
The Number of Repetitions in 2D-Strings
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Poland, Warsaw, Poland
jrad@mimuw.edu.pl

Wojciech Rytter
Institute of Informatics, University of Warsaw, Poland
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Poland
walen@mimuw.edu.pl

Wiktor Zuba
Institute of Informatics, University of Warsaw, Poland
w.zuba@mimuw.edu.pl

Abstract
The notions of periodicity and repetitions in strings, and hence these of runs and squares, naturally
extend to two-dimensional strings. We consider two types of repetitions in 2D-strings: 2D-runs and
quartics (quartics are a 2D-version of squares in standard strings). Amir et al. introduced 2D-runs,
showed that there are O(n3) of them in an n × n 2D-string and presented a simple construction
giving a lower bound of Ω(n2) for their number (Theoretical Computer Science, 2020). We make a
significant step towards closing the gap between these bounds by showing that the number of 2D-runs
in an n× n 2D-string is O(n2 log2 n). In particular, our bound implies that the O(n2 logn+ output)
run-time of the algorithm of Amir et al. for computing 2D-runs is also O(n2 log2 n). We expect this
result to allow for exploiting 2D-runs algorithmically in the area of 2D pattern matching.

A quartic is a 2D-string composed of 2× 2 identical blocks (2D-strings) that was introduced by
Apostolico and Brimkov (Theoretical Computer Science, 2000), where by quartics they meant only
primitively rooted quartics, i.e. built of a primitive block. Here our notion of quartics is more general
and analogous to that of squares in 1D-strings. Apostolico and Brimkov showed that there are
O(n2 log2 n) occurrences of primitively rooted quartics in an n× n 2D-string and that this bound is
attainable. Consequently the number of distinct primitively rooted quartics is O(n2 log2 n). The
straightforward bound for the maximal number of distinct general quartics is O(n4). Here, we prove
that the number of distinct general quartics is also O(n2 log2 n). This extends the rich combinatorial
study of the number of distinct squares in a 1D-string, that was initiated by Fraenkel and Simpson
(Journal of Combinatorial Theory, Series A, 1998), to two dimensions.

Finally, we show some algorithmic applications of 2D-runs. Specifically, we present algorithms for
computing all occurrences of primitively rooted quartics and counting all general distinct quartics in
O(n2 log2 n) time, which is quasi-linear with respect to the size of the input. The former algorithm is
optimal due to the lower bound of Apostolico and Brimkov. The latter can be seen as a continuation
of works on enumeration of distinct squares in 1D-strings using runs (Crochemore et al., Theoretical
Computer Science, 2014). However, the methods used in 2D are different because of different
properties of 2D-runs and quartics.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases 2D-run, quartic, run, square

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.32

© Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor
Zuba;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-0067-6401
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
mailto:w.zuba@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2020.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 The Number of Repetitions in 2D-Strings

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL under the EU’s
Horizon 2020 Research and Innovation Programme (agreement no. 677651).
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

1 Introduction

Periodicity is one of the main and most elegant notions in stringology. It has been studied
extensively both from the combinatorial and the algorithmic perspective; see e.g. the books [18,
25, 39]. A classic combinatorial result is the periodicity lemma due to Fine and Wilf [27].
From the algorithmic side, periodicity often poses challenges in pattern matching, due to
the following fact: a pattern P can have many occurrences in a text T that are “close” to
each other if and only if P has a “small” period. On the other hand, the periodic structure
indeed allows us to overcome such challenges; see [18, 25].

Runs, also known as maximal repetitions, are a fundamental notion in stringology. A
run is a periodic fragment of the text that cannot be extended without changing the period.
Runs were introduced in [35]. Kolpakov and Kucherov presented an algorithm to compute
all runs in a string in time linear with respect to the length of the string over a linearly-
sortable alphabet [38]. Runs fully capture the periodicity of the underlying string and, since
the publication of the algorithm for their linear-time computation, they have assumed a
central role in algorithm design for strings. They have been exploited for text indexing [36],
answering internal pattern matching queries in texts [16, 37], or reporting repetitions in a
string [2, 15, 22], to name a few applications.

Kolpakov and Kucherov also posed the so-called runs conjecture which states that there
are at most n runs in a string of length n. A long line of work on the upper [19, 20, 21,
31, 42, 43, 44] and lower bounds [30, 41, 45] was concluded by Bannai et al. who positively
resolved the runs conjecture in [10] (see also an alternative proof in [23] and a tighter upper
bound for binary strings from [28]).

A square is a concatenation of two copies of the same string. Fraenkel and Simpson [29]
showed that a string of length n contains at most 2n distinct square factors. This bound was
improved in [26, 34]. All distinct squares in a string of length n can be computed in O(n)
time assuming an integer alphabet [11, 22, 33] (see [46] for an earlier O(n logn) algorithm).

Pattern matching and combinatorics on 2D strings have been studied for more than 40
years, see e.g. [1, 4, 9, 14, 18, 25]. In this paper we consider 2-dimensional versions of runs,
introduced by Amir et al. [5, 6], and of repetitions in 2D-strings, introduced by Apostolico
and Brimkov [7]. As discussed in [6, 8], one could potentially exploit such repetitions in a
2D-string, which could for instance be an image, in order to compress it.

A 2D-run in a 2D-string A is a subarray of A that is both horizontally periodic and
vertically periodic and that cannot be extended by a row or column without changing the
horizontal or vertical periodicity (a formal definition follows in Section 2); see Figure 1(a).
Amir et al. [5, 6] have shown that the maximum number of 2D-runs in an n×n array is O(n3)
and presented an example with Θ(n2) 2D-runs. In [6] they presented an O(n2 logn+ output)-
time algorithm for computing 2D-runs.

A quartic is a configuration that is composed of 2 × 2 occurrences of an array W (see
Figure 1(b)) and a tandem is a configuration consisting of two occurrences of an arrayW that
share one side (Apostolico and Brimkov [7] also considered another type of tandems, which

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:3

share one corner; see also [3]). An array W is called primitive if it cannot be partitioned
into non-overlapping replicas of some array W ′. Apostolico and Brimkov [7] considered only
quartics and tandems with primitive W (we call them primitively rooted) and showed tight
asymptotic bounds Θ(n2 log2 n) and Θ(n3 logn) for the maximum number of occurrences of
such quartics and tandems in an n× n array, respectively. In [8] they presented an optimal
O(n3 logn)-time algorithm for computing all occurrences of tandems with primitive W . This
extends a result that a 1D-string of length n contains O(n logn) occurrences of primitively
rooted squares and they can all be computed in O(n logn) time; see [17, 46]. In this paper
we consider the numbers of all distinct quartics, which is a more complicated problem.

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(a) a 2D-run

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(b) a quartic

Figure 1 Examples of a 2D-run and a quartic.

When computing 2D-runs we consider positioned runs: two 2D-runs with same content
but starting in different points are considered distinct. However in case of quartics, similarly
as in case of 1D-squares, we consider unpositioned quartics; if two quartics have the same
content but start in different positions, we consider them equal.

Our Results.
We show that the number of 2D-runs in an n× n array is O(n2 log2 n). This improves
upon the O(n3) upper bound of Amir et al. [5, 6] and proves that their algorithm computes
all 2D-runs in an n× n 2D-string in O(n2 log2 n) time (Section 3).
We show that the number of distinct quartics in an n × n array is O(n2 log2 n). This
can be viewed as an extension of the bounds on the maximum number of distinct square
factors in a 1D-string [26, 29] (Section 4).
We present algorithmic implications of the new upper bound for 2D-runs. We show
that all occurrences of primitively rooted quartics can be computed in quasi-linear,
O(n2 log2 n) time, which is optimal by the bound of Apostolico and Brimkov [7]. Thus
our algorithm complements the result of Apostolico and Brimkov [8] who gave an optimal
algorithm for computing all occurrences of primitively rooted tandems. We also show that
all distinct quartics can be computed in quasi-linear, O(n2 log2 n) time, which extends
efficient computation of distinct squares in 1D-strings [11, 22, 33] to 2D (Section 5).
As an easy side result, we show tight Θ(n3) bounds for the maximum number of distinct
tandems in an n× n array and how to report them in O(n3) time (Section 2).

2 Preliminaries

1D-Strings. We denote by [a, b] the set {i ∈ Z : a ≤ i ≤ b}. Let S = S[1]S[2] · · ·S[|S|] be
a string of length |S| over an alphabet Σ. The elements of Σ are called letters. For two
positions i and j on S, we denote by S[i . . j] = S[i] · · ·S[j] the fragment of S that starts at
position i and ends at position j (it equals ε if j < i). A positive integer p is called a period
of S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p. We refer to the smallest period as the period
of the string, and denote it by per(S).

ESA 2020

32:4 The Number of Repetitions in 2D-Strings

I Lemma 1 (Periodicity Lemma (weak version), Fine and Wilf [27]). If p and q are periods of
a string S and satisfy p+ q ≤ |S|, then gcd(p, q) is also a period of S.

A string S is called periodic if per(S) ≤ |S|/2. By ST and Sk we denote the concatenation
of strings S and T and k copies of the string S, respectively. A string S is called primitive if
it cannot be expressed as Uk for a string U and an integer k > 1.

A string of the form U2 for string U is called a square. A square U2 is called primitively
rooted if U is primitive. We will make use of the following important property of squares.

I Lemma 2 (Three Squares Lemma, [24]). Let U , V and W be three strings such that U2 is
a proper prefix of V 2, V 2 is a proper prefix of W 2 and U is primitive. Then |U |+ |V | ≤ |W |.

A run (also known as maximal repetition) in S is a periodic fragment R = S[i . . j] which
cannot be extended either to the left or to the right without increasing the period p = per(R),
i.e. if i > 1 then S[i − 1] 6= S[i + p − 1] and if j < |S| then S[j + 1] 6= S[j − p + 1]. Let
R(S) denote the set of all runs of string S. For periodic fragment U = S[a . . b], the run that
extends U is the unique run R = S[i . . j] such that i ≤ a ≤ b ≤ j and per(R) = per(U). An
occurrence of a square U2 is said to be induced by a run R if R extends U2. Every square is
induced by exactly one run [22].

2D-Strings. Let A be an m×n array (2D-string). We denote the height and width of A by
height(A) = m and width(A) = n, respectively. By A[i, j] we denote the cell in the ith row
and jth column of A; see Figure 2(a). By A[i1 . . i2, j1 . . j2] we denote the subarray formed
of rows i1, . . . , i2 and columns j1, . . . , j2.

A positive integer p is a horizontal period of A if the i-th column of A equals the (i+p)-th
column of A for all i = 1, . . . , n − p. We denote the smallest horizontal period of A by
hper(A). Similarly, a positive integer q is a vertical period of A if the i-th row of A equals
the (i+ q)-th row of A for all i = 1, . . . ,m− q; the smallest vertical period of A is denoted
by vper(A).

1
...
i

...
m

n. . .j. . .1

A[i, j]

(a) 2D string A

W

W

W

W

W

W

W

W

W

. . .

β

α

(b) Wα,β

Figure 2 A 2D-string and the structure of Wα,β .

An r×c subarray B = A[i1 . . i2, j1 . . j2] of A is a 2D-run if hper(B) ≤ c/2, vper(B) ≤ r/2
and extending B by a row or column, i.e. either of A[i1 − 1, j1 . . j2], A[i2 + 1, j1 . . j2],
A[i1 . . i2, j1 − 1], or A[i1 . . i2, j2 + 1], would result in a change of the smallest vertical or the
horizontal period.

If W is a 2D array, then by Wα,β we denote an array that is composed of α× β copies of
W ; see Figure 2(b). A tandem of W is an array of the form W 1,2 and a quartic of W is the
array W 2,2. A 2D array A is called primitive if A = Bα,β for positive integers α, β implies
that α = β = 1. The primitive root of an array A is the unique primitive array B for which
A = Bα,β for α, β ≥ 1.

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:5

Apostolico and Brimkov [7] proved the following upper bound, and showed that it is tight
by giving a corresponding lower bound.

I Fact 3 (Lemma 5 in [7]). A 2D array of size n × n has O(n2 log2 n) occurrences of
primitively rooted quartics.

We say that a quartic Q = W 2,2 is induced by a 2D-run R if Q is a subarray of R and
hper(R) and vper(R) divide the width and height of W , respectively.

Figure 3 Shaded positions contain letters b, all the other the letters a. Each rectangle with
top-left and bottom-right corners marked is a 2D-run; altogether there are 18 distinct 2D-runs,
including two of the form b2,2. There are also 10 distinct quartics aα,β , where 0 < α, β ≤ 8 are even
and α+ β ≤ 10. There is also the quartic b2,2 (altogether 11 distinct quartics). The centrally placed
quartic a2,2 is contained in 16 2D-runs. There are only two distinct primitively rooted quartics.

I Observation 4. Every quartic is induced by a 2D-run. However; the same quartic can be
induced even by Θ(n2) 2D-runs; say the middle quartic a2,2 in Figure 3.

I Remark 5. The fact that a string of length n has O(n logn) occurrences of primitively
rooted squares immediately shows (by the fact that a square is induced by exactly one
run) that it has O(n logn) runs. However, an analogous argument applied for quartics and
2D-runs does not give a non-trivial upper bound for the number of the latter because of
Observation 4.

In our algorithms, we use a variant of the Dictionary of Basic Factors in 2D (2D-DBF in
short) that is similar to the one presented in [25]. Namely, to each subarray of A whose width
and height is an integer power of 2 we assign an integer identifier from [0, n2] so that two
arrays with the same dimensions are equal if and only if their identifiers are equal. The total
number of such subarrays is O(n2 log2 n) and the identifiers can be assigned in O(n2 log2 n)
time; see [25]. Using 2D-DBF, we can assign an identifier to a subarray of A of arbitrary
dimensions r × c being a quadruple of 2D-DBF identifiers of its four 2i × 2j subarrays that
share one of its corners, where 2i ≤ r < 2i+1 and 2j ≤ c < 2j+1. Such quadruples preserve
the property that two subarrays of the same dimensions are equal if and only if the 2D-DBF
quadruples are the same.

As an illustration, we show a tight bound for the number of distinct tandems and an
optimal algorithm for computing them.

I Theorem 6. The maximum number of distinct tandems in an n×n array A is Θ(n3). All
distinct tandems in an n× n array can be reported in the optimal Θ(n3) time.

Proof. Let us fix two row numbers i < i′ in A. Then, the number of distinct tandems with
top row i and bottom row i′ is O(n) by the fact that a string of length n contains O(n)
squares [26, 29]. Thus, in total there are O(n3) distinct tandems. For the lower bound, let

ESA 2020

32:6 The Number of Repetitions in 2D-Strings

the ith row of A be filled with occurrences of the letter i. Every subarray of A of even width
is a tandem. For each distinct triplet of top and bottom rows and even width, we obtain a
distinct tandem.

Let us proceed to the algorithm. For a height h ∈ [1, n], we assign integer identifiers from
[1, n2] that preserve lexicographical comparison to all height-h substrings of columns of A.
They can be assigned using the generalized suffix tree [18, 47] of the columns of A inO(n2 logn)
time. Let Bh be an array such that Bh[i, j] stores the identifier of A[i . . i+ h− 1, j]. To a
subarrayW = A[i . . i+h−1, j . . j+w−1] we assign an identifier id(W) = Bh[i, j . . j+w−1].
Then for any two subarrays W and W ′ of height h, W = W ′ if and only if id(W) = id(W ′).
For every height h = 1, . . . , n and row i, we find all distinct squares in Bh[i, 1], . . . , Bh[i, n]
in O(n) time [11, 22, 33]. This corresponds to the set of distinct tandems with top row i

and bottom row i+ h− 1. Finally, we assign identifiers from 2D-DBF of A to each of the
tandems and use radix sort to sort them and enumerate distinct tandems. J

3 Improved Upper Bound for 2D-Runs

We introduce the framework that Amir et al. used for efficiently computing 2D-runs [5, 6].
We say that a subarray B = A[i1 . . i2, j1 . . j2] of A is a horizontal run if it is horizont-

ally periodic (that is, hper(B) ≤ width(B)/2) and extending B by either of the columns
A[i1 . . i2, j1−1] or A[i1 . . i2, j2 + 1] would result in a change of the smallest horizontal period.
(Note that B does not have to be vertically periodic.)

For k ∈ [1, blognc] and i ∈ [1, n − 2k + 1], let Hk
i be the string obtained by replacing

the columns of array A[i . . i+ 2k − 1, 1 . . n] with metasymbols such that Hk
i [j] = Hk

i [j′] if
and only if A[i . . i+ 2k − 1, j] = A[i . . i+ 2k − 1, j′]. Notice that each such horizontal run of
height 2k corresponds to a run in some Hk

i .
The following lemma will enable us to “anchor” each 2D-run R in the top-left or bottom-

left corner of a horizontal run of “similar” height as R. It was proved in [6], but we provide
a proof for completeness.

I Lemma 7 (Lemma 7 in [6]). Let R be a 2D-run whose height is in the range [2k, 2k+1). Then
there is a horizontal run R′ of height 2k with hper(R′) = hper(R) and width(R′) ≥ width(R)
such that top-left or bottom-left corners of R and R′ coincide (see Figure 4).

Proof. Let R = A[i1 . . i2, j1 . . j2] be the 2D-run in scope and let k = blog(i2 − i1 + 1)c. We
have to show that at least one of the two following statements holds.

There is a run R1 = S[j1 . . b] in S = Hk
i1

with smallest period p and b ≥ j2.
There is a run R2 = T [j1 . . d] in T = Hk

i2−2k+1 with smallest period p and d ≥ j2.

Since vper(R) ≤ height(R)/2, all distinct rows of R are represented in each of U =
S[j1 . . j2] and V = T [j1 . . j2] and hence p = per(U) = per(V). Let R1 = S[a . . b] be the
run that extends U and R2 = T [c . . d] be the run that extends V . Let us suppose towards
a contradiction that max(a, c) < j1. Then, A[i1 . . i2, j1 − 1] = A[i1 . . i2, j1 − 1 + p], which
contradicts R being a run, since R and B = A[i1 . . i2, j1 − 1 . . j2] have the same horizontal
and vertical periods. J

The sum of the lengths of the runs in a string of length n can be Ω(n2) as shown in [32].
However, we prove the following lemma, which is crucial for our approach. We will use it to
obtain an overall bound on the possible widths of 2D-runs for our anchors.

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:7

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a a a a a a

b b b b b b b b b b b b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b b b

Figure 4 The shaded 7× 6 subarray is a 2D-run R, with vertical period 3 and horizontal period
p = 3. The other marked 4× 9 rectangle encloses a horizontal run R′ with the same top-left corner
and the same horizontal period as R. We have 2 · p ≤ width(R) ≤ width(R′).

I Lemma 8. For any string S of length n we have that

ρ(S) :=
∑

R∈R(S)

(|R| − 2 · per(R) + 1) = O(n logn).

Proof. We consider for each run R = S[i . . j] of S the interval IR = [i, j − 2 · per(R) + 1].
Note that ρ(S) =

∑
R∈R(S) |IR|.

Observe that for every a ∈ IR the string S[a . . a+ per(R)− 1] is primitive, since if it was
of the form Uk for a string U and an integer k > 1, then |U | < per(R) would be a period of
R, a contradiction. Hence, at each position a ∈ IR there is an occurrence of a primitively
rooted square of length 2 · per(R).

A direct application of the Three Squares Lemma (Lemma 2) implies that at most O(logn)
primitively rooted squares can start at each position a. Each such square extends to a unique
run. Thus, each position i belongs to O(logn) intervals IR for R ∈ R(S). This completes
the proof. J

We are now ready to prove the main result of this section.

I Theorem 9. There are O(n2 log2 n) 2D-runs in an n× n array A.

Proof. We will iterate over all horizontal runs R′ = A[i . . i′, j . . j′] whose height is a power
of 2, i.e. i′ = i+ 2k − 1 for some k. For each such horizontal run R′, we consider the 2D-runs
R with:
(a) top-left corner A[i, j] or bottom-left corner A[i′, j],
(b) hper(R) = hper(R′), and
(c) height(R) ∈ [2k, 2k+1).
For each such 2D-run R, we have width(R) ∈ [2 · hper(R′),width(R′)], else the horizontal
period would break, i.e. property (b) would be violated. Let us notice that R′ corresponds
to a run U = Hk

i [j . . j′] ∈ R(Hk
i). In particular, width(R) ∈ [2 · per(U), |U |].

Lemma 7 implies that each 2D-run is accounted for at least once in this manner. It is thus
enough to bound the number of considered runs. We have n choices for i and logn choices
for k. Further, due to Lemma 8, for each corresponding meta-string Hk

i we have O(n logn)
choices for a pair (j, c) such that U = Hk

i [j . . j′] ∈ R(Hk
i) and c ∈ [2 · per(U), |U |]. In total,

we thus have O(n2 log2 n) choices for (i, k, j, c). We will complete the proof by showing that
there is only a constant number of 2D-runs with top-left corner A[i, j], width w and whose
height is in the range [2k, 2k+1). (2D-runs with bottom-left corner A[i′, j] can be bounded
symmetrically.)

ESA 2020

32:8 The Number of Repetitions in 2D-Strings

B Claim 10 (cf. Lemma 10 in [6]). Let B be an r × c array with r ∈ [2k, 2k+1). Then, there
are at most two integers p > 2k−1 such that p = vper(B′) ≤ height(B′)/2 for B′ consisting
of the top height(B′) ≥ 2k rows of B.

Proof. Consider S to be the meta-string obtained by replacing the rows of B by single letters.
Then, a direct application of the Three Squares Lemma (Lemma 2) to S yields the claimed
bound. C

We apply Claim 10 to B = A[i . .min(i+ 2k+1 − 2, n), j . . j + c− 1]. If vper(R) ≤ 2k−1,
then vper(R) = vper(R′) by the Periodicity Lemma (Lemma 1) applied to the meta-string
obtained by replacing the rows of the intersection of R′ and B by single letters. Now Claim 10
implies that there are at most three choices to make for the vertical period: vper(R′) and
the two integers from the claim. Finally, for fixed top-left corner, width and vertical period
we can have a single 2D-run. This concludes the proof. J

Amir et al. [6] presented the following algorithmic result.

I Theorem 11 ([6]). All 2D-runs in an n×n array can be computed in O(n2 logn+ output)
time, where output is the number of 2D-runs reported.

By combining Theorems 9 and 11 we get the following corollary.

I Corollary 12. All 2D-runs in an n× n array can be computed in O(n2 log2 n) time.

4 Upper Bound on the Number of Distinct Quartics

Fact 3 that originates from [7] shows that an n× n array A has O(n2 log2 n) occurrences of
primitively rooted quartics. This obviously implies that the number of distinct primitively
rooted quartics is upper bounded by O(n2 log2 n). Unfortunately, an array can contain Θ(n4)
occurrences of general quartics; this takes place e.g. for a unary array. In this section we
show that O(n2 log2 n) is also an upper bound for the number of distinct general quartics,
i.e. subarrays of A of the form Wα,β for even α, β ≥ 2 and primitive W .

The following lemma and its corollary are the combinatorial foundation of our proofs. An
array W with height(W) ∈ [2a, 2a+1) and width(W) ∈ [2b, 2b+1) will be called an (a, b)-array.

I Lemma 13. Let a, b be non-negative integers and W,W ′ be different primitive (a, b)-arrays.
If occurrences of W 2,3 and (W ′)2,3 (of W 3,2 and (W ′)3,2, respectively) in A share the same
corner (i.e., top-left, top-right, bottom-left or bottom-right), then width(W) = width(W ′)
(height(W) = height(W ′), respectively).

Proof. Clearly it is sufficient to prove the lemma for W 2,3 and (W ′)2,3. Assume w.l.o.g. that
occurrences of W 2,3 and (W ′)2,3 in A share the top-left corner and consider their overlap X.

Each of the rows of X has periods width(W) and width(W ′). Assume w.l.o.g. that
width(W) ≤ width(W ′). Then

width(X) = 3 · width(W) ≥ width(W) + 2a+1 ≥ width(W) + width(W ′).

By the Periodicity Lemma (Lemma 1), p = gcd(width(W),width(W ′)) is a horizontal period
of X.

The array X contains at least one occurrence of W and W ′ in its top-left corner. Hence,
W and W ′ have a horizontal period p. If width(W) < width(W ′), then width(W ′) cannot
be a multiple of width(W), because then we would have width(W ′) > 2a+1. Hence, if
width(W) < width(W ′), we would have p < width(W) which by p | width(W) would mean
that W is not primitive. This indeed shows that width(W) = width(W ′). J

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:9

I Corollary 14. Let a, b be non-negative integers and W,W ′ be different (a, b)-arrays. If
occurrences of W 3,3 and (W ′)3,3 in A share the same corner (i.e., top-left, top-right, bottom-
left or bottom-right), then at least one of W , W ′ is not primitive.

If V 2,2 is a non-primitively rooted quartic, then there exists a primitive array W such
that V = Wα,β and at least one of α, β is greater than one. We will call the quartic W 2α,2β

thin if α = 1 or β = 1 for this decomposition, and thick otherwise. We refer to points in A as
the (n + 1)2 positions where row and column delimiters intersect. Let us first bound the
number of distinct thin quartics. For β > 1, we consider any rightmost occurrence of every
such quartic, that is, any occurrence A[i1 . . i2, j1 . . j2] that maximizes j1.

I Lemma 15. The total number of distinct thin quartics in A is O(n2 log2 n).

Proof. We give a proof for quartics of the form W 2,2β for primitive W and β > 1; the proof
for quartics of the form W 2α,2 for α > 1 is symmetric. We consider each pair of positive
integers a, b and show that each point holds the top-left corner of at most two rightmost
occurrences of W 2,2β for primitive (a, b)-arrays W and β > 1.

Assume to the contrary that the rightmost occurrences ofW 2,2β , (W ′)2,2β′ and (W ′′)2,2β′′

share their top-left corner for primitive (a, b)-arrays W,W ′,W ′′. The arrays W,W ′,W ′′ are
pairwise different, since otherwise one of the occurrences would not be the rightmost. By
Lemma 13, we have width(W) = width(W ′) = width(W ′′). Assume w.l.o.g. that height(W) <
height(W ′) < height(W ′′).

Let (i, j) denote the top-left corner of the three quartics. Let us consider three length-2`
strings formed of metacharacters that correspond to row fragments:

(A[i, j . . j + w − 1]), . . . , (A[i+ 2`− 1, j . . j + w − 1])

for w = width(W) and ` ∈ {height(W), height(W ′), height(W ′′)}. All the three strings need
to be primitively rooted squares. We apply the Three Squares Lemma (Lemma 2) to conclude
that height(W ′′) > height(W) + height(W ′) > 2a+1, a contradiction. J

Now let us proceed to thick quartics. Unfortunately, in this case a single point can be
the top-left corner of a linear number of rightmost occurrences of thick quartics; see the
example in Figure 3. Let us consider an occurrence of Wα,β for even α, β > 2 and primitive
W , called a positioned quartic. It implies α · β occurrences of W . Let us call all corners of
all these occurrences of W special points of this positioned quartic. Each special point stores
a direction in {top-left, top-right, bottom-left,bottom-right}. A special point has one of the
directions if it is the respective corner of an occurrence of W 3,3 in this positioned quartic.
Clearly, since α, β ≥ 4, for every special point in Wα,β except for the middle row if α = 4 or
middle column if β = 4, one can assign such a direction (if many directions are possible, we
choose an arbitrary one); see Figure 5.

The quartics with primitive root W are called W -quartics. The set of all special
points (with directions) of all positioned thick W -quartics for a given W is denoted by
SpecialPoints(W). Among W -quartics of the same height we distinguish the ones with
maximal width, which we call h-maximal (horizontally maximal). Let us observe that each
W -quartic is contained in an occurrence of some h-maximal W -quartic.

I Theorem 16. The number of distinct quartics in an n× n array is O(n2 log2 n).

Proof. By Fact 3 and Lemma 15 it suffices to show that the total number of distinct thick
quartics in A is O(n2 log2 n). Let us fix non-negative integers a, b. It is enough to show that
the number of distinct subarrays of A of the form Wα,β for even α, β > 2 and any primitive
(a, b)-array W is O(n2).

The sets of special points have the following properties. Claim 17 follows from Corollary 14.

ESA 2020

32:10 The Number of Repetitions in 2D-Strings

W 6,6 W 4,4

Figure 5 Special points of a positioned quartic with primitive root W with associated directions
of four types. The arrow indicates the corner (four possibilities) of W 3,3 which is contained in the
quartic. If several assignments of directions are possible, only one of them is chosen (it does not
matter which one). In case of W 4,4 the middle row and column are not special.

B Claim 17. For primitive (a, b)-arraysW 6= W ′ , SpecialPoints(W)∩SpecialPoints(W ′) = ∅.

For an array W , let us denote by ThickQuartics(W) the total number of thick quartics
in A with primitive root W .

B Claim 18. For a primitive (a, b)-array W , ThickQuartics(W) < |SpecialPoints(W)|.

Proof. For each α = 4, 6, . . . in this order, we select one positioned h-maximal W -quartic Uα
of height α · height(W). The number of distinct W -quartics in A of height α · height(W) is
at most the number of special points in Uα in any of its rows. Note that this statement also
holds if Uα = Wα,4; then there are still four special points in each (non-middle if α = 4) row.

We describe a process of assigning distinct W -quartics to distinct special points in
SpecialPoints(W). Assume all points in this set are initially not marked. We choose any
single row from Uα with all special points in this row still not marked. Then we mark all
these special points. We can always choose a suitable row because the heights are increasing.

This way each W -quartic is assigned to only one special point from SpecialPoints(W).
C

By the claims, the total number of thick W -quartics for primitive (a, b)-arrays W is
bounded by:∑

W

ThickQuartics(W) <
∑
W

|SpecialPoints(W)| ≤ 4(n+ 1)2,

where the sum is over all primitive (a, b)-arrays W . The conclusion follows. J

5 Algorithms for Computing Quartics

In this section we show algorithmic applications of 2D-runs related to quartics.

I Theorem 19. All occurrences of primitively rooted quartics in an n× n array A can be
computed in the optimal O(n2 log2 n) time.

Proof. Let us consider a 2D-run R = A[i1 . . i2, j1 . . j2] with periods hper(R) = p and
vper(R) = q. It induces primitively rooted quartics of width 2p and height 2q. The set of
top-left corners of these quartics forms a rectangle R̂ = [i1, i2− 2p+ 1]× [j1, j2− 2q+ 1]. We
denote by Fp,q the family of such rectangles R̂ over 2D-runs R with the same periods p, q.

Such rectangles for different 2D-runs may overlap, even when the dimensions of the
quartic are fixed (see Observation 4). In order not to report the same occurrence multiple
times, we need to compute, for every dimensions of a quartic, all points in the union of

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:11

the corresponding rectangles. This could be done with an additional logn-factor in the
complexity using a standard line sweep algorithm [12]. However, we can achieve O(n2 log2 n)
total time using the fact that the total number of occurrences reported is O(n2 log2 n).

B Claim 20. Let F1, . . . ,Fk be families of 2D rectangles in [1, n]2 and let r =
∑k
i=1 |Fi|. We

can compute k (not necessarily disjoint) sets of grid points Outi =
⋃
Fi in O(n+ r+ output)

total time, where output =
∑
i |Outi| is the total number of reported points.

Proof. We design an efficient line sweep algorithm. We will perform a separate line sweep,
left to right, for each family Fi.

The sweep goes over horizontal (x) coordinates in a left-to-right manner. The broom
stores vertical (y) coordinates of horizontal sides of rectangles that it currently intersects.
They are stored in a sorted list L of pairs (y, c), where y is the coordinate, and c is the count
of rectangles with bottom side at coordinate y minus the count of the rectangles with top
side at coordinate y. Only pairs with non-zero second component are stored. Clearly, the
second components of the list elements always sum up to 0.

A coordinate x is processed if L is non-empty before accessing it or there exist any vertical
sides of rectangles at x. All vertical sides with the same y-coordinate are processed in a
batch. For every such batch we want to guarantee that endpoints of all sides are stored in a
list B in a top-down order.

A top (bottom) endpoint at vertical coordinate y is stored as (y,+1) ((y,−1), respectively).
Let us now describe how to process a horizontal coordinate x. Let us merge the list L

that is currently in the broom with the list B of the batch by the first components. If there is
more than one pair with the same first component, we merge all of them together, summing
up the second components.

Let us denote by L′ the resulting list. We iterate over all elements of L′, keeping track of
the partial sum of second components, denoted as s. For every element (y, c) of L′, the point
(x, y) is reported for

⋃
Fi. Moreover, if the partial sum s before considering c was positive

and the previous element of L′ is (y′, c′), all points (x, y′ + 1), . . . , (x, y − 1) are reported to
Outi.

Finally, all pairs with second component equal to zero are removed from L′ which becomes
the new list L.

Let us now analyze the complexity of the algorithm. The line sweep makes n steps. The
total size of lists B across all families Fi is O(r) and they can be constructed simultaneously
in O(n+ r) time via bucket sort.

Processing a batch with list B takes O(|L|+ |B|) time plus the time to report points in
Outi. As we have already noticed, the sum of O(|B|) components is O(r). For every element
(y, c) of the initial list L, a point with the vertical coordinate y is reported upon merging;
hence, the sum of O(|L|) components is dominated by O(output). Overall we achieve time
complexity O(n+ r + output). C

We apply the claim to the families Fp,q. Then r and output are upper bounded by
O(n2 log2 n) by Theorem 9 and Fact 3, respectively. The optimality of our algorithm’s
complexity is due to the Ω(n2 log2 n) lower bound on the maximum number of occurrences
of primitively rooted quartics from [7]. J

We proceed to an efficient algorithm for enumerating distinct, not necessarily primitively
rooted, quartics using 2D-runs. The solution for an analogous problem for 1-dimensional
strings (computing distinct squares from runs) uses Lyndon roots of runs [22]. However, in 2
dimensions it is not clear if a similar approach could be applied efficiently, say, with the aid

ESA 2020

32:12 The Number of Repetitions in 2D-Strings

of 2D Lyndon words [40] as Lyndon roots of 2D-runs. We develop a different approach in
which the workhorse is the following auxiliary problem related to the folklore nearest smaller
value problem.

Let us consider a grid of height m in which every cell can be black or white. We say
that the grid forms a staircase if the set of white cells in each row is nonempty and is
a prefix of this row (see Figure 6). A staircase can be uniquely determined by an array
Whites[1 . .m] such that Whites[i] is the number of white cells in the ith row. We consider
shapes of white rectangles. Each shape is a pair (p, q) that represents the dimensions
of the rectangle. These shapes (and corresponding rectangles) are partially ordered by:
(p, q) < (p′, q′) ⇔ (p, q) 6= (p′, q′) ∧ p ≤ p′ ∧ q ≤ q′.

Max White Rectangles
Input: An array Whites[1 . .m] that represents a staircase.
Output: Shapes of all maximal white rectangles in this staircase.

I Lemma 21. Max White Rectangles problem can be solved in O(m) time.

Proof. Assume that Whites[0] = Whites[m+ 1] = −1. Let us define two tables of size m:

NSVUp[i] = max{j : j < i, Whites[j] < Whites[i]},
NSVDown[i] = min{j : j > i, Whites[j] < Whites[i]}.

They can be computed in O(m) time by a folklore algorithm for the nearest smaller
value table; see e.g. [13]. Then the problem can be solved as in Algorithm 1 presented below.
After the first for-loop, for each maximal white rectangle R we have MaxWidth[height(R)] =
width(R), but we could have redundant values for non-maximal rectangles. In order to filter
out non-maximal rectangles, we process the candidates by decreasing height and remove the
ones that are dominated by the previous maximal rectangle in the partial order of shapes. J

Algorithm 1 The first phase computes a set of shapes of type (h,MaxWidth[h]), at most
one for each height h; see also Figure 6. In the second phase only inclusion-maximal shapes
from this set are reported.

ComputeCandidates:
MaxWidth[1 . .m] := (0, . . . , 0)
for i := 1 to m do

h := NSVDown[i]−NSVUp[i]− 1
MaxWidth[h] := max(MaxWidth[h],Whites[i])

ReportMaximal:
mw := 0
for h := m down to 1 do

if MaxWidth[h] > mw then
Report the shape (h,MaxWidth[h])
mw := MaxWidth[h]

I Remark 22. Note that the total area (and width) of a staircase can be large but the
complexity of our algorithm is linear with respect to the number of rows, thanks to the small
representation (array Whites).

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:13

i

NSVUp[i]

NSVDown[i]

Figure 6 A maximal white rectangle containing row i is computed using the NSV tables for i.

Now our approach is graph-theoretic. The graph nodes correspond to occurrences of
primitively rooted quartics. For a fixed primitively rooted quartic W 2,2 we consider the
graph GW = (V,E), where V is the set of top-left corners of occurrences of W 2,2. Let
r = height(W) and c = width(W). The edges in G connect vertex (i, j) with vertices (i± r, j)
and (i, j ± c), if they exist. See also Figure 7. This graph can be efficiently computed since
we know its nodes due to Theorem 19.

b

c

a

c

a

b

a

b

c

W

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

A
GW

Figure 7 Graph GW has 12 vertices that form two components with 3 vertices each (green and
brown) and one component with 6 vertices (blue). Note the non-trivial occurrences of W in W 3,4.

I Lemma 23. All graphs GW , and their connected components, for all W which are primitive
roots of quartics in A can be constructed in O(n2 log2 n) time.

Proof. We first compute all occurrences of primitively rooted quartics in A using Theorem 19.
By Fact 3, there are O(n2 log2 n) of them in total.

We can assign 2D-DBF identifiers (quadruples) to each of the occurrences and group the
occurrences by distinct primitively rooted quartics via radix sort in O(n2 log2 n) time. This
gives us the vertices of GW .

To compute the edges, we use an auxiliary n× n Boolean array D that will store top-left
corners of occurrences of each subsequent primitively rooted quartic W 2,2.

Initially D is set to zeroes and after each W , all cells with ones are zeroed in O(|GW |)
time. Using this array and the positions of occurrences of W 2,2, the edges of GW can be
computed in O(|GW |) time. It also allows to divide GW into connected components via
graph search in O(|GW |) time. J

I Theorem 24. All distinct quartics in an n× n array A can be computed in O(n2 log2 n)
time.

ESA 2020

32:14 The Number of Repetitions in 2D-Strings

Proof. We first apply Lemma 23. Now consider a fixed primitive W of height c and width r.
Let us note that if (i, j), (i′, j′) belong to the same connected component H of GW , then
i ≡ i′ (mod r) and j ≡ j′ (mod c). We say that a connected component H of GW generates
an occurrence of a power Wα,β if the αβ occurrences of W that are implied by it belong to
H. If Wα,β has an occurrence in A, then it is generated by some connected component H of
GW , unless min(α, β) = 1.

We say that Wα,β is a maximal power if there is no other power Wα′,β′ in A such that
α′ ≥ α, β′ ≥ β, and (α′, β′) 6= (α, β). Similarly, we consider powers that are maximal among
ones that are generated by a connected component H. Let MaxPowersW (H) be the set of
maximal powers generated by a connected component H. It can be computed in linear time
using Lemma 21 as shown in Algorithm 2, which we now explain.

For each vertex (i, j) in H, we insert four points to a set S, which correspond to the
four occurrences of W underlying the occurrence of quartic W 2,2 at position (i, j). If S is
treated as a set of white cells in a grid, then Wα,β for α > 1 is a power generated by H
if and only if the grid contains a white rectangle of shape (α, β). For a cell (i, j) ∈ S, we
denote R[i, j] = min{p ≥ 0 : (i, j + p) 6∈ S}. Assuming that the cells of S are sorted by
non-increasing second component, each value R[i, j] can be computed from R[i, j + 1] in
constant time, for a total of O(|S|) time. The sorting for all S can be done globally, using
radix sort. Also, the array R can be stored globally and used for all S, cleared after each use.
Finally, we process each maximal set of consecutive cells (i, j), . . . , (i+m− 1, j) ∈ S that
are located in the same column and apply Lemma 21 to solve the resulting instance of the
Max White Rectangles problem. The total time required by this step is O(|S|).

Algorithm 2 Computing MaxPowersW (H) for a component H of GW .

S := ∅
foreach (i, j) in V (H) do

a := bi/rc; b = bj/cc
S := S ∪ {(a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1)}

R[0 . . n, 0 . . n] := (0, . . . , 0)
foreach (i, j) in S in non-increasing order of j do

R[i, j] := R[i, j + 1] + 1
Result := ∅
foreach maximal set {(i, j), (i+ 1, j) . . . , (i+m− 1, j)} ⊆ S do

Whites[1 . .m] := R[i . . i+m− 1, j]
Result := Result ∪MaxWhiteRectangles(Whites)

remove redundant rectangles from Result
return Result

In the end we filter out the powers Wα,β that are not maximal in A similarly as
in the proof of Lemma 21, using a global array MaxWidth. Let Wα1,β1 , . . . ,Wαk,βk be
the resulting sequence of maximal powers, sorted by increasing first component, and let
α0 = β0 = 0. Then the set of all quartics in A with primitive root W contains all W 2α,2β

over αp−1 < 2α ≤ αp, 1 ≤ 2β ≤ βp, for p ∈ [2, k]. They can be reported in O(n2 log2 n) total
time over all W due to the upper bound of Theorem 16. J

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:15

6 Final Remarks

We showed that the numbers of distinct runs and quartics in an n× n array are O(n2 log2 n).
This improves upon previously known estimations. We also proposed O(n2 log2 n)-time
algorithms for computing all occurrences of primitively rooted quartics and all distinct
quartics. A straightforward adaptation shows that for an m × n array these bounds and
complexities all become O(mn logm logn).

We pose two conjectures for n× n 2D-strings:
The number of 2D-runs is O(n2).
The number of distinct quartics is O(n2).

References
1 Amihood Amir, Gary Benson, and Martin Farach. An alphabet independent approach

to two-dimensional pattern matching. SIAM Journal on Computing, 23(2):313–323, 1994.
doi:10.1137/S0097539792226321.

2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
detection in a dynamic string. In 27th Annual European Symposium on Algorithms, ESA 2019,
volume 144 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ESA.2019.5.

3 Amihood Amir, Ayelet Butman, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Double
string tandem repeats. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM
2020, volume 161 of LIPIcs, pages 3:1–3:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CPM.2020.3.

4 Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. In Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, pages 212–223. ACM/SIAM, 1991. URL: http://dl.acm.org/citation.
cfm?id=127787.127829.

5 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional
maximal repetitions. In 26th Annual European Symposium on Algorithms, ESA 2018, volume
112 of LIPIcs, pages 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.2.

6 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional maximal
repetitions. Theoretical Computer Science, 812:49–61, 2020. doi:10.1016/j.tcs.2019.07.
006.

7 Alberto Apostolico and Valentin E. Brimkov. Fibonacci arrays and their two-dimensional repe-
titions. Theoretical Computer Science, 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)
00182-0.

8 Alberto Apostolico and Valentin E. Brimkov. Optimal discovery of repetitions in 2D. Discrete
Applied Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.

9 Theodore P. Baker. A technique for extending rapid exact-match string matching to arrays of
more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978. doi:10.1137/
0207043.

10 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

11 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in linear
time for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern Matching,
CPM 2017, volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.22.

12 Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Unpublished notes, Computer
Science Department, Carnegie Mellon University, 1977.

ESA 2020

https://doi.org/10.1137/S0097539792226321
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.CPM.2020.3
http://dl.acm.org/citation.cfm?id=127787.127829
http://dl.acm.org/citation.cfm?id=127787.127829
https://doi.org/10.4230/LIPIcs.ESA.2018.2
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1016/j.dam.2005.02.019
https://doi.org/10.1137/0207043
https://doi.org/10.1137/0207043
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22

32:16 The Number of Repetitions in 2D-Strings

13 Omer Berkman, Baruch Schieber, and Uzi Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. Journal of Algorithms, 14(3):344–370,
1993. doi:10.1006/jagm.1993.1018.

14 Richard S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168–
170, 1977. doi:10.1016/0020-0190(77)90017-5.

15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.8.

16 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń. Internal dictionary matching. In 30th International
Symposium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.22.

17 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-
tion Processing Letters, 12(5):244–250, 1981. doi:10.1016/0020-0190(81)90024-7.

18 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

19 Maxime Crochemore and Lucian Ilie. Analysis of maximal repetitions in strings. In Math-
ematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS
2007, volume 4708 of Lecture Notes in Computer Science, pages 465–476. Springer, 2007.
doi:10.1007/978-3-540-74456-6_42.

20 Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and System Sciences, 74(5):796–807, 2008. doi:10.1016/j.jcss.2007.09.003.

21 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theoretical Computer
Science, 412(27):2931–2941, 2011. doi:10.1016/j.tcs.2010.06.019.

22 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

23 Maxime Crochemore and Robert Mercaş. On the density of Lyndon roots in factors. Theoretical
Computer Science, 656:234–240, 2016. doi:10.1016/j.tcs.2016.02.015.

24 Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

25 Maxime Crochemore and Wojciech Rytter. Jewels of stringology. World Scientific, 2002.
doi:10.1142/4838.

26 Antoine Deza, Frantisek Franek, and Adrien Thierry. How many double squares can a string
contain? Discrete Applied Mathematics, 180:52–69, 2015. doi:10.1016/j.dam.2014.08.016.

27 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

28 Johannes Fischer, Stepan Holub, Tomohiro I, and Moshe Lewenstein. Beyond the runs
theorem. In String Processing and Information Retrieval - 22nd International Symposium,
SPIRE 2015, volume 9309 of Lecture Notes in Computer Science, pages 277–286. Springer,
2015. doi:10.1007/978-3-319-23826-5_27.

29 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

30 Frantisek Franek and Qian Yang. An asymptotic lower bound for the maximal number of runs
in a string. International Journal of Foundations of Computer Science, 19(1):195–203, 2008.
doi:10.1142/S0129054108005620.

31 Mathieu Giraud. Not so many runs in strings. In Language and Automata Theory and
Applications, Second International Conference, LATA 2008, volume 5196 of Lecture Notes in
Computer Science, pages 232–239. Springer, 2008. doi:10.1007/978-3-540-88282-4_22.

https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.1016/0020-0190(77)90017-5
https://doi.org/10.4230/LIPIcs.CPM.2020.8
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.1016/0020-0190(81)90024-7
https://doi.org/10.1007/978-3-540-74456-6_42
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1016/j.tcs.2010.06.019
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.tcs.2016.02.015
https://doi.org/10.1007/BF01190846
https://doi.org/10.1142/4838
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.2307/2034009
https://doi.org/10.1007/978-3-319-23826-5_27
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1142/S0129054108005620
https://doi.org/10.1007/978-3-540-88282-4_22

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:17

32 Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer Science,
501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

33 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. Journal of Computer and System Sciences, 69(4):525–546, 2004.
doi:10.1016/j.jcss.2004.03.004.

34 Lucian Ilie. A note on the number of squares in a word. Theoretical Computer Science,
380(3):373–376, 2007. doi:10.1016/j.tcs.2007.03.025.

35 Costas S. Iliopoulos, Dennis W. G. Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1-2):281–291, 1997.
doi:10.1016/S0304-3975(96)00141-7.

36 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, pages 756–767. ACM, 2019.
doi:10.1145/3313276.3316368.

37 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

38 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

39 M. Lothaire. Combinatorics on words, Second Edition. Cambridge mathematical library.
Cambridge University Press, 1997.

40 Shoshana Marcus and Dina Sokol. 2D Lyndon words and applications. Algorithmica, 77(1):116–
133, 2017. doi:10.1007/s00453-015-0065-z.

41 Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi Shinohara.
New lower bounds for the maximum number of runs in a string. In Proceedings of the Prague
Stringology Conference 2008, pages 140–145, 2008. URL: http://www.stringology.org/
event/2008/p13.html.

42 Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string contain?
Theoretical Computer Science, 401(1-3):165–171, 2008. doi:10.1016/j.tcs.2008.04.020.

43 Wojciech Rytter. The number of runs in a string: Improved analysis of the linear upper
bound. In 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS
2006, volume 3884 of Lecture Notes in Computer Science, pages 184–195. Springer, 2006.
doi:10.1007/11672142_14.

44 Wojciech Rytter. The number of runs in a string. Information and Computation, 205(9):1459–
1469, 2007. doi:10.1016/j.ic.2007.01.007.

45 Jamie Simpson. Modified Padovan words and the maximum number of runs in a word. The
Australasian Journal of Combinatorics, 46:129–146, 2010. URL: http://ajc.maths.uq.edu.
au/pdf/46/ajc_v46_p129.pdf.

46 Jens Stoye and Dan Gusfield. Simple and flexible detection of contiguous repeats using a suffix
tree. Theoretical Computer Science, 270(1-2):843–856, 2002. doi:10.1016/S0304-3975(01)
00121-9.

47 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

A Alternative Algorithm for the Proof of Lemma 21

An alternative, space efficient and more direct algorithm that does not use additional tables
NSVDown and NSVUp, is shown below. The algorithm computes only the table MaxWidth.
Then, we can use the second phase from Algorithm 1. We assume that the table MaxWidth
is initially filled with zeros.

ESA 2020

https://doi.org/10.1016/j.tcs.2013.06.004
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1016/j.tcs.2007.03.025
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1007/s00453-015-0065-z
http://www.stringology.org/event/2008/p13.html
http://www.stringology.org/event/2008/p13.html
https://doi.org/10.1016/j.tcs.2008.04.020
https://doi.org/10.1007/11672142_14
https://doi.org/10.1016/j.ic.2007.01.007
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
https://doi.org/10.1016/S0304-3975(01)00121-9
https://doi.org/10.1016/S0304-3975(01)00121-9
https://doi.org/10.1007/BF01206331

32:18 The Number of Repetitions in 2D-Strings

Algorithm 3 Alternative implementation of the first phase in Algorithm 1.

Whites[0] := Whites[m+ 1] := 0
S := empty stack; push(S, 0)
for i := m down to 0 do

while Whites[i] < Whites[top(S)] do
k := top(S); h := top(S)− i− 1
MaxWidth[h] := max(MaxWidth[h],Whites[k])
pop(S)

if Whites[top(S)] = Whites[i] then pop(S)
push(S, i)

The algorithm is a version of a folklore algorithm for the Nearest Smaller Values problem
and correctness can be shown using the same arguments. If Whites[i] < Whites[i+ 1], then
the algorithm produces shapes of all Max White Rectangles anchored at i + 1, otherwise
i+ 1 is “nonproductive”. Observe that i+ 1 = top(S) when we start processing i ≥ 1.

Let us analyze the time complexity of the algorithm. In total m+ 2 elements are pushed
to the stack. Each iteration of the while-loop pops an element, so the total number of
iterations of this loop is O(m). Consequently, the algorithm works in O(m) time. In the end
one needs to filter out non-maximal rectangles as in the previous proof of Lemma 21.

	Introduction
	Preliminaries
	Improved Upper Bound for 2D-Runs
	Upper Bound on the Number of Distinct Quartics
	Algorithms for Computing Quartics
	Final Remarks
	Alternative Algorithm for the Proof of Lemma 21

