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Abstract
We consider the directed minimum latency problem (DirLat), wherein we seek a path P visiting all
points (or clients) in a given asymmetric metric starting at a given root node r, so as to minimize the
sum of the client waiting times, where the waiting time of a client v is the length of the r-v portion of
P . We give the first constant-factor approximation guarantee for DirLat, but in quasi-polynomial time.
Previously, a polynomial-time O(logn)-approximation was known [12], and no better approximation
guarantees were known even in quasi-polynomial time.

A key ingredient of our result, and our chief technical contribution, is an extension of a recent
result of [17] showing that the integrality gap of the natural Held-Karp relaxation for asymmetric
TSP-Path (ATSPP) is at most a constant, which itself builds on the breakthrough similar result
established for asymmetric TSP (ATSP) by Svensson et al. [25]. We show that the integrality gap of
the Held-Karp relaxation for ATSPP is bounded by a constant even if the cut requirements of the
LP relaxation are relaxed from x(δin(S)) ≥ 1 to x(δin(S)) ≥ ρ for some constant 1/2 < ρ ≤ 1.

We also give a better approximation guarantee for the minimum total-regret problem, where
the goal is to find a path P that minimizes the total time that nodes spend in excess of their
shortest-path distances from r, which can be cast as a special case of DirLat involving so-called
regret metrics.
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1 Introduction

Vehicle-routing problems form a rich class of combinatorial-optimization problems that find
applications in a wide variety of settings, and have been extensively studied in the Operations
Research and Computer Science communities (see, e.g., [26]). These problems typically
involve designing routes for vehicles to service a given underlying set of clients in the most
time- and/or cost-effective fashion. A fundamental problem in this genre is the minimum
latency problem (MLP), also known as the traveling repairman problem or the delivery man
problem [1, 19, 10, 5], wherein, adopting a client-oriented perspective, we seek a route starting
at a given root node and visiting all client nodes that minimizes the sum of client waiting
times (or equivalently, the average client waiting time).1

1 In contrast, the path-version of TSP can be seen as minimizing the maximum client waiting time.
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We investigate directed MLP (DirLat), i.e., MLP in directed (or asymmetric) metrics.
Formally, we are given an asymmetric metric space (V ∪ {r}, c), where V is a set of client
nodes, r is a root or depot node, and c = {cu,v}u,v∈V ∪{r} specifies the asymmetric metric:
in particular, for any u, v, w ∈ V ∪ {r}, we have cu,u = 0, cu,v ≥ 0, and cu,v ≤ cu,w + cw,v.
The goal is to find a Hamiltonian path P starting at the depot r to minimize

∑
v∈V cP (v),

where cP (v) is the cost of the r  v subpath of P and is interpreted as the waiting time or
latency of node v. Throughout, we let n denote |V |.

Whereas we have a reasonably good understanding of MLP in undirected (i.e., symmetric)
metrics – a constant-factor approximation is known (see [9] and the references therein) and
recent work has also led to LP-based approaches [7, 22] for the problem – there are significant
gaps in our understanding of directed MLP: the approximation factor has remained stagnant
at O(logn) [12] for close to a decade, and it is not known if logn (or any super-constant
function of n) constitutes a real inapproximability barrier for the problem.

2 Our contributions

Our main contribution is to provide the first constant-factor approximation guarantee for
DirLat, albeit in quasi-polynomial time, i.e., O

(
nO(logn)) time. This provides the first concrete

indication that logn is unlikely to be an inapproximability barrier for DirLat (unless NP
⊆DTIME

[
nO(logn)]).

I Theorem 1. There is an O(1)-approximation for DirLat running in O
(
nO(logn)) time.

Our algorithm is based on a natural time-indexed linear programming (LP) relaxation
that is similar to, and inspired by, the approach taken in [22] for undirected MLP. Roughly
speaking, our LP (LP-Lat) utilizes variables for (v, t) pairs where v ∈ V is a node to be
visited and t is the time they should be visited, and other variables indicating the edges
present on various prefixes of the optimal path. As is typical for minimum-latency problems,
we utilize the LP to find rooted paths of geometrically increasing lengths and stitch them
together. However, with asymmetric metrics, both steps present significant challenges. A
key technical contribution underlying our result is a procedure for achieving the former step,
namely a way of rounding the fractional prefix of the optimal path of length t to obtain a
rooted path of length O(t). We achieve this by generalizing some recent work by [17] on the
integrality gap for asymmetric s-t TSP-path (ATSPP). We show that the integrality gap of a
weakening of the standard LP-relaxation, where we require non-s-t cuts to only be covered
to some extent strictly larger than 1 still remains a constant (see Theorem 2 below).

An interesting special case of DirLat, involves the notion of regret of a client: the regret
of a client v lying on a rooted path P is defined as cP (v) − cr,v; that is, regret measures
the time that node v spends waiting in excess of its its least possible waiting time. The
notion of regret can be seen as a nuanced and better way of measuring the (dis)satisfaction
of a client than the standard measure of simply considering the waiting time of a client.
The latter does not differentiate between clients located at different distances from the
depot and their varying expectations, and fails to take into account that a client closer to
the depot that incurs a larger delay than further-away clients may face a greater level of
dissatisfaction. A natural problem that arises is to find a path that minimizes the total
regret of clients, i.e., to minimize

∑
v∈V (cP (v) − cr,v) (or equivalently, minimize average

client regret). 2 This can be cast as a special case of DirLat by defining the regret distances,

2 Minimizing total regret is harder than MLP in the metric (V, c). While an optimal MLP-solution for the
metric (V, c) clearly yields an optimal solution to the minimum total-regret problem, this translation
does not apply to near-optimal MLP-solutions. However, it is easy to see that an α-approximate solution
to the minimum-total-regret problem is also an α-approximate MLP solution for the metric (V, c).
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creg
u,v := cr,u + cu,v − cr,v, which form an asymmetric metric that we call the regret metric of

(V, c). We have not attempted to optimize the constant in Theorem 1, but it is rather large;
we provide a substantially improved (and explicit) guarantee for the minimum-total-regret
problem (Theorem 5) when (V, c) is a symmetric metric (i.e. cu,v = cv,u).

Our techniques. As noted above, our algorithm utilizes a natural time-indexed LP-relaxa-
tion for DirLat. Using standard scaling techniques, one may assume all cu,v distances are
integers that are bounded by a polynomial in n (see Appendix A). Let T = n ·maxu,v cuv
and notice that T is bounded by a polynomial in n. Any Hamiltonian path in the metric
(V ∪ {r}, c) has length at most T , so all nodes in the optimum solution are visited by time T .

For a directed graph G = (N,E), and set S ⊆ N , let δin
G (S) := {(u, v) ∈ E : u ∈ N−S, v ∈

S} and δout
G (S) := {(u, v) ∈ E : u ∈ S, v ∈ N − S} denote respectively the edges entering

and leaving S. Define δG(S) := δin
G (S) ∪ δout

G (S). If the graph is clear from the context, we
may omit the subscript G. We often identify an asymmetric metric (V ∪ {r}, c) with the
complete directed graph over nodes V ∪ {r}, with edge costs cu,v for distinct u, v ∈ V ∪ {r}.
For a path P and a node v on P , recall that cP (v) is the cost of the r  v subpath of P . We
begin with essentially the same time-indexed LP relaxation used in [22] for the undirected
MLP, specifically (LP3) in their work. For v ∈ V ∪ {r} and t ∈ [T ], let xv,t be a variable
indicating that we visit v at time exactly t, and let zuv,t indicate that we finish traversing
edge (u, v) at time exactly t. Define [T ] := {0, 1, . . . , T}.

minimize :
∑

v∈V,t∈[T ]

t · xv,t (LP-Lat)

subject to :
∑
t∈[T ]

xv,t = 1 ∀ v ∈ V (1)

∑
e∈δin(S)

∑
t′≤t

ze,t′ ≥
∑
t′≤t

xv,t′ ∀ v ∈ V, {v} ⊆ S ⊆ V, t ∈ [T ] (2)

xv,t =
∑

e∈δin(v)

ze,t ≥
∑

e∈δout(v)

ze,t+ce ∀ v ∈ V, t ∈ [T ] (3)

x, z ≥ 0.

(We remark that the zuv,t variables above have a slightly different meaning from [22],
wherein zuv,t indicated that t was traversed by time t. Also, we omit constraints (14) from
[22], which encode that the length-t prefix of the optimal path has length at most t, as one
can easily show they are implied by our slightly different approach.)

It is easy to check that an optimal solution P ∗ naturally corresponds to an integral
solution to (LP-Lat) with the same cost as the latency of P ∗. Constraints (2) admit an
efficient separation oracle simply by checking for each v ∈ V and t ∈ T if the minimum r− v
cut has capacity at least

∑
t′≤t xv,t′ when using a capacity of

∑
t′≤t ze,t′ for each edge e.

Our proof of Theorem 1 proceeds by bucketing clients based on their fractional latencies,
finding low-cost paths for these buckets, and stitching these paths together to form our final
path. Our advantage over [12] comes from the fact that we guess the O(log T ) = O(logn)
nodes v∗i appearing at distances roughly 2i along the optimum path P ∗, plus their exact
visiting times, `∗i , along P ∗. We add constraints to (LP-Lat) to reflect these guesses. For
each v∗i , consider the nodes v that are at least, say, 2/3-visited before v∗i but not 2/3-visited
before v∗i−1 is visited: call this the bucket Bi for v∗i . With a bit of modification, the restriction
of (LP-Lat) to the times before `∗i is visited induces an LP solution with cost O(2i) for the
natural ATSPP LP relaxation that covers all v ∈ Bi to an extent of at least 2/3. That is, we
get a solution to the following LP relaxation for ATSPP for ρ = 2/3.

ESA 2020
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minimize :
∑
u,v

cu,v · xu,v (LP-ATSPPρ)

subject to : x(δout(v))− x(δin(v)) =


+1 v = s

−1 v = t

0 v 6= s, t

∀ v ∈ V

x(δ(U)) ≥ 2 · ρ ∀ ∅ ( U ⊆ V − {s, t}
x ≥ 0.

The integrality gap when ρ = 1 was shown to be constant in [17]. We prove the
following more-general result establishing a constant integrality gap for (LP-ATSPPρ) for
all 1/2 < ρ ≤ 1, which is one of our chief technical results. By an LP-relative α-approximation
algorithm for (LP-ATSPPρ) (or simply LP-relative approximation algorithm), we mean a
polytime algorithm that returns an ATSPP solution of cost at most α ·OPTLP-ATSPPρ .

I Theorem 2. There is an LP-relative ψ
2ρ−1 -approximation algorithm for (LP-ATSPPρ),

where ψ is some absolute constant (i.e., independent of the instance).

We do not compute the exact value of ψ, or attempt to optimize it (favoring simplicity of
presentation instead). It’s precise value depends on the integrality gap for ATSP, which is
known to be bounded by a constant [25, 28].

Using Theorem 2, we can obtain a path Pi for each bucket Bi, of cost O(2i) spanning
the nodes of {r} ∪ Bi. Our final path Q will be the concatenation of these Pi paths. To
obtain Theorem 1, it suffices to show that the latency under Q of each node in Bi is O(2i).
For the latter, while c(Pi) = O(2i), we also need a bound of O(2i) on the cost of stitching
the last node of Pi−1 to the first node after r on Pi. This is where guessing plays the most
prominent role: we show that strengthening the LP with our guess ultimately implies the
new edge used to stitch Pi−1 to Pi also has cost O(2i), as required.

As an aside, complementing Theorem 2, we show that the dependence of the integrality
gap on ρ stated in Theorem 2 is asymptotically correct, and this holds even if we strengthen
(LP-ATSPPρ) to require an in-flow of 1 for each v ∈ V − {s, t} (but still have the relaxed
cut constraints). This generalizes a similar result in [12] showing that the integrality gap of
(LP-ATSPPρ) is unbounded when ρ = 1/2.

I Theorem 3. The integrality gap of (LP-ATSPPρ) is at least 1
2ρ−1 , for every 1/2 < ρ ≤ 1,

and this holds even if we strengthen the LP with the constraints x(δin(v)) = 1 for each
v ∈ V − {s, t}.

Our final result pertains to the minimum total-regret problem, for which we obtain a
much-improved approximation guarantee (compared to Theorem 1). Recall that this is the
special case of DirLat, where the metric is the regret metric of an undirected metric; in the
sequel, we refer to this simply as a regret metric. Our improvement stems from the following
improved and explicit integrality gap for (LP-ATSPPρ) in regret metrics.

I Theorem 4. There is an LP-relative αreg
ρ -approximation algorithm for (LP-ATSPPρ) in

regret metrics, where αreg
ρ := 300

42−12
√

6 ·
1

2ρ−1 ≈
23.8

2ρ−1 .

The proof of the above result is quite different from that of Theorem 2. It exploits
the structure of regret metrics, and leverages and builds upon the insights and machinery
developed in [13, 14] for this class of metrics. Theorem 4 leads to the following explicit
approximation factor for DirLat in regret metrics.
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I Theorem 5. There is a quasi-polynomial time 397-approximation for DirLat in regret
metrics.

2.1 Related Work
Nagarajan and Ravi first studied DirLat and obtained an approximation guarantee of n1/2+ε

in time nO(1/ε) for any constant ε > 0 [20], which extends easily to an O(α′ · logO(1)(n))-
approximation in quasi-polynomial time where (roughly speaking) α′ is an upper bound on
the integrality gap of the natural Held-Karp LP relaxation for ATSPP. They also showed α′
is bounded by O(

√
n). Friggstad, Salavatipour, and Svitkina improved the approximation

guarantee for DirLat and the upper bound on the integrality gap for ATSPP to O(logn)
[12]. This is currently the best polynomial-time approximation for DirLat and no better
quasi-polynomial time approximation was known before our work. If the metric is symmetric,
constant-factor approximations are know. The first was given by Blum et al. [5], the best
guarantee so far is a 3.59-approximation by Chaudhuri et al. [9].

Chakrabarty and Swamy [7], and Post and Swamy [22] studied LP relaxations for the
undirected minimum latency problem. Using time-indexed LP relaxations, [22] obtain
improved approximations for the multi-depot variant and also recover the 3.59-approximation
for the single-vehicle version using an LP relaxation. Our work builds upon the ideas behind
one of their LP relaxations.

The integrality-gap upper bound for ATSPP has seen various improvements since [12],
which have followed analogous improvements on the integrality gap, denoted αATSP, of the
Held-Karp relaxation for ATSP, its more well-studied cousin. Friggstad et al. [11] show
that the integrality gap is O(logn/ log logn) by building upon ideas introduced in [3] who
proved a similar bound for αATSP. Recently, [17] shows the integrality gap is in fact O(1).
Specifically, they show the gap is at most 4 · αATSP − 3; combined with a breakthrough result
of Svensson, Tarnawski, and Vegh [25], who showed αATSP = O(1), this yields an O(1) upper
bound on the integrality gap for ATSPP. An even more recent development by Traub and
Vygen shows that αATSP ≤ 22 [28], and Traub [27] has shown the integrality gap for ATSPP
is at most 43. The best lower bound known on αATSP is 2 [8].

The notion of regret has been proposed in the vehicle-routing literature (see, e.g., [24, 21])
as a more refined way of measuring client dissatisfaction than simply considering its waiting
time. The underlying motivation is that since the shortest-path distance of a client from the
depot is an inherent lower bound on its waiting time, it is more meaningful to measure the wait-
ing time of a client relative to this lower bound. In symmetric metrics, two main regret-related
problems have been investigated: finding a path (or a fixed number of paths) that minimizes
maximum client regret; and finding the fewest number of bounded-regret paths to visit all
clients. Constant-factor approximation algorithms are known for both problems (see [13]
and the references therein). To our knowledge there is no prior work on finding provably
near-optimal solutions for the total-regret (or equivalently average-regret) objective.

Outline of the paper. Section 3 presents the proofs of Theorems 1 and 5, assuming the
LP-relative approximation algorithms provided by Theorems 2 and 4. Section 4 proves
Theorem 2 and is concluded with the proof of Theorem 3. Finally, the proof of Theorem 4 is
presented in Section 5.

3 An O(1)-Approximation in Quasi-Polynomial Time

In this section, we assume Theorems 2 and 4 and use them to prove Theorems 1 and 5. By
scaling (see Theorem 26 in Appendix A), we may assume distances are integers bounded by a
polynomial in n and that cu,v ≥ 1 for distinct nodes u, v. We also let T = n·maxu,v∈V ∪{r} cu,v,

ESA 2020
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which is an upper bound on the cost of any Hamiltonian path. We focus on a fixed optimal
path P ∗. Our algorithm starts by guessing the last node v∗i visited by P ∗ at some time in the
interval [2i, 2i+1) (if any) and its exact distance `∗i ∈ [T ] for each 0 ≤ i ≤ log2 T = O(logn).
Let v∗i = ⊥ if no such node exists for this interval. For any i, we then know that no node is
visited at any time in [2i, 2i+1) if v∗i = ⊥ and, if v∗i 6= ⊥, we also know no node is visited at
a time in the interval (`∗i , 2i+1) so we mark these times as forbidden. Let A = {i : v∗i 6= ⊥}
be admissible buckets corresponding to intervals where the optimum visits at least one
node. Let 1/2 < ρ ≤ 1 be a parameter we optimize later.

Algorithm 1 Directed Latency: O(1)-approximation in nO(log n) time.
Input: asymmetric metric (V ∪ {r}, c) with integer distances at most T/n; parameter
ρ ∈ (1/2, 1]; an LP-relative αρ-approximation algorithm Alg for (LP-ATSPPρ).
Output: an r-rooted path P

D1. For every choice (guess) of v∗i ∈ V ∪ {⊥} for each 0 ≤ i ≤ log2 T and `∗i ∈ [T ] for each such
i where v∗i 6= ⊥, perform the following steps. Let F = {t ∈ [T ] : t ∈ [2i, 2i+1) where v∗i =
⊥ or t ∈ (`∗i , 2i+1) where v∗i 6= ⊥} be the forbidden times for this guess (v∗, `∗) and A = {i ∈
[0, log2 T ] : v∗i 6= ⊥} the admissible buckets.
D1.1. Obtain an optimal extreme point solution (x, z) to (LP-Lat) strengthened with the

following additional constraints: 1) xv∗
i
,`∗
i

= 1 for each i ∈ A and 2) xv,t = 0 for each
v ∈ V and t ∈ F . If the LP is infeasible, abort this guess of (v∗, `∗).

D1.2. For each v ∈ V , let t(v) = tρ(v) be the minimum time such that
∑

t≤t(v) xv,t ≥ ρ. For
i ∈ A, let Bi = {v ∈ V : t(v) ∈ [2i, 2i+1)}.

D1.3. For each i ∈ A, use algorithm Alg to obtain an r − v∗i path Pi spanning {r} ∪Bi.
D1.4. Let P v

∗,`∗ be the path obtained by concatenating the paths {Pi}i∈A in increasing order
of i, and shortcutting past repeat occurrences of r.

D2. Return the best path P v
∗,`∗ found over all guesses where the strengthening of (LP-Lat) was

feasible.

Let P ∗ be an optimum solution and consider the iteration where (v∗, `∗) is consistent
with P ∗. Let (x, z) be an optimum LP solution for the strengthening of (LP-Lat) by the
constraints in Step (11). Clearly this strengthened LP is feasible and the value of the solution
(x, z) is at most OPT , the latency of P ∗.

For each v ∈ V , note that t(v) is well-defined by Constraints (1). Ultimately, we will
show the path P v∗,`∗ visits each v ∈ V by time O(t(v)). We begin by showing this suffices
to get a constant-factor approximation.

I Lemma 6. Let P be a path and c ≥ 1 be such that cP (v) ≤ c · t(v) for each v ∈ V . Then
the latency of P is at most c

1−ρ ·OPT .

Proof. Fix some v ∈ V . By definition of t(v), we have
∑
t(v)≤t≤T xv,t ≥ 1 − ρ which

yields t(v) ≤ 1
1−ρ ·

∑
t(v)≤t≤T t(v) · xv,t ≤ 1

1−ρ ·
∑
t∈[T ] t · xv,t. It follows that

∑
v cP (v) ≤

c
1−ρ ·OPT . J

3.1 Bounding the Latency of P v∗,`∗

In the remainder of the proof it is convenient to view a “time-expanded” graph GT . The
nodes are pairs (v, t) with v ∈ V ∪ {r} and t ∈ [T ] and an edge connects (u, t) to (v, t′) if
cu,v = t′ − t. Observe GT is acyclic. We can then view ze,t as assigning values to edges of
GT : the edge (u, t− cu,v), (v, t) has value z(u,v),t and cost cu,v.
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We begin with some observations. The constraints of (LP-Lat) mean z constitutes one
unit of (r, 0)-preflow3 in GT (i.e. a preflow with source vertex (r, 0)). Namely, Constraints
(3) ensure preflow is satisfied at every vertex (v, t) of GT apart from the “source” vertex
(r, 0). Let i′ be the greatest index in A. Considering the LP constraints added in Step (11),
we see xv∗

i′
,`∗
i′

= 1 and xv,t = 0 for all t > `∗i′ . Thus, z must be a flow with value 1 in GT
ending at (v∗i′ , `∗i′). Since the support of the flow z is acyclic in GT and since one unit of flow
passes through every (v∗i , `∗i ) node in GT for each i ∈ A, no flow skips past node (v∗i , `∗i ).
That is, no edge ((u, t), (v, t′)) in GT supports any z-flow if t < `∗i < t′ for some i ∈ A, nor
does any edge ((u, t), (v, t′)) support any z-flow if t = `∗i yet u 6= v∗i or t′ = `∗i yet v 6= v∗i for
some i ∈ A.

Next, we recall a famous splitting-off result by Mader. The following is a slight specializ-
ation of one such result.

I Theorem 7 (Mader [18]). Let D = (V ∪ {s}, A) be a directed, Eulerian multigraph such
that the u− v connectivity for every u, v ∈ V is at least k. Then for every (u, s) ∈ A there
is some (s, v) ∈ A such that in the graph D′ = (V ∪ {s}, A− {(u, s), (s, v)} ∪ {(u, v)}), the
u− v connectivity for every u, v ∈ V is still at least k.

Using this, we show how to compute low-cost paths covering each bucket. Roughly
speaking, we show that (LP-ATSPPρ) restricted to {r} ∪ Bi with start node r and end
node v∗i has cost at most 2i+1. Thus, step 13 would find a path starting at r and covering
all Bi with cost at most αρ · 2i+1 where we recall αρ denotes the approximation factor of the
LP-relative approximation Alg.

I Lemma 8. For each i ∈ A, we can compute a Hamiltonian r − v∗i path Pi in G[{r} ∪Bi]
with cost αρ · 2i+1 in polynomial time.

Proof. Let x′ be a vector over edges of the metric given by x′u,v =
∑
t<2i+1 z(u,v),t for

u, v ∈ V ∪{r}. From the observations above, the restriction of z to edges ((u, t), (v, t′)) where
t < 2i+1 constitutes one unit of flow from (r, 0) to (v∗i , `∗i ) in GT , so x′uv is then one unit of
r − v∗i flow in the metric. Further, since the cost of an edge ((u, t − cu,v), (v, t)) is cu,v in
GT , the cost of this flow x′ is exactly `∗i , which is at most 2i+1.

Next we verify x′(δ(S)) ≥ 2 · ρ for each S ⊆ V − {v∗i } with S ∩Bi 6= ∅. Consider some
v ∈ S ∩Bi. Constraint (2), the fact that v ∈ Bi, and the fact that xv,t = 0 for `∗i < t < 2i+1

shows x′(δin(S)) =
∑
e∈δ(S)

∑
t<2i+1 ze,t ≥ ρ. Since x′ is an r − v∗i flow and r, v∗i /∈ S, then

flow conservation shows x′(δ(S)) ≥ 2 · ρ.
Much like in [2] for the Prize-Collecting TSP-Path problem, one can use Theorem 7

to shortcut x′ past nodes not in Bi ∪ {r} to get solution for (LP-ATSPPρ) for in the graph
G[{r} ∪Bi] (with start node s = r and end node t = v∗i ), also with cost at most 2i+1. That
is, we may assume x′ is rational as z is a rational vector since it is part of an extreme point
of an LP with rational coefficients. Let ∆ be an integer such that the vector ∆ · x′ is integral.
Consider the graph G′ with nodes V ∪ {r} ∪ {r′} where r′ is a new node. The edges of G′
consist of ∆ · x′uv copies of edge uv for each u, v ∈ V ∪ {r}, and ∆ edges from v∗i to r′ and
also from r′ to r (each having cost 0). Note the r − u connectivity for each u ∈ V is at least
∆ · ρ. Note, the cost of all edges in G′ is at most ∆ · 2i+1.

For each v ∈ V − Bi, we iteratively perform the splitting off procedure from Theorem
7 for s = v. The total cost of the edges does not increase by the triangle inequality (note
the edges that are removed and added all lie in the metric over V ∪ {r}), and the r − u

3 An s-preflow in a digraph (V,E) where s ∈ V is an assignment f : E → R≥0 such that f(δin(v)) ≥
f(δout(v)) for each v ∈ V − {s}. The value of the preflow f is f(δout(s))− f(δin(s)).
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connectivity remains at least ∆ · ρ for each u ∈ Bi. After doing this for each v ∈ V −Bi, we
are left with a multigraph of total edge cost cost no more than the total cost of all edges
in G′. Further, if we remove all v∗i r′ and r′r edges, we still get the connectivity from r to
any other v ∈ Bi is at least ∆ · ρ. If ku,v denotes the number of copies of uv in this new
graph, setting x′′u,v = ku,v/∆ for each (u, v) ∈ G[{r} ∪Bi] yields a feasible LP solution for
(LP-ATSPPρ) in the metric graph over Bi ∪ {r} (with start node r and end node v∗i ) with
cost at most 2i+1.

From this, the optimal solution to (LP-ATSPPρ) in G[{r}∪Bi] (starting at r and ending
at v∗i ) has value at most 2i+1. So Alg returns a Hamiltonian r − v∗i path Pi in G[{r} ∪Bi]
with cost at most αρ · 2i+1. J

Next we bound the cost of stitching together the paths for the admissible buckets.

I Lemma 9. Let Pi and Pi′ be two paths constructed in Step (13) for consecutive indices
i, i′ ∈ A. Let ui′ be the first node on Pi′ after r and recall v∗i is the last node of Pi. Then
cv∗
i
,ui′ ≤ 2i′+1.

Proof. Note that ui′ ∈ Bi′ means t(ui′) ∈ [2i′ , 2i′+1). Also, xui′ ,t(ui′ ) > 0 by definition of
t(ui′). All units of z-flow in the acyclic graph GT pass through (v∗i , `∗i ) and also through
(v∗i′ , `∗i′). So the restriction of z to edges ((u, t), (v, t′)) in GT with `∗i ≤ t ≤ t′ ≤ `∗i′ constitutes
one unit of (v∗i , `∗i )− (v∗i′ , `∗i′) flow that supports (ui′ , t(ui′)). Therefore, a path decomposition
of this restriction of z includes (ui′ , t(ui′)) on some path. Any such path has cost exactly
`∗i′ − `∗i ≤ 2i′+1. By the triangle inequality, cv∗

i
,ui′ + cui′ ,v∗i′ ≤ 2i′+1. J

Next, we bound the latency of each v ∈ V along the final path P v
∗,`∗ obtained by

concatenating the Pi paths for increasing indices i ∈ A and shortcutting past all but the first
occurrence of r.

I Lemma 10. cPv∗,`∗ (v) ≤ 4(αρ + 1) · t(v) for any v ∈ V .

Proof. Consider any v ∈ V and say it lies on Pi. To reach v along P v∗,`∗ , we traverse paths
Pi′ for i′ < i plus the “stitching” edges v∗i′u∗i′′ for consecutive indices i′, i′′ ∈ A, i′′ ≤ i. By
Lemma 8 and Lemma 9, the latency of v along P v∗,`∗ can be bounded by

∑
i′∈A,i′≤i αρ ·

2i′+1 +
∑
i′∈A,i′≤i 2i′+1 ≤ (αρ + 1) ·

∑i
i′=0 ·2i

′+1 ≤ 4(αρ + 1) · 2i ≤ 4(αρ + 1) · t(v). J

Proof of Theorem 1. We set ρ = 2/3, and note that Theorem 2 yields an LP-relative α2/3-
approximation algorithm, where α2/3 = O(1). The proof of Theorem 1 then follows readily
from Lemmas 6 and 10 and the fact that T is bounded by a polynomial in n. J

We remark that even with the improved bound of α ≤ 22 from [28], our approach yields
an approximation ratio in the thousands. As noted earlier, we obtain a much-better guarantee
for the special case of regret metrics, i.e., the minimum-total-regret problem.

Proof of Theorem 5. First, we note that a worse approximation ratio follows by choosing
ρ = 0.75: this yields an approximation ratio αρ of at most 47.6 for the LP-relative algorithm
in Theorem 4 for regret metrics, which combined with Lemmas 10 and 6 (and choosing ε
sufficiently small in Theorem 26) yields a 778-approximation.

The better guarantee stated in the theorem follows by choosing the best ρ tailored for the
given instance. (Note that there are only polynomially many combinatorially-distinct choices
of ρ, and we can simply try all of these to pick the best ρ.) We analyze this by choosing a
random ρ and bounding the expected latency incurred; this is similar to the use of random
α-points in scheduling algorithms (see, e.g., [23]).



Z. Friggstad and C. Swamy 52:9

For v ∈ V , recall that tρ(v) is the minimum time for
∑
t≤t(v) xv,t ≥ ρ. Define LPv :=∑

t∈[T ] txv,t. The key is to realize that
∫ 1

0 tρ(v)dρ = LPv, and leverage this in place of the
coarse bound tρ(v) ≤ LPv

1−ρ used earlier (in Lemma 6). The approximation factor αρ given
by Theorem 4 is of the form c

2ρ−1 , where c = 23.8. We choose a random ρ from (1/2, 1]
according to the density function 8(x− 1/2). The expected latency incurred by a node v is
then at most∫ 1

1/2
4
( c

2ρ− 1 +1
)
tρ(v) ·8(ρ−1/2)dρ ≤ 16c ·

∫ 1

1/2
tρ(v)dρ+16

∫ 1

1/2
tρ(v)dρ ≤ 16(c+1) ·LPv.

Thus, the expected total latency is at most 16(23.8 + 1) ·OPT ≤ 397 ·OPT . J

4 Bounding the Integrality Gap of (LP-ATSPPρ)

Consider nodes V with two distinguished s, t ∈ V (s 6= t) and asymmetric metric distances
cu,v between points of V . We consider (LP-ATSPPρ) for the Asymmetric TSP Path problem
where the goal is to find the cheapest Hamiltonian s − t path. As mentioned earlier, the
integrality gap is unbounded if ρ ≤ 1/2 [12], so we focus on the case 1/2 < ρ ≤ 1. As in [17],
we start with the dual of (LP-ATSPPρ).

maximize : zt − zs +
∑
U

2ρ · yU (DUALρ)

subject to : zv − zu +
∑

U :uv∈δ(U)

yU ≤ cu,v ∀ u, v

y ≥ 0.

Naturally, our proof borrows many steps from Köhne, Traub, and Vygen [17] but there are
additional challenges we have to work through in this more general setting.

For a vector x over the edges E of the directed metric (when viewed as a complete,
directed graph), let supp(x) = {uv ∈ E : xu,v > 0}. Similarly, for a vector y over cuts of the
metric let supp(y) = {∅ ( S ⊆ V − {s, t} : yS > 0}. From now on, we focus on the graph
G = (V, supp(x)). The proofs of Propositions 11, 12, and 14 are very similar to proofs in
[17] and are omitted or just sketched in this paper.

I Proposition 11. Given any optimal dual solution (y, z), one can find an optimal dual
solution (y′, z) with supp(y′) being laminar in polynomial time.

In other words, we can modify y to be laminar without changing z using efficient uncrossing
techniques. The proof is exactly the same as the proof in [17] essentially because the set of
feasible solutions to (DUALρ) does not change if we select different values for ρ.

The next proposition is almost identical to one in [17], but we omit the case U = V in the
statement. In fact, the result may not be true for this case U = V , we handle that separately
below.

I Proposition 12. Let x be an optimum primal solution and let and G = (V, supp(x)). For
any U ⊆ V − {s, t} with x(δ(U)) = 2ρ, any topological ordering U1, . . . , U` of the strongly
connected components of G[U ] satisfies:

δin(U1) = δin(U),
δout(U`) = δout(U), and
x(δout(Ui)) = x(δin(Ui+1)) for any 1 ≤ i < `.

We sketch the proof of Proposition 12 so the reader is assured it holds, though the proof is
essentially the same.
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Proof sketch. Because U is a tight set, x(δin(U)) = ρ. Further, x(δin(U1)) ≥ ρ. All edges
in supp(x) entering δ(U1) must lie in δin(U) because U1 is the first node in the topological
ordering. Thus, ρ = x(δin(U)) ≥ x(δin(U1)) ≥ ρ, so equality must hold throughout and
δin(U) = δin(U1) as we are working in the support of x. A similar statement shows
δout(U`) = δout(U).

For i > 1 we note δin(Ui) ⊆ δin(U)∪
⋃
j<i δ

out(Uj) simply because the Uj are topologically
ordered. Inductively, we have x(δout(Ui−1)) = ρ and each edge in δin(U) ∪

⋃
j<i−1 δ

out(Uj)
is already proven to lie in δin(Uj′) for some j′ < i. So we see δin(Ui) ⊆ δout(Ui−1) and, thus,

ρ = x(δin(Ui−1)) = x(δout(Ui−1)) ≥ x(δin(Ui)) ≥ ρ.

So, again, equality must hold throughout. J

We use a different observation to address the case U = V that was omitted from
Proposition 12. Intuitively, we show that it is still possible to buy a cheap set of edges to
chain the strongly-connected components of G in sequence but the cost of these edges does
increase relative to OPTLP as ρ→ 1/2.

I Proposition 13. In any topological ordering U1, . . . , U` of the strongly connected components
of G, for each 1 ≤ i < ` there is some edge (u, v) ∈ δout(Ui) ∩ δin(Ui+1) with cu,v ≤

1
2ρ−1 ·

∑
u′,v′∈δout(Ui)∩δin(Ui+1) cu′,v′xu′,v′ .

Proof. This is easy for i = 1 and i = ` − 1. For example, we have x(δin(U2) ≥ ρ and all
edges from δin(U2) lie in δout(U1). Thus, x(δout(U1) ∩ δin(U2)) ≥ ρ so the cheapest edge in
δout(U1)∩ δin(U2) has cost at most 1

ρ ·
∑
uv∈δout(Ui)∩δin(Ui+1)) cu,vxu,v. We finish by observing

1/ρ ≤ 1/(2ρ − 1) as ρ ≤ 1. A similar argument works for i = ` − 1, so we now assume
1 < i < `− 1.

We quickly introduce notation. For an index 1 ≤ j ≤ ` let U≤j = ∪1≤j′≤jUj′ and
U≥j = ∪j≤j′≤`Uj′ . Let δ(X;Y ) denote {uv ∈ supp(x) : u ∈ X, v ∈ Y } for X,Y ⊆ V .
With this notation, let a = x(δ(Ui;Ui+1)), b = x(δ(Ui;U≥i+2)), c = x(δ(U≤i−1;Ui+1)), and
d = x(δ(U≤i−1;U≥i+1)). We have a + b + c + d = x(δout(U≤i)) = 1 as δout(U≤i) is the
disjoint union of the sets defining a, b, c, d. On the other hand, ρ ≤ x(δout(Ui)) = a + b

and ρ ≤ x(δin(Ui+1)) = a + c. Therefore, 2ρ − 1 ≤ (a + b) + (a + c) − (a + b + c + d) ≤ a

so x(δout(Ui) ∩ x(δin(Ui)) ≥ 2ρ− 1. So the cheapest edge (u, v) ∈ δout(Ui) ∩ δin(Ui+1) has
cu,v ≤ 1

2ρ−1 ·
∑

(u′,v′)∈δout(Ui)∩δin(Ui+1)) cu′,v′xu′,v′ . J

I Proposition 14. Let G be the support graph of an optimum solution x to (LP-ATSPPρ)
and (y, z) an optimum dual with supp(y) laminar. For any U ∈ supp(y) ∪ {V } and any
u,w ∈ U with w being reachable from u in G[U ], there is a v − w path in G[U ] that crosses
each set U ′ ∈ supp(y) at most twice for U ′ ( U .

Again, the proof is the same as that in [17] which only relies on Proposition 12 for U ∈ supp(y)
(i.e. not on the case U = V that we omitted from the proposition in our setting). We sketch
the argument briefly to ensure the reader this still holds with the omission of U = V from
Proposition 12.

Proof. Consider any u − w path P contained in G[U ]. Suppose U ′ ∈ supp(y) is maximal
among all such sets where P re-enters U ′ after it exits U ′. Let a be the first node of P in U ′
and b the last node of P in U ′ (it could be a = u or b = v). Inductively, replace the a− b
portion of P with an a− b path in G[U ′] that enters and leaves every set U ′′ ∈ supp(y) at
most once for U ′′ ( U ′. Repeat for all such maximal U ′ ∈ supp(y). J
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4.1 Constructing the Path
Let OPTLP denote the optimum solution value to (LP-ATSPPρ). Recall we let α denote
an upper bound on the integrality gap of the standard Held-Karp relaxation for ATSP. We
will prove the following lemma later.

I Lemma 15. An optimal dual solution (y, z) with supp(y) being laminar and zs − zt ≤
1

2ρ−1 ·OPTLP can be computed in polynomial time.

Using this, we now turn to the main result of this section. Note, we are choosing simplicity
in presentation over optimizing the constants in the guarantee.

Proof of Theorem 2. Complementary slackness ensures x(δ(U)) = 2ρ for each U ∈ supp(y)
Consider the edge support graph G = (V, supp(x)). Modify G to get an ATSP instance H
by adding a new node v and edges (t, v) with cost OPTLP and (v, s) with cost 0.

It is easy to check that setting

x′u,v =
{

1
ρ if (u, v) ∈ {(t, v), (v, s)}

xu,v
ρ otherwise

yields a feasible solution for the ATSP-Circuit relaxation from [25] in instance H with cost
2
ρOPTLP . Using [25], we can find a circuit W spanning all nodes in H with cost at most
2α
ρ OPTLP in polynomial time. This circuit must use the (t, v) edge at least once as it visits
v. By deleting occurrences of (t, v) and (v, s), we get s − t walks W1, . . . ,Wk in G that
collectively span all nodes in V with

∑
j c(Wj) ≤ 2α

ρ ·OPTLP ≤ 4α ·OPTLP . We also point
out k ≤ 4α because in removing the k edges incident to v to get the walks Wi, we removed a
total edge cost of k · OPTLP from a circuit whose cost is at most 4α · OPTLP , so k ≤ 4α.
The walks W1, . . . ,W` are depicted in the top of Figure 1.

Let U1, . . . , U` be the strongly connected components of the support graph G. For each
Ui, let Wi = {j : Wj visits a node in Ui} and note |Wi| ≤ k. Unlike the case ρ = 1 in [17],
it could be that j /∈ Wi for some Ui and Wj . For each 1 ≤ i ≤ ` and each j ∈ Wi, let Ri,j
denote the restriction of Wj to Ui. Now, if some Wj enters Ui, then once it leaves it cannot
re-enter because Ui is a strongly connected component of G. So Ri,j is a single walk for each
j ∈ Wi. For such (i, j), let uij and vij be the first and last nodes of Wj in Ui.

Order Wi as j1 < j2 < . . . < j|Wi|. By Proposition 14 and the fact each Ui is a strongly
connected component, we can find paths Pi,jm for jm ∈ Wi from vijm to uijm+1

(or ui1 if
m = |Wi|) where Pi,j enters and exits each U ′ ∈ supp(y) with U ′ ( Ui at most once and
does not cross any other set in supp(y). Then, for each i we get a circuit Ci spanning all
nodes of Ui by adding the paths Pi,j for j ∈ Wi to the walks Ri,j .

By Proposition 13, for each 1 ≤ i < ` there are edges u′iv′i+1 ∈ δout(Ui) ∩ δin(Ui+1) with
cost at most 1

2ρ−1 times the fractional cost of edges in δout(Ui) ∩ δin(Ui+1). Also, say v′1 = s

and u′` = t. By fully traversing each Ci starting at v′i and then continuing to follow it
again to reach u′i, we get v′i − u′i walks W ′i spanning Ui. The final path P we output is the
concatenation of the walks W ′1,W ′2, . . . ,W ′` . Let S = {v′iu′i+1 : 1 ≤ i < `} be the edges used
to “stitch” these walks W ′i together. The bottom of Figure 1 depicts the final construction
of P .

To bound the cost of P , first observe c(S) ≤ 1
2ρ−1OPTLP as the sets δout(Ui) ∩ δin(Ui+1)

are disjoint for 1 ≤ i < `. To bound the cost of the cycles Ci, we define a modified cost
cyuv =

∑
U :uv∈δ(U) and observe c(Q) = zv − zu + cy(Q) for any u− v path Q (the z-values

for internal nodes of Q cancel).
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Figure 1
Top: A depiction of s − t walks W1, . . . ,Wk with k = 4 and the strongly-connected components
U1, . . . , U` with ` = 5.
Bottom: The solid edges are the restrictions of the walks Wi to the strongly-connected components:
these are the Ri,j walks. The thin dashed edges in each component are the paths Pi,j that stitch
these Ri,j to form a circuit Ci over the strongly connected component Ui. Finally, the dashed edges
between components are the edges in S obtained from Proposition 13. The final path P is obtained
by visiting the Ui consecutively using these dashed edges, where each visit traverses Ci fully and
then travels to the start of the edge exiting Ui.

By complementary slackness, cu,v = zv − zu + cyuv for each uv ∈ supp(x). Each Ci was
formed by stitching together endpoints of Ri,j using paths Pi,j . Each Pi,j crosses each
U ′ ∈ supp(y), U ( Ui at most twice and does not cross any set in supp(y) not contained in
Ui. Further, no two Pi,j , Pi′,j′ paths for i 6= i′ can cross the same U ′ ∈ supp(y) because the
two paths are contained in different components of G.

Each U ′ ∈ supp(y) is crossed by at most k paths of the form Pi,j meaning
∑
i,j c

y(Pi,j) ≤∑
i,j zvij−zuij+2k·

∑
U yU . We also have cy(Ri,j) = zui

j
−zvi

j
+c(Ri,j). Therefore,

∑
i c
y(Ci) =∑

i

∑
j∈Wi,j

cy(Pi,j) + cy(Ri,j) ≤ 2k
∑
U yU +

∑
i,j∈Wi

c(Ri,j) ≤ 2k
∑
U yU +

∑
j c(Wj) (the

z terms for the endpoints of the Ri,j cancel out in the first inequality).
But c(C) = cy(C) for any cycle C because, again, the z-terms cancel out. So

c(P ) ≤ c(S) + 2 ·
∑

i
c(Ci) ≤ OPTLP

2ρ−1 + 2
∑k

i=1 c(Wi) + 2k
∑

U
yU

≤ OPTLP
2ρ−1 + 4α ·OPTLP + 2k

∑
U
yU ≤ O(1) · 1

2ρ−1 ·OPTLP + k
ρ

(OPTLP + zs − zt)
≤ O(1)

2ρ−1 ·OPTLP + k
ρ
· (zs − zt).

Here, O(1) refers to some constant that is independent of ρ where we also recall k is bounded
by a constant as well. Using Lemma 15 to bound zs − zt finishes the proof. J
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4.2 Bounding zs − zt: Proof of Lemma 15
We prove Lemma 15 to finish the proof of Theorem 2. Our approach is more direct than
[17], they used an argument that shifts LP weight around to show that yU > 0 implies U is
not an s− t separator in the support graph G = (V, supp(x)). We establish this fact using
complementary slackness applied to the LP used to find the optimal solution to DUALρ
with minimum possible zs − zt. We comment that their proof could also be adapted to show
what we want, we are presenting this alternative proof because we feel it is more naturally
motivated: we already want to minimize zs − zt among all optimal duals so it is natural to
ask what complementary slackness gives for yU > 0.

Let x be an optimal primal solution to LP-ATSPPρ. Note that if we restricted the
variables of (LP-ATSPPρ) and the constraints of (DUALρ) to supp(x) then x and (y, z)
remains optimal. For any feasible solution (y, z) to (DUALρ), we know zt − zs ≤ OPTLP
because y ≥ 0. So the following LP is bounded. Note, we first solved (LP-ATSPPρ) to
compute OPTLP which is then a fixed value (not a variable) in DUALρ-z below.

maximize : zt − zs (DUALρ-z)

subject to : zt − zs +
∑

∅(U⊆V−{s,t}

2ρ · yU ≥ OPTLP (4)

zv − zu +
∑

U :uv∈δ(U)

yU ≤ cu,v ∀ u, v ∈ supp(x) (5)

y ≥ 0.

The second constraint asserts (y, z) is a feasible solution for (DUALρ), so the first constraint
then asserts it is an optimal solution for DUALρ In fact, in any feasible solution the first
constraint must hold with equality. We prove zs− zt ≤ 1

2ρ−1 ·OPTLP for an optimal solution
(y, z) to (DUALρ-z). With this, we finish the proof of Lemma 15 by simply noting that
Proposition 11 shows we can uncross the support of y while leaving z unchanged.

The LP that is dual to (DUALρ-z) has a variable κ for Constraint (4) of (DUALρ-z)
and new variables x′uv for each instance uv of Constraint (5).

minimize :
∑

uv∈supp(x)

cu,v · x′uv −OPTLP · κ

subject to : x′(δout(v))− x′(δin(v)) =

 1 + κ v = s

−1− κ v = t

0 v 6= s, t

∀ v ∈ V

x′(δ(U)) ≥ 2ρ · κ ∀ ∅ ( U ⊆ V − {s, t}
x′, κ ≥ 0.

I Lemma 16. In an optimal solution (y, z) to DUALρ-z, if yU > 0 then there is an s− t
path in the graph G[V − U ].

Proof. Let x′ be an optimal solution to the dual of (DUALρ-z). Then yU > 0 implies
x′(δ(U)) = 2ρ · κ so, by flow conservation, x′(δin(U)) = ρ · κ.

On the other hand, x′ constitutes an s− t flow of value 1 + κ. Consider a decomposition
of x′ into paths and cycles. The total weight of paths that do not enter U is at least
1 + κ − ρ · κ = 1 + (1 − ρ) · κ > 0. Thus, there is an s − t path in G that does not pass
through U . J
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Continuing as in [17], let U1, . . . , Uk be the maximal sets in supp(y). In the graph G′
obtained by contracting each Ui, we have by Lemma 16 that for each contracted node Ui
there is an s− t path in G′ that avoids Ui. By a variant of Menger’s Theorem (Lemma 9 in
[17]), there are node-disjoint s− t paths P1, P2 in G′. Consider the edges of P1 and P2 in G.
For any Ui, at most one of P1 or P2 enters (and exits) Ui. Suppose it is the case that one of
them P ∈ {P1, P2} enters Ui. Let u, v be the first and last nodes of P as it passes through
Ui. By Proposition 14, we can find a u − v path in G[Ui] that crosses each U ′ ∈ supp(y)
contained in U at most twice, and does not cross any other set in supp(y). Add these edges
to P .

Do this for each Ui that is entered by some P ∈ {P1, P2}. We get paths P ′1, P ′2 using
only edges in supp(x) that, collectively, cross each set in supp(y) at most twice. Thus,
0 ≤ c(P1) + c(P2) = cy(P1) + cy(P2) + 2 · (zt − zs) ≤ 2 ·

∑
U∈supp(y) yU + 2 · (zt − zs).

Multiplying the terms in this bound by ρ and then subtracting (2ρ− 1) · (zt − zs) from both
sides, we see (2ρ− 1) · (zs − zt) ≤

∑
U∈supp(y) 2ρ · yU + zt − zs = OPTLP . J

4.3 A Bad Example for (LP-ATSPPρ)
We show that the dependence on the factor 1

2ρ−1 in our analysis of the integrality gap of
(LP-ATSPPρ) is asymptotically tight.

Proof of Theorem 3. Consider the following metric depicted in Figure (2), which is inspired
from the example showing the integrality gap is unbounded if ρ = 1/2 from [12]. The solid
edges have cost 0 and the dashed edges have cost 1. The cost of all other edges not depicted
is the shortest path distance in this graph (using a cost of 1 if there is no path in this graph).
The number beside each edge uv indicates the value of xu,v. It can be easily check that this
is a feasible solution for (LP-ATSPPρ) even if we added the constraints x(δin(v)) = 1 for
each v ∈ V − {s, t}. An optimal integral solution must use an edge with cost 1, yet this LP
solution only has cost 2ρ− 1 so the integrality gap of (LP-ATSPPρ) is at least 1

2ρ−1 . J
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Figure 2 The bad integrality gap example for LP-ATSPPρ.

5 An Improved Integrality Gap Bound for (LP-ATSPPρ) in Regret
Metrics

Let V be nodes and s, t ∈ V be the start and end points. Let c be symmetric metric distances
cu,v ≥ 0. For each u, v ∈ V , let cregu,v = cr,u + cu,v − cr,v be the regret metric induced by c. It
is convenient to consider a complete directed graph over V where for distinct u, v ∈ V we
have cu,v = cv,u yet (u, v) and (v, u) are themselves distinct edges: the bidirected variant of
the natural undirected graph associated with (V, c). The following observations about regret
metrics can be found in [13].
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I Observation 17. If c is a metric (asymmetric or symmetric) then creg is an asymmetric
metric. For any u, v ∈ V and any u − v path P , c(P ) = creg(P ) + cu,v. For any cycle C,
c(C) = creg(C).

We consider integrality gap bounds for (LP-ATSPPρ) when the metric is a regret metric.
In [14], it was shown the integrality gap bound is 2 in the standard case ρ = 1 and that this
is tight. For the purpose of getting better approximations for DirLat in regret metrics (i.e.
the problem of minimizing the average time a node v waits in excess of their shortest path
distance cr,v from the depot), we give explicit integrality gap bounds for the more general
case 1/2 < ρ ≤ 1.

Note, in the case ρ = 1 that the analysis from [14] produces a stronger result. But the
analysis does not extend in any clear way to the case ρ < 1. We begin by recalling the
following structural result by Bang-Jensen et al about decomposing preflows into branchings
[4], which was made efficient by Gabow [15] (see also [22]).

I Theorem 18 (Bang Jensen et al. [4], Gabow [15], Post and Swamy [22]). Let D = ({r}∪V,A)
be a directed graph and x ∈ QA≥0 be a preflow. Let λv := min{v}⊆S⊆V x(δin(S)) be the r − v
connectivity in D under capacities {xa}a∈A. Let K > 0 be rational. We can obtain out-
branchings B1, . . . , Bq rooted at r, and rational weights γ1, . . . , γq ≥ 0 such that

∑q
i=1 γi =

K,
∑
i:q∈Bi γi ≤ xa for all a ∈ A, and

∑
i:v∈Bi ≥ min{K,λv} for all v ∈ V . Moreover, such

a decomposition can be computed in time that is polynomial in |V | and the bit complexity of
K and x.

We require a definition and results from [13], some of which are adaptations of concepts
in [6].

I Definition 19. Let P be a path starting at s. For each uv ∈ P , say uv is red on P if
there are nodes x, y on the s− u portion of Pi and v − t portion of i, respectively, such that
cr,x ≥ cr,y. For each v ∈ P , let red(v, P ) be the maximal subset of red edges of the subpath
of P containing v. Note, red(v, P ) could be empty if v is not incident to a red edge. The red
intervals of P are the maximal subpaths of its red edges.

Intuitively, the red edges are part of intervals of P that do not make progress toward reaching
t. Their total creg-costs can be shown to be comparable to their total c-costs, which is
formalized as follows.

I Lemma 20 (Blum et al [6]). For any s− t path P ,
∑
uv red on P cu,v ≤

3
2c

reg(P ).

Further, if we were to keep at most one node from each maximal red interval of edges and
shortcut past the other nodes, the resulting path s = v0, v1, . . . , vk = t has cr,vi < cr,vi+1 . So
the union of any collection of paths that are shortcut in such a way forms an acyclic graph.

Now, a solution to (LP-ATSPPρ) can be viewed as a preflow of value 1 rooted at s with
λv ≥ ρ for each v ∈ V − t and λt = 1. From this observation, we round a solution using
techniques from [13]. The full description is in Algorithm 2. Here, 1/2 < δ < ρ is some
parameter we set later to optimize the performance of the algorithm.

I Lemma 21. The paths Pi from Step 2 satisfy
∑
i γi · creg(Pi) ≤ 2 ·OPTLP .

Proof. In [13], it is observed for any s − t path P that creg(P ) = c(P ) − cs,t and that
c(C) = creg(C) for any cycle C. Thus, as x is an s− t flow with value 1 we have OPTLP =∑
uv c

reg
u,vxu,v = (

∑
uv cu,vxu,v)− cs,t. This can be seen by, say, comparing the creg-cost with

the c-cost of paths and cycles in a path/cycle decomposition of x.
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Algorithm 2 Rounding (LP-ATSPPρ) in regret metrics.
Input: asymmetric metric (V ∪ {r}, creg) obtained from symmetric distances c.
Output: an Hamiltonian s− t-rooted path P .

R1. Solve (LP-ATSPPρ) to get an optimal extreme point solution x with value OPTLP .
R2. Use Theorem 18 to find a convex combination of out-branchings B1, . . . , Bq rooted at s and

weights γ1, . . . , γq ≥ 0 summing to 1 such that t lies on each Bi and each v ∈ V − {s, t} lies
on at least a ρ-fraction of these branchings. Turn each Bi into a s− t path Pi by adding the
reverse (v, u) of each arc (u, v) ∈ Bi that does not appear on the unique s− t path in Bi and
shortcutting the resulting Eulerian s− t walk past repeated nodes.

R3. Define a cut requirement function f : 2V → {0, 1} where f(S) = 1 if
∑

i:red(v,Pi)⊆S
γi < δ for all

v ∈ S. Observe f is downward-monotone: f(S) ≥ f(T ) for sets ∅ ( S ⊆ T . Use the LP-based
2-approximation in [16] to find a forest of undirected edges F such that |δ(S) ∩ F | ≥ f(S). Let
C be the components of F and let C1, . . . , C|C| be cycles on each component of F obtained by
doubling and shortcutting each tree in F . For each cycle Cj of C, let w ∈ Ci be some witness
node such that

∑
i:red(w,Pi)⊆V

γi ≥ δ. Let W be the set of all witness over all Cj (note, it could
be W ∩ {s, t} 6= ∅). View each Cj as being traversed in some arbitrary direction.

R4. For each Pi, let PWi be the set of all nodes in W ∩ Pi such that all nodes of red(w,Pi) are
contained in the nodes of a single cycle Cj . Shortcut Pi past nodes not in PWi ∪ {s, t} and call
this path P ′i . Note the nodes of P ′i lie in W ∪ {s, t}.

R5. View P ′i with associated weights γi/δ as the path decomposition of an acyclic s− t flow z with
value 1/δ with z(δ(w)) ≥ 1 for each w ∈ W . Further, z(δout(s)) = 1/δ < 2. By integrality of
flows with upper- and lower-bounds on each node, we may decompose z as a convex combination
of integral flows satisfying these bounds such that each flow supported consists of either 1 or 2
paths. Let P be the cheapest path among the flows with only one path in this decomposition.
Note that P is an s− t path spanning all of W .

R6. Complete P into a Hamiltonian s− t path by adding all edges of the cycles Ci and shortcutting
the resulting Eulerian walk.

Each Pi is obtained by adding the reverse of each edge uv of Bi not on the s− t path in Bi
(and then shortcutting the resulting Eulerian walk). Thus, c(Pi) ≤ 2 ·c(Bi)−cs,t so creg(Pi) ≤
2 · (c(Bi)− cs,t). Thus,

∑
i γi · creg(Pi) ≤ 2 ·

∑
i γi · (c(Bi)− cs,t) = (2 ·

∑
i γi · c(Bi))− 2 · cs,t.

Now, the convex combination of the Bi is dominated by x, so
∑
i γi · c(Bi) ≤

∑
e xe · ce.

Finally, as x constitutes one unit of s− t flow, the c-cost of x differs from the creg-cost of x
exactly by cs,t, so we finally see

∑
i γi · creg(Pi) ≤ 2 ·OPTLP . J

The proofs of the following two lemmas proceed in a way that is very similar to related
results [13] (though, their end goal was quite different). We defer their proofs to the end of
this section.

I Lemma 22. In Step 2, the function f is downward-monotone and
∑
jc

reg(Cj)≤ 6
ρ−δOPTLP .

I Lemma 23. The graph over V with edges ∪qi=1P
′
i is an acyclic graph. Further, for each

w ∈W we have
∑
i:w lies on P ′

i
γi ≥ δ. Finally,

∑q
i=1 c

reg(P ′i ) ≤ 2 ·OPTLP .

We now describe how to complete the analysis.

I Lemma 24. In Step 5, the flow z has acyclic support, sends 1/δ units of flow from s to t,
and has z(δin(w)) ≥ 1 for each w ∈W . The resulting path P has cost 2

2δ−1 ·OPTLP .

Proof. We have
∑
i γi/δ = 1/δ. As each P ′i is an s − t flow, we have z given by zuv =∑

i:uv∈Pi γi/δ is an s− t flow of value 1/δ. Then by Lemma 23, the support of z is acyclic,
z(δin(w)) ≥ 1 for each w ∈W , and

∑
uv c

reg
u,vzuv ≤ 2

δ ·OPTLP .
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By integrality of flows with integral lower- and upper-bounds on the flow through each
vertex, z may be decomposed into a convex-combination of integral flows f satisfying the
lower-bound f(δin(w)) ≥ 1 for each w ∈ W and 1 ≤ f(δout(s)) ≤ 2. Furthermore, the
fraction of these flows f with f(δout(s)) = 1 is exactly 2− 1/δ, so the creg-cost of one such
flow is at most 1

2−1/δ
2
δ · OPTLP = 2

2δ−1 · OPTLP . Such a flow f has no cycles because
the support of z is acyclic, so the edges supported by f form an s − t path spanning all
w ∈W . J

The final path is formed from grafting the cycles C1, . . . , C|C| into P , so the above results
yield the following.

I Theorem 25. The final path computed in Step 6 is a Hamiltonian s− t path with creg-cost
at most

(
6
ρ−δ + 2

2δ−1

)
·OPTLP .

Proof. By Lemma 24, the path P is an s − t path spanning W with creg-cost at most
2

2δ−1 ·OPTLP . Each cycle Cj over a component in C contains precisely one node in W , so
the graph P ∪|C|j=1 Cj has an Eulerian s − t walk that visits all nodes. By Lemma 22, the
total creg-cost of all cycles is at most 6

ρ−δ ·OPTLP . The result follows because shortcutting
this Eulerian walk to get a Hamiltonian path does not increase the cost of the walk, by the
triangle inequality. J

By setting δ = (2
√

6−1)·ρ+6−
√

6
10 (which optimizes the parameter), we get our main result

showing the integrality gap is at most 300
42−12

√
6 ·

1
2ρ−1 ≈

23.8
2ρ−1 .

Proof of Lemma 22. That f is downward monotone is direct from the definition. We
construct a vector x′ over edges the undirected complete graph with nodes V with edge
costs c. That is, for each undirected edge uv let x′uv = 1

ρ−δ
∑

i:uv or vu
is red on Pi

γi. We first claim
x′(δ(S)) ≥ f(S) for each ∅ ( S ⊆ V . That is, suppose S is such that f(S) = 1 and let
v satisfy

∑
i:red(v,Pi)⊆V γi < δ. Since v lies on a ρ-fraction of paths in total, this means a

(ρ− δ)-fraction of paths Pi have some edge of red(v, Pi) crossing S, as required.
From Lemma 20, the total c-cost of all red edges on Pi is at most 3

2c
reg(Pi). Thus,∑

uv cu,vx
′
uv ≤ 3

2
1
ρ−δOPTLP . From using the LP-based 2-approximation in [16], the c-cost

of the result forest is then at most 3
ρ−δOPTLP . By doubling the edges to get the cycles Cj ,∑

j c(Cj) ≤
6
ρ−δOPTLP . Finally, we chose an arbitrary direction for traversing each Cj but

the creg-cost of a directed cycle is the same as its c-cost, so the result follows. J

Proof of Lemma 23. We claim that we do not keep two nodes from any red interval for
each Pi when we form P ′i . But this is immediate from the fact that no cycle Cj contains two
nodes of W .

By the definition of red intervals, any path P ′ obtained from a path P by shortcutting
past all but one node in each red interval yields has its nodes appearing in strictly distance-
increasing order. So, the P ′i paths all start at the same location, all end at the same location,
and their internal nodes strictly increase in distance from s. So the union of all P ′i is an
acyclic graph.

Now, consider some w ∈W and say it lies on cycle Cj . At least a δ-fraction of paths Pi
spanning w satisfy red(w,Pi) ⊆ Cj because f(V (Cj)) = 0, so each w ∈W lies on at least a
δ-fraction of paths P ′i .

Since P ′i are obtained by shortcutting nodes from Pi,
∑q
i=1 c

reg(P ′i ) ≤
∑q
i=1 c

reg(Pi) ≤
2 ·OPTLP by Lemma 21. J
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A Reduction to Instances with Polynomially-Bounded Integer
Distances

I Theorem 26. For any constant ε > 0, if there is an α(n)-approximation for instances of
DirLat where each cu,v is a positive integer bounded by a polynomial in n and 1/ε and where
cu,v ≥ 1 for nodes u 6= v, then there is an (α(n) + ε)-approximation for general instances of
DirLat.

Proof. Compute a value ν such that OPT ≤ ν ≤ n2 · OPT where OPT is the optimum
solution to the given DirLat instance. For example, ν could be the smallest value such
that all nodes can be covered by a single walk in the graph Gν = (V + r, Eν) consisting
of directed edges Eν = {uv : cu,v ≤ ν}. This can be checked, for example, by contracting
the strongly-connected components of Gν and checking if topologically sorting the resulting
directed acyclic graph results in a single chain of components with the root in the first
component.

Now, the case OPT = 0 can detected in polynomial time as this is equivalent to checking
if the strongly-connected components of the graph using only distance-0 edges forms a chain.
So we assume OPT > 0, thus ν > 0. We then assume cu,v ≥ ε · ν/n3 by increasing any
distance that is smaller to this amount: the distances remain metric and the latency of any
node on the optimum solution increases by at most n · ν ≤ ε ·OPT/n, so the total latency
increases by at most ε ·OPT .

Next, we may assume all distances satisfy cu,v ≤ (α(n) + 2ε) · ν for the following reason.
Suppose we update each distance cu,v > (α(n) + 2ε) · ν with cu,v = (α(n) + 2ε) · ν. It
is easy to check these updated distances also form a metric. The optimum solution cost
is still OPT because no edge used by the optimum solution has its length shortened (as
ν ≥ OPT ). Also, note a solution P with c(P ) ≤ (α(n) + ε) · OPT will only use edges uv
where cu,v < (α(n) + 2ε) · ν. So an (α+ ε)-approximation in the metric with these truncated
distances yields an (α+ ε)-approximation for the original distances.

Next, for all u, v ∈ V + r let d′′(u, v) =
⌊
cu,v · n

4

ν·ε

⌋
. Let d′ be the shortest path metric

using edge distances given by d′′. Let OPT ′ denote the optimum solution to DirLat instance
with distances d′. Observe

d′(u, v) ≤ d′′(u, v) ≤ n4

ν · ε
cu,v.

Furthermore, cu,v ≤ (α(n) + 2ε) · ν for each edge uv means d′(u, v) ≤ n4

ε · (α(n) + ε). So all
distances under d′ are polynomially-bounded integers. We also see OPT ′ ≤ n4

ν·ε · OPT by
consider an optimum solution to the original instance, but under the new distances d′.
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Now consider a solution P with d′(P ) ≤ α(n) ·OPT ′. As d′ is a metric, we may assume P
is a Hamiltonian path so P traverses n edges. By replacing each edge in P with its shortest
path using distances d′′, we obtain a walk W with d′′(W ) = d′(P ) ≤ α(n) ·OPT ′. For each
edge uv, we have d′′(u, v) + 1 ≥ cu,v · n

4

ν·ε . So the cost of W under d can be bounded as
follows where sums over edges in W include as many terms of uv as its multiplicity in W .

c(W ) ≤ ε · ν
n4 ·

∑
uv∈W

(d′′(u, v) + 1)

= ε · ν
n4 · (d

′′(W ) + |W |)

≤ ε · ν
n4 · (α(n) ·OPT ′ + |W |)

≤ α(n) ·OPT + ε · ν
n2

≤ (α(n) + ε) ·OPT.

The last two bounds use |W | ≤ n · |P | ≤ n2 and ν ≤ n2 ·OPT . J


	Introduction
	Our contributions
	Related Work

	An O(1)-Approximation in Quasi-Polynomial Time
	Bounding the Latency of P^{v*, l*}

	Bounding the Integrality Gap of (LP-ATSPP_rho
	Constructing the Path
	Bounding z_s-z_t: Proof of Lemma 15
	A Bad Example for LP-ATSPP_rho

	An Improved Integrality Gap Bound for (LP-ATSPP_rho in Regret Metrics
	Reduction to Instances with Polynomially-Bounded Integer Distances

