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Abstract
Given a set of n integer-valued coin types and a target value t, the well-known change-making
problem asks for the minimum number of coins that sum to t, assuming an unlimited number of coins
in each type. In the more general all-targets version of the problem, we want the minimum number
of coins summing to j, for every j = 0, . . . , t. For example, the textbook dynamic programming
algorithms can solve the all-targets problem in O(nt) time. Recently, Chan and He (SOSA’20)
described a number of O(tpolylog t)-time algorithms for the original (single-target) version of the
change-making problem, but not the all-targets version.

In this paper, we obtain a number of new results on change-making and related problems:
We present a new algorithm for the all-targets change-making problem with running time Õ(t4/3),
improving a previous Õ(t3/2)-time algorithm.
We present a very simple Õ(u2 + t)-time algorithm for the all-targets change-making problem,
where u denotes the maximum coin value. The analysis of the algorithm uses a theorem of
Erdős and Graham (1972) on the Frobenius problem. This algorithm can be extended to solve
the all-capacities version of the unbounded knapsack problem (for integer item weights bounded
by u).
For the original (single-target) coin changing problem, we describe a simple modification of one
of Chan and He’s algorithms that runs in Õ(u) time (instead of Õ(t)).
For the original (single-capacity) unbounded knapsack problem, we describe a simple algorithm
that runs in Õ(nu) time, improving previous near-u2-time algorithms.
We also observe how one of our ideas implies a new result on the minimum word break problem,
an optimization version of a string problem studied by Bringmann et al. (FOCS’17), generalizing
change-making (which corresponds to the unary special case).
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1 Introduction

In the change-making problem (also known as coin changing), a set of n positive-integer-
valued coin types is given, and the cashier wants to use the minimum number of coins to sum
to a target value t exactly, where the number of coins in each type can be used an unlimited
number of times. This is a well-known textbook problem, which is weakly NP-hard [20], and
standard solutions using dynamic programming [27] have O(nt) running time.
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29:2 More on Change-Making and Related Problems

Change-making is closely related to another textbook problem, subset sum (the differences
are that in subset sum, each item may be used at most once and there is no objective function
to minimize). A series of work in the last few years [5, 16, 15, 17] have given improved
algorithms for subset sum, using convolution (FFT). Very recently, at SOSA’20, Chan
and He [8] revisited the change-making problem and described a number of O(tpolylog t)-
time algorithms, using FFT; their fastest deterministic and randomized algorithms have
O(t log t log log t) and O(t log t) running time respectively.

All-targets change-making. In this paper, we consider a more general, all-targets version
of the change-making problem: the aim is to compute, for each target value j = 0, . . . , t, the
minimum number of coins that can be used to sum to j exactly. This version of the problem
is equally natural. For instance, the standard O(nt)-time dynamic programming algorithms
are actually designed to solve this more general version. Some of the newer subset-sum
algorithms [5, 16, 17, 15] also solved the analogous all-targets version of subset sum, but
in contrast, Chan and He’s algorithms for change-making do not work for the all-targets
version.

The best previous result for the all-targets change-making problem that we are aware of
was an Õ(t3/2)-time1 algorithm by Karl Bringmann and Tomasz Kociumaka (2019), cited as
a personal communication (and briefly sketched) in a very recent paper by Lincoln, Polak,
and Vassilevska Williams (ITCS’20) [19]. Lincoln et al.’s paper gave a web of fine-grained
reductions connecting a variety of problems, including a reduction from all-targets change-
making to the “monochromatic convolution” problem, the latter of which is shown to have
near n3/2 time complexity iff 3SUM has near quadratic time complexity. Their work implicitly
hints at the possibility that the all-targets change-making problem might have near t3/2
complexity as well, but the reduction is in the opposite direction.

Our first result is an Õ(t4/3)-time algorithm for the all-targets change-making problem,
interestingly beating t3/2 and placing the problem in a different category than monochromatic
convolution and all its surrounding problems. Our algorithm is conceptually simple, exploiting
an easy lemma on a binary special case of (min,+)-convolution (using FFTs).

All-targets change-making in terms of u. Next, we consider the complexity of the all-
targets change-making problem in terms of some other natural parameters besides n and t:
specifically,

the largest coin value, denoted by u;
the sum of the n given coin values, denoted by σ.

Some prior works have analyzed algorithms in terms of u and σ for the subset sum
problem [22, 16]. A few recent papers have also analyzed algorithms in terms of u for
the 0-1 knapsack and the unbounded knapsack problem [2, 4, 12, 14, 24]. The unbounded
knapsack problem is particularly relevant: given integer weights w1, . . . , wn and profits
p1, . . . , pn and capacity value t, find nonnegative integers m1, . . . ,mn to maximize

∑
imipi

such that
∑
imiwi ≤ t. Change-making is a special case, for example, by setting wi = vi

and pi = Mvi − 1 for a sufficiently large M . Improving some previous algorithms [4, 24],
Axiotis and Tzamos (ICALP’19) [2] and Jansen and Rohwedder (ITCS’19) [14] independently
described algorithms2 for unbounded knapsack running in Õ(u2) time with u := maxi wi (the

1 The Õ notation hides polylogarithmic factors.
2 We found that an Õ(u2) algorithm (basically the same as Axiotis and Tzamos’) appeared earlier in a

commentary on a 2016 programming contest problem by Arthur Nascimento, solved by Yan Soares Couto;
see Problem L of https://www.ime.usp.br/~maratona/assets/seletivas/2016/comentarios.pdf.

https://www.ime.usp.br/~maratona/assets/seletivas/2016/comentarios.pdf
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time bound can be reduced slightly to O(u2/2Θ(
√

logu)) by using known slightly subquadratic
algorithms for (min,+)-convolution [26]). However, these algorithms do not solve the all-
targets or all-capacities version (computing the optimal profit for every capacity j = 0, . . . , t).3

For the all-targets version of change-making, it is not difficult to obtain an O(u3 + t)-time
algorithm, based on a known observation that when the target is sufficiently large, it is
always advantageous to use the largest coin. We describe a new algorithm that improves the
running time to O(u2 log u+ t). Note that the algorithm is optimal for large t� u2 log u,
since the output size for the all-targets problem is Ω(t).

The new algorithm is remarkably simple – just a slight variation of one of the standard
dynamic programming solutions, with a 3-line pseudocode! (See page 8.) It is easily
implementable and does not require FFT. However, the correctness argument is far from
obvious, and requires a nice application of a number-theoretic theorem by Erdős and
Graham [13] on the Frobenius problem (about the smallest target value that cannot be
represented by a coin system). Arguably, algorithms that are simple but nontrivial to analyze
are the most interesting kinds of algorithms.

All-capacities unbounded knapsack in terms of u. Our algorithm can be easily modified
to solve the unbounded knapsack problem in the all-capacities version, with the same
O(u2 log u+ t) time bound. This also implies an O(u2 log u)-time algorithm for the single-
capacity version, which is a bit simpler than the previous Õ(u2) algorithms [2, 14] (in
addition to extending it to all-capacities). For unbounded knapsack, a nearly matching
conditional lower bound is known [9, 18]: more precisely, if single-capacity unbounded
knapsack could be solved in truly subquadratic time for instances with t, u = Θ(n), then so
could (min,+)-convolution.

In terms of σ. We describe a variant of our algorithm with time bound Õ((tσ)2/3 + t) for
the all-targets change-making or all-capacities unbounded knapsack problem. Note that if
σ � t, this is better than our earlier Õ(t4/3) bound for the all-targets change-making.

Single-target change-making. For the single-target (original) change-making problem,
we also describe how to improve the running time of one of Chan and He’s FFT-based
algorithms [8] from Õ(t) to Õ(u), which is faster than applying the previous Õ(u2)-time
algorithms [2, 14] for single-capacity unbounded knapsack.

Single-capacity unbounded knapsack. For the single-capacity (original) unbounded knap-
sack problem, we also describe a simple algorithm with running time Õ(nu), which (ignoring
no(1) factors) simultaneously improves the standard O(nt)-time dynamic programming algo-
rithm and the previous Õ(u2)-time algorithms [2, 14] (since u ≤ t without loss of generality,
and n ≤ u after pruning unnecessary items). There was a previous O(nu)-time algorithm by
Pisinger [22] for subset sum, but not for unbounded knapsack.

Minimum word break. Finally, we consider a generalization of the problem for strings,
known as the minimum word break problem: Given a string s with length n and a set D of
strings (a “dictionary” of “words”) with total length m, express s as a concatenation of words

3 Cygan et al. [9] refered to the all-capacities version as Unbounded-Knapsack+; Kunnemann et al. [18]
called it the output-intensive version.
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from D, using the smallest number of words, where a word may be used multiple times. It is
easy to see that if the alphabet is unary, then the problem is the same as change-making (the
single-target version, with n and m corresponding to t and σ). A straightforward dynamic
programming algorithm runs in Õ(nd + m) time, where d denotes the number of distinct
lengths among the words in D, by using randomized fingerprints [3] (which can be made
deterministic [28]). Because m ≥ d(d+1)

2 , the bound is Õ(n
√
m+m).

The decision version of the problem – deciding whether a solution exists, without minimiz-
ing the number of words – was considered by Bringmann, Grønlund, and Larsen (FOCS’17) [6],
who gave an Õ(nm1/3 + m)-time algorithm, using FFT (improving a previous algorithm
by Backurs and Indyk [3] with running time Õ(nm1/2−1/18 + m)). Bringmann et al. also
proved a nearly matching conditional lower bound for combinatorial algorithms, assuming
the conjecture that k-clique requires near nk time for combinatorial algorithms. However,
they did not obtain results on the minimum word break problem: part of the difficulty is
that for the optimization problem, the various convolution operations needed change to
(min,+)-convolutions, which appear to be more expensive.

Nevertheless, we note that Bringmann et al.’s algorithm can still be adapted to solve
the minimum word break problem. In fact, the time bound Õ(nm1/3 + m) remains the
same. This shows that surprisingly the optimization problem is not harder but has the
same fine-grained complexity as the decision problem (at least for combinatorial algorithms,
assuming the k-clique conjecture). The only new ingredient in our adaptation of Bringmann
et al.’s algorithm is the same lemma on (min,+)-convolutions that we have used in our
Õ(t4/3) algorithm for change-making.

2 Preliminaries

The all-targets version of the change-making problem can be formally defined as follows:

I Problem 1 (All-Targets Change-Making). Given a set V = {v1, . . . , vn} of n positive
integers (coin values) and an integer t, for each j = 0, . . . , t, find the size of the smallest
multiset S (duplicates allowed) of coin values from V such that S sums to exactly j, i.e., find
the minimum m∗j of

∑n
i=1mi subject to the constraint that

∑n
i=1mivi = j, where mi ∈ N.

Besides n (the number of coin values) and t (the maximum target value), we introduce
two more parameters: let u = maxni=1 vi denote the maximum coin value, and σ =

∑n
i=1 vi

denote the sum of input coin values. Simple observation reveals some inequalities relating the
parameters: we have n = O(

√
σ) (because the distinctness of the vi’s implies σ ≥ n(n+1)

2 ),
n ≤ u, u ≤ t (without loss of generality), and σ ≤ nu. Note that unlike in the subset sum
problem, t may be smaller or larger than σ.

Boolean convolution. The Boolean convolution A ◦B of two Boolean arrays A[0, . . . , t1]
and B[0, . . . , t2] is a Boolean array with t1 + t2 +1 elements, where (A◦B)[j] =

∨t1
j′=0(A[j′]∧

B[j − j′]) (we assume out-of-range values are 0).
Change-making is closely related with Boolean convolution. For any integer k, let

C
(k)
V [0, . . . , t] denote the Boolean array where

C
(k)
V [j] = 1 iff there exist k coins from V with their sum being j.

Then C(k)
V can be obtained from the first t+ 1 elements of C(k1)

V ◦ C(k2)
V , for any k1, k2 > 0

where k = k1 + k2.
The Boolean convolution of two arrays of size O(t) can be computed in O(t log t) time by

FFT.
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(min,+)-convolution. The (min,+)-convolution A ? B of two arrays A[0, . . . , t1] and
B[0, . . . , t2] is an array with t1 + t2 +1 elements, where (A?B)[j] = mint1j′=0(A[j′]+B[j− j′])
(we assume out-of-range values are ∞).

Change-making is also related to (min,+)-convolution. For a set V of coin values, let
DV [0, . . . , t] denote the array where

DV [j] = the minimum number of coins from V needed to sum to j

(if no solution exists, DV [j] =∞). Then DV1∪V2 can be obtained from the first t+ 1 elements
of DV1 ? DV2 .

It has been conjectured by some researchers that (min,+)-convolution cannot be solved
in truly subquadratic time (e.g., see [9, 18]). However, the following lemma shows that a
subquadratic algorithm is possible for the special case of (min,+)-convolution where the
second array is “binary”, i.e., all entries of B are in {1,∞}. This “trick” is not new and
is known before, for example, in the context of matrix multiplication (for computing the
(min,+)-product when one of the matrices is binary [25, 11, 7]), with the basic idea tracing
back to Matoušek’s dominance algorithm [21].

I Lemma 1. Given two arrays A[0, . . . , t] and B[0, . . . , t] where all entries of B are in
{1,∞}, we can compute the (min,+)-convolution of A and B in Õ(t3/2) time.

Furthermore, if we just want t′ user-specified entries of the (min,+)-convolution, the time
bound may be reduced to Õ(t

√
t′).

Proof. By sorting and replacing elements by their ranks, we may assume the values of A are
in [t], and are distinct (without loss of generality). Divide the range [t] into

√
t′ subintervals

of length t/
√
t′. For each such subinterval I, define a Boolean array A′I with A′I [j] = 1 iff

A[j] ∈ I, and define a Boolean array B′ with B′[j] = 1 iff B[j] 6=∞; compute the Boolean
convolution between A′I and B′; this requires

√
t′ FFTs and takes Õ(t

√
t′) time. Then for

each index j for which we want to compute the output entry, we can now identify which
subinterval contains the minimum answer (namely, the smallest subinterval I such that
(A′I ◦B′)[j] is true) in O(

√
t′) time, so we can do a brute-force search in O(t/

√
t′) time; the

total time for t′ output entries is O(t′ · (
√
t′ + t/

√
t′)) = O(t

√
t′). J

3 Õ(t4/3) Algorithm

Previous algorithm. Before presenting the new algorithm, we first give a sketch on the
previous Õ(t3/2)-time algorithm by Bringmann and Kociumaka (as mentioned in [19]). Let
`0 be a parameter to be chosen later. Let H = {vi : vi > `0} be the set of all heavy
coin values, and let L = {vi : vi ≤ `0} be the set of all light coin values. Because the
coin values are distinct, |L| ≤ `0. To sum to any value j ≤ t, we can use at most t/`0
heavy coins. We use Boolean convolution to compute the array C(k)

H from C
(k−1)
H for each

k = 1, . . . , bt/`0c. The total time for these bt/`0c convolutions is Õ(t2/`0). We can thus
obtain DH [j] by taking the minimum k ≤ t/`0 such that C(k)

H [j] > 0. To finish, we use
the classical dynamic programming algorithm to add the light coins. Namely, for each
j = 1, . . . , t, we set DV [j] = min{DH [j],minvi∈LDV [j − vi] + 1}. This step takes O(`0t)
time. The overall running time is

Õ

(
t2

`0
+ `0t

)
.

To balance cost, we choose `0 =
√
t and obtain a time bound of Õ(t3/2).

ESA 2020



29:6 More on Change-Making and Related Problems

New algorithm. To improve the running time, we describe a more efficient way to add the
light coins, by using (min,+)-convolution. As before, we first compute DH for the heavy
coins in Õ(t2/`0) time. Initialize S to H.

Now, consider a fixed value ` ≤ `0/2, and consider the subset of light coins L` = {vi : vi ∈
(`, 2`]}. In order to add L` to S, we need to compute DS∪L`

from DS . Naively, one could
perform a single (min,+)-convolution of DS with DL`

, but this is expensive, and DL`
is not

known yet (and is not binary). A better approach is to do multiple (min,+)-convolutions by
dividing the array into smaller blocks of size O(`), as follows:

For each i = 0, . . . , t/`, we computeDS∪L`
[`i, . . . , `(i+1)] by taking a (min,+)-convolution

D′ of DS∪L`
[`(i− 2), . . . , `i] with a binary array B[`, . . . , 2`] using Lemma 1, where B[j] = 1

if j ∈ L`, and B[j] =∞ otherwise. Then DS∪L`
[`i, . . . , `(i+1)] is the entry-wise minimum of

D′[`i, . . . , `(i+ 1)] and DS [`i, . . . , `(i+ 1)]. Each of the above O(t/`) (min,+)-convolutions
is done to arrays of size O(`) (after shifting indices). Thus, the total running time is
Õ((t/`) · `3/2) = Õ(

√
`t).

We repeat the above steps for all `’s that are powers of 2 and smaller than `0, until all
coin values are added to S. This requires O(log `0) rounds, and the total running time forms
a geometric series bounded by Õ(

√
`0t). The overall running time is

Õ

(
t2

`0
+
√
`0t

)
.

To balance cost, we choose `0 ≈ t2/3 and obtain a time bound of Õ(t4/3).

I Theorem 2. The all-targets change-making problem can be solved in Õ(t4/3) time.

I Remark. If we choose `0 = u instead, the heavy coin case can be ignored and we obtain an
Õ(t
√
u)-time algorithm, which is faster for small u. We will give still faster algorithms for

small u in the next section.

4 O(u2 logu+ t) Algorithm

We now explore more algorithms with running time sensitive to u.

Warm-up. We first observe that there is a simple algorithm with O(u3 + t) running time.
We use the following lemma, which is “folklore”:4

I Lemma 3. For any target value j ≥ u2, any optimal solution to the change-making problem
must use the largest coin value u.

Proof. Suppose that an optimal solution X for a target value j does not use the coin value u.
A simple argument shows that j < u3: If X uses a coin value vi at least u times, we can

replace u copies of vi with vi copies of u, and the number of coins in X would decrease: a
contradiction. Thus, each of the at most u coin values is used fewer than u times, and so the
sum of X must be less than u3.

4 Bateni et al. [4, Lemma 7.2] gave a proof for the (more general) unbounded knapsack problem, using
the pigeonhole principle, similar to what we give here (Eisenbrand and Weismantel [12] also proved
a similar statement for higher-dimensional unbounded knapsack). But it was known much earlier:
we personally learned of the pigeonhole proof for coin changing from comments by Bruce Merry
in 2006 on a US Olympiad question (https://contest.usaco.org/TESTDATA/DEC06.fewcoins.htm),
and the same pigeonhole proof for unbounded knapsack from a Chinese web post in 2016 (https:
//www.zhihu.com/question/27547892/answer/133582594).

https://contest.usaco.org/TESTDATA/DEC06.fewcoins.htm
https://www.zhihu.com/question/27547892/answer/133582594
https://www.zhihu.com/question/27547892/answer/133582594
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We give a better argument showing j < u2 by using the pigeonhole principle: Let
〈x1, . . . , xh〉 be the sequence of coins used in X, with duplicates included, in an arbitrary
order. Define the prefix sum si = x1 + · · ·+ xi. Suppose h ≥ u. By the pigeonhole principle,
there must exist 0 ≤ i < j ≤ h with si ≡ sj (mod u). Then the subsequence xi+1, . . . , xj
sums to a number divisible by u. We can replace this subsequence with some number of
copies of u, and the number of coins in X would decrease (since u is the largest coin value):
a contradiction. Thus h < u, and so the sum of X is less than u2. J

The above lemma ensures that it is sufficient to compute DV [j] for all j < u2; by the
naive dynamic programming algorithm, this step takes O(nu2) ≤ O(u3) time. Afterwards,
for j = u2, . . . , t, we can simply set DV [j] = DV [j − u] + 1; this step takes O(t) time. We
thus get the time bound O(u3 + t).

If in the first part we instead use the Õ(t
√
u)-time algorithm in the remark after Theorem 2

(with t replaced by u2), then the first part takes Õ(u2√u) time. The total time is then
reduced to O(u2.5 polylog u+ t). (This requires FFT, however.)

New algorithm. To improve the running time further, we use number-theoretic results
on the Frobenius problem, which has received much attention from mathematicians: given
k positive integer coin values v1 > · · · > vk with gcd(v1, . . . , vk) = 1, what is the largest
number that cannot be represented? For k = 2, classical results show that the number is
exactly v1v2 − v1 − v2. For k ≥ 3, the problem becomes much more challenging, for which
there are no closed-form formulas. In 1972, Erdős and Graham [13] proved an upper bound
of 2

⌊
v1
k

⌋
v2 − v1, which will be useful in our algorithmic application:

I Lemma 4 (Erdős–Graham). Given integers v1>. . .>vk>0 (k ≥ 2) with gcd(v1, . . . , vk) = 1,
any integer greater than 2

⌊
v1
k

⌋
v2 − v1 can be expressed as a nonnegative integer linear

combination of v1, . . . , vk.

In terms of u = maxi vi, Erdős and Graham’s bound is O(u2/k), which is known to
be tight in the worst case, within a constant factor (see [10] for improvements on the
constant factor). For constant k, the bound remains quadratic, as in the 2-coins case. In our
algorithmic application, we will consider non-constant k – here, the k in the denominator
will prove crucial.

First, let us restate the bound more generally without assuming gcd(v1, . . . , vk) = 1:

I Corollary 5. Given integers v1 > · · · > vk > 0 (k ≥ 2) with gcd(v1, . . . , vk) = d, any integer
that is greater than 2

⌊
v1
dk

⌋
v2 − v1 and is divisible by d can be expressed as a nonnegative

integer linear combination of v1, . . . , vk.

Proof. Apply Lemma 4 to the numbers v1/d, . . . , vk/d. The bound becomes(
2
⌊
v1/d
k

⌋
v2/d− v1/d

)
· d. J

We use Corollary 5 to prove a more refined version of Lemma 3, which takes into account
the k largest coin values instead of just the largest value:

I Lemma 6. Let v1, . . . , vk ≤ u be the k largest input coin values. For any target value
j ≥ 2u2/k, any optimal solution to the change-making problem must use at least one coin
from {v1, . . . , vk}.

Proof. We may assume k ≥ 2 (because of Lemma 3). Let d = gcd(v1, . . . , vk). Suppose that
an optimal solution X for a target value j does not use any coins from {v1, . . . , vk}.

ESA 2020



29:8 More on Change-Making and Related Problems

Consider the sequence of coins used in X, with duplicates included, in an arbitrary order.
Divide the sequence into subsequences X1, . . . , Xh, each of which has sum in ( 2u2

dk − u,
2u2

dk ],
except that the last has sum at most 2u2

dk − u. Suppose h > d. Define si to be the sum of
the concatenation of X1, . . . , Xi. By the pigeonhole principle, there exist 0 ≤ i < j < h

with si ≡ sj (mod d). Then the subsequence formed by concatenating Xi+1, . . . , Xj sums
to a number divisible by d and greater than 2u2

dk − u. By Corollary 5, we can replace this
subsequence with coins from the set {v1, . . . , vk}, and the number of coins in X would
decrease (since v1, . . . , vk have larger values): a contradiction. Thus h ≤ d, and so the sum
of X is less than d · 2u2

dk = 2u2/k. J

Thus, the optimal solution for target value j must use at least one coin value which is
among the

⌈
2u2/j

⌉
largest. This leads to the following extremely simple algorithm, which is

just a small modification to the standard dynamic programming algorithm (no FFT required):

Algorithm 1 All-targets change-making.

1: Sort v1, . . . , vn in decreasing order, and set DV [0] = 0.
2: for j = 1, . . . , t do
3: Set DV [j] = min1≤i≤d2u2/je: vi≤j DV [j − vi] + 1.

The total running time is bounded by a Harmonic series:

O

 t∑
j=1

(
u2

j
+ 1
) = O(u2 log u+ t).

I Theorem 7. The all-targets change-making problem can be solved in O(u2 log u+ t) time.

As a corollary of the above algorithm, we can also obtain an algorithm with running time
sensitive to σ, the total sum of the input coin values: Define the heavy coins H and light
coins L as before, with respect to a parameter `0 to be chosen later. We first compute DL

for the light coins by the above algorithm in Õ(`20 + t) time. Then we add the heavy coins
by dynamic programming: DV [j] = min{DL[j],minvi∈H DV [j − vi] + 1}. Since there are at
most σ/`0 heavy coins, this step takes O(σ/`0 · t) time. The overall running time is

Õ

(
`20 + tσ

`0
+ t

)
.

To balance cost, we choose `0 = (tσ)1/3 and obtain the time bound Õ((tσ)2/3 + t). (Again,
no FFT is required.)

I Corollary 8. The all-targets change-making problem can be solved in Õ((tσ)2/3 + t) time.

I Remark. The O(t) term can be eliminated in Theorem 7 (and thus Corollary 8) if we are
fine with an implicit representation of the output (i.e., a structure that allows us to return
the answer for any given target in constant time), since by Lemma 3, we can first reduce
the target j to below u2 by using some number (i.e., max{

⌈
(j − u2)/u

⌉
, 0}) of copies of the

largest coin value u.

5 All-Capacities Unbounded Knapsack

We note that the algorithm in the preceding section can be extended to solve the all-capacities
version of the unbounded knapsack problem, defined as follows:
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I Problem 2 (All-Capacities Unbounded Knapsack). Given n items where the i-th
item has a positive integer weight wi and a positive profit pi, and given an integer t, for each
j = 0, . . . , t, find the maximum total profit of a multiset of items such that the total weight is
at most j, i.e., find the maximum of

∑n
i=1mipi subject to the constraint that

∑n
i=1miwi ≤ j,

where mi ∈ N.

Like before, let u = maxni=1 wi and σ =
∑n
i=1 wi. We may assume that the weights are

distinct (since if there are two items with the same weight, we may remove the one with the
smaller profit).

We use the following analog to Lemma 6:

I Lemma 9. Suppose items 1, . . . , k have the k largest profit-to-weight ratios. For any
capacity value j ≥ 3u2/k, any optimal solution to the unbounded knapsack problem must use
at least one item from {1, . . . , k}.

Proof. Similar to the proof of Lemma 6, since replacing a subsequence with items that have
larger profit-to-weight ratios while maintaining the same total weight would increase the
total profit. One difference in the unbounded knapsack problem is that the total weight in
the optimal solution may not be exactly j. But it must be at least j−u (otherwise, we could
add one more item to get a better solution). When j ≥ 3u2/k, we have j − u ≥ 2u2/k. J

The same analysis shows correctness of the following very simple algorithm, which runs
in O(u2 log u+ t) time:

Algorithm 2 All-capacities unbounded knapsack.

1: Sort the items in decreasing order of pi/wi.
2: for j = 0, . . . , t do
3: Set D[j] = max{0, max1≤i≤d3u2/je: wi≤j(D[j − wi] + pi)}.

The Õ((tσ)2/3 + t) algorithm can be extended as well.

I Corollary 10. The all-capacities unbounded knapsack problem can be solved in O(u2 log u+t)
or Õ((tσ)2/3 + t) time.

I Remark. As before, the O(t) term can be eliminated with an implicit representation of the
output (since by an analog to Lemma 3, we can first reduce the capacity to below u2 by using
some number of copies of the item with the largest profit-to-weight ratio). In particular, for
the single-capacity version, we obtain a very simple O(u2 log u)-time algorithm.

The algorithm works even when the profits are reals but the weights are integers. Al-
ternatively, a variant of the algorithm works when the weights are reals but the profits are
integers: the same time bound O(u2 log u) holds but with u = maxni=1 pi. Here, we recast
the problem as minimizing

∑n
i=1miwi subject to the constraint that

∑n
i=1mipi ≥ j, and

modify the algorithm appropriately (applying Erdős–Graham to the profits instead of the
weights). From the implicitly represented output, we can determine the answer for any given
capacity by predecessor search.

6 Õ(u) Algorithm for Single-Target Change-Making

In this section, we present an Õ(u)-time algorithm for the single-target change-making
problem. It is obtained by modifying the third algorithm of Chan and He [8], which originally
ran in O(t log2 t) time. They first solved the decision problem: deciding whether we can sum
to t using at most m coins for a given value m. By adding 0 to the input set of coin values,
“at most m” can be changed to “exactly m”.
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Their decision algorithm relies on the following partition lemma, which shows the multiset
of coins S can be almost evenly partitioned simultaneously in terms of cardinality and the
total value (see [8] for a short self-contained proof for the even case; the odd case is similar):

I Lemma 11 (Partition Lemma). Suppose S is a multiset with |S| = m and σ(S) = t. If m
is odd, then there exists a partition of S into three parts S1, S2 and a singleton {s0}, such
that |S1| = |S2| = m−1

2 and σ(S1), σ(S2) ≤ t
2 .

If m is even, then there exists a partition of S into three parts S1, S2 and two singletons
{s0, s1}, such that |S1| = |S2| = m

2 − 1, and σ(S1), σ(S2) ≤ t
2 .

Notice that since the maximum coin value is u, we also have σ(S1), σ(S2) ≥ t
2 − 2u (as

we take out one or two coins).
The Partition Lemma suggests a simple recursive algorithm to compute C(m)

V [0, . . . , t]:
we just take the first t+ 1 entries of{

C
( m−1

2 )
V [0, . . . , t2 ] ◦ C( m−1

2 )
V [0, . . . , t2 ] ◦ C(1)

V [0, . . . , t] if m is odd,
C

( m
2 −1)

V [0, . . . , t2 ] ◦ C( m
2 −1)

V [0, . . . , t2 ] ◦ C(1)
V [0, . . . , t] ◦ C(1)

V [0, . . . , t] if m is even.

That was essentially Chan and He’s previous algorithm.
We describe a more efficient recursive algorithm to compute a smaller subarray C(m)

V [t−
4u, . . . , t]: we just take the relevant entries of

C
( m−1

2 )
V [ t−4u

2 − 2u, . . . , t2 ] ◦ C( m−1
2 )

V [ t−4u
2 − 2u, . . . , t2 ] ◦ C(1)

V [0, . . . , u]
if m is odd,

C
( m

2 −1)
V [ t−4u

2 − 2u, . . . , t2 ] ◦ C( m
2 −1)

V [ t−4u
2 − 2u, . . . , t2 ] ◦ C(1)

V [0, . . . , u] ◦ C(1)
V [0, . . . , u]

if m is even.

Each of the above Boolean convolutions is done to arrays of size O(u) (after shifting indices),
and thus takes O(u log u) time. The subarrays C( m−1

2 )
V [ t−4u

2 − 2u, . . . , t2 ] = C
( m−1

2 )
V [ t2 −

4u, . . . , t2 ] and C
( m

2 −1)
V [ t−4u

2 − 2u, . . . , t2 ] = C
( m

2 −1)
V [ t2 − 4u, . . . , t2 ] can be computed by

recursion. Thus, the running time satisfies the recurrence

T (m, t) = T (
⌊
m−1

2
⌋
, t2 ) +O(u log u),

which solves to T (m, t) = O(u log u log t).
The decision problem can now be solved by inspecting the entry C(m)

V [t]. We can find
the optimal number of coins by binary search with O(log t) calls to the decision algorithm.
By Lemma 3, we can first reduce t to below u2 by repeatedly using the largest coin value.
Therefore, the total running time is O(u log u log2 t) ≤ O(u log3 u).

I Theorem 12. The single-target change-making problem can be solved in O(u log3 u) time.

I Remark. The above algorithm shares some similarity with the Õ(u2) algorithm by Axiotis
and Tzamos [2] for unbounded knapsack, which also involves logarithmically many convo-
lutions on subarrays of size O(u), except that they used (min,+)-convolutions and a more
naive parititioning that approximately halves t, but not m. In contrast, the above Partition
Lemma is crucial to our faster algorithm for change-making.

7 Õ(nu) Algorithm for Single-Capacity Unbounded Knapsack

In this section, we revisit the standard (single-capacity) version of the unbounded knapsack
problem and present a new Õ(nu)-time algorithm (recall that u = maxi wi). This algorithm
is simple (no FFT needed), and is based on the following combinatorial lemma, which is
obtained by another pigeonhole argument:
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I Lemma 13. For the unbounded knapsack problem for a given capacity j < t0, there exists
an optimal solution that uses at most log t0 different types of items.

In particular, in some optimal solution, there exists an item i that is used at least j
wi log t0

times.

Proof. Consider an optimal solution that uses the minimum number of types of items. Let
S be the set of items used in this solution, excluding multiplicities. If |S| > log t0, by the
pigeonhole principle there must exist two different subsets S1 and S2 of S with the same
total weight, multiplicities included (since there are 2|S| subsets and t0 integers between 0
and t0− 1). We can replace the items in S2 \S1 with S1 \S2, or vice versa (depending which
of the two has smaller total value), and get a new solution that has the same total weight
but has larger or equal total value. And if it has equal total value, the new solution uses a
smaller number of types of items (since S2 \ S1 and S1 \ S2 are nonempty): a contradiction.

Thus, |S| ≤ log t0. This also implies that some item contributes at least j
log t0 to the total

weight. J

Let b := dlog t0e. Let D[j] be the maximum profit for the unbounded knapsack problem
with capacity j. The above lemma implies the following recursive formula for all j < t0:

D[j] = max
{

0, nmax
i=1

(D[j − wixij ] + pixij)
}

where xij :=
⌊

j
wib

⌋
.

Note that j − wixij ∈
[
(1− 1

b )j, (1− 1
b )j + u

]
.

The above formula allows us to compute the subarray D[t, . . . , t+ bu] from the subarray
D
[
(1− 1

b )t, . . . , (1− 1
b )(t+ bu) + u

]
= D

[
(1− 1

b )t, . . . , (1− 1
b )t+ bu

]
in O(bu·n) time. The

latter subarray can be computed recursively.
Let T (t) denote the time for computing D[t, . . . , t+ bu]. We thus obtain the following

recurrence:

T (t) = T ((1− 1
b )t) + O(bnu).

For the base case, we have T (0) = O(bnu) by the standard dynamic programming algorithm
(which computes D[0, . . . , j] in O(nj) time). The number of levels of recursion is O(b log t).
So, T (t) = O(b2nu log t) = O(nu log2 t0 log t). We can set t0 = (t + u)O(1). As before, we
can initially reduce the capacity t to below u2 by repeatedly using the item with the largest
profit-to-weight ratio. This yields the following result:

I Theorem 14. The single-capacity unbounded knapsack problem can be solved in O(nu log3 u)
time.

I Remark. There are alternative ways to exploit the above lemma to get Õ(nu) algorithms
(by computing D[j] for a different choice of Õ(bu) indices j), and the polylogarithmic factor
is likely improvable.

8 Minimum Word Break

Bringmann, Grønlund, and Larsen [6] studied the decision version of the word break problem,
and gave an algorithm with Õ(nm1/3 +m) running time (with a matching conditional lower
bound for combinatorial algorithms).

We consider the optimization version of the problem (with unit weight), defined as follows:

I Problem 3 (Minimum Word Break). Given a string s with length n and a dictionary
D with total length m, find the minimum number t∗ such that s can be split into t∗ words in
D (duplicates are allowed).

ESA 2020
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The single-target change-making problem can be viewed as a special case of this problem,
by representing each coin with value vi as a string with length vi over a unary alphabet.

In this section, we briefly note that Bringmann et al.’s algorithm can be modified to
solve the minimum word break problem without increasing the running time (ignoring
polylogarithmic factors), by using our Lemma 1.

The modification. Since much of the solution proceeds as in Bringmann et al.’s paper [6],
we will only describe the difference and assume the reader is already familiar with the previous
paper. In particular, we will use the same notation.

Upon close inspection of their paper, we see that most parts of Bringmann et al.’s method
require no (or straightforward) changes. Their “first algorithm” is no longer required, and
the main change lies in their “second algorithm”, specifically, the “query algorithm” in
[6, Section 4.2 (arXiv version)]. Instead of computing S + SB using FFT, we now need
to compute the (min,+)-convolution between S and SB, where SB[i] = 1 if ui is marked,
and SB[i] =∞ otherwise. We are only interested in qB entries in the output array, where∑
B∈B qB = O(q) and |B| ≤ m

q·λq
. (Note that |B| = 0 if λq > m/q.) By using the output-

sensitive bound from Lemma 1, we can perform the (min,+)-convolution in Õ(q√qB) time.
By the Cauchy–Schwarz inequality, the sum of the cost over all B ∈ B is

Õ

(∑
B∈B

q
√
qB

)
= Õ

(
q
√
q|B|

)
= Õ

(
q

√
m

λq

)
.

The other parts of the query algorithm requires Õ(q · λq) time. The total time is

Õ

(
qλq + q

√
m

λq

)
.

To balance cost, we choose λq = m1/3, and as a result, the query time in [6, Lemma 2 (arXiv
version)] becomes Õ(qm1/3), instead of Õ(min{q2,

√
qm}).

The final running time as analyzed in [6, page 10] was

Õ

∑
q=2`

n

q
·min{q2,

√
qm}

 = Õ(nm1/3),

plus Õ(n+m) for preprocessing. With the new query time bound, the sum changes to

Õ

∑
q=2`

n

q
· qm1/3

 = Õ(nm1/3),

which luckily gives the same result.

I Theorem 15. The minimum word break problem can be solved in Õ(nm1/3 +m) time.

I Remark. The algorithm can actually solve an extension of the problem: compute the
minimum number of breaks for every prefix of the input string. In particular, when the
alphabet is unary, this implies an Õ(tσ1/3 + σ)-time algorithm for the all-targets change-
making problem. However, this bound is not as good as those from Theorem 2 and Corollary 8
(Õ(min{t4/3, (tσ)2/3 + t})).
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9 Concluding Remarks

Our change-making algorithms can be modified to compute not just the minimum number of
coins but also a representation of the minimum multiset of coins for every target value. For
the FFT-based algorithms, we need standard techniques for witness finding [1, 23] (which
only increases the running time by polylogarithmic factors).

Although Erdős and Graham’s Θ(u2/k) bound on the Frobenius problem is asymptotically
tight in the worst case (one bad coin set is {x, 2x, . . . , (k−1)x, (k−1)x−1} with x = d u

k−1e),
the Frobenius number tends to be smaller for “many” k-tuples of coin values (it is usually
subquadratic even for k = 3). This suggests that our Õ(u2 + t)-time algorithm for all-targets
coin changing might be improvable for many input sets of coins. However, obtaining an
improvement in the worst case remains intriguingly open (this might require new results on
the Frobenius problem – the interplay between combinatorial and algorithmic results seems
worthy of further study).
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