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Abstract
Let G be a graph and T1, T2 be two spanning trees of G. We say that T1 can be transformed into T2

via an edge flip if there exist two edges e ∈ T1 and f in T2 such that T2 = (T1 \e)∪f . Since spanning
trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of
edge flips, as observed in [11].

We investigate the problem of determining, given two spanning trees T1, T2 with an additional
property Π, if there exists an edge flip transformation from T1 to T2 keeping property Π all along.

First we show that determining if there exists a transformation from T1 to T2 such that all the
trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete.

We then prove that determining if there exists a transformation from T1 to T2 such that all the
trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even
restricted to split, bipartite or planar graphs. We complete this result by showing that the problem
becomes polynomial for cographs, interval graphs and when k = n− 2.
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1 Introduction

Given an instance of some combinatorial search problem and two of its feasible solutions, a
reconfiguration problem asks whether one solution can be transformed into the other in a
step-by-step fashion, such that each intermediate solution is also feasible. Reconfiguration
problems capture dynamic situations, where some solution is in place and we would like to
move to a desired alternative solution without becoming infeasible. A systematic study of the
complexity of reconfiguration problems was initiated in [11]. Recently the topic has gained a
lot of attention in the context of constraint satisfaction problems and graph problems, such
as the independent set problem, the matching problem, and the dominating set problem.
Reconfiguration problems naturally arise for operational research problems but also are
closely related to uniform sampling using Markov chains (see e.g. [5]) or enumeration of
solutions of a problem. Reconfiguration problems received an important attention in the
last few years. For an overview of recent results on reconfiguration problems, the reader is
referred to the surveys of van den Heuvel [14] and Nishimura [13].

In this paper, our reference problem is the spanning tree problem. Let G = (V,E) be a
connected graph on n vertices. A spanning tree of G is a tree (chordless graph) with exactly
n− 1 edges. Given a tree T , a vertex v is a leaf if its degree is one and is an internal node
otherwise. A branching node is a vertex of degree at least three.

In order to define valid step-by-step transformations, an adjacency relation on the set of
feasible solutions is needed. Depending on the problem, there may be different natural choices
of adjacency relations. Let T1 and T2 be two spanning trees of G. We say that T1 and T2
differs by an edge flip if there exist e1 ∈ E(T1) and e2 ∈ E(T2) such that T2 = (T1 \ e1) ∪ e2.
Two trees T1 and T2 are adjacent if one can transform T1 into T2 via an edge flip. A
transformation from Ts to Tt is a sequence of trees 〈T0 := Ts, T1, . . . , Tr := Tt〉 such that
two consecutive trees are adjacent. Ito et al. [11] remarked that any spanning tree can be
transformed into any other via a sequence of edge flips. It easily follows from the exchange
properties for matroid. Unfortunately, the problem becomes much harder when we add some
restriction on the intermediate spanning trees. One can then ask the following question: does
it still exist a transformation when we add some constraints on the spanning tree? If not, is
it possible to decide efficiently if such a transformation exists? This problem was already
studied for vertex modification between Steiner trees [12] for instance.

In this paper, we consider spanning trees with restrictions on the number of leaves. More
precisely, what happens if we ask the number of leaves to be large (or small) all along the
transformation? We formally consider the following problems:

Spanning Tree with Many Leaves
Input: A graph G, an integer k, two trees T1 and T2 with at least k leaves.
Output: yes if and only if there exists a transformation from T1 to T2 such that all the
intermediate trees have at least k leaves.

In the Spanning Tree with At Most k Leaves problem, we instead want to find a
transformation such that all the intermediate trees have at most k leaves (where k is a fixed
constant).
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Our results

We prove that both variants are PSPACE-complete. In other words, we show that Spanning
Tree with Many Leaves and Spanning Tree with At Most k Leaves for every
k ≥ 3 are PSPACE-complete. This constrasts with many existing results on reconfiguration
problems using edge flips which are polynomial such as matching reconfiguration [11], cycle,
tree or clique reconfiguration [8]. As far as we know there does not exist any PSPACE-
hardness proof for any problem via edge flip. We hope that our results will help to design
more.

I Theorem 1. Spanning Tree with Many Leaves is PSPACE-complete restricted to
bipartite graphs, split graphs or planar graphs.

These results are obtained from two different reductions. In both reductions, we need an
arbitrarily large number of leaves in order to make the reduction work. In particular, one
can ask the following question: is Spanning Tree with at least n− k Leaves hard for
some constant k (where n is the size of the instance)? We do not answer this question but
we prove that, for the “dual” problem, the PSPACE-hardness is obtained even for k = 3.

I Theorem 2. Spanning Tree with At Most k Leaves is PSPACE-complete for every
k ≥ 3.

This proof is the most technically involved proof of this article and is based on a reduction
from the decision problem of Vertex Cover to the decision problem of Hamiltonian
Path. Let (G, k) be an instance of Vertex Cover. We first show that, on the graph H
obtained when we apply this reduction, we can associate with any spanning tree T of H a
vertex cover of G. The hard part of the proof consists in showing that (i) if T has at most
three leaves, then the vertex cover associated with T has at most k + 1 vertices; and (ii)
each edge flip consists of a modification of at most one vertex of the associated vertex cover.

One can note that for k = 2, the problem becomes the Hamiltonian Path Reconfig-
uration problem. We were not able to determine the complexity of this problem and we
left it as an open problem.

We complete these results by providing some polynomial-time algorithms:

I Theorem 3. Spanning Tree with Many Leaves can be decided in polynomial time on
interval graphs, on cographs, or if the number of leaves is n− 2.

We show that Spanning Tree with Many Leaves can be decided in polynomial time
if the number of leaves is n− 2. As we already said, we left as an open question to determine
if this result can be extended to any value n− k for some fixed k. If such an algorithm exists,
is it true that the problem is FPT parameterized by k?

We then show that in the case of cographs, the answer is always positive as long as the
number of leaves is at most n− 3. Since there is a polynomial-time algorithm to decide the
problem when k = 2 that completes the picture for cographs.

Since the problem is known to be PSPACE-complete for split graphs by Theorem 1 (and
thus for chordal graphs), the interval graphs result is the best we can hope for in a sense. The
interval graph result is based on a dynamic programming algorithm inspired by [2] where it is
proved that the Independent Set Reconfiguration problem in the token sliding model
is polynomial. Even if dynamic algorithms work quite well to decide combinatorial problems
on interval (and even chordal) graphs, they are much harder to use in the reconfiguration
setting. In particular, many reconfiguration problems become hard on chordal graphs (see
e.g. [1, 9]) since the transformations can go back and forth.

ESA 2020



24:4 Spanning Tree Reconfiguration

Since the problem is hard on planar graphs, it would be interesting to determine its
complexity on outerplanar graphs. We left this question as an open problem.

Related work

In the last few years, many graph reconfiguration problems have been studied through the
lens of edge flips such as matchings [11, 4], paths or cycles [8]. None of these works provide
any PSPACE-hardness results, only a NP-hardness result is obtained for (non Hamiltonian)
path reconfiguration via edge flips in [8]. Even if the reachability problem is known to
be polynomial in many cases, approximating the shortest transformation is often hard,
see e.g. [4]. Flips are also often considered in computational geometry, for instance to
measure the distance between two triangulations. In that setting, a flip of a triangulation
is the modification of a diagonal of a C4 for the other one. Usually, proving the existence
of a transformation is straightforward and the main questions are about the length of a
transformation which is not the problem addressed in this paper.

If, instead of “edge flips”, we consider “vertex flips” the problems become much harder.
For instance, the problem consisting in transforming an (induced) tree into another one
(of the same size) is PSPACE-complete [8] (while the exchange property ensures that it is
polynomial for the edge version). Mizuta et al. [12] also showed that the existence of vertex
exchanges between two Steiner trees is PSPACE-complete. But transforming subsets of
vertices with some properties is known to PSPACE-complete for a long time, for instance for
independent sets or cliques [10].

Definitions

Given two sets S1 and S2, we denote by S14S2 the symmetric difference of the sets S1 and
S2, that is (S1 \ S2) ∪ (S2 \ S1).

For a spanning tree T , every vertex of degree one is a leaf and every vertex of degree at
least two is an internal node. A vertex of degree at least three is called a branching node.
Recall that the number of leaves of any tree T is equal to (

∑
v∈T (max{0, dT (v)− 2})) + 2.

We denote by in(T ) the number of internal nodes of T . Note that if T contains n nodes, the
number of leaves is indeed n− in(T ).

Let G = (V,E) be a graph. A vertex cover C of G is a subset of vertices such that for
every edge e ∈ E, C contains at least one endpoint of e. C is minimum if its cardinality is
minimum among all vertex covers of G. Note that in particular, C is inclusion-wise minimal
and thus for every vertex u ∈ C, there is an edge e ∈ E which is covered only by u. We
denote by τ(G) the size of a minimum vertex cover of G.

Let X,Y be two vertex covers of G. X and Y are TAR-adjacent1 (resp. TJ-adjacent)
if there exists a vertex x (resp. x and y) such that X = Y ∪ {x} or Y = X ∪ {x} (resp.
X = Y \ {y} ∪ {x}). We will consider the following problem:

Minimum TAR-Vertex Cover Reconfiguration
Input: A graph G, two minimum vertex covers X,Y of size k.
Output: yes if and only if there exists a sequence from X to Y of TAR-adjacent vertex
covers, all of size at most k + 1.

1 TAR stands for “Token Additional Removal”.
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xeu

xev

yeu

yev

re1 re2 re3 re4

re5 re6 re7 re8

Figure 1 edge-gadget. The white vertices are the only ones connected to the outside.

Similarly, one can define the Minimum TJ-Vertex Cover Reconfiguration (MVCR
for short) where we want to determine whether there exists a sequence of TJ-adjacent vertex
covers from X to Y . Note that all the vertex covers must be of size |X| = |Y | = k.

2 Spanning trees with few leaves

I Theorem 4. Spanning Tree with At Most three Leaves is PSPACE-complete. 2

In order to prove Theorem 4, we will provide a reduction from Minimum TAR-Vertex
Cover Reconfiguration to Spanning Tree with At Most three Leaves.

I Theorem 5 (Wrochna [15]). TAR-Vertex Cover Reconfiguration is PSPACE com-
plete even for bounded bandwidth graphs.

The idea of the proof of Theorem 4 consists in adapting a reduction from Vertex cover
to Hamiltonian Path (for the optimization version). Let (G = (V,E), k) be an instance of
Vertex Cover. This reduction creates a graph H(G) which contains a Hamiltonian path if
and only if G admits a vertex cover of size k. The reduction is given in Section 2.1 together
with some properties of the spanning trees with at most three leaves in H(G). In order to
adapt the proof in the reconfiguration setting, we need to prove that the proof is “robust”
with respect to several meanings of the word. First, we need to show that, if we consider a
spanning tree with at most three leaves in H(G) then there is a “canonical” vertex cover of
size at most k + 1 associated with it (it is the most technical part of the proof). Then, for
any edge flip between two spanning trees with at most three leaves, we need to show that
the corresponding vertex covers associated with them are TAR-adjacent . We will indeed
also need to prove the reverse direction.

2.1 The Reduction
The reduction is a classical reduction (see Theorem 3.4 of [6] for a reference) from the
optimization version of Vertex Cover to the optimization version of Hamiltonian Path.
Let G be a graph and k be an integer. Let us construct a graph H(G) (abbreviated into H
when no confusion is possible) as follows:

Construction of H(G). For each edge e = uv of G, we create the following edge-gadget Ge

represented in Figure 1. The edge-gadget Ge has four special vertices denoted by xe
u, x

e
v, y

e
u, y

e
v.

The vertices xe
u and xe

v are called the entering vertices and ye
u and ye

v the exit vertices. The
gadget contains eight additional vertices denoted by re

1, . . . , r
e
8. When e is clear from context,

we will omit the superscript. The graph induced by these twelve vertices is represented in
Figure 1. The vertices re

1, . . . , r
e
8 are local vertices and their neighborhood will be included in

the gadget. The only vertices connected to the rest of the graphs are the special vertices.

2 Note that the reduction can be easily adapted to more leaves.

ESA 2020
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a

b

c

d

(a) Original instance (G, k) of Minimum Vertex Cover with a vertex cover {a, b}.

xab
a yabarab1 rab2 rab3 rab4

z2 z3

xab
b yabbrab5 rab6 rab7 rab8

xad
a yadarad1 rad2 rad3 rad4

xad
d yaddrad5 rad6 rad7 rad8

xbc
b ybcbrbc1 rbc2 rbc3 rbc4

xbc
c ybccrbc5 rbc6 rbc7 rbc8

xcd
c ycdcrcd1 rcd2 rcd3 rcd4

xcd
d ycddrcd5 rcd6 rcd7 rcd8

s1

s2

z1

Gab Gad Gbc Gcd
(b) Graph H(G) obtained from the reduction. The ordering for the vertices of the vertex cover {a, b} of G is the lexicographic
ordering, as well as the ordering of the edges incident to each vertex. The corresponding Hamiltonian path is depicted by
the thick dashed edges.

Figure 2 Illustration of the reduction of Theorem 4.

We add an independent set Z := {z1, . . . , zk+1} of k + 1 new vertices to V (H). And we
finally add to V (H) two more vertices s1, s2 in such a way that z1 (resp. zk+1) is the only
neighbor of s1 (resp. s2) in H(G). Since s1 and s2 have degree one in H(G), s1 and s2 are
leaves in any spanning tree of H(G). In particular, the two endpoints of any Hamiltonian
path of H(G) are necessarily s1 and s2.

Let us now complete the description of H(G) by explaining how the special vertices are
connected to the other vertices of H(G). Let u ∈ V (G). Let E′ = e1, . . . , e` be the set of
edges incident to u in an arbitrary order. We connect xe1

u and ye`
u to all the vertices of Z.

For every 1 ≤ i ≤ `− 1, we connect yei
u to xei+1

u . The edges yei
u x

ei+1
u are called the special

edges of u. The special edges of H(G) are the union of the special edges for every u ∈ V (G)
plus the edges incident to Z but s1z1 and s2zk+1. This completes the construction of H(G)
(see Figure 2 for an example).
I Remark 6. If T is a spanning tree of H(G) with at most ` leaves, then at most `− 2 of
them are in V (H) \ {s1, s2}.

Let T be a spanning tree of H(G). An edge-gadget is irregular if at least one of its twelve
vertices is not of degree two in T . An edge-gadget is regular if it is not irregular. By abuse of
notation we say that e ∈ E(G) is regular (resp. irregular) if the edge-gadget of e is regular
(resp. irregular). A vertex u is regular if every edge incident to u is regular. The vertex u is
irregular otherwise.

Let S be a subset of vertices of H(G). We denote by δT (S) the set of edges with exactly
one endpoint in S. When there is no ambiguity, we omit the subscript T . Moreover, if S
is the singleton {u}, we write δT (u) for δT ({u}). The restriction T (Ge) of a spanning tree
T around an edge-gadget Ge is the set of edges with both endpoints in Ge plus the edges of
δT (Ge) (which are considered as “semi edge” with one endpoint in Ge).

I Lemma 7. Let T be a spanning tree of H and G be a regular edge-gadget. Then the tree
T around the edge-gadget G is one of the two graphs represented in Figure 3. Note that the
graph of Figure 3(b) has to be considered up to symmetry between u and v.
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xeu

xev

yeu

yev

xeu

xev

yeu

yev

(a) (b)

Figure 3 The two possible sub-graphs around a regular edge-gadget G. Bold edges are edges in
the tree. Edges with one endpoint in the gadget are edges of δ(G).

I Lemma 8 (*). Let G be a graph, T be a spanning tree of H(G), and u be a regular vertex
of T . If there exists an edge e ∈ E(G) with endpoint u such that xe

u or ye
u has degree one in

the subgraph of T induced by the vertices of H[Ge], then, for every edge e′ with endpoint u,
xe′

u and ye′

u have degree one in the subgraph of T induced by the vertices of H[Ge′ ].
In particular, there is an edge of T between Z and the first entering vertex of u and an edge
between Z and the last exit vertex of u.

If, for a regular vertex u and an edge e = uv, xe
u or ye

u have degree one in H[Ge], then
there is a path between two vertices of Z passing through all the special vertices xe′

u and ye′

u

for every e′ incident to u and all the vertices on this path have degree two. Note that the
union of all such vertices forms a vertex cover of G.

2.2 Reconfiguration hardness
Let T be a spanning tree with at most three leaves. By Lemma 7, for every edge-gadget Ge,
if T (Ge) is not one of the two graphs of Figure 3, Ge contains a branching node or a leaf. So
Remark 6 implies:

I Remark 9. There are at most two irregular edge-gadgets. Thus there are at most four
irregular vertices.

Indeed, if T has two leaves, all the edge-gadgets are regular. If T has three leaves, the
third leaf must be in an edge-gadget, creating an irregular edge-gadget. And this leaf might
create a new branching node which might be in another edge-gadget than the one of the
third leaf. So the number of irregular edge-gadget is at most two, and thus the number of
irregular vertices is at most four (if the edges corresponding to these two edge-gadgets have
pairwise distinct endpoints).

Let T be a spanning tree of H(G) with at most three leaves. A vertex v is good if there
exists an edge e = vw for w ∈ V (G) such that xe

v or ye
v has degree one in the subtree of T

induced by the twelve vertices of the edge-gadget of e. In other words, if we simply look at
the edges of T with both endpoints in Ge, xe

v or ye
v has degree one (or said again differently,

xe
v or ye

v are adjacent to exactly one local vertex). Let us denote by S(T ) the set of good
vertices. Using the fact that every gadget contains at most one vertex of degree three and
one vertex of degree one by Remark 6, we can show:

I Lemma 10 (*). Let T be a spanning tree with at most three leaves of H(G) and e = uv be
an edge of G. At least one special vertex of the edge-gadget Ge has degree one in the subgraph
of T induced by the vertices of Ge. In particular, S(T ) is a vertex cover.

So, for every tree T with at most three leaves, S(T ) is a vertex cover. We say that S(T )
is the vertex cover associated with T .

ESA 2020
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The next two technical lemmas ensure that an edge flip transformation provides a
TAR-vertex cover reconfiguration sequence.

I Lemma 11 (*). Every spanning tree T of H(G) with at most three leaves satisfies |S(T )| ≤
k + 1.

Sketch of the proof. Assume by contradiction that |S| ≥ k+ 2. By Remark 9, at least k− 2
vertices of S are regular. By Lemma 8, for each regular vertex w ∈ S, there is an edge of
T between Z and the first entering vertex of w and Z and the last exit vertex of w. So at
least 2k− 4 edges of δT (Z) are incident to regular vertices. Moreover two edges of δT (Z) are
incident to s1 and s2. So, T already has 2k − 2 edges in δT (Z). Since |Z| = k + 1 and T has
at most three leaves, Remark 6 ensures that δT (Z) has size 2k + 1, 2k + 2 or 2k + 3. The
main part of the proof, not included in this extended abstract, consists in proving that the
edges between Z and entering or exit vertices of irregular vertices is too large. J

So the vertex cover S(T ) associated with every spanning tree T with at most three leaves
has size at most k + 1. In order to prove that a spanning tree transformation provides a
vertex cover transformation for the TAR setting, we have to prove that, for every edge flip,
then either S is not modified, or one vertex is added to S or one vertex is removed from S.

I Lemma 12 (*). Let T1 and T2 be two adjacent trees with at most three leaves. Then the
symmetric difference between the sets S associated with the two trees is at most one.

Lemmas 11 and 12 immediately implies the following:

I Lemma 13. If there is an edge flip reconfiguration sequence between two spanning trees T1
and T2, then there is a TAR-reconfiguration sequence (with threshold k + 1) between S(T1)
and S(T2).

We refer the reader to the complete version for a proof of the converse direction.

3 Spanning tree with many leaves

Before stating the main results of this section, let us prove the following:

I Lemma 14 (*). Let G be a graph and T1, T2 be two trees. There exists a transformation
from T1 to T2 such that every intermediate tree T satisfies in(T ) ⊆ in(T1) ∪ in(T2).
In particular, all the trees with the same set of internal nodes are in the same connected
component of the reconfiguration graph.

3.1 Hardness results
I Theorem 15. Spanning Tree with Many Leaves is PSPACE-complete even restricted
to bipartite graphs or split graphs.

Sketch of the proof. We first briefly explain the proof for bipartite graphs. We provide a
polynomial-time reduction from the TAR-Dominating Set Reconfiguration problem
(abbreviated in TAR-DSR problem). Haddadan et al [7]. showed that the TAR reconfiguration
of dominating sets is PSPACE-complete. More precisely, they proved that given a graph G
and Ds, Dt two dominating sets of G, deciding whether there is a reconfiguration sequence
between Ds and Dt under the TAR(max(|Ds|, |Dt|) + 1) rule is PSPACE-complete.
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v1

v5

v4 v3

v2

(a) Original graph G.

a1

a2

a3

a4

a5

A

b1,0

b1,2

b2,0

b2,1

b3,0

b3,1

b4,0

b4,1

b5,0

b5,1

B

xy

(b) Corresponding bipartite graph G′.

Figure 4 Example for the reduction of Theorem 15: the dominating set D = {v2, v5} of G is
depicted by the black vertices and the spanning tree of G′ associated with D is the tree induced by
the solid edges. For the split case, we add all the possible edges in G′[A] so that G′[A ∪ {x}] is a
clique and G′[B ∪ {y}] an independent set.

Let G = (V,E) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and let Ds, Dt be
two dominating sets of G. Free to add vertices to the set of smallest size, we can assume
without loss of generality that Ds and Dt are both of size k. Let (G, k + 1, Ds, Dt) be
the corresponding instance of Dominating Set Reconfiguration under TAR, where
k + 1 is the threshold that we cannot exceed. We construct the bipartite graph G′ as
follows: we make a first copy A = {a1, a2, . . . , an} of the vertex set of G, and a second copy
B = {b1,0, b1,1, b2,0, b2,1, . . . , bn,0, bn,1} where we double each vertex. We add an edge between
ai ∈ A and bj,k ∈ B for k ∈ {0, 1} if and only if vj ∈ NG[vi]. Note that N(bi,0) = N(bi,1),
for every 1 ≤ i ≤ n. We finally add a vertex x adjacent to all the vertices in A and we attach
it to a degree-one vertex y. Note that G′ is bipartite since A ∪ {y} and B ∪ {x} induce two
independent sets (see Figure 4 for an illustration).

B Claim 16 (*). For every spanning tree T of G′, in(T ) ∩A is a dominating set of G.

B Claim 17 (*). For every spanning tree T of G′, there exists a tree TA in the same connected
component of T in the reconfiguration graph such that in(TA) ⊆ in(T ) ∩ (A ∪ {x}).

Let D be a dominating set of G of size k. We can associate with D a spanning tree of
G′ with k + 1 internal nodes as follows. We attach every vertex in A ∪ {y} to x. Every
vertex bi ∈ B is a leaf adjacent to a vertex that dominates vi in D. If vi has more than one
neighbor in D, we choose the one with the smallest index. This spanning tree is called the
spanning tree associated with D. Due to space restrictions, the proof that (G, k + 1, Ds, Dt)
is yes-instance of TAR-DSR if and only if (G′, k′, Ts, Tt) is a yes-instance of Spanning Tree
with Many Leaves is not included in this extended abstract.
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(a) Original labeled planar graph G. (b) Corresponding planar graph G′.

Figure 5 Reduction for Theorem 18. The vertex cover C of G is depicted by the black vertices.
The dual graph is the graph induced by the green edges. The spanning tree obtained from the BFS
is represented by the solid edges. The face-vertices (respectively edge-vertices) of G′ are depicted by
triangles (resp. squares). The spanning tree T of G′ associated with the vertex cover C is the tree
induced by the red edges. The number of leaves of T is 2(|E(G)|+ 1)− |C| = 32.

Let us now quickly explain how to adapt this proof for split graphs. We first add an edge
between any two vertices in A so that G′[A] is a clique. Then, observe that G′[A ∪ {x}] is
a clique, and G′[B ∪ {y}] an independent set. The proof that the resulting instance is a
yes-instance of Spanning Tree with Many Leaves if and only if (G, k + 1, Ds, Dt) is a
yes-instance of TAR-DSR is similar to the one for bipartite graphs (see the full version). J

I Theorem 18. Spanning Tree with Many Leaves is PSPACE-complete even restricted
to planar graphs.

The reduction. First, observe that MVCR is PSPACE-complete, even if the input graph is
planar [10]3. We use a reduction from MVCR, which is a slight adaptation of the reduction
used in [12, Theorem 4]. Let G = (V,E) be a planar graph and let (G,Cs, Ct) be an instance
of MVCR. We can assume that G is given with a planar embedding of G since such an
embedding can be found in polynomial time. Let F (G) be the set of faces of G (including
the outer face). We construct the corresponding instance (G′, k, Ts, Tt) as follows:

We define G′ from G as follows. We start from G and first subdivide every edge uv ∈ E(G)
by adding a new vertex wuv. Then, for every face f ∈ F (G), we add a new vertex wf adjacent
to all the vertices of the face f . Finally, we attach a leaf uf to every vertex wf . Note that G′

is a planar graph and |V (G′)| = |V (G)|+ |E(G)|+ 2 · |F (G)|. The vertices wuv for uv ∈ E
(resp. wf for f ∈ F ) are edge-vertices (resp. face-vertices). The vertices uf for every f
are called the leaf-vertices. Note that, for every spanning tree T , all the face-vertices are
internal nodes of T and all the leaf-vertices are leaves of T . The vertices of V (G′) which are
neither edge, face of leaf vertices are called original vertices. Finally, we choose an arbitrarily
ordering of V (G) and F . It will permit us to define later a canonical spanning tree for every
vertex cover (see Figure 5 for an example).

I Lemma 19 (*). Every spanning tree of G′ has at most 2(|E(G)|+ 1)− τ(G) leaves.

3 Actually, Hearn and Demaine [10] showed the PSPACE-completeness for the reconfiguration of maximum
independent sets. Since the complement of a maximum independent set is a minimum vertex cover, we
directly get the PSPACE-completeness of MVCR.
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I Lemma 20 (*). For any minimum vertex cover C of G = (V,E), we can define a canonical
tree with exactly k := 2(|E(G)| + 1) − τ(G) leaves which are all the edge-vertices, all the
leaf-vertices and all the original vertices but the ones in C. Moreover, this spanning can be
computed in polynomial time.

Recall that (G,Cs, Ct) is an instance of Minimum Vertex Cover Reconfiguration.
By Lemma 20, we can compute in polynomial time two spanning trees Ts and Tt from Cs
and Ct with 2(|E(G)|+ 1)− τ(G) leaves. Finally, we set k := 2(|E(G)|+ 1)− τ(G)). Let
(G′, k, Ts, Tt) be the resulting instance of Spanning Tree with Many Leaves. It remains
to prove that (G,Cs, Ct) is a yes-instance if and only (G′, k, Ts, Tt) is a yes-instance. Suppose
first that we have a reconfiguration sequence S between Cs and Ct. By Lemma 20, we
can associate with each vertex cover Ci of S a spanning tree Ti of G′. To show that there
is a reconfiguration sequence S′ between Ts and Tt, we show that we can transform two
consecutive spanning trees of S′ without increasing the number of internal nodes. Note that
we use the fact that each Ci of S is a minimum vertex cover. For the converse direction, we
show that all the edge-vertices of any spanning tree in a reconfiguration sequence S from Ts to
Tt is a leaf. Hence, one can directly deduce a vertex cover Ci of G from a spanning tree Ti ∈ S.
Finally, we show that (i) each vertex cover is of size τ(G) and; (ii) |Ci4Ci+1| ∈ {0, 2} for
any two consecutive vertex covers.

3.2 Two internal nodes and cographs
Recall that, for every tree, the number of leaves is equal to n minus the number of internal
nodes. So, for convenience, our goal would consist in minimizing the number of internal
nodes rather than maximizing the number of leaves.

I Theorem 21. Let G be a graph and Ts or Tt be two spanning trees with at most two
internal nodes. Then we can check in polynomial time if one can transform the other via a
sequence of spanning trees with at most two internal nodes.

Sketch of the proof. If Ts or Tt has one internal node, the problem can be easily decided. So
we restrict to the case |in(Ts)| = |in(Tt)| = 2. Moreover, if in(Ts) = in(Tt), then (G, k, Ts, Tt)
is a yes-instance. So we only consider the case in(Ts) 6= in(Tt).

A vertex u is a pivot vertex of G if deg u ≥ n − 2 in G (deg u being the size of the
neighborhood of u, u not included). A spanning tree T of G is frozen if all the spanning
trees in its connected component of the reconfiguration graph have the same internal nodes.

B Claim 22 (*). Let T be a spanning tree of G. If in(T ) does not contain a pivot vertex,
then T is frozen.

B Claim 23 (*). Let u be a pivot vertex. All the trees containing u as internal vertex are in
the same connected component of the reconfiguration graph.

Using these two claims, we can prove that the result follows. J

One can naturally wonder if this can be extended to larger values of k or if it is special
for k = 2. We left this as an open problem. We were only interested in the case k = 2 since
it was of particular interest for cographs. Indeed, if k ≥ 3, one can prove that the answer is
always positive for cographs. Together with Theorem 21, it implies:

I Theorem 24 (*). Spanning Tree with Many Leaves can be decided in polynomial
time on cographs.
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3.3 Interval graphs
A graph G is an interval graph if G can be represented as an intersection of segments on
the line. More formally, each vertex can be represented with a pair (a, b) (where a ≤ b) and
vertices u = (a, b) and v = (c, d) are adjacent if the intervals (a, b) and (c, d) intersect. Let
u = (a, b) be a vertex; a is the left extremity of u and b the right extremity of u. Given an
interval graph, a representation of this graph as the intersection of intervals in the plane
can be found in O(|V |+ |E|) time (see e.g. [3]). In the rest of the section we assume that a
representation is given.

I Theorem 25. Spanning Tree with Many Leaves can be decided in polynomial time
on interval graphs.

The proof techniques are inspired from [2]. The rest of this section is devoted to prove
Theorem 25. Moreover, if G is a clique, then G is a cograph and then the problem can be
decided in polynomial by Theorem 24. So, from now on, we can assume that G is not a
clique and in particular in(G) ≥ 2.

C-minimum spanning trees. Let k be an integer, G be a graph. We denote by R(G, k) the
edge flip reconfiguration graph of the spanning trees of G with at most k internal nodes.

Let T, T ′ be two spanning trees with the same set of internal nodes. Lemma 14 ensures
that T and T ′ are in the same connected component of R(G, k). So in what follows, we will
often associate a tree T with its set in(T ) of internal nodes.

For every interval graph, we can define a spanning tree TC called the canonical tree which
minimizes the number of internal vertices and such that for every i, the right extremity of
the i-th internal node is maximized.

A tree T is C-minimum if no tree T ′ in the connected component of T in R(G, k) contains
fewer internal nodes than T . The goal of this part consists in showing that all the trees that
are not C-minimum are in the connected component of TC in R(G, k). The following lemmas
follow from basic transformation on spanning trees:

I Lemma 26 (*). Let T be a spanning tree of G and k ≥ in(T ). If there exist two internal
nodes u, v of T such that the interval of u is included in the interval of v then T is not
C-minimum in R(G, k). Moreover a tree with internal nodes included in in(T ) \ {u} in the
component of T can be found in polynomial time, if it exists.

I Lemma 27 (*). Let T be a spanning tree of G. If there exist three pairwise adjacent
internal nodes u, v, w such that N [u] ⊆ N [v] ∪N [w] then T is not C-minimum. Moreover
a tree with internal nodes included in in(T ) \ {u} in the connected component of T can be
found in polynomial time.

Note that if u, v, w induce a triangle, then Lemma 26 or 27 holds. So, free to perform
some pre-processing operations, we can assume that the set of internal nodes of a spanning
T of G induces a path. Indeed, if an internal node x is incident to three other internal nodes
u, v, w, then either at least two of them contain the left extremity (or right extremity) of x,
or one interval is strictly included in the interval of x. In the first case there is a triangle
and we can apply Lemma 26 or 27. In the second case, we can apply Lemma 26.

I Lemma 28 (*). Let G be an interval graph and k be an integer. Any spanning tree T of
G satisfying in(T ) < k is in the connected component of TC in R(G, k).

Sketch of the proof. The proof consists in showing that we can iteratively increase the
number of internal nodes on which T and TC agree without increasing the number of internal
nodes at the end of the sequence (and increase it by at most one during the sequence). J
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Full access. Let T be a tree such that in(T ) induces a path. Recall that the left and right
extremities orderings agree. The leftmost vertex of T is the vertex of in(T ) that is minimal
for both l and r. The i-th internal node of T is the internal node with the i-th smallest left
extremity.

Let G be an interval graph and v ∈ V (G). The auxiliary graph Hv of G on v is defined
as follows. The vertex set of Hv is v plus the set W of vertices w which end after v and start
after the beginning of v (i.e. vertices whose interval ends after v but does not contain v) plus
a new vertex x, called the artificial vertex. The set of edges of Hv is the set of edges induced
by G[W ∪ {v}] plus the edge xv.

B Claim 29 (*). Let G be an interval graph and v be a vertex of G. The graph Hv is an
interval graph.

Let v ∈ V (G). Every spanning tree of Hv necessarily contains v in its set of internal
nodes. Indeed, by construction, the graph Hv contains a vertex x of degree one which is only
incident to v. Moreover, v is the leftmost internal node of any spanning tree T of Hv.

Let G be an interval graph, k ∈ N and T be a spanning tree with internal nodes I such
that |I| = k. Let v ∈ V (G). The restriction of a spanning tree T to Hv is any spanning tree
of Hv with internal nodes included in (in(T ) ∪ {v}) ∩ V (Hv). We denote by k′

v (or k′ when
no confusion is possible) the value |(in(T ) ∪ {v}) ∩ V (Hv)|. Let T ′ be the restriction of T
to Hv as defined above. One can easily check that the number of internal nodes of T ′ is at
most k′.

The vertex v is good if the restriction of T to Hv is not C-minimum in R(Hv, k
′). The

vertex v is normal otherwise. Let v be a normal vertex. Recall that v is the leftmost internal
node of any spanning tree of Hv. Let C be the connected component of the restriction of
T to Hv in R(Hv, k

′). We denote by `′
v(T ) the second internal node of a spanning tree of

Hv in C that minimizes its left extremity. Similarly we denote by r′
v(T ) the second internal

node of a spanning tree of Hv in C that maximizes its right extremity. When they do not
exist4, we set `′

v(T ) = −∞ and r′
v(T ) = +∞.

We say that we have full access to T if, for every vertex v ∈ V (G), we have a constant time
oracle saying if v is good or normal. And if v is normal, we moreover have a constant time
access to `′

v(T ) and r′
v(T ). What remains to be proved is that (i) knowing this information

for two spanning trees T and T ′ is enough to determine if they are in the same connected
component of R(G, k), and that (ii) this information can be computed in polynomial time.

Dynamic programming algorithm. Let us first state the following useful lemma.

I Lemma 30 (*). Let G be an interval graph and k ∈ N. Let T be a spanning tree of G and
v be an internal node of T . Let J := in(T ) ∩ V (Hv) and k′ = |J |. If a tree T ′ with internal
nodes J can be transformed into a tree with internal nodes K in R(Hv, k

′) then T can be
transformed into a tree with internal nodes (in(T ) \ J) ∪K in R(G, k).

In particular, if T ′ is not C-minimum in R(Hv, k
′) then T is not C-minimum in R(G, k).

Let us now prove that if we have full access to Hv for any v we can determine if T is
C-minimum and, if it is, the rightmost possible right extremity of the first internal node of
the trees in the connected component of T in R(G, k).

4 It is the case if and only if Hv is a clique.
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I Lemma 31 (*). Let G be an interval graph, k ∈ N, and T be a spanning tree of G with at
most k internal nodes. Assuming full access to T :

We can decide in polynomial time if T is C-minimum in R(G, k) and,
If T is C-minimum, we can compute in polynomial time the rightmost possible right
extremity of the first internal node of a tree in the connected component of T in R(G, k).

Sketch of the proof. Let v be the first internal node of T . Since we have full access to T ,
we can compute w := `′

v(T ). Lemma 30 ensures that there exists a spanning tree in the
component of T in R(G, k) with second internal node w. We now determine how far we can
move to the right the vertex v knowing this vertex. J

We say that we have full access to T after v if for every vertex w ∈ V (G) with w > v,
we have access in constant time to a table that permits us to know whether w is good or
normal. And if w is normal, we also have access to `′

w(T ) and r′
w(T ). Using a proof similar

to the one of Lemma 31, one can prove the following:

I Lemma 32 (*). Let G be an interval graph, k ∈ N, v ∈ V (G) and T be a spanning tree of
G with at most k internal nodes.

We can decide in polynomial time if v is good if we have full access to T after v.
If T is C-minimum, we can moreover compute r′

v(T ) and `′
v(T ) in polynomial time.

Lemmas 32 ensures that we can, using backward induction on the ordering of the vertices,
decide in polynomial time for all the vertices v of the graph if a vertex is good and if not we
can compute r′

v(T ) and `′
v(T ). So we have full access to T in polynomial time.

I Lemma 33 (*). Let G be an interval graph and v be a vertex of G. Let T1, T2 be two
spanning trees of G with internal nodes I1 and I2 of Hv such that v is normal for both T1
and T2. Let i1 := r′

v(I1) and i2 := r′
v(I2). The trees T1 and T2 are in the same connected

component of Hv if and only if:
i1 = i2 and,
Any spanning trees with internal nodes (I1 \ {v}) ∪ {i1} and (I2 \ {v}) ∪ {i2} are in the
same connected component of R(Hi1 , k).

We now have all the ingredients to prove Theorem 25.

Proof of Theorem 25. We can determine in polynomial time if the spanning trees are C-
minimum by Lemma 31. If both of them are not, then both of them can be reconfigured
to TC and there exists a transformation from T1 to T2 by Lemma 31. If only one of them
is, say T1, we can replace T1 by TC (since they are in the same connected component in
the reconfiguration graph). So we can assume that T1 and T2 are C-minimum. And the
conclusion follows by Lemma 33. J
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