
Noisy, Greedy and Not so Greedy k-Means++
Anup Bhattacharya
Indian Statistical Institute, Kolkata, India

Jan Eube
University of Bonn, Germany

Heiko Röglin
University of Bonn, Germany

Melanie Schmidt
University of Cologne, Germany

Abstract
The k-means++ algorithm due to Arthur and Vassilvitskii [4] has become the most popular seeding
method for Lloyd’s algorithm. It samples the first center uniformly at random from the data set
and the other k − 1 centers iteratively according to D2-sampling, i.e., the probability that a data
point becomes the next center is proportional to its squared distance to the closest center chosen so
far. k-means++ is known to achieve an approximation factor of O(log k) in expectation.

Already in the original paper on k-means++, Arthur and Vassilvitskii suggested a variation
called greedy k-means++ algorithm in which in each iteration multiple possible centers are sampled
according to D2-sampling and only the one that decreases the objective the most is chosen as a
center for that iteration. It is stated as an open question whether this also leads to an O(log k)-
approximation (or even better). We show that this is not the case by presenting a family of instances
on which greedy k-means++ yields only an Ω(` · log k)-approximation in expectation where ` is the
number of possible centers that are sampled in each iteration.

Inspired by the negative results, we study a variation of greedy k-means++ which we call noisy k-
means++ algorithm. In this variation only one center is sampled in every iteration but not exactly by
D2-sampling. Instead in each iteration an adversary is allowed to change the probabilities arising from
D2-sampling individually for each point by a factor between 1−ε1 and 1+ε2 for parameters ε1 ∈ [0, 1)
and ε2 ≥ 0. We prove that noisy k-means++ computes an O(log2 k)-approximation in expectation.
We use the analysis of noisy k-means++ to design a moderately greedy k-means++ algorithm.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → Design and
analysis of algorithms

Keywords and phrases k-means++, greedy, adaptive sampling

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.18

Funding Anup Bhattacharya: supported by an NPDF Fellowship, sponsored by the Government of
India.
Heiko Röglin: supported by DFG grant RO 5439/1–1.
Melanie Schmidt: supported by DFG grant SCHM 2765/1–1.

Acknowledgements We thank the reviewers for their detailed comments.

1 Introduction

Clustering is a very important tool in many machine learning applications. The task is
to find structure that is hidden in input data in the form of clusters, and to do this in
an unsupervised way. Since clusters come with very different properties depending on the
application, a variety of clustering algorithms and measures to judge clusterings have arisen
in the last decades. Among those, a hugely popular method is Lloyd’s algorithm [19] (also
called the k-means algorithm), which for example was voted to be one of the ten most
influential data mining algorithms in machine learning at the IEEE International Conference
on Data Mining (ICDM) in 2006 [24].

© Anup Bhattacharya, Jan Eube, Heiko Röglin, and Melanie Schmidt;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ESA.2020.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Noisy, Greedy and Not so Greedy k-Means++

Lloyd’s algorithm is an iterative local search heuristic operating on points from Euclidean
space Rd. The measure that it implicitly strives to optimize is the k-means cost function:
For a point set X ⊂ Rd and a center set C ⊂ Rd, the k-means cost function is defined as

Φ(X,C) =
∑
x∈X

min
c∈C
||x− c||2,

the sum of the squared distances of all points to their respective center. The k-means problem
asks to minimize the k-means cost over all choices of C with |C| = k. In an optimal solution
of the k-means problem, the centers are means of their clusters, and Lloyd’s algorithm iterates
between computing the means of all clusters as the new center set and reassigning all points
to their closest centers to form new clusters. The k-means cost function is also called sum of
squared errors because when the means are viewed as representatives of the clusters, then
the k-means cost is the squared error of this representation.

The k-means problem is NP-hard [3, 20], and it is also hard to approximate to arbitrary
precision [5, 18]. On the positive side, constant-factor approximations are possible, and the
best known factor is 6.357 due to a break-through result by Ahmadian et al. [2, 18]. However,
the constant-factor approximation algorithms for k-means are not very practical. On the
other hand, Lloyd’s method is hugely popular in practice, but can produce solutions that are
arbitrarily bad in the worst case.

A major result in clustering thus was the k-means++ algorithm due to Arthur and
Vassilvitskii [4] in 2007, which enhances Lloyd’s method with a fast and elegant initialization
method that provides an O(log k)-approximation in expectation. The k-means++ algorithm
samples k initial centers by adaptive sampling, where in each step, a point’s probability of
being sampled is proportional to its cost in the current solution (we will refer to this kind of
sampling as D2-sampling in the following). After sampling k centers, the solution is refined
by using Lloyd’s algorithm. Algorithm 1 contains pseudo code for the k-means++ algorithm.

The beauty of the algorithm is that it has a bounded approximation ratio of O(log k)
in expectation, and at the same time computes solutions that are good (much better than
Θ(log k)) on practical tests. By feeding the computed centers into Lloyd’s method, the
solutions are refined to even better quality. Nevertheless, Arthur and Vassilvitskii show
that the approximation ratio of k-means++ is tight in the worst case: They give an (albeit
artificial) example where the expected approximation ratio is Ω(log k), and this has been
extended by now to examples where k-means++ outputs a Ω(log k)-approximate solution
with high probability [8], and even in the plane [7].

Due to its beneficial theoretical and practical properties, k-means++ has by now become
the de-facto standard for solving the k-means problem in practice. What is less known is
that the original paper [4] and the associated PhD thesis [22] actually propose a possible

Algorithm 1 The k-means++ algorithm [4].

1: Sample a point c1 independently and uniformly at random from X.
2: Let C = {c1}.
3: for i = 2 to k do
4: for x ∈ X do
5: p(x) := minc∈C ||x−c||2∑

y∈X
minc∈C ||y−c||2

6: end for
7: Sample a point ci from X, where every x ∈ X has probability p(x).
8: Update C = C ∪ {ci}.
9: end for
10: Run Lloyd’s algorithm initialized with center set C and output the result.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:3

n

a

1

b

n

c
1 1

Figure 1 A bad example for the deterministic heuristic that always chooses the current cost
minimizer as the next center. An optimal 2-clustering costs less than 1, while a clustering where b is
a center costs Ω(n).

improvement to the k-means++ algorithm: the greedy k-means++ algorithm. Here in
each of the adaptive sampling steps, not only one center but ` possible centers are chosen
(independently according to the same probability distribution), and then among these l
centers, the one that decreases the k-means cost the most is chosen. This is greedy because a
center that reduces the cost in the current step might be a bad center later on (for example if
we choose a center that lies between two optimum clusters, thus preventing us from choosing
good centers for both on the long run). The original paper [4] says:

Also, experiments showed that k-means++ generally performed better if it selected
several new centers during each iteration, and then greedily chose the one that decreased
Φ (the cost function) as much as possible. Unfortunately, our proofs do not carry over
to this scenario. It would be interesting to see a comparable (or better) asymptotic
result proven here.

The intuition is that k-means++ tries to find clusters in the dataset, and with each
sample, it tries to find a new cluster that has not been hit by a previously sampled center.
This has a failure probability, and the super-constant approximation ratio stems from the
probability that some clusters are missed. In this failure event, the algorithm chooses two
centers that are close to each other compared to the optimum cost. Greedy k-means++ tries
to make this failure event less likely by boosting the probability to find a center from a new
cluster that has not been hit previously and greedily choosing the center.

For ` = 1, the greedy k-means++ becomes the k-means++ algorithm, and for very large `
it becomes nearly deterministic, a heuristic that always chooses the current minimizer among
the whole dataset. It is easy to observe that the latter is not a good algorithm: Consider
Figure 1. In the first step, the center that minimizes the overall k-means cost in the next
step is b. But if we choose b, then the second greedy center is either a or c, and we end up
with a clustering of cost Ω(n), while the solution {a, c} has a cost of 1 (and the optimum
solution is even slightly better).

So the crucial question is how to set `, and whether there is an ` for which greedy k-
means++ outperforms k-means++. It has been shown in [1] that for any optimal clustering
of an input data set, k-means++ has in each iteration a constant probability to sample a
point from a ‘new’ optimal cluster, where new means that no point from that cluster has
previously been chosen as a center. This leads to a bicriteria approximation, since after
O(k) centers, the algorithm has discovered all optimal clusters in expectation. Following
the intuition that stems from this analysis, a natural idea would be to set ` = O(log k):
This reduces the probability to pick no point from a new cluster to Ω(1/k), and by union
bound, the failure probability that this event happens in one of the k samples decreases to a
constant. This choice is also advertized by Celebi et al. [9], who feature greedy k-means++
in a study of initialization strategies for Lloyd’s method. They report that it performs better
than k-means++, for a suggested value of ` = log k. The PhD thesis [22] reports experiments
with ` = 2 that outperformed k-means++. It also states that the approximation guarantee
of greedy k-means++ is unknown (pp. 62+63).

ESA 2020

18:4 Noisy, Greedy and Not so Greedy k-Means++

We initiate the analysis of the greedy k-means++ algorithm. Firstly, we prove that
greedy k-means++ is not asymptotically better than k-means++. More precisely, we show
the following statement.

I Theorem 1. For any k ≥ 4 and any `, there exists a point set Xk,` such that the expected
approximation guarantee of greedy k-means++ is Ω(min{`, k/ log k} · log k).

Theorem 1 implies that the worst-case approximation guarantee of greedy k-means++
cannot get better by choosing ` > 1. In particular for ` = log k, the approximation guarantee
worsens to Ω(log2 k).

As indicated in the quote from [4] above, the original proof of k-means++ does not carry
over to greedy k-means++, not even if we aim for a higher approximation guarantee like
O(` log k). Roughly speaking, the main problem in the analysis is that while the probability
to choose a point as a center can only be increased by a factor of ` by the greedy procedure,
there is no multiplicative lower bound on how much individual probabilities can be decreased.
Indeed, if a point x ∈ P is the worst greedy choice, then its probability to be chosen decreases
from some p(x) in the original k-means++ algorithm to (p(x))`, which is much smaller than
p(x). If this happened to good centers, it could hurt the approximation factor badly.

We proceed to study a different variation of k-means++ which we call the noisy k-
means++ algorithm. This algorithm performs k-means++, but does not sample with exact
probabilities. Instead of sampling a point x with probability p(x) as suggested by D2-
sampling, it uses an arbitrary probability p′(x) with (1 − ε1)p(x) ≤ p′(x) ≤ (1 + ε2)p(x),
where ε1 ∈ [0, 1) and ε2 ≥ 0. If we cast greedy k-means++ as a noisy k-means++ algorithm,
we observe that we get a trivial upper bound of ε2 = `− 1, however, no trivial lower bound
on how much the probabilities are skewed.

Noisy k-means++ is also interesting in its own right, since in practice, the probabilities
actually computed are prone to rounding errors. Due to the iterative nature of k-means++,
it is not at all clear how large the effect of a small rounding can be. We show that the
following theorem holds.

I Theorem 2. Let Tk denote the set of centers sampled by noisy k-means++ on dataset X
and assume that k

ln k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }. Then,

E[Φ(X,Tk)] ≤ O
((

1 + ε2
1− ε1

)3
· log2(k) ·OPTk(X)

)
,

where OPTk(X) denotes the k-means costs of an optimal k-clustering of X. If k
ln k ≤

max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }, then E[Φ(X,Tk)] ≤ O

((
1+ε2
1−ε1

)4
· log2

(
1+ε2
1−ε1

)
·OPTk(X)

)
.

We use Theorem 2 to analyze a moderately greedy variant of k-means++, where the
simple idea is that with probability p, we do a normal k-means++ step, and with probability
1 − p, we do a greedy k-means++ step. The idea is that in this variant, a point is never
completely disregarded, so we do get a lower bound on the probabilities, yet in many steps,
we do still profit from the additional power of greedy k-means++ seen in experiments. For
constant p and `, this variant gives an O(log2 k)-approximation by Theorem 2.

Techniques

Our lower bound example for greedy k-means++ is close to the original Ω(log k) lower bound
example in [4] (we contract each cluster to a single location except for one cluster where
one point is moved away from the location into the center of the instance, see Section 2).

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:5

However, the proof of the lower bound proceeds very differently. Morally, instead of missing
clusters (which becomes less likely due to the multiple samples), the failure event is to choose
a bad point as a center. This alone is responsible for the Ω(` log k) lower bound, while the
original Ω(log k) bound stems from missing clusters.

To analyze noisy k-means++, we build upon an analysis of k-means++ by Dasgupta [12].
Analyzing k-means++ is about ‘hitting’ clusters. For some fixed optimal solution we call a
cluster covered if a point is sampled that provides a good enough center for it. An iteration
of k-means++ is wasted if a point is sampled from an already covered cluster. Dasgupta
uses a potential function which accumulates costs over the wasted iterations. To make the
connection between k-means++ and this potential function, it is crucial that the expected
average cost of the uncovered clusters does not increase over time (in k-means++). For
noisy k-means++, this is not true: The cost can increase. We show that the increase can
be bounded, roughly by a factor of log k. Then the key difficulty is to analyze the resulting
random process which is highly dependent. We analyze an abstract version first and then
show how to apply it to the setting of noisy k-means++.

Additional related work

In his master’s thesis, Pago [21] shows that for ` = log k, the example in Figure 1 can be
extended such that greedy k-means++ gives an Ω(log k)-approximation in expectation.

Bachem et al. [6] suggest to speed up k-means++ by replacing the exact sampling
according to the probabilities p(x) by a fast approximation based on Markov Chain Monte
Carlo sampling. They prove that under certain assumptions on the dataset their algorithm
yields the same approximation guarantee in expectation as k-means++, namely O(log k).
Their algorithm can be viewed as a special case of noisy k-means++. However, their analysis
of the approximation factor is based on making the total variation distance between the
probability distributions p and p′ (in every step) so small that with high probability their
algorithm behaves identically to k-means++. In contrast to this, Theorem 2 also applies to
choices of ε1 and ε2 for which noisy k-means++ behaves differently from k-means++ with
high probability.

Lattanzi and Sohler [17] propose an intermediate improvement step to be executed
between the D2-sampling and Lloyd’s algorithm in order to improve the solution quality to
a constant factor approximation in expectation. Their algorithm starts with a k-means++
solution and then performs O(k log log k) improvement steps: In each such step, a new center
is sampled with D2-sampling, and if swapping it with an existing center improves the solution,
then this swap is performed. While this is a greedy improvement step and thus a bit related
to greedy k-means++, their algorithm is closer in spirit to a known local search algorithm by
Kanungo et al. [16] which uses center swaps (starting on an arbitrary solution) to obtain a
constant-factor approximation, but needs a lot more rounds and is impractical. Very recently,
Choo et. al. [10] improved the result by Lattanzi and Sohler and showed that O(k) swaps
are sufficient to achieve a constant factor approximation.

The bicriteria analysis by Aggarwal et al. [1] mentioned above was improved by Wei [23]
who showed that for any β > 1, sampling βk centers with D2-sampling yields an O(1)-
approximation in expectation (with βk centers). Hsu and Telgarsky [15] show that greedy
k-means++ for ` = Θ(k) leads to a bicriteria O(1)-approximation if Θ(k) centers are chosen.
All above cited works assume that k and d are input parameters; if one of them is a constant,
then there exists a PTAS for the problem [11, 13, 14].

In bicriteria results (which, in a sense, also applies to [17] and [10]), the key is to show
that a cluster that has not been covered by a good center is found with high probability. For
the analysis of greedy k-means++ and noisy k-means++, the main challenge is to bound
the expected cost after only k steps.

ESA 2020

18:6 Noisy, Greedy and Not so Greedy k-Means++

2 Lower Bound for Greedy k-means++

In this section we construct an instance on which greedy k-means++ yields only an Ω(` log k)-
approximation in expectation. More precisely, we analyze Algorithm 2.

Algorithm 2 Greedy k-means++ algorithm [4].

1: Sample1 a point c1 independently and uniformly at random from X.
2: Let C = {c1}.
3: for i = 2 to k do
4: for x ∈ X do
5: p(x) := minc∈C ||x−c||2∑

y∈X
minc∈C ||y−c||2

.

6: end for
7: Sample1 a set S of ` points independently according to this probability distribution.
8: Let ci = arg minu∈S Φ(X,C ∪ {u}).
9: Update C = C ∪ {ci}.

10: end for
11: Run Lloyd’s algorithm initialized with center set C and output the result.

Note that we only draw one sample in the first step. This is due to the fact that in the
first step, k-means++ is guaranteed to discover a new cluster, so there is no reason to draw
multiple samples.

The instance is based on a regular (k − 1)-simplex with side length
√

2. Let the vertices
of this simplex be denoted by v1, . . . , vk. There are k points each at vertices v1, . . . , vk−1,
(k−1) points at vertex vk, and there is one point at the center o of the simplex. Let X denote
the set of all these points. The simplex can be constructed explicitly in Rk by letting vi
be the ith canonical unit vector for each i and o = (1/k, . . . , 1/k). Then it follows that the
distance between the center o and any vertex vi is

√
(k − 1)/k.

An optimal clustering (C?1 , . . . , C?k) of this instance is obtained as follows: The clusters
C?1 , . . . , C

?
k−1 consist of the k points at vertices v1, . . . , vk−1, respectively, and the cluster C?k

consists of the (k − 1) points at vertex vk and the point at the center o. The cost of this
clustering is bounded from above by ||o− vk||2 = k−1

k = O(1).
Consider a k-clustering C obtained by greedy k-means++ that contains the point at o

as one of the k centers. The cost of this clustering is at least (k − 1)2/k = Ω(k) because
there exists at least one i such that C has no center at vi. In the best case this is vk, which
generates the aforementioned cost because the (k − 1) points at vk will be assigned to the
center at o. The approximation guarantee of this clustering is Ω(k). We prove that with
sufficiently large probability, greedy k-means++ places one of the centers at o.

Morally, we proceed as follows. We define a failure event F which captures the case that
one of the points at vk is chosen as a center during the execution of greedy k-means++. If
this event happens, we cannot show a high lower bound on the approximation guarantee. So
we show that F happens at most with constant probability, so with sufficient probability, F
does not occur. Then we analyze the probablity that under the condition that F does not
occur, o is chosen as a center during the execution of k-means++. This probability increases
with every iteration (when the kth center is chosen, there are only o, the points at vk and
the points at one other location vi left as possible choices). We analyze a simplified random
experiment to lower bound the probablity that o is chosen as a center during the iterations
i = 2, . . . , k.

1 In all our algorithms we do sampling with replacement.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:7

I Theorem 1. For any k ≥ 4 and any `, there exists a point set Xk,` such that the expected
approximation guarantee of greedy k-means++ is Ω(min{`, k/ log k} · log k).

Proof. Notice that for ` = 1 there is nothing to show since a lower bound of Ω(log k) is
known for this case. So in the following, we assume that ` ≥ 2. Furthermore we consider first
only the case that ` ≤ k

20 ln(k−1) and defer the discussion of larger ` to the end of the proof.
We consider the point set X constructed above. Consider a k-clustering C obtained

by greedy k-means++ that contains the point at o as one of the k centers. The cost of
this clustering is at least (k − 1)2/k = Ω(k) because there exists at least one i such that C
has no center at vi. In the best case this is vk, which generates the aforementioned cost
because the (k − 1) points at vk will be assigned to the center at o. The approximation
guarantee of this clustering is Ω(k). We will prove that with sufficiently large probability,
greedy k-means++ places one of the centers at o.

We start the analysis by defining the following events for all i ∈ [k]:

Fi = the center chosen in the ith iteration lies at vk,
Gi = the center chosen in the ith iteration lies at o,
Hi = Fi ∪Gi.

We denote by Φi the potential after i− 1 iterations if in these iterations no point from C?k
has been chosen as a center. Since the probability to choose the same vi more than once
is zero, this means that i − 1 centers from different clusters from C?1 , . . . , C

?
k−1 have been

chosen. In the remaining k − i+ 1 clusters, k points pay a cost of 2, except for the one point
at o which pays 1− 1/k. Thus,

Φi = 2((k − i+ 1)k − 1) + 1− 1
k

and

2((k − i+ 1)k − 1) ≤ Φi ≤ 2k(k − i+ 1).

We define

F = F1 ∪ (F2 ∩H1) ∪ . . . ∪ (Fk−1 ∩H1 ∩ . . . ∩Hk−2)

as the event that in one of the first k − 1 iterations a point at vk is chosen as a center and
that this is the first center chosen from C?k . We exclude the last iteration because Pr(Fk) is
significantly higher than Pr(Fi) for i ≤ k − 1.

We will prove a lower bound for the probability of the event F ∩ (G2∪ . . .∪Gk−1) because
if this event happens then the point at o is one of the centers computed by greedy k-means++,
i.e., the approximation factor is at least Ω(k).

If the event F occurs then we cannot prove a lower bound on the approximation guarantee
of greedy k-means++. Hence, we will prove an upper bound for the probability of F . Observe
that

Pr[F] ≤
k−1∑
i=1

Pr[Fi | H1 ∩ . . .∩Hi−1] ·Pr[H1 ∩ . . .∩Hi−1] ≤
k−1∑
i=1

Pr[Fi | H1 ∩ . . .∩Hi−1]

and

Pr[F1] = k − 1
k2 ≤ 1

k
.

ESA 2020

18:8 Noisy, Greedy and Not so Greedy k-Means++

Consider the situation that 1 ≤ i− 1 ≤ k − 2 iterations have already been performed and
that in these iterations cluster C?k has not been covered. Then each point from an uncovered
cluster C?j with j < k reduces the potential by 2k. Each point at vk reduces the potential
by 2(k − 1) and the point at o reduces the potential by

((k − i+ 1)︸ ︷︷ ︸
≥2

k− 1)(1 + 1/k) + 1− 1/k ≥ (2k− 1)(1 + 1/k) + 1− 1/k = 2(k+ 1− 1/k) > 2k.

Hence, the points at vk have the least potential reduction and thus a point at vk is only
selected as new center in iteration i if all ` sampled candidates are at vk. Hence, we obtain

Pr[Fi | H1 ∩ . . . ∩Hi−1] =
(

2(k − 1)
Φi

)`
.

Altogether this implies

Pr[F] ≤ Pr[F1] +
k−1∑
i=2

Pr[Fi | H1 ∩ . . . ∩Hi−1] ≤ 1
k

+
k−1∑
i=2

(
2(k − 1)

Φi

)`
.

Together with Φi ≥ 2((k − i+ 1)k − 1) this implies

Pr[F] ≤ 1
k

+
k−1∑
i=2

(
2(k − 1)

2((k − i+ 1)k − 1)

)`

= 1
k

+
k−1∑
i=2

(
k − 1

(k − i+ 1)k − 1

)`

≤ 1
k

+
k−1∑
i=2

(
k

(k − i+ 1)k

)`

= 1
k

+
k−1∑
i=2

(
1
i

)`
,

where the inequality in the penultimate line of the calculation follows from a
b < a+1

b+1
for 0 < a < b. Using ` ≥ 2 and k ≥ 4, it follows

Pr[F] ≤ 1
k

+
k−1∑
i=2

(
1
i

)2
≤ 1
k

+
∞∑
i=2

(
1
i

)2
= 1
k

+
(
π2

6 − 1
)
≤ 0.9.

This shows that with constant probability, the failure event F does not occur, i.e., with
constant probability none of the points from vk is chosen as a center in the first k − 1
iterations.

Now let us consider the probability that the point at o is selected as a center. We have
argued above that the potential reduction of the point at o in iteration 2 ≤ i ≤ k − 1 is
larger than 2k if cluster C?k has not been covered in the first i− 1 iterations. We have also
seen that any other point reduces the potential by at most 2k. Hence, in order to select the
point at o as center it suffices already if it belongs to the ` candidates chosen in iteration i.
Denote the event that the jth sample in iteration i is o by Gij . Then for i ∈ {2, . . . , k − 1},

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:9

Pr[Gi | H1 ∩ . . . ∩Hi−1] = Pr[∪`
j=1Gij | H1 ∩ . . . ∩Hi−1]

≥
`∑

j=1

Pr[Gij | H1 ∩ . . . ∩Hi−1]−
∑

1≤j1<j2≤j

Pr[Gij1 ∩Gij2 | H1 ∩ . . . ∩Hi−1]

= `(1− 1/k)
Φi

−

(
`
2

)
(1− 1/k)2

Φ2
i

≥ `(1− 1/k)
Φi

− `2(1− 1/k)2

Φ2
i

,

where the first inequality follows from Bonferroni inequalities.
Since ` ≤ k/(20 ln(k − 1)) ≤ k/2, we obtain

`(1− 1/k)
Φi

≤ `

Φi
≤ `

2((k − i+ 1)k − 1) ≤
`

k
≤ 1

2 .

This is helpful, because for any a ∈ R with 0 ≤ a ≤ 1/2, it holds that a− a2 ≥ a/2. Thus,
the previous two inequalities imply

Pr[Gi | H1 ∩ . . . ∩Hi−1] ≥ `(1− 1/k)
Φi

−
(
`(1− 1/k)

Φi

)2
≥ `(1− 1/k)

2Φi
. (1)

Let us now condition on the event F , which happens with constant probability. Then we
can write the probability of the event we care about as

Pr[F ∩ (G2 ∪ . . . ∪Gk−1)] = Pr[F] ·Pr[G2 ∪ . . . ∪Gk−1 | F] = Pr[F] ·
k−1∑
i=2

Pr[Gi | F]

≥ Pr[F] ·
k−1∑
i=2

Pr[Gi | F1 ∩ . . . ∩ Fi−1],

where we used in the penultimate step that the events Gi are mutually exclusive and in the
last step that F ⊆ F1∩ . . .∩Fi−1. We cannot use (1) directly to bound Pr[Gi | F1∩ . . .∩Fi−1]
because the condition is different (in (1) we condition on the event that no point from C?k
has been chosen as center in the first i− 1 iterations while conditioning on F1 ∩ . . . ∩ Fi−1
only implies that no point at vk has been chosen as a center).

To prove a lower bound on Pr[G2 ∪ . . . ∪ Gk−1 | F], we consider a different random
experiment E. This random experiment consists of k− 2 iterations numbered from 2 to k− 1
and each iteration i is successful with probability Pr[Gi | H1 ∩ . . . ∩Hi−1] independent of
the other iterations. Then Pr[G2 ∪ . . .∪Gk−1 | F] equals the probability that at least one of
the iterations of E is successful. Let E′ denote the same random experiment as E only with
modified success probabilities. In E′ iteration i is successful with probability `(1−1/k)

2Φi
. Due

to (1) and Bonferroni inequalities and using k ≥ 4, we obtain
Pr[G2 ∪ . . . ∪Gk−1 | F] = Pr[at least one success in E]

≥ Pr[at least one success in E′]

≥
k−1∑
i=2

`(1− 1/k)
2Φi

−
∑

2≤i<j≤k−1

`(1− 1/k)
2Φi

· `(1− 1/k)
2Φj

≥
k−1∑
i=2

`(1− 1/k)
4k(k − i+ 1) −

∑
2≤i<j≤k−1

`

4((k − i+ 1)k − 1) ·
`

4((k − j + 1)k − 1)

ESA 2020

18:10 Noisy, Greedy and Not so Greedy k-Means++

≥
k−1∑
i=2

`(1− 1/k)
4k(k − i+ 1) −

∑
2≤i<j≤k−1

`

3k(k − i+ 1) ·
`

3k(k − j + 1)

= `(1− 1/k)
4k

k−1∑
i=2

1
i
− `2

9k2

∑
2≤i<j≤k−1

1
(k − i+ 1)(k − j + 1)

≥ 3`
16k

k−1∑
i=2

1
i
− `2

9k2

(
k−1∑
i=2

1
i

)2

≥ 3`
16k (ln(k − 1)− 1)− `2

9k2 ln2(k − 1).

For k ≥ 4, we have ln(k − 1)− 1 ≥ 0.089 ln(k − 1). Together with the previous calculation
we get

Pr[G2 ∪ . . . ∪Gk−1 | F] ≥ 0.0166 · ` · ln(k − 1)
k

−
(
` · ln(k − 1)

3k

)2

= ` · ln(k − 1)
k

·
(

0.0166− ` · ln(k − 1)
9k

)
≥ 0.01 · ` · ln(k − 1)

k
,

where we used ` ≤ 0.05·k
ln(k−1) for the last inequality.

Overall we obtain

Pr[F ∩ (G2 ∪ . . . ∪Gk−1)] =Pr[F] ·Pr[G2 ∪ . . . ∪Gk−1 | F]

≥0.1 · 0.01 · ` · ln(k − 1)
k

= Ω
(
` · log(k)

k

)
.

If this event happens, then the costs of the clustering are Ω(k). Hence the expected costs of
the clustering computed by greedy k-means++ are Ω(` · log(k)).

Finally let us consider the case ` > k
20 ln(k−1) . We argue that in this case the approximation

guarantee cannot be better than for ` = k
20 ln(k−1) . To see that this is true, one has to have

a closer look at where the upper bound on ` has been used in the argument above. It is
used twice: once for proving an upper bound on the conditional probability of Gi and once
for proving an upper bound on the conditional probability of G2 ∪ . . . ∪Gk−1. Both these
probabilities increase with ` so if ` is larger one could simply replace it by k

20 ln(k−1) , leading
to a lower bound of Ω(k/ log(k) · k) = Ω(k) for the approximation guarantee. J

3 Analysis of Noisy k-means++ Seeding

In this section we analyze a noisy seeding procedure, which we call noisy k-means++ in the
following. This procedure iteratively selects k centers from the data set in a similar fashion
as k-means++. The only difference is that the probability of sampling a point as the next
center is no longer exactly proportional to its squared distance to the closest center chosen
so far. The probabilities are only approximately correct. To be more precise, consider an
iteration of noisy k-means++. For any point x ∈ X, we denote by px the probability that x
is chosen by k-means++ as the next center (i.e., p is the uniform distribution in the first
iteration and the distribution that results from D2-sampling in the following iterations).
In noisy k-means++ an adversary can choose an arbitrary probability distribution q on X

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:11

with qx ∈ [(1− ε1)px, (1 + ε2)px] for all x ∈ X where ε1 ∈ [0, 1) and ε2 ≥ 0 are parameters2.
Then the next center is sampled according to q. This is repeated in every iteration of noisy
k-means++ and in every iteration the adversary can decide arbitrarily how to choose q based
on the current distribution p that results from D2-sampling. We analyze the worst-case
approximation guarantee provided by noisy k-means++.

The difficulty with noisy k-means++ is that a) it has a high probability to differ from
k-means++, and b) the steps are highly dependent on each other, so once the algorithm
has deviated, this propagates in the subsequent steps. It may be surprising that such a
little change to the algorithm has such a huge effect. After some considerations it is even
unclear if noisy k-means++ has any approximation guarantee at all. While we achieve
worse guarantees compared to k-means++, we do at least answer this question affirmatively,
showing that noisy k-means++ achieves an expected approximation guarantee of O(log2 k).
Achieving this requires an intricate analysis of the highly dependent algorithm. We could
not make it work with the original proof, so we use an alternative proof by Dasgupta [12] as
a starting point. Also in this proof, a crucial step breaks down (the expected average cost of
uncovered clusters can now increase, which is not the case for k-means++). This makes the
process difficult to analyze and solving this challenge is the main technical contribution of
this paper.

Let us first introduce some notation. We denote by Φ(X,C) the k-means costs of data
set X with respect to center set C, i.e.,

Φ(X,C) =
∑
x∈X

min
c∈C
||x− c||2.

For c ∈ Rd we also write Φ(X, c) instead of Φ(X, {c}) and similarly for x ∈ Rd we write Φ(x,C)
instead of Φ({x}, C). Let OPTk(X) denote the optimal k-means costs of dataset X. In the
following we assume that a data set X is given and we denote by (C?1 , . . . , C?k) an optimal
k-clustering of X. For a finite set X ⊂ Rd, we denote by µ(X) = 1

|X|
∑
x∈X x its mean. The

following lemma is well-known.

I Lemma 3. For any finite X ⊂ Rd and any z ∈ Rd,

Φ(C, z) = Φ(C, µ(C)) + |C| · ||z − µ(C)||2 = OPT1(C) + |C| · ||z − µ(C)||2.

We call an optimal cluster C?i covered by (noisy) k-means++ if at least one point from C?i
is selected as a center. Arthur and Vassilvitskii [4] observe that covered clusters are well
approximated by k-means++ in expectation. In particular, they show that the expected costs
of an optimal cluster C?i with respect to the center set computed by k-means++ are at most
2 ·OPT1(C?i) and 8 ·OPT1(C?i) if the cluster is covered in the first or any of the following
iterations, respectively. First of all, we carry these observations over to noisy k-means++.
The following two lemmata are straightforward adaptations of Lemma 3.2 and Lemma 3.3
in [4].

I Lemma 4. Let c1 denote the first center chosen by noisy k-means++. For each optimal
cluster C?i ,

E[Φ(C?i , c1) | c1 ∈ C?i] ≤ 2(1 + ε2)
1− ε1

·OPT1(C?i).

2 For better readability, whenever we write q(x) ≤ (1+ε2)px, we implicitly require q(x) ≤ min{1, (1+ε2)px}

ESA 2020

18:12 Noisy, Greedy and Not so Greedy k-Means++

Proof. In k-means++ the first center is chosen uniformly at random, i.e., each point from X

has a probability of 1/|X| of being chosen. In noisy k-means++, all points have a probability
in [(1−ε1)/|X|, (1+ε2)/|X|] of being chosen. Hence, the probability of choosing a point x ∈ C?i
as the first center conditioned on the first center being chosen from C?i is at most 1+ε2

(1−ε1)|C?
i
| .

This implies

E[Φ(C?i , {c1})] ≤
∑
c∈C?

i

1 + ε2
(1− ε1)|C?i |

Φ(C?i , c)

= 1 + ε2
1− ε1

· 1
|C?i |

∑
c∈C?

i

Φ(C?i , c)

= 1 + ε2
1− ε1

· 1
|C?i |

∑
c∈C?

i

(OPT1(C?i) + |C?i | · ||c− µ(C?1)||2) (Lemma 3)

= 2(1 + ε2)
1− ε1

·OPT1(C?i) J

I Lemma 5. Consider an iteration of noisy k-means++ after the first one and let C 6= ∅
denote the current set of centers. We denote by z the center sampled in the considered
iteration. Then for any C 6= ∅ and any optimal cluster C?i ,

E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] ≤ 8(1 + ε2)
1− ε1

·OPT1(C?i).

Proof. Conditioned on sampling a point from C?i , the probability of choosing point x ∈ C?i
as the next center is at most 1+ε2

1−ε1
· Φ(x,C)

Φ(C?
i
,C) . If x is chosen as the next center, the costs of

any point p ∈ C?i become min{Φ(p, C), ||p− x||2}. This implies

E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] =
∑
x∈C?

i

Pr[z = x | C] · Φ(C?i , C ∪ {x})

≤ 1 + ε2
1− ε1

·
∑
x∈C?

i

Φ(x,C)
Φ(C?i , C)

∑
p∈C?

i

min{Φ(p, C), ||p− x||2}.

(2)

For any two points x, p ∈ C?i , we can write

Φ(x,C) =
(

min
c∈C
||x− c||

)2
≤
(

min
c∈C

(||x− p||+ ||p− c||)
)2
≤ 2Φ(p, C) + 2||x− p||2.

By summing over all p in C?i , we get

Φ(x,C) ≤ 2
|C?i |

∑
p∈C?

i

Φ(p, C) + 2
|C?i |

∑
p∈C?

i

||x− p||2.

With (2), this implies that E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] is bounded from above by

1 + ε2
1− ε1

·
∑
x∈C?

i

2
|C?

i
|
∑
p∈C?

i
Φ(p, C) + 2

|C?
i
|
∑
p∈C?

i
||x− p||2

Φ(C?i , C)
∑
p∈C?

i

min{Φ(p, C), ||p− x||2}

= 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?

i
|
∑
p∈C?

i
Φ(p, C)∑

p∈C?
i

Φ(p, C)
∑
p∈C?

i

min{Φ(p, C), ||p− z||2}

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:13

+ 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?

i
|
∑
p∈C?

i
||p− z||2∑

p∈C?
i

Φ(p, C)
∑
p∈C?

i

min{Φ(p, C), ||p− z||2}

≤ 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?i |

∑
p∈C?

i

||p− z||2 + 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?i |

∑
p∈C?

i

||p− z||2

= 4(1 + ε2)
1− ε1

·
∑
z∈C?

i

1
|C?i |

∑
p∈C?

i

||p− z||2

= 4(1 + ε2)
1− ε1

·
∑
z∈C?

i

1
|C?i |

(OPT1(C?i) + |C?i | · ||z − µ(C?i)||2) (Lemma 3)

= 8(1 + ε2)
1− ε1

·OPT1(C?i) J

Consider a run of noisy k-means++. For t ∈ [k], let Ht and Ut denote the set of all points
from X that belong after iteration i to covered and uncovered optimal clusters, respectively.
Let ut denote the number of uncovered clusters after iteration t. Furthermore let Tt denote
the set of centers chosen by noisy k-means++ in the first t iterations. We say that iteration t
is wasted if the center chosen in iteration t comes from Ht−1, i.e., if in iteration t no uncovered
cluster becomes covered.

I Corollary 6. For any t ∈ [k],

E [Φ(Ht, Tt)] ≤
8(1 + ε2)

1− ε1
·OPTk(X)

Proof. Using Lemma 4 and Lemma 5 we obtain

E [Φ(Ht, Tt)] =
k∑
i=1

Pr[C?i ⊆ Ht] ·E [Φ(C?i , Tt) | C?i ⊆ Ht]

≤
k∑
i=1

Pr[C?i ⊆ Ht] ·
8(1 + ε2)

1− ε1
·OPT1(C?i)

≤ 8(1 + ε2)
1− ε1

·
k∑
i=1

OPT1(C?i)

= 8(1 + ε2)
1− ε1

·OPTk(X). J

Corollary 6 implies that the covered clusters contribute in expectation at mostO(OPTk(X))
to the costs of the solution computed by noisy k-means++ (assuming ε1 and ε2 to be
constants). The not straightforward part is to prove an upper bound for the costs of the
clusters that are not covered by noisy k-means++. For this, we adapt the analysis of
k-means++ due to Dasgupta [12]. This analysis is based on a potential function that
accumulates costs in every wasted iteration. The potential function has the property that
the expected value of the potential function in the end can be bounded and that the total
costs accumulated are in expectation at least the costs of the uncovered clusters in the end.

Dasgupta crucially uses that the expected average costs of the uncovered clusters do not
increase in k-means++. For noisy k-means++ this is not true anymore in general. Hence,
we have to adapt the potential function and the analysis. We define Wi = 1 if iteration i is
wasted and Wi = 0 otherwise. We define the potential function as

Ψk =
k∑
i=2

Wi ·
Φ(Ui, Ti)

ui
.

ESA 2020

18:14 Noisy, Greedy and Not so Greedy k-Means++

The easier part is to show that the potential can be bounded from above.

I Lemma 7. It holds

E [Ψk] ≤ 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X).

Proof. Let i ∈ {2, . . . , t}. In the following calculation we sum over all realizations Fi−1 of
the first i − 1 iterations of noisy k-means++. Any realization Fi−1 determines the value
of Φ(Ui−1, Ti−1) and ui−1. We use the notation [. . .]Fi−1 to express that all terms inside the
brackets take the values determined by Fi−1. Then

E
[
Wi ·

Φ(Ui, Ti)
ui

]
=
∑
Fi−1

Pr[Fi−1] ·E
[
Wi ·

Φ(Ui, Ti)
ui

∣∣∣ Fi−1

]

=
∑
Fi−1

Pr[Fi−1] ·Pr[Wi = 1 | Fi−1] ·E
[

Φ(Ui, Ti)
ui

∣∣∣ Fi−1 ∩ (Wi = 1)
]

Since under the condition that iteration i is wasted the average costs of the uncovered
clusters cannot increase, we can upper bound the term above by∑

Fi−1

Pr[Fi−1] ·Pr[Wi = 1 | Fi−1] ·
[

Φ(Ui−1, Ti−1)
ui−1

]
Fi−1

≤
∑
Fi−1

Pr[Fi−1] ·
[

(1 + ε2)Φ(Hi−1, Ti−1)
(1− ε1)Φ(Ui−1, Ti−1) ·

Φ(Ui−1, Ti−1)
ui−1

]
Fi−1

= 1 + ε2
1− ε1

·
∑
Fi−1

Pr[Fi−1] ·
[

Φ(Hi−1, Ti−1)
ui−1

]
Fi−1

≤ 1 + ε2
1− ε1

·
∑
Fi−1

Pr[Fi−1] ·
[

Φ(Hi−1, Ti−1)
k − i+ 1

]
Fi−1

= 1 + ε2
1− ε1

· E [Φ(Hi−1, Ti−1)]
k − i+ 1 .

This implies

E [Ψk] =
k∑
i=2

E
[
Wi ·

Φ(Ui, Ti)
ui

]

≤ 1 + ε2
1− ε1

·
k∑
i=2

E [Φ(Hi−1, Ti−1)]
k − i+ 1 .

With Corollary 6 this yields

E [Ψk] ≤ 8(1 + ε2)2

(1− ε1)2 ·OPTk(X)
k∑
i=2

1
k − i+ 1 ≤

8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X). J

Now our goal is to prove a lower bound on the potential, namely, we want to prove the
following lemma, where we use D(ε1, ε2, ln k) = max{18, 24(ε1+ε2)(1+ε2)

(1−ε1)2 } · ln k.

I Lemma 8. If k ≥ D(ε1, ε2, ln k), then set B(ε1, ε2, ln k) = 4(1+ε2)
1−ε1

· ln(k)+2, and otherwise,
set B(ε1, ε2, ln k) = D(ε1, ε2, ln k). Then

E [Ψk] ≥ E [Φ(Uk, Tk)]
B(ε1, ε2, ln k) .

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:15

The main technical challenge is to bound the increase in the expected average cost of
uncovered clusters, namely, the proof of Lemma 8 heavily depends on the following lemma.
We state the lemma below and prove it later. We use the notation [. . .]Fi

to express that all
terms inside the brackets take the values determined by Fi.

I Lemma 9. Set D(ε1, ε2, ln k) = max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k. If k ≥ D(ε1, ε2, ln k), then

set B(ε1, ε2, ln k) = 4(1+ε2)
1−ε1

· ln(k)+2, and otherwise, set B(ε1, ε2, ln k) = D(ε1, ε2, ln k). Then
for any i ∈ [k] and any realization Fi of the first i iterations

E
[

Φ(Uk, Tk)
uk

∣∣∣ Fi] ≤ B(ε1, ε2, ln k) ·
[

Φ(Ui, Ti)
ui

]
Fi

.

We assume Lemma 9 to prove Lemma 8 as follows. Later, we give the proof of Lemma 9.

Proof. For any i ∈ {2, . . . , k}, we obtain using Lemma 9

E
[
Wi ·

Φ(Ui, Ti)
ui

]
=

∑
Fi,[Wi]Fi

=1

Pr[Fi] ·
[

Φ(Ui, Ti)
ui

]
Fi

≥
∑

Fi,[Wi]Fi
=1

Pr[Fi] ·
1

B(ε1, ε2, ln k) ·E
[

Φ(Uk, Tk)
uk

∣∣∣ Fi]

= 1
B(ε1, ε2, ln k) ·

∑
Fi

Pr[Fi] ·E
[
Wi ·

Φ(Uk, Tk)
uk

∣∣∣ Fi]
= 1
B(ε1, ε2, ln k) ·E

[
Wi ·

Φ(Uk, Tk)
uk

]
.

Hence,

E [Ψk] =
k∑
i=2

E
[
Wi ·

Φ(Ui, Ti)
ui

]

≥ 1
B(ε1, ε2, ln k) ·

k∑
i=2

E
[
Wi ·

Φ(Uk, Tk)
uk

]

= 1
B(ε1, ε2, ln k) ·E

[(
k∑
i=2

Wi

)
· Φ(Uk, Tk)

uk

]

= 1
B(ε1, ε2, ln k) ·E

[
uk ·

Φ(Uk, Tk)
uk

]
= E [Φ(Uk, Tk)]
B(ε1, ε2, ln k) J

With Lemma 7, Lemma 8 and Corollary 6, we prove the main theorem.

I Theorem 2. Let Tk denote the set of centers sampled by noisy k-means++ on dataset X
and assume that k

ln k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }. Then,

E[Φ(X,Tk)] ≤ O
((

1 + ε2
1− ε1

)3
· log2(k) ·OPTk(X)

)
,

where OPTk(X) denotes the k-means costs of an optimal k-clustering of X. If k
ln k ≤

max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }, then E[Φ(X,Tk)] ≤ O

((
1+ε2
1−ε1

)4
· log2

(
1+ε2
1−ε1

)
·OPTk(X)

)
.

ESA 2020

18:16 Noisy, Greedy and Not so Greedy k-Means++

Proof. For k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k, Lemma 7 and Lemma 8 imply

E [Φ(Uk, Tk)] ≤ B(ε1, ε2, ln k) ·E [Ψk]

≤ B(ε1, ε2, ln k) · 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X)

= O

(
(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)
.

With Corollary 6 this implies

E [Φ(Hk, Tk) + Φ(Uk, Tk)] ≤ O
(1 + ε2

1− ε1
·OPTk(X)

)
+O

(
(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)

≤ O
(

(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)

For k ≤ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k, we get

B(ε1, ε2, ln k) · 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X)

= O

(
(1 + ε2)4

(1− ε1)4 · log2(k) ·OPTk(X)
)
,

where we use that ε1 < 1, so ε1 + ε2 ≤ 1 + ε2. This implies

E [Φ(Hk, Tk) + Φ(Uk, Tk)] ≤ O
(

(1 + ε2)4

(1− ε1)4 · log2(k) ·OPTk(X)
)

≤ O
(

(1 + ε2)4

(1− ε1)4 · log2
(

(1 + ε2)2

(1− ε1)2

)
·OPTk(X)

)
= O

((
1 + ε2
1− ε1

)4
· log2

(
1 + ε2
1− ε1

)
·OPTk(X)

)
,

where we use for the second inequality that either
√
k ≤ k

ln k ≤ 18 and then ln k ≤ O(1), or

√
k ≤ k

ln k ≤
24(ε1 + ε2)(1 + ε2)

(1− ε1)2 ⇒ ln
√
k ≤ ln

(
24(ε1 + ε2)(1 + ε2)

(1− ε1)2

)
⇒ log k ≤ O

(
log
(

(1 + ε2)2

(1− ε1)2

))
. J

We conclude this section by discussing Lemma 9. It says that the average potential of
uncovered clusters increases by at most a logarithmic multiplicative factor. We first consider
the following abstract random experiment whose connection to noisy k-means++ we discuss
in the actual proof of Lemma 9 below. Let a1, . . . , az ∈ R≥0 denote numbers with average
value 1. Since there are z numbers with the average equal to one, their sum equals z. We
assume that in each step of our experiment with probability ε ∈ [0, 1) an adversary chooses
one of the numbers to be removed and with probability 1 − ε a number is removed by
proportional sampling (i.e., if number ai still exists then it is removed with probability ai/S,
where S denotes the sum of the remaining numbers). Note that in this process the number
ai is sampled with probability at least (1− ε)ai

S . Additionally after each step an adversary
can arbitrarily lower the value of some numbers. This process is run for ` steps and we are
interested in an upper bound for the expected average of the numbers remaining after these
` steps. We denote this average by A`.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:17

I Lemma 10. Let ε ∈ (0, 1), assume that z
ln z ≥ max{18, 24ε

(1−ε)2 }, and ` ≥ z/2. Then E [A`] ≤
4

1−ε · ln(z) + 2. For z ≤ max{18, 24ε
(1−ε)2 } · ln z, we observe that E [A`] ≤ z ≤ max{18, 24ε

(1−ε)2 } ·
ln z.

Proof. Let Z denote the number of adversarial steps among the first ` steps. Then E [Z] = ε`.
We denote by F1 the event that Z ≥ 1+ε

2 · `. Note that (1 + ε)/2 = ε+ (1− ε)/2 always lies
between ε and 1.

By Chernoff bound we get

Pr[F1] = Pr
[
Z ≥ 1 + ε

2 `
]

= Pr
[
Z ≥ 1 + ε

2ε ε`
]

= Pr
[
Z ≥

(
1 + 1− ε

2ε

)
·E [Z]

]
≤ exp

(
−min{δ, δ2} ·E [Z]

3

)
for δ = 1−ε

2ε . We make a case analysis. For 1−ε
2ε ≥ 1⇔ ε ≤ 1

3 , min{δ, δ2} = δ, so we have

Pr[F1] ≤ exp
(
−δ ·E [Z]

3

)
= exp

(
−

1−ε
2ε · ε`

3

)
= exp

(
− (1− ε)

6 `

)
≤ exp

(
− (1− ε)

12 z

)
,

where the last inequality follows from ` ≥ z/2. We observe that

exp
(
− (1− ε)

12 z

)
≤ 1
z
⇔ z

ln z ≥
12

1− ε ,

and by ε ≤ 1/3 and by our lower bound on z/ ln z, we have z
ln z ≥ 18 ≥ 12

1−ε .
If ε > 1/3, we compute similarly that

Pr[F1] ≤ exp

− (1−ε)2

(2ε)2 · ε`
3

 ≤ exp
(
− (1− ε)2

12ε `

)
≤ exp

(
− (1− ε)2

24ε z

)
≤ 1
z
,

where the last inequality follows from z/(ln z) ≥ 24ε
(1−ε)2 .

If the event F1 does not happen then in at least (1− 1+ε
2)` = 1−ε

2 ` ≥ 1−ε
4 z =: z/c′ steps

proportional sampling is used to remove one of the numbers (we set c′ = 4/(1− ε)). We will
show that with high probability after these steps all remaining numbers are at most 2c′ ln z.
Let F2 denote the event that after z/c′ steps of proportional sampling at least one number
with final value at least 2c′ ln z is remaining. Furthermore, let Ei denote the event that the
ith number ai remains after z/c′ steps of proportional sampling and its final value ãi is at
least 2c′ ln z (remember that the adversary can decrease numbers during the process but not
increase and hence ãi ≤ ai). Then F2 = E1 ∪ . . . ∪ Ez. If Ei occurs then the ith number is in
every step at least ãi ≥ 2c′ ln z. Since the numbers a1, . . . az have average 1, their sum is z.
The sum of the remaining numbers cannot increase during the process. Hence, in every step
the probability of taking the ith number is at least (2c′ ln z)/z. This implies

Pr[Ei] ≤
(

1− 2c′ ln z
z

)z/c′
≤ exp (−2 ln z) = 1

z2 .

We use a union bound to obtain

Pr[F2] = Pr[∃i ∈ [z] : Ei] ≤
1
z
.

ESA 2020

18:18 Noisy, Greedy and Not so Greedy k-Means++

If neither F1 nor F2 occurs then the final value of each remaining number is at most 2c′ ln z.
Hence, in this case, also the average is bounded from above by 2c′ ln z. Otherwise we only
use the trivial upper bound of z for the average of the remaining numbers (observe that
initially each ai is at most z because the average is 1). Altogether we obtain

E [A`] ≤ Pr[¬F1 ∧ ¬F2] · 2c′ ln z + Pr[F1 ∨ F2] · z
≤ 2c′ ln z + (Pr[F1] + Pr[F2]) · z

≤ 2c′ ln z +
(

1
z

+ 1
z

)
· z

= 2c′ ln(z) + 2 = 4/(1− ε) ln z + 2.

For the second inequality stated in the lemma, we only observe that even if we draw all but
one number, the average cannot increase beyond z since the sum of the numbers is z. Thus
E [A`] ≤ z is true for any 1 ≤ ` ≤ z. J

We prove below that if ` < z/2 then E [A`] ≤ 2.

I Lemma 11. Let ` < z/2. Then E [A`] ≤ 2.

Proof. In the worst case all steps are adversarial and the ` smallest numbers are removed.
Then the average of the remaining numbers is at most

z

z − `
<

z

z − z/2 = 2. J

Using Lemma 11, we obtain the following corollary.

I Corollary 12. Let ε ∈ (0, 1) and 1 ≤ ` ≤ z− 1. Then for z ≥ max{18, 24ε
(1−ε)2 } · ln z, we get

E [A`] ≤
4

1− ε · ln z + 2,

and for z ≤ max{18, 24ε
(1−ε)2 } · ln z, we have E [A`] ≤ max{18, 24ε

(1−ε)2 } · ln z.

Proof. Follows from Lemma 10 and Lemma 11. J

Now we are ready to prove Lemma 9.

Proof of Lemma 9. Given realization Fi, after the first i iterations there are z = ui ≤ k

uncovered clusters. Each of them has certain costs with respect to the center set after the
first i iterations. The costs of each cluster do not increase in the following iterations anymore
because only new centers are added. In any iteration the costs of these clusters may decrease
and one uncovered cluster may become covered. If the latter happens, the average costs
of the uncovered clusters can increase (if the costs of the uncovered cluster that becomes
covered are less than the average costs of the uncovered clusters). Hence, only the non-wasted
iterations are of interest.

The costs of the uncovered clusters after the first i iterations correspond to the num-
bers a1, . . . , az in the random experiment above. We scaled the instance such that the sum of
the ai is equal to z. This is without loss of generality. In each iteration of noisy k-means++
either a covered cluster is hit again, which can only reduce the numbers ai, or an uncovered
cluster becomes covered, in which case the corresponding number is removed. Conditioned
on covering an uncovered cluster, the probability pi that ai is removed is at least 1−ε1

1+ε2
· ai

S ,
where S denotes the sum of the costs of the uncovered clusters (i.e., the sum of the re-
maining ai). We can simulate the probability distribution induced by the probabilities pi

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:19

by mixing two distributions: with probability 1−ε1
1+ε2

we do proportional sampling, i.e., we
choose ai with probability ai

S , and with probability 1− 1−ε1
1+ε2

we sample according to some
other distribution to obtain the right probabilities pi. In the abstract random experiment
analyzed above this second distribution is selected by an adversary. For ε = ε1+ε2

1+ε2
∈ (0, 1)

we have

1− ε = 1− ε1 + ε2
1 + ε2

= 1 + ε2 − (ε1 + ε2)
1 + ε2

= 1− ε1
1 + ε2

.

Hence, Corollary 12 applies to noisy k-means++ with ε = ε1+ε2
1+ε2

. Observe that then

24ε
(1− ε)2 = 24(ε1 + ε2)(1 + ε2)2

(1 + ε2)(1− ε1)2 = 24(ε1 + ε2)(1 + ε2)
(1− ε1)2 . J

Bicriteria Approximation

We remark that noisy k-means++ still gives a bicriteria approximation because the probability
that an uncovered cluster is hit can only be decreased by a constant factor, and the probability
to pick a good center is also still comparably high. The theorem mentioned below follows
from [1]. We omit the proof of this theorem in this paper as it easily follows from [1].

I Theorem 13. Let S denote a set of 16(1+ε2
1−ε1

)2(k +
√
k) centers sampled using noisy

k-means++, then Φ(X,S) ≤ 20 OPTk(X) with probability at least 1− exp (−0.0157 · 1−ε1
1+ε2

).

Not so greedy k-means++

Consider the following variant of the greedy k-means++ algorithm (Algorithm 3).

Algorithm 3 Moderately greedy k-means++.

1: Input: Set X ⊆ Rd, integers k, l
2: Output: C ⊆ X, |C| = k

3: C = ∅
4: Sample a point c1 independently and uniformly at random from X.
5: Let C = {c1}.
6: for i = 2 to k do
7: With probability p, sample one point ci with D2-sampling and set C = C ∪ {ci}.
8: With the remaining probability:

Sample a set S of ` points independently with D2-sampling from X wrt C.
Let ci = arg minu∈S Φ(X,C ∪ {u}).
Update C = C ∪ {ci}.

9: end for
10: Return C

Let x ∈ P be any point. Say that pi(x) is the probability to draw x with one D2-sample
from X based on the center set c1, . . . , ci−1. Then the probability qi(x) to sample x in
iteration i of the above algorithm satisfies

p · pi(x) ≤ qi(x) ≤ [(1− p) · `+ p] · pi(x),

since with probability p, we do exactly the same as k-means++, and with probability (1− p),
we sample ` times, which can at most boost the probability by a factor of (1− p) · `. Assume
that p is a constant. Then by Theorem 2, moderately greedy k-means++ has an expected
approximation guarantee of O(`3 · log2 k) (for large k).

ESA 2020

18:20 Noisy, Greedy and Not so Greedy k-Means++

References
1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.

In Proceedings of the 12th and 13th APPROX-RANDOM, pages 15–28, 2009.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. In Proceedings of the 58th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 61–72, 2017.

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

4 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1027–
1035, 2007.

5 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. In Proceedings of the 31st International
Symposium on Computational Geometry (SoCG), pages 754–767, 2015.

6 Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate k-
means++ in sublinear time. In Proceedings of the 30th AAAI Conference on Artificial Intel-
ligence, pages 1459–1467, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12147.

7 Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon. Tight lower bound instances for k-means++
in two dimensions. Theoretical Computer Science, 634:55–66, 2016.

8 Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. Theoretical Computer
Science, 505:19–26, 2013.

9 M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with Applications,
40(1):200–210, 2013.

10 Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. k-means++: few more
steps yield constant approximation. CoRR, abs/2002.07784, 2020. arXiv:2002.07784.

11 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. In Proceedings of the
57th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 353–364,
2016.

12 Sanjoy Dasgupta. Lecture 3 – Algorithms for k-means clustering, 2013. accessed May 8th,
2019. URL: http://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf.

13 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages
569–578, 2011.

14 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

15 Daniel J. Hsu and Matus Telgarsky. Greedy bi-criteria approximations for k-medians and
k-means. CoRR, abs/1607.06203, 2016. arXiv:1607.06203.

16 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-
man, and Angela Y. Wu. A local search approximation algorithm for k-means clustering.
Computational Geometry, 28(2-3):89–112, 2004.

17 Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In
Proceedings of the 36th International Conference on Machine Learning (ICML), pages 3662–
3671, 2019.

18 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017.

19 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982. originally published as Bell Laboratories Technical Memorandum
in 1957.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12147
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12147
http://arxiv.org/abs/2002.07784
http://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
http://arxiv.org/abs/1607.06203

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:21

20 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The Planar k-means
Problem is NP-Hard. In Proceedings of the 3rd Workshop on Algorithms and Computation
(WALCOM), pages 274–285, 2009.

21 Benedikt Pago. Upper and lower bounds for the approximation ratios of incremental and
hierarchical clustering algorithms. Master’s thesis, University of Bonn, 2018.

22 Sergei Vassilvitskii. k-means: Algorithms, Analyses, Experiments. PhD thesis, Stanford
University, 2007.

23 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In
Proceedings of the Annual Conference on Neural Information Processing Systems 2016 (NIPS),
pages 604–612, 2016.

24 Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael
Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge
and Information Systems, 14(1):1–37, 2008.

ESA 2020

	Introduction
	Lower Bound for Greedy k-means++
	Analysis of Noisy k-means++ Seeding

