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Abstract
Map labeling is a classical problem in cartography and geographic information systems (GIS) that
asks to place labels for area, line, and point features, with the goal to select and place the maximum
number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with
axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either
a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum
cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we
study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on
fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types – (i) uniform
height and width and (ii) uniform height and arbitrary width; both settings can be modeled as
rectangle intersection graphs.

We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate
Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This
breaks the natural barrier of Ω(∆) update time (where ∆ is the maximum degree in the graph) for
vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and
provide a series of deterministic dynamic approximation schemes. For uniform rectangles, we first
give an algorithm that maintains a 4-approximate Max-IS with O(1) update time. In a subsequent
algorithm, we establish the trade-off between approximation quality 2(1 + 1

k
) and update time

O(k2 log n), for k ∈ N. We conclude with an algorithm that maintains a 2-approximate Max-IS
for dynamic sets of unit-height and arbitrary-width rectangles with O(ω log n) update time, where
ω is the maximum size of an independent set of rectangles stabbed by any horizontal line. We
have implemented our algorithms and report the results of an experimental comparison exploring
the trade-off between solution quality and update time for synthetic and real-world map labeling
instances.
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1 Introduction

Map Labeling is a classical problem in cartography and geographic information systems
(GIS), that has received significant attention in the past few decades and is concerned with
selecting and positioning labels on a map for area, line, and point features. The focus in the
computational geometry community has been on labeling point features [3, 20,39,40]. The
labels are typically modeled as the bounding boxes of short names, which correspond precisely
to unit height, but arbitrary width rectangles; alternatively, labels can be standardized icons
or symbols, which correspond to rectangles of uniform size. In map labeling, a key task is in
fact to select an independent (i.e., overlap-free) set of labels from a given set of candidate
labels. Commonly the optimization goal is related to maximizing the number of labels. Given
a set R of rectangular labels, Map Labeling is essentially equivalent to the problem of
finding a maximum independent set in the intersection graph induced by R.

The independent set problem is a fundamental graph problem with a wide range of
applications. Given a graph G = (V,E), a set of vertices M ⊂ V is independent if no two
vertices in M are adjacent in G. A maximal independent set (MIS) is an independent set that
is not a proper subset of any other independent set. A maximum independent set (Max-IS)
is a maximum cardinality independent set. While Max-IS is one of Karp’s 21 classic NP-
complete problems [31], computing a MIS can easily be done by a simple greedy algorithm in
O(|E|) time. The MIS problem has been studied in the context of several other prominent
problems, e.g., graph coloring [33], maximum matching [30], and vertex cover [36]. On the
other hand, Max-IS serves as a natural model for many real-life optimization problems,
including map labeling [3], computer vision [6], information retrieval [37], and scheduling [38].

Stronger results for independent set problems in geometric intersection graphs are known in
comparison to general graphs. For instance, it is known that Max-IS on general graphs cannot
be approximated better than |V |1−ε in polynomial time for any ε > 0 unless NP=ZPP [27].
In contrast, a randomized polynomial-time algorithm exists that computes for rectangle
intersection graphs an O(log logn)-approximate solution to Max-IS with high probability [12],
as well as QPTASs [2,16]. The Max-IS problem is already NP-Hard on unit square intersection
graphs [21], however, it admits a polynomial-time approximation scheme (PTAS) for unit
square intersection graphs [19] and more generally for pseudo disks [13]. Moreover, for
rectangles with either uniform size or at least uniform height and bounded aspect ratio, the
size of an MIS is not arbitrarily worse than the size of a Max-IS. For instance, any MIS of a
set of uniform rectangles is a 4-approximate solution to the Max-IS problem, since each
rectangle can have at most four independent neighbors.

Past research has mostly considered static label sets in static maps [3, 20, 39, 40] and
in dynamic maps allowing zooming [7] or rotations [25], but not fully dynamic label sets
with insertions and deletions of labels. Recently, Klute et al. [32] proposed a framework
for semi-automatic label placement, where domain experts can interactively insert and
delete labels. In their setting an initially computed large independent set of labels can be
interactively modified by a cartographer, who can easily take context information and soft
criteria such as interactions with the background map or surrounding labels into account.
Standard map labeling algorithms typically do not handle such aspects well. Based on these
modifications (such as deletion, forced selection, translation, or resizing), the solution is
updated by a dynamic algorithm while adhering to the new constraints. Another scenario for
dynamic labels are maps, in which features and labels (dis-)appear over time, e.g., based on
a stream of geotagged, uniform-size photos posted on social media or, more generally, maps
with labels of dynamic spatio-temporal point sets [22]. For instance, a geo-located event
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that happens at time t triggers the availability of a new label for a certain period of time,
after which it vanishes again. Examples beyond social media are reports of earth quakes,
forest fires, or disease incidences. Motivated by this, we study the independent set problem
for dynamic rectangles of two types – (i) uniform height and width and (ii) uniform height
and arbitrary width. We consider fully dynamic algorithms for maintaining independent
sets under insertions and deletions of rectangles, i.e., vertex insertions and deletions in the
corresponding dynamic rectangle intersection graph.

Dynamic graphs are subject to discrete changes over time, i.e., insertions or deletions
of vertices or edges [18]. A dynamic graph algorithm solves a computational problem, such
as the independent set problem, on a dynamic graph by updating efficiently the previous
solution as the graph changes over time, rather than recomputing it from scratch. A dynamic
graph algorithm is called fully dynamic if it allows both insertions and deletions, and partially
dynamic if only insertions or only deletions are allowed. While general dynamic independent
set algorithms can obviously also be applied to rectangle intersection graphs, our goal is to
exploit their geometric properties to obtain more efficient algorithms.

Related Work. There has been a lot of work on dynamic graph algorithms in the last
decade and dynamic algorithms still receive considerable attention in theoretical computer
science. We point out some of these works, e.g., on spanners [9], vertex cover [10], set cover [1],
graph coloring [11], and maximal matching [23]. In particular, the maximal independent set
problem on dynamic graphs with edge updates has attracted significant attention in the last
two years [4, 5, 8, 15, 17]. Recently, Henzinger et al. [28] studied the Max-IS problem for
intervals, hypercubes and hyperrectangles in d dimensions, with special assumptions. They
assumed that the objects are axis-parallel and contained in the space [0, N ]d; the value of N
is given in advance, and each edge of an input object has length at least 1 and at most N .
Moreover, they have designed dynamic approximation algorithms and lower bounds, where
the update time depends on N and is of high complexity. Gavruskin et al. [24] studied the
Max-IS problem for dynamic proper intervals (intervals cannot contain one another), and
showed how to maintain a Max-IS with polylogarithmic update time.

Results and Organization. We study MIS and Max-IS problems for dynamic sets of O(n)
axis-parallel rectangles of two types: (i) congruent rectangles of uniform height and width
and (ii) rectangles of uniform height and arbitrary width. For both classes of rectangles a
MIS can be maintained in Ω(∆) update time by using the recent algorithm of Assadi et al. [4],
where ∆ is the maximum degree of the intersection graph. A (1+ε)-approximate Max-IS can
be maintained for unit squares in O(n1/ε2) time [19], and a (1 + 1

k )-approximate Max-IS can
be maintained for unit height and arbitrary width rectangles in O(n2k−1) update time [3] for
any integer k ≥ 1. In this paper we design and implement algorithms for dynamic MIS and
Max-IS that demonstrate the trade-off between update time and approximation factor, both
from a theoretical perspective and in an experimental evaluation. In contrast to the recent
dynamic MIS algorithms, which are randomized [4, 5, 8, 15], our algorithms are deterministic.

In Section 3 we present an algorithm that maintains a MIS of a dynamic set of unit
squares in amortized O(log2/3+o(1) n) update time, improving the best known update time
Ω(∆) [4]. A major, but generally unavoidable bottleneck of that algorithm is that the entire
graph is stored explicitly, and thus insertions/deletions of vertices take Ω(∆) time. We use
structural geometric properties of the unit squares along with a dynamic orthogonal range
searching data structure to bypass the explicit intersection graph and break this bottleneck.

ESA 2020
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In Section 4, we study the Max-IS problem. For dynamic unit squares, we give an
algorithm that maintains a 4-approximate Max-IS with O(1) update time. We generalize
this algorithm and improve the approximation factor to 2(1 + 1

k ), which increases the update
time to O(k2 logn). We conclude with an algorithm that maintains a 2-approximate Max-IS
for a dynamic set of unit-height and arbitrary-width rectangles (in fact, for a dynamic interval
graph, which is of independent interest) with O(ω logn) output-sensitive update time, where
ω is the maximum size of an independent set of rectangles stabbed by any horizontal line.

Finally, Section 5 provides an experimental evaluation of the proposed Max-IS approxi-
mation algorithms on synthetic and real-world map labeling data sets using unit squares.
The experiments explore the trade-off between solution size and update time, as well as the
speed-up of the dynamic algorithms over their static counterparts. See the supplemental
material for source code and benchmark data.
Proofs marked (?) are missing due to space constraints; refer to the full version for all details.

2 Model and Notation

Let R = {r1, . . . , rν} be a set of ν axis-parallel, unit-height rectangles in the plane. If
the rectangles are of uniform height and width, we can use an affine transformation to
map R to a set of unit squares S = {s1, . . . , sν} instead. We use the shorthand notation
[n] = {1, 2, . . . , n}. In our setting we assume that R is dynamically updated by a sequence of
N ∈ N insertions and deletions. We denote the set of rectangles at step i ∈ [N ] as Ri. For a
set of unit squares Si = {s1, . . . , sν} at step i ∈ [N ] we further define the set Ci = {c1, . . . , cν}
of the corresponding square centers. Let n = max{|Ri| | i ∈ [N ]} be the maximum number
of rectangles over all steps. The rectangle intersection graph defined by Ri at time step
i is denoted as Gi = (Ri, Ei), where two rectangles r, r′ ∈ Ri are connected by an edge
{r, r′} ∈ Ei if and only if r ∩ r′ 6= ∅. We use Mi to denote a maximal independent set in
Gi, and OPTi to denote a maximum independent set in Gi. For a graph G = (V,E) and a
vertex v ∈ V , let N(v) denote the set of neighbors of v in G. This notation also extends to
any subset U ⊆ V by defining N(U) =

⋃
v∈U N(v). We use deg(v) to denote the degree of a

vertex v ∈ V . For any vertex v ∈ V , let Nr(v) be the r-neighborhood of v, i.e., the set of
vertices that are within distance at most r from v (excluding v).

3 Dynamic MIS with Sub-Logarithmic Update Time

In this section, we study the MIS problem for dynamic uniform rectangles. As stated before
we can assume w.l.o.g. that the rectangles are unit squares. We design an algorithm that
maintains a MIS for a dynamic set of O(n) unit squares in sub-logarithmic update time.
Assadi et al. [4] presented an algorithm for maintaining a MIS on general dynamic graphs with
Ω(∆) update time, where ∆ is the maximum degree in the graph. In the worst case, however,
that algorithm takes O(n) update time. In fact, it seems unavoidable for an algorithm that
explicitly maintains the (intersection) graph to perform a MIS update in less than Ω(deg(v))
time for an insertion/deletion of a vertex v. In contrast, our proposed algorithm in this
section does not explicitly maintain the intersection graph Gi = (Si, Ei) (for any i ∈ [N ]),
but rather only the set of squares Si in a suitable dynamic geometric data structure. For the
ease of explanation, however, we do use graph terms at times.

Let i ∈ [N ] be any time point in the sequence of updates. For each square sv ∈ Si, let
sav be a square of side length a concentric with sv. Further, let Mi denote the MIS that we
compute for Gi = (Si, Ei), and let C(Mi) ⊆ Ci be their corresponding square centers. We
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Figure 1 Example for the deletion of a square sx. (a) Square sx, its neighborhood with centers
in s2

x, its 2-neighborhood with centers in s4
x, and the polygon Px. (b) Vertical slab partition of Px.

maintain two fully dynamic orthogonal range searching data structures throughout: (i) a
dynamic range tree T (Ci) for the entire point set Ci and (ii) a dynamic range tree T (C(Mi))
for the point set C(Mi) corresponding to the centers of Mi. They can be implemented
with dynamic fractional cascading [34], which yields O(logn log logn) update time and
O(k + logn log logn) query time for reporting k points. The currently best fully dynamic
data structure for orthogonal range reporting requires O(log2/3+o(1) n) amortized update
time and O(k + logn

log logn ) amortized query time [14].
We compute the initial MIS M1 for G1 = (S1, E1) by using a simple linear-time greedy

algorithm. First we initialize the range tree T (Ci). Then we iterate through the set S1 as
long as it is not empty, select a square sv for M1 and insert its center into T (C(Mi)), find its
neighbors N(sv) by a range query in T (Ci) with the concentric square s2

v, and delete N(sv)
from S1. It is clear that once this process terminates, M1 is a MIS.

When we move in the next step from Gi = (Si, Ei) to Gi+1 = (Si+1, Ei+1), either a
square is inserted into Si or deleted from Si. Let sx be the square that is inserted or deleted.
Insertion: When we insert a square sx into Si to obtain Si+1, we do the following operations.
First, we obtain T (Ci+1) by inserting the center of sx into T (Ci). Next, we have to detect
whether sx can be included in Mi+1. If there exists a square su from Mi intersecting sx, we
should not include sx; otherwise we will add it to the MIS. To check this, we search with
the range s2

x in T (C(Mi)). By a simple packing argument, we know that no more than four
points (the centers of four independent squares) of C(Mi) can be in the range s2

x. If the
query returns such a point, then sx would intersect with another square in Mi and we set
Mi+1 = Mi. Otherwise, we insert sx into T (C(Mi)) to get T (C(Mi+1)).
Deletion: When we delete a square sx from Si, it is possible that sx ∈Mi. In this case we
may have to add squares from N(sx) into Mi+1 to keep it maximal. Since any square can
have at most four independent neighbors, we can add in this step up to four squares to Mi+1.

First, we check if sx ∈ Mi. If not, then we simply delete sx from T (Ci) to get T (Ci+1)
and set Mi+1 = Mi. Otherwise, we delete again sx from T (Ci) and also from T (C(Mi)). In
order to detect which neighbors of sx can be added to Mi, we use suitable queries in the
data structures T (C(Mi)) and T (Ci). Figure 1a illustrates the next observations. The centers
of all neighbors in N(sx) must be contained in the square s2

x. But some of these neighbors
may intersect other squares in Mi. In fact, these squares would by definition belong to
the 2-neighborhood, i.e., be in the set Qx = N2(sx) ∩Mi. We can obtain Qx by querying

ESA 2020
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T (C(Mi)) with the range s4
x. Since sx ∈Mi, we know that Qx ∩ s2

x = ∅ and hence the center
points of the squares in Qx lie in the annulus s4

x − s2
x. A simple packing argument implies

that |Qx| ≤ 12 and therefore querying T (C(Mi)) will return at most 12 points.
Next we define the rectilinear polygon Px = s2

x −
⋃
sy∈Qx

s2
y, which contains all possible

center points of squares that are neighbors of sx but do not intersect any square sy ∈Mi\{sx}.

I Observation 1 (?). The polygon Px has at most 28 corners.

Next we want to query T (Ci) with the range Px, which we do by vertically partitioning
Px into rectangular slabs R1, . . . , Rc for some c ≤ 28 (see Figure 1b). For each slab Rj ,
where 1 ≤ j ≤ c, we perform a range query in T (Ci). If a center p is returned, we can add the
corresponding square sp into Mi+1, and p into T (C(Mi)) to obtain T (C(Mi+1)). Moreover,
we have to update Px ← Px − sp, refine the slab partition and continue querying T (Ci) with
the slabs of Px. We know that the deleted square sx can have at most four independent
neighbors. So after adding at most four new squares to Mi+1 we know that Px = ∅ and we
can stop searching.

I Lemma 2 (?). The set Mi is a maximal independent set of Gi = (Si, Ei) for each step
i ∈ [N ].

Both the Insertion and the Deletion operations consist of (i) a constant number of
insertions or deletions in the two fully dynamic orthogonal range searching data structures
and (ii) of a constant number of orthogonal range reporting queries. These queries return
at most 12 points in T (C(Mi−1)). While the query range Px for T (Ci−1) in the Deletion
operation may contain many points, an arbitrary point in Px is sufficient for adding a new
square to the independent set. Thus we do not need to enumerate all contained points,
but just a single witness. In the orthogonal range searching data structure of Chan and
Tsakalidis [14], the amortized update time for an insertion/deletion is O(log2/3+o(1) n); this
dominates the query time and together with Lemma 2 yields:

I Theorem 3. We can maintain a maximal independent set of a dynamic set of unit squares,
deterministically, in amortized O(log2/3+o(1) n) update time.

Proof. The correctness follows from Lemma 2. It remains to show the running time for
the fully dynamic updates. At each step i we perform either an Insertion or a Deletion
operation. Let us first discuss the update time for the insertion of a square. As described
above, an insertion performs one or two insertions of the center of the square into the
range trees and one range query in T (C(Mi−1)), which will return at most four points.
Using dynamic fractional cascading [34], this requires O(logn log logn) time; with the data
structure of Chan and Tsakalidis [14], the amortized update time for inserting a square is
O(log2/3+o(1) n), the time for inserting a new point into their range searching data structure;
this dominates the query time. The deletion of a square triggers either just a single deletion
from the range tree T (Ci−1) or, if it was contained in the MIS Mi−1, two deletions, up to
four insertions, and a sequence of range queries: one query in T (C(Mi−1)), which can return
at most 12 points and a constant number of queries in T (Ci−1) with the constant-complexity
slab partition of Px. Note that while the number of points in Px can be large, for our purpose
it is sufficient to return a single point in each query range if it is not empty. Therefore, the
update time for a deletion is again O(logn log logn) with dynamic fractional cascading [34]
or amortized O(log2/3+o(1) n) [14], depending on the selected data structure. J

For unit square intersection graphs, recall that any square in a MIS can have at most
four mutually independent neighbors. Therefore, maintaining a dynamic MIS immediately
implies maintaining a dynamic 4-approximate Max-IS.
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Figure 2 Example instance with bounding square B partitioned into a 5× 5 grid. Red squares
represent the computed 4-approximate solution, which here is M(O(H)).

I Corollary 4. We can maintain a 4-approximate maximum independent set of a dynamic
set of unit squares, deterministically, in amortized O(log2/3+o(1) n) update time.

4 Approximation Algorithms for Dynamic Maximum Independent Set

In this section, we study the Max-IS problem for dynamic unit squares as well as for
unit-height and arbitrary-width rectangles. In a series of dynamic schemes proposed in this
section, we establish the trade-off between the update time and the solution size, i.e., the
approximation factors. First, we design a 4-approximation algorithm with O(1) update
time for Max-IS on dynamic unit squares (Section 4.1). We improve this to an algorithm
that maintains a 2(1 + 1

k )-approximate Max-IS with O(k2 logn) update time (Section 4.2).
Finally, we conclude with an algorithm that deterministically maintains a 2-approximate
Max-IS with output-sensitive O(ω logn) update time, where ω is the maximum size of an
independent set of the unit-height rectangles stabbed by any horizontal line (Section 4.3).

Let B be a bounding square of the dynamic set of 1 × 1-unit squares
⋃
i∈[N ] Si of

side length κ × κ; we can assume that κ = O(n); otherwise we could contract empty
horizontal/vertical strips of B. Let H = {h1, . . . , hκ} and L = {l1, . . . , lκ} be a set of
top-to-bottom and left-to-right ordered equidistant horizontal and vertical lines partitioning
B into a square grid of side-length-1 cells, see Figure 2. Let EH = {hi ∈ H | i = 0 (mod 2)}
and OH = {hi ∈ H | i = 1 (mod 2)} be the set of even and odd horizontal lines, respectively.

4.1 4-Approximation Algorithm with Constant Update Time
We design a 4-approximation algorithm for the Max-IS problem on dynamic unit square
intersection graphs with constant update time. Our algorithm is based on a grid partitioning
approach. Consider the square grid on B induced by the sets H and L of horizontal and
vertical lines. We denote the grid points as gp,q for p, q ∈ [κ], where gp,q is the intersection
point of lines hp and lq. Under a general position assumption (otherwise we slightly perturb
the grid position to handle degenerate cases), each unit square in any set Si, for i ∈ [N ]
contains exactly one grid point. For each gp,q, we store a Boolean activity value 1 or 0 based

ESA 2020
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on its intersection with Si (for any step i ∈ [N ]). If gp,q intersects at least one square of Si,
we say that it is active and set the value to 1; otherwise, we set the value to 0. Observe that
for each grid point gp,q and each time step i at most one square of Si intersecting gp,q can be
chosen in any Max-IS. This holds because all squares that intersect the same grid point form
a clique in Gi, and at most one square from a clique can be chosen in any independent set.

We first initialize an independent set M1 for G1 = (S1, E1) with |M1| ≥ |OPT1|/4. For
each horizontal line hj ∈ H, we compute two independent sets M1

hj
and M2

hj
, where M1

hj

(resp. M2
hj
) contains an arbitrary square intersecting each odd (resp. even) grid point on hj .

Since every other grid point is omitted in these sets, any two selected squares are independent.
Let M(hj) = arg max{|M1

hj
|, |M2

hj
|} be the larger of the two independent sets. We define

p(hj) = |M1
hj
| and q(hj) = |M2

hj
|, as well as c(hj) = |M(hj)| = max{p(hj), q(hj)}.

We construct the independent sets M(EH) =
⋃bκ/2c
j=1 (M(h2j)) for EH and M(OH) =⋃bκ/2c

j=1 (M(h2j−1) for OH . We returnM1 = arg max{|M(EH)|, |M(OH)|} as the independent
set for G1. See Figure 2 for an illustration. The initialization of all O(κ2) variables and the
computation of the first set M1 take O(κ2) time. (Alternatively, a hash table would be more
space efficient, but could not provide the O(1)-update time guarantee.)

I Lemma 5 (?). The set M1 is an independent set of G1 = (S1, E1) with |M1| ≥ |OPT1|/4
and can be computed in O(κ2) time.

In the following step, when we move from Gi to Gi+1, for any i ∈ [N ], a square sx is
inserted into Si or deleted from Si. Intuitively, we check the activity value of the grid point
that sx intersects. If the update has no effect on its activity value, we keep Mi+1 = Mi.
Otherwise, we update the activity value, the corresponding cardinality counters, and report
the solution accordingly. All of these operations can be performed in O(1)-time. For a more
detailed description see the full version of this paper.

I Lemma 6 (?). The set Mi is an independent set of Gi = (Si, Ei) for each i ∈ [N ] and
|Mi| ≥ |OPTi|/4.

Lemmas 5 and 6 together with the O(1) update time yield:

I Theorem 7 (?). We can maintain a 4-approximate maximum independent set in a dynamic
unit square intersection graph, deterministically, in O(1) update time.

4.2 2(1 + 1
k
)-Approximation Algorithm with O(k) Update Time

Next, we improve the approximation factor from 4 to 2(1 + 1
k ), for any k ≥ 1, by combining

the shifting technique [29] with the insights gained from Section 4.1. This comes at the
cost of an increase of the update time to O(k2 logn), which illustrates the trade-off between
solution quality and update time. We reuse the grid partition and some notations from
Section 4.1. We first describe how to obtain a solution M1 for the initial graph G1 that is of
size at least |OPT1|/2(1 + 1

k ) and then discuss how to maintain this under dynamic updates.
Let hj ∈ H be a horizontal stabbing line and let S(hj) ⊆ S be the set of squares stabbed

by hj . Since they are all stabbed by hj , the intersection graph of S(hj) is equivalent to the
unit interval intersection graph obtained by projecting each unit square sx ∈ S(hj) to a unit
interval ix on the line hj ; we denote this set of unit intervals as I(hj). First, we sort the
intervals in I(hj) from left to right. Next we define k + 1 groups with respect to hj that are
formed by deleting those squares and their corresponding intervals from S(hj) and I(hj),
respectively, that intersect every k + 1-th grid point on hj , starting from some gj,α with
α ∈ [k+ 1]. Now consider the k consecutive grid points on hj between two deleted grid points
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hj gj,4 gj,8
. . .

Figure 3 Illustration of a group on line hj for k = 3 with the two subgroups I3
1 (hj) and I3

5 (hj).

in one such group, say, {gj,`, . . . , gj,`+k−1} for some ` ∈ [κ]. Let Ik` (hj) ⊆ I(hj) be the set of
unit intervals intersecting the k grid points gj,` to gj,`+k−1. We refer to them as subgroups.
See Figure 3 for an illustration. Observe that the maximum size of an independent set of
each subgroup is at most k, since the width of each subgroup is strictly less than k + 1 and
each interval has unit length.

We computeM1 forG1 as follows. For each stabbing line hj ∈ H, we form the k+1 different
groups of I(hj). For each group, a Max-IS is computed optimally and separately inside each
subgroup. Since any two subgroups are horizontally separated and thus independent, we can
then take the union of the independent sets of the subgroups to get an independent set for
the entire group. This is done with the linear-time greedy algorithm to compute maximum
independent sets for interval graphs [26]. Let {M1

hj
, . . . ,Mk+1

hj
} be k+1 maximum independent

sets for the k + 1 different groups and let M(hj) = arg max{|M1
hj
|, |M2

hj
|, . . . , |Mk+1

hj
|} be

one with maximum size. We store its cardinality as c(hj) = max{|M i
hj
| | i ∈ [k + 1]}. Next,

we compute an independent set for EH , denoted by M(EH), by composing it from the
best solutions M(hj) from the even stabbing lines, i.e., M(EH) =

⋃bκ/2c
j=1 M(h2j) and its

cardinality |M(EH)| =
∑bκ/2c
j=1 c(h2j). Similarly, we compute an independent set for OH

as M(OH) =
⋃bκ/2c
j=1 M(h2j−1) and its cardinality |M(OH)| =

∑bκ/2c
j=1 c(h2j−1). Finally, we

return M1 = arg max{|M(EH)|, |M(OH)|} as the solution for G1.

I Lemma 8 (?). The independent setM1 of G1 = (S1, E1) can be computed in O(n logn+kn)
time and |M1| ≥ |OPT1|/2(1 + 1

k ).

Next, we describe a pre-processing step, which is required for the dynamic updates.
Pre-Processing: For each horizontal line hj ∈ H, consider a group. For each subgroup
Ik` (hj) (for some ` ∈ [k + 1]), we construct a balanced binary tree T (Ik` (hj)) storing the
intervals of Ik` (hj) in left-to-right order (indexed by their left endpoints) in the leaves. This
process is done for each group of every horizontal line hj ∈ H. We mark those leaves in
T (Ik` (hj)) as selected that correspond to an independent interval in the solution and maintain
a list of pointers to those independent intervals. This tree also lets us quickly identify the
location of an interval that is inserted or deleted. In fact, while we run the greedy algorithm
on Ik` (hj), we can already mark precisely the selected intervals for the independent set.

When we perform the update step from Gi = (Si, Ei) to Gi+1 = (Si+1, Ei+1), either a
square is inserted into Si or deleted from Si. Let sx and ix be this square and its corresponding
interval. Let gu,v (for some u, v ∈ [κ]) be the grid point that intersects sx. We describe here
the Insertion and refer to the full version of this paper for the Deletion.
Insertion: The insertion of ix affects all but one of the groups on line hu. We describe
the procedure for one such group on hu; it is then repeated for the other groups. In each
group, ix appears in exactly one subgroup and the other subgroups remain unaffected. This
subgroup, say Ik` (hu), is determined by the index v of the grid point gu,v intersecting ix.
First, we locate ix in the sorted list of intervals of Ik` (hu), which can be done in O(logn) time
by searching in the associated tree T (Ik` (hu)). If ix is immediately left of a selected interval
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iy, but does not intersect the previous selected interval, then ix becomes a new selected
interval that replaces iy and triggers a sequence of updates of the later selected intervals.
Let us first consider the case that ix is not selected as a new independent interval. Then we
simply insert ix into T (Ik` (hu)) in O(logn) time. Otherwise, we mark ix as selected, remove
the selection mark from its successor interval iy, and replace iy by ix in the maintained
subsolution. Since the right endpoint of ix is left of the right endpoint of iy, this change
possibly triggers a sequence of updates to the subsequent selected intervals.

We thus identify in T (Ik` (hu)) the leftmost interval iz that starts to the right of the right
endpoint of ix. This takes O(logn) time. If this interval iz is not yet marked as selected, we
replace the previous successor of ix in the current list of selected intervals by iz and repeat
the update process for iz. Otherwise, if iz is already selected, we can stop the update of the
subsolution as there would be no further changes.

Since a maximum independent set in each subgroup contains at most k intervals, the
update time is O(k logn) per group and O(k2 logn) for all k affected groups.

While doing the updates, we collect the new selected intervals as the Max-IS for the
subgroup Ik` (hu). For all groups affected by the insertion of ix we update the corresponding
independent sets Mp

hu
for p ∈ [k + 1], whenever some updates of selected intervals were

necessary. Then we select the largest independent set of all k+1 groups asM(hj) and update
its new cardinality in c(hj). Finally, we update the independent setsM(EH) andM(OH) and
their cardinalities and return Mi+1 = arg max{|M(EH)|, |M(OH)|} as the solution for Gi+1.

I Lemma 9 (?). The set Mi is an independent set of Gi = (Si, Ei) for each i ∈ [N ] and
|Mi| ≥ |OPTi|/2(1 + 1

k ).

With Lemma 9 and the update time discussion in the full version of the paper we obtain:

I Theorem 10 (?). We can maintain a 2(1 + 1
k )-approximate maximum independent set in

a dynamic unit square intersection graph, deterministically, in O(k2 logn) update time.

4.3 2-Approximation Algorithm with O(ω log n) Update Time
We finally design a 2-approximation algorithm for the Max-IS problem on dynamic axis-
aligned unit height, but arbitrary width rectangles. Let B be the bounding box of the
dynamic set of rectangles R̃ =

⋃
i∈[N ]Ri. We begin by dividing B into horizontal strips

of height 1 defined by the set H = {h1, . . . , hκ} of κ = O(n) horizontal lines. We assume,
w.l.o.g., that every rectangle in R̃ is stabbed by exactly one line in H. For a set of rectangles
R, we denote the subset stabbed by a line hj as R(hj) ⊆ R.

We first describe how to obtain an independent set M1 for the initial graph G1 = (R1, E1)
such that |M1| ≥ |OPT1|/2 by using the following algorithm of Agarwal et al. [3]. For
each horizontal line hj ∈ H, we compute a maximum independent set for R1(hj). The
set Ri(hj) (for any i ∈ [N ] and j ∈ [κ]) can again be seen as an interval graph. For a set
of n intervals, a Max-IS can be computed by a left-to-right greedy algorithm visiting the
intervals in the order of their right endpoints in O(n logn) time. So for each horizontal line
hj ∈ H, let M(hj) be a Max-IS of R1(hj), and let c(hj) = |M(hj)|. Then we construct the
independent set M(EH) =

⋃bκ/2c
j=1 (M(h2j)) for EH . Similarly, we construct the independent

set M(OH) =
⋃bκ/2c
j=1 (M(h2j−1) for OH . We return M1 = arg max{|M(EH)|, |M(OH)|} as

the independent set for G1 = (R1, E1). See Figure 4 for an illustration.

I Lemma 11 (Theorem 2, [3]). The set M1 is an independent set of G1 = (R1, E1) with
|M1| ≥ |OPT1|/2 and can be computed in O(n logn) time.
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h2

h3

h4

h1

Figure 4 Example instance with four horizontal lines. Red rectangles represent the computed
2-approximate solution, which here is M(E(H)).

We describe the following pre-processing step to initialize in O(n logn) time the data
structures that are required for the subsequent dynamic updates.
Pre-Processing: Consider a stabbing line hj and the stabbed set of rectangles Ri(hj) for
some i ∈ [N ]. We denote the corresponding set of intervals as I(hj). We build a balanced
binary search tree Tl(I(hj)), storing the intervals in I(hj) in left-to-right order based on
their left endpoints. This is called the left tree of I(hj). We augment the left tree such that
each tree node additionally stores a pointer to the interval with leftmost right endpoint in
its subtree. This pointer structure can easily be computed by a bottom-up pass through
Tl(I(hj)). Note that a leaf update in Tl(I(hj)) takes O(logn) time as for standard binary
search trees, but we can in the same O(logn) time propagate the change that potentially
affects the leftmost right endpoints of the tree nodes along the path to the root. Additionally,
we store the set of selected independent intervals for the Max-IS of I(hj) in left-to-right
order in another balanced binary search tree Ts(I(hj)) (the so-called solution tree). Let ωj
be the cardinality of the maximum independent of I(hj) for j ∈ [κ], and let ω = maxj ωj be
the maximum of these cardinalities over all stabbing lines hj .

When we move from Gi to Gi+1 (for some 1 ≤ i < N), either we insert a new rectangle
into Ri or delete one rectangle from Ri. Let rx be the rectangle that is inserted or deleted,
let ix be its corresponding interval, and let hj (for some j ∈ [κ]) be the horizontal line
that intersects rx. In what follows, we describe how to maintain a 2-approximate Max-IS
with O(ωj logn) = O(ω logn) update time. We distinguish Insertion and Deletion.
Insertion: We first determine whether ix should be a new selected interval or not. Because
the greedy algorithm for constructing the Max-IS visits the intervals in left-to-right order
based on the right endpoints, we need to reconstruct the state of the algorithm when it
would visit ix. We query the solution tree Ts(I(hj)) with both endpoints of ix in O(logωj)
time. If and only if both search paths end up between the same two leaves belonging to two
consecutive selected intervals iy and iz (considering their right endpoints), then ix would
have been chosen as the next selected interval after iy and before iz in the greedy algorithm.
This implies that iy and ix are independent, but ix and iz may or may not intersect.

If the two search paths in the solution tree are different, then ix does not become a new
selected interval, and we simply insert it into Tl(I(hj)) in O(logn) time. Else we also insert ix
into Tl(I(hj)), but we also have to perform a sequence of selection update operations, which
are more involved for intervals of arbitrary length compared to the updates in Section 4.2.
Figure 5 shows an example. First we mark ix as selected and insert it into Ts(I(hj)). Now
we need to identify the next selected interval right of ix that would have been found by the
greedy algorithm. We use the left tree Tl(I(hj)) to search in O(logn) time for the interval
i′z with leftmost right endpoint, whose left endpoint is right of the right endpoint p of ix.
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(a)

ix

hj

(b)

hj

iy

i′z

Figure 5 Illustration of the updates triggered by the insertion of an interval; selected independent
intervals are marked by a dotted bounding box and intervals intersected by a selected interval have
the same color as the rightmost such interval. (a) Before insertion of ix, (b) after insertion of ix.

More precisely, we search for p in Tl(I(hj)) and whenever the search path branches into the
left subtree, we compare whether the leftmost right endpoint stored in the root of the right
subtree is left of the right endpoint of the current candidate interval. Once a leaf is reached,
the leftmost found candidate interval is the desired interval i′z. This interval i′z is precisely
the first interval after ix in the order considered by the greedy algorithm that is independent
of ix and thus must be the next selected interval. If iz 6= i′z, we repeat the update process
for i′z as if it would have been the newly inserted interval until we reach the end of I(hj);
otherwise we keep iz as the successor of ix and stop the update process.

For each update of a selected interval, we perform one search in Tl(I(hj)) in O(logn)
time. There are at most ωj updates, so the update time is O(ωj logn). Finally, we need
to delete O(ωj) old selected intervals from and insert O(ωj) new selected intervals into the
solution tree Ts(I(hj)), which takes O(logωj) time for each insertion and deletion. We now
re-evaluate the new Max-IS M(hj) and its cardinality c(hj), which possibly affects M(EH)
or M(OH). We obtain the new independent set Mi+1 = arg max{|M(EH)|, |M(OH)|} for
Gi+1 = (Ri+1, Ei+1).
Deletion: If the interval ix to be deleted is not a selected interval, it is sufficient to delete
it from the left tree Tl(I(hj)) in O(logn) time. Otherwise, if ix is a selected interval, let iy
be the selected interval preceding ix in the solution tree Ts(I(hj)). We first delete ix from
Tl(I(hj)) and Ts(I(hj)). Then we need to select a new interval to replace ix according to the
greedy Max-IS algorithm, which is the interval iz whose right endpoint is leftmost among
all intervals that are completely to the right of iy. We find this interval iz again by a search
in the left tree Tl(I(hj)) with the right endpoint of iy as the query point. We make iz a
new selected interval and use the right endpoint of iz as the query point for finding the next
selected interval in Tl(I(hj)). We repeat this process until we have reached the last interval
of I(hj).

As for the Insertion step, each update of a selected interval requires O(logn) time
due to the query for the next selected interval in Tl(I(hj)). There are O(ωj) such updates.
Further, we need to update the solution tree Ts(I(hj)) by performing O(ωj) insertions and
deletions of seeds, each in O(logωj) time. Once all updates to the selected intervals and
the data structures for I(hj) are done, we re-evaluate the new Max-IS M(hj) and its
cardinality c(hj), which possibly affects M(EH) or M(OH). This yields the new independent
set Mi+1 = arg max{|M(EH)|, |M(OH)|} for Gi+1 = (Ri+1, Ei+1).

I Lemma 12. The set Mi is an independent set of Gi = (Ri, Ei) for each i ∈ [N ] and
|Mi| ≥ |OPTi|/2.

Proof. We prove the lemma by induction. From Lemma 11 we know that M1 satisfies the
claim, and in particular each set M(h) for h ∈ H is a Max-IS of the interval set I(h). So let
us consider the set Mi for i ≥ 2 and assume that Mi−1 satisfies the claim by the induction
hypothesis. Let rx and ix be the updated rectangle and its interval, and assume that it
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belongs to the stabbing line hj . Then we know that for each hk ∈ H with k 6= j the set
M(hk) is not affected by the update to rx and thus is a Max-IS by the induction hypothesis.
It remains to show that the update operations described above restore a Max-IS M(hj)
for the set I(hj). But in fact the updates are designed in such a way that the resulting set
of selected intervals is identical to the set of intervals that would be found by the greedy
Max-IS algorithm for I(hj). Therefore M(hj) is a Max-IS for I(hj) and by the pigeonhole
principle |Mi| ≥ |OPTi|/2. J

Each update of a rectangle rx (and its interval ix) triggers either an Insertion or a
Deletion operation on the unique stabbing line of rx. As we have argued in the description
of these two update operations, the insertion or deletion of ix requires one O(logn)-time
update in the left tree data structure. If ix is a selected independent interval, the update
further triggers a sequence of at most ωj selection updates, each of which requires O(logn)
time. Hence the update time is bounded by O(ωj logn) = O(ω logn). Recall that ωj and ω
are output-sensitive parameters describing the maximum size of an independent set of I(h)
for a specific stabbing line h = hj or any stabbing line h.

I Theorem 13. We can maintain a 2-approximate maximum independent set in a dynamic
unit-height arbitrary-width rectangle intersection graph, deterministically, in O(ω logn) time,
where ω is the cardinality of a maximum independent set of the rectangles stabbed by the
horizontal stabbing line affected by the dynamic update.

I Remark 14. We note that Gavruskin et al. [24] gave a dynamic algorithm for maintaining
a Max-IS on proper interval graphs. Their algorithm runs in amortized time O(log2 n) for
insertion and deletion, and O(logn) for element-wise decision queries. The complexity to
report a Max-IS J is Θ(|J |). Whether the same result holds for general interval graphs
was posed as an open problem [24]. Our algorithm in fact solves the Max-IS problem on
arbitrary dynamic interval graphs, which is of independent interest. Moreover, it explicitly
maintains a Max-IS at every step.

5 Experiments

We implemented all our Max-IS approximation algorithms presented in Sections 3 and 4 in
order to empirically evaluate their trade-offs in terms of solution quality, i.e., the cardinality
of the computed independent sets, and update time measured on a set of suitable synthetic
and real-world map-labeling benchmark instances with unit squares. The goal is to identify
those algorithms that best balance the two performance criteria. Moreover, for smaller
benchmark instances with up to 2 000 squares, we compute exact Max-IS solutions using
a MaxSAT model by Klute et al. [32] that we solve with MaxHS 3.0 (see www.maxhs.org).
These exact solutions allow us to evaluate the optimality gaps of the different algorithms
in light of their worst-case approximation guarantees. Finally, we investigate the speed-ups
gained by using our dynamic update algorithms compared to the baseline of recomputing
new solutions from scratch with their respective static algorithm after each update.

5.1 Experimental Setup
We have implemented the five algorithms (and their greedy augmentation variants) listed
below in C++. The experiments were run on a server equipped with two Intel Xeon E5-2640
v4 processors (2.4 GHz 10-core) and 160GB RAM. The machine ran the 64-bit version of
Ubuntu Bionic (18.04.2 LTS). The code was compiled with g++ 7.4.0.
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MIS-graph A naive graph-based dynamic MIS algorithm, explicitly maintaining the square
intersection graph and a MIS [4, Sec. 3]. In order to evaluate and compare the performance
of our algorithm MIS-ORS (Section 3) for the MIS problem, we have implemented this
alternative dynamic algorithm. This algorithm, instead of maintaining the current
instance in a dynamic geometric data structure, maintains the rectangle intersection
graph explicitly as a baseline approach. We use standard adjacency lists to represent the
intersection graph, implemented as unordered sets in C++. Now, to obtain a MIS at
the first step, we add an arbitrary (unmarked) vertex v to the solution and mark N(v)
in the corresponding intersection graph. This process is repeated iteratively until there
is no unmarked vertex left in the intersection graph. Clearly, by following this greedy
method, we obtain a MIS. Moreover, for each vertex v, we maintain an augmenting
counter that stores the number of vertices from its neighborhood N(v) that are contained
in the current MIS.
This approach handles the updates in a straightforward manner. When a new vertex is in-
serted, its corresponding rectangle introduces new intersections in the current intersection
graph. Therefore, when adding this vertex, we also determine the edges that are required
to be added to the intersection graph. Notice that, unlike the canonical vertex update
operation defined in the literature, where the adjacencies of the new vertex are part of the
dynamic update, here, we actually need to figure out the neighborhood of a vertex. This
is done by iterating over each vertex and checking whether its corresponding rectangle is
overlapping with the newly inserted rectangle. Thus, it takes O(n) time to obtain the
neighborhood of this vertex. If the newly inserted rectangle has no intersection with
any rectangle from the current solution, then we simply add its vertex to the solution;
otherwise, we ignore it. Finally, we update the counters. If a vertex is deleted, we update
the intersection graph by deleting its corresponding rectangle. If the deleted vertex was
in the solution, then we decrease the counters of its neighbors by 1. Once the counter
of a vertex is updated to 0, we add this vertex into the solution. Both the insertion
(after computing N(v)) and deletion operation for a vertex v take O(deg(v)) time each
to update the intersection graph and the MIS solution.

MIS-ORS The dynamic MIS algorithm based on orthogonal range searching (Section 3);
this algorithm provides a 4-approximation. In the implementation we used the dynamic
orthogonal range searching data structure implemented in CGAL (version 4.11.2), which is
based on a dynamic Delaunay triangulation [35, Chapter 10.6]. Hence, this implementation
does not provide the sub-logarithmic worst-case update time of Theorem 3.

grid The grid-based 4-approximation algorithm (Section 4.1).
grid-k The shifting-based 2(1+ 1

k )-approximation algorithm (Section 4.2). In the experiments
we use k = 2 (i.e., a 3-approximation) and k = 4 (i.e., a 2.5-approximation).

line The stabbing-line based 2-approximation algorithm (Section 4.3).
Since the algorithms grid, grid-k, and line are based on partitioning the set of squares

and considering only sufficiently segregated subsets, they produce a lot of white space in
practice. For instance, they ignore the squares stabbed by either all the even or all the
odd stabbing lines completely in order to create isolated subinstances. In practice, it is
therefore interesting to augment the computed approximate Max-IS by greedily adding
independent, but initially discarded squares. We have also implemented the greedy variants
of these algorithms, which are denoted as g-grid, g-grid-k, and g-line.

We created three types of benchmark instances. The synthetic data sets consist of n
30×30-pixel squares placed inside a bounding rectangle B of size 1 080×720 pixels, which also
creates different densities. The real-world instances use the same square size, but geographic
feature distributions. For the updates we consider three models: insertion-only, deletion-only,
and mixed, where the latter selects insertion or deletion uniformly at random.
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Table 1 Specification of the six OSM instances.

post-CH peaks-AT hotels-CH hotels-AT peaks-CH hamlets-CH
features (n) 646 652 1 788 2 209 4 320 4 326
overlaps (m) 5 376 5 418 28 124 68 985 107 372 159 270
density (m/n) 8.32 8.31 15.73 31.23 24.85 36.92

Gaussian In the Gaussian model, we generate n squares randomly in B according to an
overlay of three Gaussian distributions, where 70% of the squares are from the first
distribution, 20% from the second one, and 10% from the third one. The means are
sampled uniformly at random in B and the standard deviation is 100 in both dimensions.

Uniform In the uniform model, we generate n squares in B uniformly at random.
Real-world We created six real-world data sets by extracting point features from Open-

StreetMap (OSM), see Table 1 for their detailed properties.

5.2 Experimental Results
Time-quality trade-offs. For our first set of experiments we compare the five implemented
algorithms, including their greedy variants, in terms of update time and size of the computed
independent sets. Figure 6 shows scatter plots of runtime vs. solution size on uniform and
Gaussian benchmarks, where algorithms with dots in the top-left corner perform well in both
measures.

We first consider the results for the uniform instances with n = 10 000 squares in the top
row of Figure 6. Each algorithm performed N = 400 updates, either insertions (Figure 6a)
or deletions (Figure 6b) and each update is shown as one point in the respective color.
Both plots show that the two MIS algorithms compute the best solutions with almost the
same size and well ahead of the rest. While MIS-ORS is clearly faster than MIS-graph on
insertions, they are comparably fast for deletions, with some slower outliers of MIS-ORS. The
approximation algorithms grid, grid-2, grid-4, and line (without the greedy optimizations)
show their predicted relative behavior: The better the solution quality, the worse the update
times. Algorithms line and g-line show a wide range of update times, spanning almost
two orders of magnitude. Adding the greedy optimization drastically improves the solution
quality in all cases, but typically at the cost of higher runtimes. For g-grid-k the algorithms
get slower by an order of magnitude and increase the solution size by 30–50%. For g-grid,
the additional runtime is not as significant (but deletions are slower than insertions), and
the solution size almost doubles. Finally, g-line is nearly as fast as line, and reaches the best
quality among the approximation algorithms with about 80% of the MIS solutions, but faster
by one or two orders of magnitude.

For the results of the Gaussian instances with n = 10 000 squares and N = 400 updates
plotted in Figures 6c (insertions) and 6d (deletions) we observe the same ranking between the
different algorithms. However, due to the non-uniform distribution of squares, the solution
sizes are more varying, especially for the insertions. For the deletions it is interesting to
see that grid and MIS-graph have more strongly varying runtimes, which is in contrast to
the deletions in the uniform instance, possibly due to the dependence on the vertex degree.
The best solutions are computed by MIS-ORS and MIS-graph, which show similar deletion
times, but the insertion times of MIS-ORS are one order of magnitude faster than MIS-graph.
Algorithm g-line again reaches more than 80% of the quality of the MIS algorithms, with a
speed-up between one and two orders of magnitude.
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(a) Uniform, n = 10 000, 400 insertions.
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(b) Uniform, n = 10 000, 400 deletions.
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(c) Gaussian, n = 10 000, 400 insertions.
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(d) Gaussian, n = 10 000, 400 deletions.

Figure 6 Time-quality scatter plots for synthetic benchmark instances. The x-axis (log-scale)
shows runtime, the y-axis shows the solution size.

Optimality gaps. Next, let us look at the results of the real-world instances in Figure 7.
The first four instances in Figure 7a–d, were small enough so that we could compute each
Max-IS exactly with MaxHS and compare the solutions of the approximation algorithms
with the optimum on the y-axis. The largest two instances in Figure 7e and 7f plot the
solution size on the y-axis. First, let us consider Figure 7c as a representative, which is
based on a data set of 1 788 hotels and hostels in Switzerland with mixed updates of 10%
of the squares (N = 179). Generally speaking, the results of the different algorithms are
much more overlapping in terms of quality than for the synthetic instances. The plot shows
that the MIS algorithms reach consistently between 80% and 85% of the optimum, but
are sometimes outperformed by g-grid-4 and g-line. Regarding the runtime, MIS-ORS has
more homogeneous update times ranging between the extrema of MIS-graph, which suffers
from the rather slow insertions. The original approximations are well above their respective
worst-case ratios, but stay between 45% and 65% of the optimum. The greedy extensions
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push this towards larger solutions, at the cost of higher runtimes. However, g-line seems
to provide a very good balance between quality and speed. We point out that because the
updates comprise insertions and deletions, the marks for algorithms that are sensitive to the
update type, such as g-grid and MIS-graph form two separate runtime clusters. The same
relative observations of the algorithms’ performance can be made in Figures 7a–d, yet they
show different absolute quality offsets and variance.

Let us next consider the largest OSM instance in Figure 7f. It again reflects the same
findings as obtained from the smaller instances. The instance consists of n = 4 326 hamlets in
Switzerland with 10% mixed updates (N = 433) and is denser by a factor of about 2.3 than
hotels-CH (see Table 1). There is quite some overlap of the different algorithms in terms
of the solution size, yet the algorithms form the same general ranking pattern as observed
before. Interestingly, while the MIS algorithms contribute some of the best solutions, they
also show a variance of ±50 squares. In contrast, g-line, the best of the approximation
algorithms, is competing well and is more stable in terms of solution size and again about an
order of magnitude faster than the MIS algorithms. The update-type dependent behavior of
MIS-graph with its significantly slower insertions is observed once more, making MIS-ORS
the better choice for a mixed update model.

Finally, Figure 8 shows the optimality ratios of the algorithms for small uniform and
Gaussian instances with n = 1 000 squares. They confirm our earlier observations, but also
show that for these small instances, MIS-graph is about as fast as MIS-ORS for insertions
and faster than MIS-ORS for deletions. This is because the graph size and vertex degrees do
not yet influence the running time of MIS-graph strongly. Yet, as the next experiment shows,
this changes drastically, as the instance size grows.

Runtimes. In our last experiment, we explore in more detail the scalability of the algorithms
for larger instances, both relative to each other and in comparison to the re-computation
times of their corresponding static algorithms. We generated one random instance with
n = 1 000k squares for each k ∈ {1, 2, 4, 8, 16, 32} and measured the average update times
over n/10 insertions or deletions. The results for the Gaussian and uniform model are plotted
in Figure 9. Considering the update times for insertions, we confirm the observations from
the scatter plots in terms of the performance ranking. Most algorithms grow only very slowly
in terms of their running time, with the notable exception of MIS-graph, but that was to be
expected. For deletions, MIS-graph is initially faster than MIS-ORS, but again shows the
steepest increase in runtime. Deletions in the Gaussian model also affect the runtime of grid
and g-grid quite noticeably, yet one order of magnitude below MIS-graph.

In the comparison with their non-dynamic versions, i.e., re-computing solutions after each
update, the dynamic algorithms indeed show a significant speed-up in practice, already for
small instance sizes of n = 1 000, and even more so as n grows (notice the different y-offsets).
For some algorithms, including MIS-ORS and g-line, this can be as high as 3–4 orders of
magnitude for n = 32 000. It clearly confirms that the investigation of algorithms for dynamic
MIS and Max-IS problems for rectangles is well justified also from a practical point of view.

5.3 Discussion
Our experimental evaluation provides several interesting insights into the practical perfor-
mance of the different algorithms. First of all, both MIS-based algorithms generally showed
the best solution quality in the field, reaching 85% of the exact Max-IS size, where we could
compare against optimal solutions. This is in strong contrast to their factor-4 worst-case
approximation guarantee of only 25%.
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(a) post-CH, 10% mixed updates.
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(b) peaks-AT, 10% mixed updates.
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(c) hotels-CH, 10% mixed updates.
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(d) hotels-AT, 10% mixed updates.
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(e) peaks-CH, 10% mixed updates.
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Figure 7 Time-quality scatter plots for the OSM instances. The x-axis (log-scale) shows runtime.
The y-axis shows the quality ratio compared to an optimal Max-IS solution for the smaller instances
(a)–(d), and the solution size for the larger instances (e)–(f).
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(a) Uniform, 100 insertions.
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(b) Uniform, 100 deletions.
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(c) Gaussian, 100 insertions.
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(d) Gaussian, 100 deletions.

Figure 8 Time-quality scatter plots for uniform and Gaussian instances with n = 1 000 squares.
The x-axis (log-scale) shows runtime. The y-axis shows the quality ratio compared to an optimal
Max-IS solution.

Our algorithm MIS-ORS avoids storing the intersection graph explicitly. Instead, we
only store the relevant geometric information in a dynamic data structure and derive edges
on demand. Therefore it breaks the natural barrier of Ω(∆) (amortized) vertex update in a
dynamic graph, where ∆ is the maximum degree in the graph. However, it has to find the
intersections using the complex range query, which takes O(logn) time. We did not involve
any geometric data structure in the baseline MIS approach MIS-graph. Recall that, the
update of the intersection graph when adding a new rectangle includes the time to figure out
the neighborhood of the newly added vertex. Therefore, the graph-based algorithm showed a
slow insertion update and was quite sensitive to the size of instances in insertion updates.
However, the deletion update only depends on the degree of the involved vertex, not the
size of instances directly. And as expected, the graph-based algorithm was indeed much
faster for small instances, but MIS-ORS was more scalable in our experiment. However, the
intersection graph update for MIS-graph can be improved by using additionally a geometric
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(a) Update times for insertions (Gaussian).
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(b) Update times for deletions (Gaussian).
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(c) Re-computation times for insertions (Gaussian).
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(d) Re-computation times for deletions (Gaussian).
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(e) Update times for insertions (uniform).
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(f) Update times for deletions (uniform).
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(g) Re-computation times for insertions (uniform).
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(h) Re-computation times for deletions (uniform).

Figure 9 Log-log runtime plots (notice the different y-offsets) for dynamic updates and re-
computation on Gaussian instances (a)–(d) and uniform instances (e)–(h) of size n = 1 000 to 32 000,
averaged over n/10 updates. Error bars indicate the standard deviation.
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data structure to store the rectangle set and detect intersections. We expect that it would
show improvements for insertion updates, but may slow down deletions, since the state-of-the
art data structure provides only an amortized update time guarantee. Therefore, it is an open
question whether the performance of MIS-graph can indeed be improved by using a suitable
dynamic geometric data structure. Note, MIS-ORS too, can sometimes show slower deletions,
due to the necessary complex orthogonal range search in some cases. Recall that, in our
implementation, we used a dynamic range searching data structure from CGAL, which does
not provide the theoretical sub-logarithmic worst-case update time of Chan et al. [14] used in
Theorem 3. Exploring how MIS-ORS can benefit from such a state-of-the-art dynamic data
structure in practice remains to be investigated in future work. Notwithstanding, it remains
to state that even with the suboptimal data structure, MIS-ORS was able to compute its
solutions for up to 32 000 squares in less than 1ms. So if solution quality is the priority, then
the MIS-ORS algorithm is the method of choice. It provides the best solutions (together
with MIS-graph), but is significantly more scalable.

An expected observation is that while consistently exceeding their theoretical guarantees,
the approximation algorithms do not perform too well in practice due to their pigeonhole
choice of too strictly separated subinstances. However, a simple greedy augmentation of
the approximate solutions can boost the solution size significantly, and for some algorithms
even to almost that of the MIS algorithms. Of course, at the same time this increases the
runtime of the algorithms. We want to point out g-line, the greedy-augmented version of
the 2-approximation algorithm line, as it computes very good solutions, even comparable or
better than MIS-ORS and MIS-graph for the real-world instances, and at 80% of the MIS
solutions for the synthetic instances. At the same time, g-line is still significantly faster than
MIS-ORS and MIS-graph and thus turns out to be a well-balanced compromise between
time and quality. It would be our recommended method if MIS-ORS or MIS-graph are too
slow for an application.

6 Conclusions

We investigated the MIS and Max-IS problems on dynamic sets of uniform rectangles
and uniform-height rectangles from an algorithm engineering perspective, providing both
theoretical results for maintaining a MIS or an approximate Max-IS and reporting insights
from an experimental study. Open problems for future work include (i) finding Max-IS
sublinear-update-time approximation algorithms for dynamic unit squares with approxi-
mation ratio better than 2, (ii) studying similar questions for dynamic disk graphs, and
(iii) implementing improvements such as a sub-logarithmic dynamic range searching data
structure to speed-up our algorithm MIS-ORS. Moreover, it would be interesting to design
dynamic approximation schemes for Max-IS that maintain stability in a solution.
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