal range search structures in O(n
√

lgn) time
focuses on linear space data structures. To achieve optimal query time for 2d orthogonal
range reporting and range successor using near-linear space, however, the best tradeoffs
under the word RAM model requires superlinear space [11, 32]. The increased space costs
are needed to encode more information, posing new challenges to fast construction. We thus
investigate the problem of designing data structures with optimal query times for range
reporting and range successor that can be built in O(n

√
lgn) time, while matching the space

costs of the best known solutions. We also consider a closely related problem called sorted
range reporting [28] to achieve similar goals. In this problem, we report all points in N ∩Q
in a sorted order along either x- or y-axis. The query time should depend on the number of
points actually reported even if the procedure is ended early by user.

Previous Work. The research on 2d orthogonal range reporting has a long history [30, 13,
1, 17, 27, 19, 9, 11]. Researchers have achieved three best tradeoffs between query time and
space costs under the word RAM model; we follow the state of the art and assume that
the input points are in rank space. The solution with optimal query time of O(lg lgn+ k)
and space cost of O(n lgε n) words is due to Alstrup et al. [1], while the best linear-space
solution is designed by Chan et al [11] which answers a query in O((1 + k) lgε n) time, where
k is the output size and ε is an arbitrarily small constant. Chan et al. also proposed an
O(lg lgn)-word structure with O((1 + k) lg lgn) query time and another tradeoff matching
that of Alstrup et al. [1].

The 2d orthogonal range successor problem was also studied extensively. After a series of
work [21, 20, 15, 14, 31], Nekrich and Navarro [28] gave two solutions to this problem; the
first uses O(n) words and answers a query in O(lgε n) time, while the second uses O(n lg lgn)
words to answer a query in O((lg lgn)2) time. Zhou [32] decreased the query time of the latter
to O(lg lgn) without increasing space costs. By definition, a solution to orthogonal range
successor can be used to answer sorted range reporting queries. Furthermore, Nekrich and
Navarro [28] also designed a data structure using O(n lgε n) words to support sorted range

1 In this paper, [σ] denotes {0, 1, . . . , σ − 1}.

Y. Gao, M. He, and Y. Nekrich 54:3

reporting in O(lg lgn+ k) time. Hence, the best three time-space tradeoffs for the original
2d orthogonal range reporting problem has also been achieved for the sorted version. The
optimality of the O(lg lgn+ k) query time for orthogonal range reporting and the O(lg lgn)
query time for orthogonal range successor when no more than O(npolylogn) space can be
used is established by a lower bound on range emptiness [29].

Alstrup et al. [1] claimed that their structure for optimal orthogonal range reporting can
be constructed in O(n lgn) expected time. Even though preprocessing times are not given
in [11, 28, 32], straightforward analyses reveal that the other data structures we surveyed
here can be built in O(n lgn) worst-case time (Bille and Gørtz [6] also claimed that the
preprocessing time of the O(n lg lgn)-word structure of Chan et al. [11] is O(n lgn)). Hence,
when faster preprocessing time is needed in their solution to Lempel-Ziv decomposition,
Belazzougui and Puglisi [4] had to design a new linear-space data structure for orthogonal
range successor with O(n

√
lgn) preprocessing time and O(lgε n) query time. No attempts

have been published to achieve similar preprocessing times for other tradeoffs.

Our Results. Under the word RAM model, we design the following three data structures
that can be constructed in O(n

√
lgn) time over n points in an n× n grid:

An O(n lgε n)-word structure supporting orthogonal range reporting in O(lg lgn+k) time,
where k denotes the output size and ε is an arbitrarily small constant;
An O(n lg lgn)-word structure supporting orthogonal range successor in O(lg lgn) time;
An O(n lgε n)-word structure supporting sorted range reporting in O(lg lgn+ k) time.

The query times of these structures are optimal when space costs must be within
O(npolylogn) words. Their exact space bounds match those of the best known results
achieving the same query times, and the O(n

√
lgn) construction time beats the previous

bounds on preprocessing. Note that even though our third result implies the first one, our
data structure for the first is much simpler. In addition, our results can be used to improve
the construction time of text indexes. For a text string T of length n over alphabet [σ], we
design

A text index of O(n lg σ lgε n) bits that can be constructed in O(n lg σ/
√

lgn) time and can
report the occ occurrences of a pattern of length p in time O(p/logσ n+logσ n lg lgn+occ),
where ε is any small positive constant. This improves one result of Munro et al. [25] who
designed the first text indexes with both sublinear construction time and query time for
small σ; for the same time-space tradeoff, their preprocessing time is O(n lg σ lgε n).
A text index of O(n lg1+ε n) bits for any constant ε > 0 built in O(n

√
lgn) time that

supports position-restricted substring search [23] in O(p/logσ n+ lg p+ lg lg σ+ occ) time.
Previous indexes with similar query performance require O(n lgn) construction time.

Overview of Our Approach. We first discuss why some obvious approaches will not work.
The modern approach of Chan et al [11] for orthogonal range reporting is based on a problem
called ball inheritance which they defined over range trees. This solution is well-known for
its simplicity, and by choosing different parameters in their approach to ball inheritance,
they obtain all three best known tradeoffs. One natural idea is to redesign the structures
stored at range tree nodes to use bit packing to speed up construction. However, even
though we have achieved construction time matching the state of the art for these structures,
it is still not enough to construct the data structures for the tradeoffs of ball inheritance
that we need quickly enough. Another idea is to tune the parameters in the approach
of Belazzougui and Puglisi [4], hoping to obtain the tradeoffs that we aim for, as they
already showed how to construct in O(n

√
lgn) time a linear space, O((k + 1) lgε n) query

ESA 2020

54:4 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

time structure for orthogonal range reporting. Their solution uses many trees grouped into
O(lgε n) levels of granularity. If we borrow ideas from [11] and set parameters to achieve
different tradeoffs, we would use O(1/ε) or O(lg lgn) levels of granularity. However, to return
a point in the answer, their query algorithm would perform operations requiring O(lg lgn)
time at each level of granularity. Thus, at best, the former would give an O(n lgε n)-word
structure with O((k + 1) lg lgn) query time and the latter an O(n lg lgn)-word structure
with O((k+ 1)(lg lgn)2) query time. Either solution is inferior to best known tradeoffs. This
however is fine in the original solution, as the total cost of spending O(lg lgn) time at each
of the O(lgε n) levels is bounded by O(lgε

′
n) for any ε′ > ε.

We thus design new approaches. For optimal orthogonal range reporting, our overall
strategy is to perform two levels of reductions, making it sufficient to solve ball inheritance
in special cases with fast preprocessing time. More specifically, we first use a generalized
wavelet tree and range minimum/maximum structures to reduce the problem in the general
case to the special case in which the points are from a 2

√
lgn×n′ (narrow) grid, where n′ ≤ n.

In this reduction, we need only support ball inheritance over a wavelet tree with high fanout.
We further reduce the problem over points in a narrow grid to that over a (small) grid of
size at most 2

√
lgn × 22

√
lgn. This is done by grouping points and selecting representatives

from each group, so that previous results with slower preprocessing time can be used over a
smaller set of representatives. Finally, over the small grid, we solve ball inheritance when the
coordinates of each point can be encoded in O(

√
lgn) bits. The ball inheritance structures

in both special cases can be built quickly by redesigning components with fast preprocessing,
though the second case requires a twist to the approach of Chan et al [11]. Our solutions to
optimal range successor and sorted range reporting are based on similar strategies, though
we preform more levels of reductions.

In the main body of this paper, we describe our data structures for optimal range reporting
and successor, while those for optimal sorted range reporting are deferred to the full version
of this paper.

2 Preliminaries

In this section, we describe and sometimes extend the previous results used in this paper.
The proofs omitted from this section can be found in the full version of this paper.

Notation. We adopt the word RAM model with word size w = Θ(lgn) bits, where n
denotes the size of the given data. Our complete solutions use several sets of homogeneous
components. We present a lemma to bound the costs of each different type of components,
which is then applied over the entire set of these components to calculate the total cost. The
size, n′, of the data that each component represents may be less than n which is the input
size of the entire problem, so when the cost of constructing the component is bounded by
a function of the form f(n′)/ polylog(n) to take advantage of the word size, we keep both
n′ and n in the lemma statement, as commonly done in previous work on similar topics.
In this case, the construction algorithm usually uses a universal table of o(n) bits, whose
content solely depends on the value of n, and hence can be constructed once in o(n) time
and used for all data structure components of the same type. Thus unless otherwise stated,
these lemmas assume the existence of such a table without stating so explicitly in the lemma
statements, and we define and analyze the table in the proof. This also applies to algorithms
that manipulate sequences of size n′. Occasionally the query algorithms of a data structure
may need a universal table as well, and we explicitly state it if this is the case.

Y. Gao, M. He, and Y. Nekrich 54:5

We say a sequence A ∈ [σ]n is in packed form if the bits of its elements are concatenated
and stored in as few words as possible. Thus, when packed, A occupies dndlg σe/we words.

Generalized Wavelet Trees. Given a sequence A[0..n− 1] drawn from alphabet [σ], a d-ary
generalized wavelet tree [24] Td over A is a balanced tree in which each internal node has
d children, where 2 ≤ d ≤ σ. For simplicity, assume that σ is a power of d. Each node of
Td then represents a range of alphabet symbols defined as follows: At the leaf level, the
i-th leaf from the left represents the integer range [i, i] for each i ∈ [0..σ − 1]. The range
represented by an internal node is the union of the ranges represented by its children. Hence
the root represents [0, σ− 1], and Td is a complete tree having logd σ+ 1 levels. Each node u
is further associated with a subsequence, A(u), of A, in which A(u)[i] stores the i-th entry in
A that is in the range represented by u. Thus the root is associated with the entire sequence
A. To save storage, A[u] is not stored explicitly in [24]. Instead, each internal node u stores
a sequence S(u) of integers in [d], where S(u)[i] = j if A(u)[i] is within the range represented
by the jth child of u. All the S(u)’s built for internal nodes occupy O(n lg σ) bits in total.

Generalized wavelet trees share fundamental ideas with range trees but are more suitable
for compact data structures over sequences which may contain duplicate values. When we
use them in this paper, we sometimes explicitly store A(u) for each node u, and may even
associate with u an additional array I(u) in which I(u)[i] stores the index of A(u)[i] in the
original sequence A. We call A(u) the value array of u, and I(u) the index array. In this
paper, if we construct value and/or index arrays for each node, we explicitly state so. If not,
it implies that we build a wavelet tree in which each node u is associated with S(u) only.
Furthermore, unless otherwise specified, we apply the standard pointer-based implementation
to represent the tree structure of a wavelet tree, which is preprocessed in time linear to the
number of tree nodes such that the lowest common ancestor of any two nodes can be located
in O(1) time [5]. We also number the levels of the tree incrementally starting from the root
level, which is level 0. We have the following two lemmas on constructing wavelet trees:

I Lemma 1. Let A[0..n′−1] be a packed sequence drawn from alphabet [σ] and I[0..n′−1] be
a packed sequence in which I[i] = i for each i ∈ [0..n′ − 1], where n′ ≤ n and σ ≤ 2O(

√
lgn).

Given A and I as input, a d-ary wavelet tree over A with value and index arrays in packed
form can be constructed in O(n′ lg σ(lgn′+lg σ)/lgn+σ) time, where d is an arbitrary power
of 2 with 2 ≤ d ≤ σ. If index arrays are not constructed, the construction time can be lowered
to O(n′ lg2 σ/lgn+ σ); this bound still applies when neither value nor index arrays are built.

I Lemma 2. Let A[0..n− 1] be a sequence drawn from alphabet [σ]. A d-ary wavelet tree
over A with value and index arrays can be built in O(n lg σ/lg d) time where 2 ≤ d ≤ σ.

A sequence A[0..n− 1] drawn from [σ] can be viewed as a point set N = {(A[i], i)|0 ≤
i ≤ n − 1}. Let T be a d-ary wavelet tree constructed over A. Then ball inheritance [11]
can be defined over T which asks for the support of these operations: i) point(v, i), which
returns the point (A(v)[i], I(v)[i]) in N for an arbitrary node v in T and an integer i; and ii)
noderange(c, d, v), which, given a range [c, d] and a node v of T , finds the range [cv, dv] such
that I(v)[i] ∈ [c, d] iff i ∈ [cv, dv]. If we store the value and index arrays explicitly, it is trivial
to support these operations, but the space cost is high. To save space, we only store S(v) for
each node v and design auxiliary structures. The following lemma presents previous results:

I Lemma 3 ([11, Theorem 2.1], [10, Lemma 2.3]). A generalized wavelet tree over a se-
quence A[0..n− 1] drawn from [σ] can be augmented with ball inheritance data structure in
O(n lgnf(σ)) bits to support point in O(g(σ)) time and noderange in O(g(σ)+lg lgn) time,
where (a) f(σ) = O(1) and g(σ) = O(lgε σ); (b) f(σ) = O(lg lg σ) and g(σ) = O(lg lg σ); or
(c) f(σ) = O(lgε σ) and g(σ) = O(1).

ESA 2020

54:6 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

Data Structures for rank and select. Given a sequence A drawn from alphabet [σ], a
rankc(A, i) operation computes the number of elements equal to c in A[0..i], where c ∈ [σ],
while a selectc(A, i) returns the index of the entry of A containing the i-th occurrence of c.
We have the following two lemmas on building rank/select structures.

I Lemma 4. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where n′ ≤ n

and σ = O(polylogn). A data structure of n′dlg σe+ o(n′ lg σ) bits supporting rank in O(1)
time can be constructed in O(n′ lg2 σ/ lgn+ σ) time.

I Lemma 5 ([2, Lemma 2.1]). Given a packed bit sequence B[0..n− 1], a systematic data
structure occupying o(n) extra bits can be constructed in O(n/ lgn) time, which supports
rank and select in constant time.

In the above lemma, a data structure is systematic if it requires the input data to be
stored verbatim along with the additional information for answering queries. A restricted
version of rank is called partial rank; a partial rank operation, rank′(A, i), computes the
number of elements equal to A[j] in A[0..j]. The following lemma presents a solution to
supporting rank′, which is an easy extension of [3, Lemma 3.5].

I Lemma 6. Given a sequence A[0..n − 1] drawn from alphabet [σ], a data structure of
O(n lg σ) bits can be constructed in O(n+ σ) time, which supports rank′ in constant time.

Range Minimum/Maximum. Given a sequence A of n integers, a range minimum/max-
imum query rmq(i, j)/rMq(i, j) with i ≤ j returns the position of a minimum/maximum
element in the subsequence A[i..j]. Fischer and Heun [16] considered this problem:

I Lemma 7 ([16]). Given an array A of n integers, a data structure of O(n) bits can be
constructed in O(n) time, which answers rmq/rMq in O(1) time without accessing A.

We further build an auxiliary structure upon a packed sequence A under the indexing
model: after the the data structure is built, A itself need not be stored verbatim; to answer a
query, it suffices to provide an operator that can retrieve any element in A.

I Lemma 8. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where σ ≤
2
√

lgn and n′ ≤ n. There is a data structure using O(n′ lg lgn) extra bits constructed in
O(n′lg σ/lgn) time, which answers rmq/rMq in O(1) time and O(1) accesses to the elements
of A. The query procedure uses a universal table of o(n) bits.

3 Fast Construction of rank′ Query Structures

In this section we focus on how to efficiently construct data structures for rank′ queries
over a sequence A[0..n′ − 1] drawn from alphabet [σ], where n′ ≤ n and σ ≤ 2

√
lgn. This is

needed to solve ball inheritance in a special case. Lemma 4 already solves this problem when
σ ≤ lgn, so we assume lgn < σ ≤ 2

√
lgn in the rest of this section.

In our solution, we conceptually divide sequence A into chunks of length σ. For simplicity,
assume that n′ is a multiple of σ. Let Ak denote the kth chunk, where 0 ≤ k ≤ n′/σ − 1.
For each c ∈ [0, σ − 1], we define the following data structures:

A bitvector Bc = 1rankc(A0,σ)01rankc(A1,σ)0 . . . 1rankc(An′/σ−1,σ)0, which encodes the number
of occurrences of symbol c in each chunk in unary. Bc is represented using Lemma 5 to
support rank and select in constant time.
A sequence Pc[0..n′/σ − 1], in which Pc[i] = rank′(Ai, c) for each i ∈ [0, n′/σ − 1], i.e.,
Pc[i] stores the answer to a partial rank query performed locally within Ai at position c.

Y. Gao, M. He, and Y. Nekrich 54:7

Note that we have one Bc for each alphabet symbol c, while we have one Pc for each
relative position c in the chunks of A. We have the following lemma on supporting queries
using these data structures, with a space analysis.

I Lemma 9. The data structures in this section occupy n′ lg σ + o(n′ lg σ) extra bits and
support rank′ in O(1) time and O(1) accesses to elements of A.

Proof. In Bc, each 1 bit corresponds to an occurrence of symbol c in A, while each 0
corresponds to a chunk. Thus, these bit vectors have n′ 1s and n′/σ × σ = n′ 0s in total.
Therefore, the lengths of all these bit vectors sum up to 2n′. By Lemma 5, o(n′) bits are
needed to augment them to support rank and select. As each chunk has σ elements,
encoding an entry of each Pc requires dlg σe bits. Thus P0, . . . , Pσ−1 occupy n′dlg σe
bits in total. The total space usage of all the data structures in this section is therefore
2n′ + o(n′) + n′dlg σe bits, which is n′ lg σ + o(n′ lg σ) when σ > lgn.

A query rank′(A, j) can be answered as follows:

rank′(A, j) = select0(Bc, t)− (t− 1) + Pτ [t], where τ = j mod σ, t = b j
σ
c, and c = A[j]

As the select query over Bc takes constant time, answering rank′(A, j) requires O(1) time
and a single access to A. J

Next, we consider how to construct the sequences Bc’s efficiently.

I Lemma 10. Bitvectors B0, B1, . . . , Bσ−1 can be constructed in O(n′ lg2 σ/ lgn+ σ) time.

Proof. We first construct a sequence M [0..n′+n′/σ− 1] in which each element is encoded in
dlg σe+ 1 bits. In M , n′ elements are regular elements, and the rest are boundary elements
each of which is an integer whose binary expression simply consists of dlg σe+ 1 0-bits. M
is divided into n′/σ chunks, and each chunks contains σ regular elements followed by a
boundary element. The subsequence of the σ regular elements in the i-th chunk can be
obtained by appending a 1-bit to the end of the binary expression of each element in Ak.

Next we show how to create M efficiently with the help of a universal table U . This
table has an entry for each possible pair (D, t), where D is a sequence of length b = b lgn

2dlgσec
drawn from [σ] and t is an integer in [0, b]. If t = 0, this entry stores a sequence of length b
which is obtained by appending a 1-bit to the end of the binary expression of each element
in D. Otherwise, this entry stores a sequence of length b+ 1 consisting of three sections: the
first section is obtained by appending a 1-bit to the end of the binary expression of each of
the first t elements in D, the second section is a boundary element, and the third section is
obtained by appending a 1-bit to the end of the binary expression of each of the last b− t
elements in D. As there are at most n1/2 possible sequences of length b drawn from σ and t
has b+ 1 possible values, U has at most n1/2(b+ 1) entries. Since each entry is encoded in
at most (b+ 1)(dlg σe+ 1) = O(polylog(n)) bits, U uses o(n) bits. With U , we can scan A
and process b of its elements in constant time; whether or where a boundary element should
be created when processing these b elements can be inferred by keeping track of the number
of elements that we have scanned so far. Note that at most one boundary element will be
created when reading b elements from A, as b < lgn < σ. The time needed to create M is
hence O(n′/b) = O(n′ lg σ/ lgn).

From M we determine the content of B0, B1, . . . , Bσ−1 by constructing a tree T over M
similar to large extent to a binary wavelet tree and associating each node u of T with a
sequence M(u). At the root node r of T , we set M(r) = M , and we perform the following
recursive procedure at any node u at level l of T where l ∈ [0, dlg σe − 1]: We create the left

ESA 2020

54:8 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

child, u0, and the right child, u1, of u, and perform a linear scan of M(u). During the scan,
for each i ∈ [0, |M(u)− 1|], if M(u)[i] is a boundary element, it is appended to both M(u0)
and M(u1). If M(u)[i] is not a boundary element and its lth most significant bit is 0, M(u)[i]
is appended toM(u0). If its lth significant bit is 1, it is appended toM(u1). After generating
the sequences M(u0) and M(u1), we discard the sequence M(u). We finish recursion after
we create dlg σe levels, i.e., we only examine the first dlg σe bits of each element of M to
determine the tree structure. Thus, this tree has σ leaves, and the sequences associated with
the leaves from left to right are named M0, M1, . . . , Mσ−1. They form a partition of M .

To speed up this process, we use a universal table U ′. Recall that b = b lgn
2dlgσec. U

′ has
an entry for each possible pair (E, c), where E is a sequence of length b drawn from universe
[2σ] and c is an integer in [0, dlg σe − 1]. This entry stores a pair of packed sequences E0 and
E1 defined as follows: E0 or E1 stores the boundary elements in E and the regular elements
in E whose c-th most significant bit is 0 or 1, respectively. The elements in E0 retain their
relative order in E, and the same is true with E1. As U ′ has 2b×(dlgσe+1)×dlg σe entries and
each entry stores a pair of packed sequences occupying O(bdlg σe) bits in total, U ′ uses o(n)
bits. By performing table lookups in U ′, we can process M(u) in O(|M(u)| lg σ/ lgn + 1)
time. Note that we assign n′ regular and 2l × n′

σ boundary elements to the nodes at tree
level l. Summing over all O(σ) nodes of the tree, the total time required to construct this
tree is O(

∑dlgσe−1
l=0 ((n′ + 2l × n′

σ) lg σ/ lgn) + σ) = O(n′ lg2 σ/ lgn+ σ).
To construct bitvectors Bc for any 0 ≤ c ≤ σ − 1, a crucial observation is that the i-th

bit in Bc is the same as the least significant bits of the i-th elements of Mc. Thus it takes
O(|Bc|(lg σ + 1)/ lgn + 1) time to compute the content of Bc using bit packing. Bc can
then be represented in O(|Bc|/ lgn + 1) time to support rank and select by Lemma 5.
Summing over all σ bitvectors, the time required to construct B0, B1, . . . , Bσ−1 from
M0,M1, . . . ,Mσ−1 is O(n′ lg σ/ lgn+ σ).

Overall, given A, the construction time of these bit vectors is

O(n′ lg σ/ lgn+ (n′ lg2 σ/ lgn+ σ) + (n′ lg σ/ lgn+ σ)) = O(n′ lg2 σ/ lgn+ σ). J

It remains to show how to build all sequences P0, P1, . . . , Pσ−1 efficiently.

I Lemma 11. Sequences P0, P1, . . . , Pσ−1 can be constructed in O(n′lg2 σ/lgn+ σ) time.

Proof. The construction consists of two phases. In the first phase, we compute the set of pairs
Rk = {(i, rank′(Ak, i))|0 ≤ i ≤ σ − 1} for each chunk Ak. Even though Pi[k] = rank′(Ak, i)
and thus the entries of all the Pi’s have been computed in this phase, the pairs themselves
generated for Ak are not in any order that allows us to directly assign values from these
pairs to entries of Pi’s quickly enough. Thus, in the second phase, we reorganize all n′ pairs
computed from all the chunks, to construct P0, P1, . . . , Pσ−1 efficiently.

We first show how to compute the pair set Rk for each Ak efficiently. Let I[0, σ − 1]
denote a packed sequence such that I[i] = i for each i ∈ [0, σ − 1]. Note that I can be
constructed once in O(σ) time and shared with all chunks. By Lemma 1, a binary wavelet
tree, in which node u is associated with A(u) and I(u) as defined before, over Ak could be
constructed in O(σ lg2 σ/ lgn+ σ) time. However, the second term O(σ), when summed over
all n′/σ chunks, is too expensive to afford. Thus, we modify the structure of a wavelet tree
to decrease this term. In the modified tree, when a node v satisfies |A(v)| ≤ b = b lgn

2dlgσec,
we make v a leaf node without any descendants. With this modification, we observe the
following two properties. First, if a leaf node l satisfies |A(l)| > b, then the tree level of l
must be lg σ and all entries of A(l) store the same symbol. Second, as there are at most
dσ/be nodes at each level, the modified tree has O(σ/b× lg σ) = O(σ lg2 σ/ lgn) nodes. The

Y. Gao, M. He, and Y. Nekrich 54:9

O(σ) term in construction time in Lemma 1 follows from the fact that a wavelet tree has
O(σ) leaves. With fewer leaves, the modified tree can be constructed in O(σ lg2 σ/ lgn) time.
After this tree is constructed, we only keep the sequences A(l) and I(l) for each leaf node l
and call them leaf sequences. We discard the rest of the tree.

To further compute Rk using these leaf sequences, observe that, for any symbol α,
there exists one leaf l such that A(l) contains all the occurrences of α in A. Thus
(I(l)[i], rank′(Ak, I(l)[i])) = (I(l)[i], rank′(A(l), i)) holds, which we can use to reduce the
problem of computing the pairs in Rk to the problem of computing the answer to a partial
rank query at each position of A(l) for each leaf l. Hence for each leaf l, we define a packed
sequence Q(l)[0..|A(l)| − 1] in which Q(l)[i] = rank′(A(l), i) to store these answers. To
construct Q(l) efficiently, we consider two cases. When |A(l)| ≤ b, we apply a universal table
U ′′ to generate Q(l) in constant time. U ′′ has an entry for each possible pair (F, x), where F
is a sequence of length b drawn from universe [σ], and x is an integer in [0, b]. This entry stores
a packed sequence G[0..x] in which G[i] = rank′(F, i). Similar to U in the proof of Lemma 10,
U ′′ uses o(n) bits. When |A(l)| > b, all entries of A(l) store the same symbol. Thus, we have
Q(l)[i] = i for each i ∈ [0, |A(l)| − 1], and hence we can create Q(l) by copying the first |A(l)|
elements from the sequence I which we created before. In either case, Q(l) can be constructed
in O(|A(l)| lg σ/ lgn+ 1) time. Let li denote the (i+ 1)-st leaf visited in a preorder traversal
of the tree, and f the number of leaves. Since

∑f
i=0 |Q(li)| = σ and f = O(σ lg2 σ/ lgn), the

total time required to build Q(l0), Q(l1), . . . , Q(lf−1) is O(σ lg2 σ/ lgn). Then we construct
the concatenated packed sequence Ik = I(l0)I(l1) . . . I(lf−1) and Qk = Q(l0)Q(l1) . . . Q(lf−1).
It requires O(σ lg2 σ/ lgn) time to concatenate these sequences if we process Θ(lgn) bits,
i.e., O(1) words, in constant time by performing bit operations. Since for any i ∈ [0, σ − 1],
(Ik[i], Qk[i]) is a distinct pair in Rk, Ik and Qk store all the pairs in Rk. We perform the
steps in this and the previous paragraphs for all the chunks in A, and the total time spent in
this phase is O(n′lg2 σ/lgn+ σ).

Next we construct P0, P1, . . . , Pσ−1 efficiently using the pairs computed in the previous
phase. We first build in O(n′ lg2 σ/ lgn) time two concatenated packed sequences each of
length n′: I ′ = I0I1 . . . In′/σ−1 and Q = Q0Q1 . . . Qn′/σ−1. Then we construct a binary
wavelet tree over I ′. Each node, u, of the wavelet tree is associated with two sequences,
I ′(v) which contains all the elements of I ′ whose values are within the range represented
by v, retaining their relative order in I ′, and Q(v) in which Q(v)[i] is the element in Q

corresponding to I ′(v)[i]. The wavelet tree construction algorithm of Lemma 1 can be
modified easily to construct this wavelet tree in O(n′ lg2 σ/ lgn+ σ) time. Let l′i denote the
(i+ 1)st leaf of this wavelet tree in preorder. Observe that all the entries in I ′(l′i) store i,
and I ′(l′i)[j] initially came from Aj , i.e., I ′(l′i)[j] corresponds to the ith position in chunk Aj .
Therefore, Q(l′i)[j] = Pi[j], and we have Pi = Q(l′i). The processing time required for this
phase is also O(n′lg2 σ/lgn+σ), which is the same as the bound for the first phase. Therefore,
the total time required to construct all sequences P0, P1, . . . , Pσ−1 is O(n′lg2 σ/lgn+σ). J

Combining Lemmas 4, 9, 10 and 11, we have the following result:

I Lemma 12. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where n′ ≤ n
and σ = O(2O(

√
lgn)). With the help of a universal table of o(n) bits, a data structure using

n′dlg σe+ o(n′ lg σ) extra bits can be constructed in O(n′lg2 σ/lgn+σ) time to support rank′

queries in O(1) time and O(1) accesses to elements of A.

ESA 2020

54:10 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

4 Fast Construction of Data Structures for Ball Inheritance

We now solve, with fast preprocessing, ball inheritance for the special cases needed later
to match the time and space bounds in parts (b) and (c) of Lemma 3. The omitted proofs
are deferred to the full version of this paper. One strategy is to construct the solution of
Chan et al. [11] by replacing some of their components with those we designed with faster
preprocessing. This yields:

I Lemma 13. Let X[0, n − 1] be a sequence drawn from alphabet [σ] denoting the point
set N = {(X[i], i)|0 ≤ i ≤ n − 1}, where 2

√
lgn ≤ σ ≤ n. A 2

√
lgn-ary wavelet tree over

X occupying O(n lg σ · f(σ) + n lgn) bits can be constructed in O(n lg σ/
√

lgn) time to
support point in O(g(σ)) time and noderange in O(lg lgn+ g(σ)) time, where (a) f(σ) =
O(lg(lg σ/

√
lgn)) and g(σ) = O(lg(lg σ/

√
lgn)); or (b) f(σ) = O(lgε σ) and g(σ) = O(1) for

any constant ε > 0. The noderange query requires a universal table of o(n) bits.

I Lemma 14. Let X[0..n′−1] be a packed sequence drawn from alphabet [σ] and Y [0..n′−1] be
a packed sequence in which Y [i] = i for each i ∈ [0..n′ − 1], where σ = O(2O(

√
lgn)) and n′ =

O(σO(1)). Given X and Y as input, a d-ary wavelet tree over X using O(n′ lg σ lg(lg σ/ lg d)+
σw) bits of space can be constructed in O(n′lg2 σ/lgn+ σ logd σ) time to support point in
O(lg(lg σ/ lg d)) time and noderange in O(lg lg σ) time, where d is a power of 2 upper
bounded by min(σ, 2

√
lgn).

This strategy however cannot achieve, with the preprocessing time as in Lemma 14, part
(c) of Lemma 3 when the coordinates of points can be encoded in O(

√
lgn) bits. For this

special case, we twist the approach of Chan et al.: they only store point coordinates explicitly
at the leaf level of the wavelet tree, while we take advantage of the smaller grid size to store
coordinates at more levels. This allows us to build rank′ structures at fewer levels of the
tree, decreasing the preprocessing time. The details are as follows.

Recall that, when used to represent the given point set N , each node u of the d-ary wavelet
tree T is conceptually associated with an ordered list, N(u), of points whose x-coordinates
are within the range represented by u, and these points are ordered by y-coordinate. Assume
for simplicity that σ is a power of d, and that both 1/ε and τ = logεd σ are integers. We
assign a color to each level of T : Level 0 is assigned color 0, while any other Level l is
assigned color max{c | τ c divides l and 0 ≤ c ≤ 1/ε − 1}. For each node u of T at a level
assigned with color 1/ε− 1, we store the coordinates of the points in N(u) explicitly. For
any other node v (let l be the level l of v and c the color assigned to level l), we do not store
N(v). Instead, for each i ∈ [0, |N(v)|], we store a skipping pointer Sp(v)[i], which stores, at
the closest level l′ satisfying l′ > l and l′ is a multiple of τ c+1, the descendant of v at level
l′ containing point N(v)[i] in its ordered list of points. This descendant is encoded by its
rank among all the descendants of v at level l′ in left-to-right order. We use Lemma 12 to
support O(1)-time rank′ over Sp(v). Then, since both N(u) and N(Sp(u)[i]) order points by
y-coordinate, a rank′(Sp(u), i) query gives the position of the point N(u)[i] in N(Sp(u)[i]).
Thus, to compute point(v, i), we follow skip pointers starting from v by performing rank′,
until we reach a level with color 1/ε− 1, where we retrieve coordinates. With this we have:

I Lemma 15. Let X[0..n′−1] be a packed sequence drawn from alphabet [σ] and Y [0..n′−1] be
a packed sequence in which Y [i] = i for each i ∈ [0..n′ − 1], where σ = O(2O(

√
lgn)) and n′ =

O(σO(1)). Given X and Y as input, a d-ary wavelet tree over X using O(n′ lg σ logεd σ+ σw)
bits for any positive constant ε can be constructed in O(n′lg2 σ/lgn+σ logd σ) time to support
point in O(1) time and noderange in O(lg lg σ) time, where d is a power of 2 upper bounded
by min(σ, 2

√
lgn). The noderange query requires a universal table of o(n) bits.

Y. Gao, M. He, and Y. Nekrich 54:11

5 Optimal Orthogonal Range Reporting with Fast Preprocessing

We now design data structures that support orthogonal range reporting in optimal time and
can be constructed fast. Previously, with a solution to ball inheritance, Chan et al. [11]
was able to design a relatively simple approach achieving three current best tradeoffs for
orthogonal range reporting. However, we have only designed alternative solutions to ball
inheritance with fast construction time in special cases. Therefore, we design a different
data structure with optimal query time for orthogonal range reporting. The strategy is to
use a generalized wavelet tree and our solution to range minimum/maximum (Lemma 8)
to reduce the orthogonal range reporting problem in the general case to the special case
in which the points are from a 2

√
lgn × n′ (narrow) grid. In this reduction, we need only

support ball-inheritance over a wavelet tree with high fanout which is solved by part (b)
of Lemma 13. We further reduce the range reporting problem over points in a narrow grid
to this problem over a (small) grid of size at most 2

√
lgn × 22

√
lgn, to which we can apply

Lemma 15 for ball inheritance. Hence we describe our solutions over a small, narrow and
general grid in this order, as the solution to the next case uses that to the previous.

5.1 Orthogonal Range Reporting in a Small Grid

I Lemma 16. Let N be a set of δ points with distinct y-coordinates in a 2
√

lgn × δ grid
where δ ≤ 22

√
lgn. Given packed sequences X and Y respectively encoding the x- and y-

coordinates of these points where Y [i] = i for any i ∈ [0, δ − 1], a data structure occupying
O(δ lg1/2+ε n + w · 2

√
lgn) bits can be constructed in O(δ +

√
lgn · 2

√
lgn) time to support

orthogonal range reporting over N in O(lg lgn+ occ) time, where ε is an arbitrary positive
constant and occ is the number of reported points.

Proof. We build a binary wavelet tree T over X augmented with support for ball inheritance.
By Lemma 15, T occupies O(δ lg1/2+ε n+w·2

√
lgn) bits and can be built in O(δ+

√
lgn·2

√
lgn)

time. It also supports point in O(1) time and noderange in O(lg lgn) time. For any internal
node v of T , its value array A(v) is built at some point when augmenting T to solve ball
inheritance, though A(v) may be discarded eventually. When A(v) was available, we build
a data structure M(v) to support range minimum and maximum queries over A(v) using
Lemma 8. As T has d

√
lgne non-leaf levels and the total length of the value arrays of the

nodes at each tree level is δ, over all internal nodes, these structures use O(δ
√

lgn lg lgn) bits
in total and the overall construction time is

∑
v O(|A(v)|/

√
lgn+ 1) = O(δ + 2

√
lgn). These

costs are subsumed in the storage and construction costs of T . Recall that A(v) stores the
x-coordinates of the set, N(v), of points from N whose x-coordinates are within the range
represented by v, and the entries of A(v) are ordered by the corresponding y-coordinates of
these points. Thus any entry of A(v) can be retrieved by point in constant time. Therefore,
even after A(v) is discarded, M(v) can still support rmq/rMq over A(v) in O(1) time.

Given a query range Q = [a, b] × [c, d], we first locate the lowest common ancestor u
of la and lb in constant time, where la and lb denote the a-th and b-th leftmost leaves
of T , respectively. Let ul and ur denote the left and right children of u, respectively,
[cl, dl] = noderange(c, d, ul) and [cr, dr] = noderange(c, d, ur). Then Q ∩N = (([a,+∞)×
[cl, dl]) ∩ N(ul)) ∪ (([0, b] × [cr, dr]) ∩ N(ur)). In this way, we reduce a 2-d 4-sided range
reporting in N to 2-d 3-sided range reporting in N(ul) and N(ur). To report points in
([a,+∞)× [cl, dl])∩N(ul), we need only report the points in N(ul)[cl, dl] whose x-coordinates
are at least a. This can be done by performing range maximum queries over A(ul) recursively

ESA 2020

54:12 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

as follows. We perform rMq(cl, dl) to get the index m of the point p that has the maximum x-
coordinate in N(ul)[cl, dl], and retrieve its coordinates (p.x, p.y) by point(ul,m). If p.x ≥ a,
we report p and perform the same process recursively in N(ul)[cl,m−1] and N(ul)[m+ 1, dl].
Otherwise we stop. The points in ([0, b]× [cr, dr]) ∩N(ur)] can be reported in a similar way.
To analyze the query time, observe that we perform noderange twice in O(lg lgn) time. The
recursive procedure is called O(occ) times, and each time it is performed, it uses O(1) time.
All other steps require O(1) time. Therefore, the overall query time is O(lg lgn+ occ). J

5.2 Orthogonal Range Reporting in a Narrow Grid

Our solution for points in a 2
√

lgn × n′ grid for any n′ ≤ n uses the following previous result:

I Lemma 17 ([11, Section 2], [6, Lemma 5]). Given a set, N , of n points in [u]× [u], a data
structure of O(n lg1+ε n) bits can be constructed in O(n lgn) time, which supports orthogonal
range reporting over N in O(lg lg u+ occ) time, where occ is the number of reported points.

The following lemma presents our solution for a narrow grid:

I Lemma 18. Let N be a set of n′ points with distinct y-coordinates in a 2
√

lgn × n′

grid where n′ ≤ n. Given packed sequences X and Y respectively encoding the x- and
y-coordinates of these points where Y [i] = i for any i ∈ [0, n′ − 1], a data structure occupying
O(n′ lg1/2+ε n + w · 2

√
lgn + n′w/2

√
lgn) bits can be constructed in O(n′ +

√
lgn · 2

√
lgn)

time to support orthogonal range reporting over N in O(lg lgn+ occ) time, where ε is an
arbitrary positive constant and occ is the number of reported points.

Proof. Let b = 22
√

lgn. We need only consider the case in which n′ > b as Lemma 16 applies
otherwise. Assume for simplicity that n′ is divisible by b. We divide N into n′/b subsets, and
for each i ∈ [0, n′/b− 1], the ith subset, Ni, contains points in N whose y-coordinates are in
[ib, (i+ 1)b− 1]. Let p be a point in Ni. We call its coordinates (p.x, p.y) global coordinates,
while (p.x′, p.y′) = (p.x, p.y mod b) its local coordinates in Ni; the conversion between global
and local coordinates can be done in constant time. Hence the points in Ni with their local
coordinates can be viewed as a point set in a 2

√
lgn × 22

√
lgn grid, and we apply Lemma 16

to construct an orthogonal range search structure over Ni.
We also define a point set N̂ in a 2

√
lgn×n′/b grid. For each set Ni where i ∈ [0, n′/b−1]

and each j ∈ [0, 2
√

lgn−1], we store a point (j, i) in N̂ iff there exists at least one point in Ni
whose x-coordinate is j. Thus the number of points in N̂ is at most n′/b×2

√
lgn = n′/2

√
lgn.

We apply Lemma 17 to construct an orthogonal range search structure over N̂ . In addition, for
each i ∈ [0, n′/b− 1] and j ∈ [0, 2

√
lgn− 1], we store a list Pi,j storing the local y-coordinates

of the points in Ni whose x-coordinates are equal to j.
Given a query range Q = [x1, x2]× [y1, y2], we first check if by1/bc is equal to by2/bc. If

it is, then the points in the answer to the query reside in the same subset Nby1/bc, and we
can retrieve these points by performing an orthogonal range query in Nby1/bc, which requires
O(lg lgn + occ) time by Lemma 16. Otherwise, we decompose Q into three subranges
Q1 = [x1, x2] × [y1, b(by1/bc + 1) − 1], Q2 = [x1, x2] × [b(by1/bc + 1), bby2/bc − 1] and
Q3 = [x1, x2]× [bby2/bc, y2]. The points in N ∩Q1 and N ∩Q3 are in Nby1/bc and Nby2/bc,
respectively, and by Lemma 16, they can be reported in O(lg lgn+occ1) and O(lg lgn+occ3)
time, respectively, where occ1 = |N ∩Q1| and occ3 = |N ∩Q3|. The points in N ∩Q2 are in
Nby1/bc+1, Nby1/bc+2, . . . , Nby2/bc−1. To retrieve them, we first perform an orthogonal range
query in N̂ with query range Q̂ = [x1, x2] × [by1/bc + 1, by2/bc − 1]. Let (x, y) be a point

Y. Gao, M. He, and Y. Nekrich 54:13

in N̂ ∩ Q̂. The existence of this point means that is at least one point in Ny ∩ Q2 whose
x-coordinates are equal to x; the local y-coordinates of these points are stored in Py,x which
we retrieve and convert to global coordinates. After examining all the points in N̂ ∩ Q̂ and
retrieving their corresponding points in N ∩Q2 in this way, we have computed all the points
in N ∩Q2 in O(lg lgn+ occ2) time where occ2 = |N ∩Q2|. The overall query processing
time is thus O(lg lgn+ occ).

To bound the storage costs, by Lemma 16, the orthogonal range reporting structure
over each Ni uses O(22

√
lgn lg1/2+ε n+w · 2

√
lgn) bits. Thus, the range reporting structures

over N0, N1, . . . , Nn/b−1 occupy O((n′/b)× (22
√

lgn lg1/2+ε n+w ·2
√

lgn)) = O(n′ lg1/2+ε n+
n′w/2

√
lgn). As there are at most n′/2

√
lgn points in N̂ , by Lemma 17, the range reporting

structure for N̂ occupies O(n′ lg1+ε n/2
√

lgn) = o(n′) bits. There are n′ points in all Pi,j ’s
and each of their local y-coordinates can be encoded in lg b = 2

√
lgn bits. In addition, each

Pi,j requires a pointer to encode its memory location, so n′/b× 2
√

lgn = n′/2
√

lgn pointers
are needed. Therefore, the total storage cost of all Pi,j ’s is O(n′w/2

√
lgn + n′

√
lgn). Thus

the space costs of all structures add up to O(n′ lg1/2+ε n+ n′w/2
√

lgn) bits. Note that the
above analysis assumes n′ > b. Otherwise, O(n′ lg1/2+ε n+w · 2

√
lgn) bits are needed, so we

use O(n′ lg1/2+ε n+ w · 2
√

lgn + n′w/2
√

lgn) as the space bound on both cases.
Regarding construction time, when n′ > b, observe that the point sets N0, N1, . . . , Nn′/b−1

and N̂ , as well as the sequences P [i, j] for i = 0, 1, . . . , n′/b−1 and j = 0, 1, . . . , 2
√

lgn−1, can
be computed in O(n′) time. By Lemma 17, The range reporting structure for N̂ can be built
in O(n′/b× lgn) = o(n′) time. Finally, the total construction time of the range reporting
structures for N0, N1, . . . , Nn/b−1 is O(n′/22

√
lgn × (22

√
lgn +

√
lgn × 2

√
lgn)) = O(n′),

which dominates the total preprocessing time of all our data structures. When n′ ≤ b, the
construction time is O(n′ +

√
lgn · 2

√
lgn) by Lemma 16, so we use O(n′ +

√
lgn · 2

√
lgn) as

the upper bound on construction time in both cases. J

5.3 Orthogonal Range Reporting in an n× n Grid
We first describe a solution that is slight more general, which requires the grid to be of size
σ × n with 2

√
lgn ≤ σ ≤ n, as it will be needed for some applications to be described later.

I Lemma 19. Given a sequence X[0, n− 1] drawn from alphabet [σ] denoting the point set
N = {(X[i], i)|0 ≤ i ≤ n− 1}, a data structure of O(n lg1+ε σ + n lgn) bits for any constant
ε > 0 can be constructed in O(nlg σ/

√
lgn) time to support orthogonal range reporting over

N in O(lg lgn+ occ) time, where 2
√

lgn ≤ σ ≤ n and occ is the number of reported points.

Proof. We build a 2
√

lgn-ary wavelet tree T upon X[0, n−1] with support for ball inheritance
using part (b) of Lemma 13. As in the proof of Lemma 16, for each internal node v ∈ T ,
we build a data structure M(v) to support range minimum and maximum queries over its
value array A(v) in constant time using Lemma 8, even A(v) is not be explicitly stored.
Recall that A(v) stores the x-coordinates of the ordered list, N(v), of points from N whose
x-coordinates are within the range represented by v, and these points are ordered by y-
coordinate. Furthermore, v is associated with another sequence S(v) drawn from alphabet
[2
√

lgn], in which S(v)[i] encodes the rank of the child of v that contains N(v)[i] in its ordered
list. Let Ŝ(v) denote the point set {(S(v)[i], i)|0 ≤ i ≤ |S(v)| − 1}, and we use Lemma 18 to
build a structure supporting orthogonal range reporting over Ŝ(v).

ESA 2020

54:14 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

Given a query range Q = [a, b]× [c, d], we first locate the lowest common ancestor u of
la and lb in constant time, where la and lb denote the a-th and b-th leftmost leaves of T ,
respectively. Let ui denote the ith child of u, for any i ∈ [0, 2

√
lgn − 1]. We first locate two

children, ua′ and ub′ , of u that are ancestors of la and lb, respectively. They can be found in
constant time by simple arithmetic as each child of u represents a range of equal size. Then
the answer, Q ∩N , to the query can be partitioned into three point sets A1 = Q ∩N(va′),
A2 = Q ∩ (N(va′+1) ∪N(va′+2) ∪ . . . N(vb′−1)) and A3 = Q ∩N(vb′). With O(lg lgn)-time
support for noderange and constant-time support for point and rmq/rMq, we can use the
algorithm in the proof of Lemma 16 to perform 3-sided range queries over N(v′a) and N(v′b)
to compute A1 ∪A3 in O(lg lgn+ |A1|+ |A3|) time. To compute A2, observe that any entry,
Ŝ(v)[i], can be obtained by replacing the x-coordinate of point N(v)[i] with the rank of the
child whose ordered list contains N(v)[i]. Hence, by performing range reporting over Ŝ to
compute S ∩ ([a′ + 1, b′ − 1]× [cv, dv]), where [cv, dv] = noderange(c, d, v), we can find the
set of points in Ŝ(v) corresponding to the points in A2. For each point returned, we use
point to find its original coordinates in N and return it as part of A2. This process uses
O(lg lgn + |A2|) time. Hence we can compute Q ∩ N as A1 ∪ A2 ∪ A3 in O(lg lgn + occ)
time.

Now we analyze the space costs. T with support for ball inheritance uses O(n lg1+ε σ +
n lgn) bits for any positive ε. For each internal node v, since w = Θ(lgn), the data structure
for range reporting over Ŝ uses O(|S(u)| lg1/2+ε′ n+ 2

√
lgn lgn+ |S(u)| lgn/2

√
lgn) bits for

any positive ε′. This subsumes the cost of storing M(u) which is O(|S(u)| lg lgn) bits. As T
has O(σ/2

√
lgn) internal nodes, the total cost of storing these structures at all internal nodes

is
∑
uO(|S(u)| lg1/2+ε′ n + 2

√
lgn lgn + |S(u)| lgn/2

√
lgn) = O(n lg σ/

√
lgn × lg1/2+ε′ n +

σ lgn) = O(n lg σ lgε
′
n+σ lgn). As lgn ≤ lg2 σ and σ ≤ n, this is bounded by O(n lg1+2ε′ σ).

Setting ε′ = ε/2, the space bound turns to be O(n lg1+ε σ) bits. Overall, the data structures
occupy O(n lg1+ε σ + n lgn) bits.

Finally, we analyze the construction time. As shown in Lemma 13, T with support for
ball inheritance can be constructed in O(n lg σ/

√
lgn) time. For each internal node u of T ,

constructing M(u) and the range reporting structure over Ŝ(v) requires O(|S(u)|+
√

lgn ·
2
√

lgn) time. As T has O(σ/2
√

lgn) internal nodes, these structures over all internal nodes
can be built in

∑
uO(|S(u)|+

√
lgn× 2

√
lgn) = O(n lg σ/

√
lgn+ σ

√
lgn) = O(n lg σ/

√
lgn)

as σ ≤ n. The preprocessing time of all data structures is hence O(n lg σ/
√

lgn). J

Our result on points over an n× n gird immediately follows.

I Theorem 20. Given a set, N , of n points in rank space, a data structure of O(n lg1+ε n)
bits for any constant ε > 0 can be constructed in O(n

√
lgn) time to support orthogonal range

reporting in O(lg lgn+ occ) time, where occ is the number of reported points.

6 Optimal Orthogonal Range Successor with Fast Preprocessing

In this section, we assume that a range successor query asks for the lowest point in the query
rectangle. The following theorem presents our result on fast construction of structures for
optimal range successor; we provide a proof sketch, while leaving the full proof to the full
version of this paper:

I Theorem 21. Given n points in rank space, a data structure of O(n lg lgn) words can be
constructed in O(n

√
lgn) time to support orthogonal range successor in O(lg lgn) time.

Y. Gao, M. He, and Y. Nekrich 54:15

Proof (sketch). Our approach is similar to that in Section 5, but more levels of reductions
are required. Let the sequence X[0, n− 1] denote the point set N = {(X[i], i)|0 ≤ i ≤ n− 1}.
We build a 2

√
lgn-ary wavelet tree T upon X[0, n− 1] with support for ball inheritance using

part (a) of Lemma 13. As shown in the proof of Lemma 19, a query can be answered by
locating the lowest common ancestor, u, of the two leaves corresponding to the end points of
the query x-range, and then performing two 3-sided queries over the point sets represented
by two children of u and one 4-sided query over S(u). For the 3-sided queries, Zhou [32]
already designed an indexing structure, which, with our O(lg lgn)-time support for point
and noderange, can answer a 3-sided query in O(lg lgn) time. The construction time is
linear, but it is fine since T has only O(

√
lgn) levels. The 4-side query over S(u) is a range

successor query over n′ points in a 2
√

lgn × n′ (medium narrow) grid for any n′ ≤ n.
For such a medium narrow grid, we use the sampling strategy in Lemma 18 to reduce the

problem to range successor over a set of n′ points in a 2
√

lgn×n′ grid where n′ ≤ 2×22
√

lgn−1.
The sampling is adjusted, as we need select at most 2

√
lgn sampled points from each subset.

The grid size of 2
√

lgn × n′ with n′ ≤ 2× 22
√

lgn − 1 is the same as that in Lemma 16, so
one may be tempted to apply the same strategy of building a binary wavelet tree to reduce
it to the problem of building index structures for 3-sided queries. However, we found that,
to construct the structure of Zhou [32] over n′ points whose coordinates are encoded in
O(
√

lgn) bits, O(n′ lg lgn/
√

lgn) time is required, which is a factor of lg lgn more than the
preprocessing time of the rmq structure needed in the proof of Lemma 16. This factor comes
from rank reduction in [32], which requires us to sort packed sequences. To overcome this
additional cost, we build a lg1/4 n-ary wavelet tree over the x-coordinates, whose number of
levels is a factor of O(lg lgn) less than that of a binary wavelet tree. As discussed for the
general case, this strategy reduces the current problem to orthogonal range successor over n′
points in an lg1/4 n× n′ (small narrow) grid with n′ ≤ n.

For a small narrow grid, there are two cases. If n′ > lgn, we build a binary wavelet tree
of height O(lg lgn). In the query algorithm, after finding the lowest common ancestor of
the two leaves corresponding to the end points of the query x-range, we do not perform
3-sided queries. Instead, we traverse the two paths leading to these two leaves. This requires
us to traverse down O(lg lgn) levels, and at each level, we perform certain rank/select
operations in constant time, with the right auxiliary structures at each node. No extra
support for ball inheritance is needed as we can simply go down the tree level by level to
map information. Finally, if n′ < lgn, we use sampling to reduce it to even smaller grids of
size at most lg1/4 n× lg3/4 n, over which a query can be answered using a table lookup. J

7 Applications

We now apply our range search structures to the text indexing problem, in which we preprocess
a text string T ∈ [σ]n, where σ ≤ n. Given a pattern string P [0..p − 1], a counting query
computes the number of occurrences of P in T and a listing query reports these occurrences.

Text indexing and searching in sublinear time. When both T and P are given in packed
form, a text index of Munro et al. [25] occupies O(n lg σ) bits, can be built in O(n lg σ/

√
lgn)

time and supports counting queries in O(p/ logσ n+lgn logσ n) time (there are other tradeoffs,
but this is their main result). Thus for small alphabet size which is common in practice, they
achieve both o(n) construction time and o(p) query time, while previous results achieve at
most one of these bounds. To support listing queries, however, they need to increase space
cost to O(n lg σ lgε n) bits and construction time to O(n lg σ lgε n), and then a listing query

ESA 2020

54:16 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

can be answered in O(p/logσ n+logσ n lg lgn+occ). The increase in storage and construction
costs stems from one component they used which is an orthogonal range reporting structure
over t = O(n/r) points in a σO(r) × t grid, for r = c logσ n for any constant c < 1/4. We
can apply Lemma 19 over this point set to decrease the construction time of their index for
listing queries to match that for counting queries:

I Theorem 22. Given a packed text string T of length n over an alphabet of size σ, an
index of O(n lg σ lgε n) bits can be built in O(n lg σ/

√
lgn) time for any positive constant

ε. Given a packed pattern string P of length p, this index supports listing queries in
O(p/logσ n+ logσ n lg lgn+ occ) time where occ is the number of occurrences of P in T .

Position-restricted substring search. In a position-restricted substring search [23], we are
given both a pattern P and two indices 0 ≤ l ≤ r ≤ n− 1, and we report all occurrences of P
in T [l..r]. Makinen and Navarro [23] solves this problem using an index for the original text
indexing problem and a two-dimensional orthogonal range reporting structure. Different text
indexes and range reporting structures yield different tradeoffs. The tradeoff with the fastest
query time supports position-restricted substring search in O(p+ lg lgn+ occ) time, where
occ is the output size, and it uses O(n lg1+ε n) bits and can be constructed in O(n lgn) time.
Again, the construction time of the range reporting structure is the bottleneck, which can be
improved by Theorem 20. We can also use a new text index by Bille et al. [7] to achieve
speedup when P is given as a packed sequence. We have:

I Theorem 23. Given a text T of length n over an alphabet of size σ, an index of O(n lg1+ε n)
bits can be built in O(n

√
lgn) time for any constant 0 < ε < 1/2. Given a packed pattern

string P of length p, this index supports position-restricted substring search in O(p/logσ n+
lg p+ lg lg σ + occ) time, where occ in the size of the output.

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal

range searching. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
pages 198–207. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892088.

2 Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya.
Wavelet trees meet suffix trees. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 572–591. Society for Industrial and Applied Mathematics, 2015.

3 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Linear-time string
indexing and analysis in small space. ACM Transactions on Algorithms (TALG), 16(2):1–54,
2020.

4 Djamal Belazzougui and Simon J Puglisi. Range predecessor and lempel-ziv parsing. In
27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2053–2071. Society for
Industrial and Applied Mathematics, 2016.

5 Michael A Bender and Martın Farach-Colton. The level ancestor problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

6 Philip Bille and Inge Li Gørtz. Substring range reporting. Algorithmica, 69(2):384–396, 2014.
doi:10.1007/s00453-012-9733-4.

7 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for packed
strings. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, pages
6:1–6:11, 2017. doi:10.4230/LIPIcs.CPM.2017.6.

8 Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range search
structures on a grid with applications to text indexing. In 11th International Symposium on
Algorithms and Data Structures, volume 5664 of Lecture Notes in Computer Science, pages
98–109. Springer, 2009.

https://doi.org/10.1109/SFCS.2000.892088
https://doi.org/10.1007/s00453-012-9733-4
https://doi.org/10.4230/LIPIcs.CPM.2017.6

Y. Gao, M. He, and Y. Nekrich 54:17

9 Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word
RAM. In 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1131–1145, 2011. doi:10.1137/1.9781611973082.85.

10 Timothy M Chan, Meng He, J Ian Munro, and Gelin Zhou. Succinct indices for path minimum,
with applications. Algorithmica, 78(2):453–491, 2017.

11 Timothy M Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the ram, revisited. In 27th Symposium on Computational Geometry, pages 1–10. ACM, 2011.

12 Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 161–173, 2010. doi:10.1137/1.9781611973075.15.

13 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988. doi:10.1137/0217026.

14 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, M. Sohel Rahman, German Tischler,
and Tomasz Walen. Improved algorithms for the range next value problem and applications.
Theoretical Computer Science, 434:23–34, 2012. doi:10.1016/j.tcs.2012.02.015.

15 Maxime Crochemore, Marcin Kubica, Tomasz Walen, Costas S. Iliopoulos, and M. Sohel
Rahman. Finding patterns in given intervals. Fundamenta Informaticae, 101(3):173–186, 2010.
doi:10.3233/FI-2010-283.

16 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

17 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast algorithms
for multidimensional dominance reporting and counting. In 15th International Symposium
on Algorithms and Computation, volume 3341 of Lecture Notes in Computer Science, pages
558–568. Springer, 2004.

18 Jesper Jansson, Zhaoxian Li, and Wing-Kin Sung. On finding the adams consensus tree.
Information and Computation, 256:334–347, 2017. doi:10.1016/j.ic.2017.08.002.

19 Marek Karpinski and Yakov Nekrich. Space efficient multi-dimensional range reporting. In
15th Annual International Conference on Computing and Combinatorics (COCOON), pages
215–224, 2009. doi:10.1007/978-3-642-02882-3_22.

20 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. Range non-overlapping indexing and
successive list indexing. In 10th Workshop on Algorithms and Data Structures, Proceedings,
volume 4619 of Lecture Notes in Computer Science, pages 625–636. Springer, 2007. doi:
10.1007/978-3-540-73951-7_54.

21 Hans-Peter Lenhof and Michiel H. M. Smid. Using persistent data structures for adding range
restrictions to searching problems. Informatique Theorique et Applications, 28(1):25–49, 1994.
doi:10.1051/ita/1994280100251.

22 Moshe Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of
His 66th Birthday, pages 267–302, 2013. doi:10.1007/978-3-642-40273-9_18.

23 Veli Mäkinen and Gonzalo Navarro. Position-restricted substring searching. In 7th Latin
American Symposium on Theoretical Informatics, pages 703–714. Springer, 2006.

24 Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theoretical
Computer Science, 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.

25 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Text indexing and searching in sublinear
time. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, pages
24:1–24:15, 2020. doi:10.4230/LIPIcs.CPM.2020.24.

26 J Ian Munro, Yakov Nekrich, and Jeffrey S Vitter. Fast construction of wavelet trees. Theoretical
Computer Science, 638:91–97, 2016.

27 Yakov Nekrich. A data structure for multi-dimensional range reporting. In 23rd ACM
Symposium on Computational Geometry (SoCG), pages 344–353, 2007. doi:10.1145/1247069.
1247130.

ESA 2020

https://doi.org/10.1137/1.9781611973082.85
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1137/0217026
https://doi.org/10.1016/j.tcs.2012.02.015
https://doi.org/10.3233/FI-2010-283
https://doi.org/10.1016/j.ic.2017.08.002
https://doi.org/10.1007/978-3-642-02882-3_22
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1051/ita/1994280100251
https://doi.org/10.1007/978-3-642-40273-9_18
https://doi.org/10.1016/j.tcs.2007.07.013
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.1145/1247069.1247130
https://doi.org/10.1145/1247069.1247130

54:18 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

28 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In 13th Scandinavian Symposium
and Workshops, 2012. Proceedings, pages 271–282, 2012. doi:10.1007/978-3-642-31155-0_
24.

29 Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 38th
Annual ACM Symposium on Theory of Computing, 2006, pages 232–240. ACM, 2006. doi:
10.1145/1132516.1132551.

30 Dan E. Willard. On the application of sheared retrieval to orthogonal range queries. In 2nd
Annual ACM SIGACT/SIGGRAPH Symposium on Computational Geometry (SoCG) 1986,
pages 80–89. ACM, 1986. doi:10.1145/10515.10524.

31 Chih-Chiang Yu, Wing-Kai Hon, and Biing-Feng Wang. Improved data structures for the
orthogonal range successor problem. Computational Geometry, 44(3):148–159, 2011. doi:
10.1016/j.comgeo.2010.09.001.

32 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space.
Information Processing Letters, 116(2):171–174, 2016. doi:10.1016/j.ipl.2015.09.002.

https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/10515.10524
https://doi.org/10.1016/j.comgeo.2010.09.001
https://doi.org/10.1016/j.comgeo.2010.09.001
https://doi.org/10.1016/j.ipl.2015.09.002

	Introduction
	Preliminaries
	Fast Construction of {{#1}} {rank'} Query Structures
	Fast Construction of Data Structures for Ball Inheritance
	Optimal Orthogonal Range Reporting with Fast Preprocessing
	Orthogonal Range Reporting in a Small Grid
	Orthogonal Range Reporting in a Narrow Grid
	Orthogonal Range Reporting in an n x n Grid

	Optimal Orthogonal Range Successor with Fast Preprocessing
	Applications

