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Abstract

The Burrows-Wheeler Transform (BWT) has been an essential tool in text compression and indexing.
First introduced in 1994, it went on to provide the backbone for the first encoding of the classic
suffix tree data structure in space close to entropy-based lower bound. Within the last decade, it has
seen its role further enhanced with the development of compact suffix trees in space proportional to
“r”, the number of runs in the BWT. While r would superficially appear to be only a measure of
space complexity, it is actually appearing increasingly often in the time complexity of new algorithms
as well. This makes having the smallest value of r of growing importance. Interestingly, unlike other
popular measures of compression, the parameter r is sensitive to the lexicographic ordering given to
the text’s alphabet. Despite several past attempts to exploit this fact, a provably efficient algorithm
for finding, or approximating, an alphabet ordering which minimizes r has been open for years.

We help to explain this lack of progress by presenting the first set of results on the computational
complexity of minimizing BWT-runs via alphabet reordering. We prove that the decision version of
this problem is NP-complete and cannot be solved in time poly(n) · 2o(σ) unless the Exponential
Time Hypothesis fails, where σ is the size of the alphabet and n is the length of the text. Moreover,
we show that the optimization variant is APX-hard. In doing so, we relate two previously disparate
topics: the optimal traveling salesperson path of a graph and the number of runs in the BWT of a
text. In addition, by relating recent results in the field of dictionary compression, we illustrate that
an arbitrary alphabet ordering provides an O(log2 n)-approximation. Lastly, we provide an optimal
linear-time algorithm for a more restricted problem of finding an optimal ordering on a subset of
symbols (occurring only once) under ordering constraints.
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1 Introduction and Related Work

The Burrows-Wheeler Transform (BWT) is an essential building block in the fields of text
compression and indexing with a myriad of applications in bioinformatics and information
retrieval [24, 25, 26, 30]. Since it first arose in 1994 [6], it has been utilized to provide the
popular compression algorithm bzip2 and has been adapted to provide powerful compressed
text indexing data structures, such as the FM-index [12]. Hence, improvements to the
algorithmic aspects of this transformation and related data structures can have a significant
impact on the research community.

The BWT of a text T [1, n], denoted by BWT (T ) is a reversible transformation which
can be defined as follows: sort the circular shifts of T in lexicographical order and place
the sorted circular shifts in a matrix. By reading the last column of this matrix from top
to bottom we obtain BWT (T ). To make the transformation invertible a new symbol $
(lexicographically smaller than others) is appended to T prior to sorting the circular shifts.
See Figure 1 for an example. Historically, the BWT was introduced for the purpose of text
compression [6], where its effectiveness is based on symbols with shared preceding context
forming long runs (maximal unary substrings).
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Figure 1 Column L shows the BWT of mississippi. The number of runs r = 9.

Recently, the number of runs “r” in the BWT has become of increasing interest. This
can be attributed to the fact that many modern text collections are highly repetitive, which
makes their compression effective via the BWT followed by Run-Length encoding (i.e., in
space proportional to r). This raised an interesting question: can we also index the text
in space propositional to r? Note that the FM-index needs space proportional to n (i.e.,
≈ n log σ bits, where σ is the alphabet size). The data-structure community has made great
strides in answering this question [3, 5, 14, 21, 23, 31]. The first such index was developed
by Mäkinen and Navarro in 2005 [28]. However, it lacked the ability to efficiently locate the
occurrences of a pattern within space Õ(r). After a decade of related research [29, 14], we
now have fully functional suffix trees in space proportional to r, developed by Gagie et al. [15].
Also note that the recent optimal BWT construction algorithm for highly repetitive texts is
parameterized by r [19]. A technique reducing the value of this parameter r would have a
significant impact on a large body of work.
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A natural way to minimize r is to change the lexicographic ordering assigned to symbols
of the alphabet. To demonstrate that this can have an impact on r, consider as an example
the text mississippi with the usual ordering $ < i < m < p < s where r = 9, but with the
ordering $ < s < i < p < m we have r = 8. In fact, there exist string families in which r
differs by a factor of Ω(logn) for different orderings. This problem of reordering the alphabet
is clearly fixed-parameter tractable in alphabet size σ and has a trivial O(σ! n) time solution.
This may be adequate when σ is small as in DNA sequences. However, this is far from
satisfactory from a theoretical point of view, or even from a practical point when the alphabet
is slightly larger, such as in protein sequences, natural language texts, ascii texts, etc.

1.1 Related Work
The work in 2018 on block sorting based transformations by Giancarlo et al. gives a
theoretical treatment of alphabet ordering in the context of the Generalized BWT [16]. It
was shown that for any alphabet ordering, r is at most twice the number of runs in the
original text, a result which then holds for the standard BWT as well. Note however that
this gives no lower bound on r, and thus gives no results on the approximability of the
run minimization problem. There have been multiple previous attempts to develop other
approaches to alphabet ordering. In bioinformatics, the role of ordering on proteins was
considered in [34] with approaches evaluated experimentally. Similar heuristic approaches
evaluated through experiments were done in [1]. Researchers have also considered more
restricted versions of this problem. For example, one can try to order a restricted subset
of the alphabet, or limit wherein the ordering symbols can be placed. On this problem,
heuristics have been utilized. Software tools like BEETL utilize these techniques to handle
collections of billions of reads [8]. Another related work in [7] shows, how to permute a
given set of strings in linear time, such that the number of runs in the BWT of the (long)
string obtained by concatenating the input strings, separated by the same delimiter symbol
is minimized.

Even more recently, a work by Giancarlo et al., considered the case where ordering
is assigned to the nodes of a string’s suffix tree, to minimize the number of runs in the
BWT [17]. Interestingly, this problem can be solved in polynomial time. Although their
technique can potentially minimize the number of runs in the BWT to an even greater extent
than modifying the ordering on the alphabet, it also requires storing the order for each of
these nodes, which can require more space. We leave open the problem of finding a trade-off
between the strategy of ordering the alphabet and ordering the nodes of the suffix tree.

Given the lack of success with attacking the main problem from the upper bound side,
perhaps it is best to approach the problem from the perspective of lower bounds and hardness.
To this end, we show why a provably efficient algorithm has been evasive.

2 Problem Definitions and Our Results

Let Σ denotes the alphabet and σ = |Σ|. A run in a string T is a maximal unary sub-string.
Let ρ(T ) be the number of runs in T .

I Problem 1 (Alphabet Ordering (AO)). Given a string T [1, n] and an integer t, decide
whether there exists an ordering of the symbols in its alphabet such that ρ(BWT (T )) ≤ t.

I Theorem 2. The alphabet ordering problem is NP-complete and its corresponding minim-
ization problem is APX-hard.

ESA 2020
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The problem can be solved in n · σ! = n · 2O(σ logσ) time naively. However, any significant
improvement seems unlikely as per the Exponential Time Hypothesis (ETH) [27].

I Corollary 3. Under ETH, AO cannot be solved in time poly(n) · 2o(σ).

It is known that ρ(BWT (T )) can be lower bounded by the size of string attractor γ,
a recently proposed compressibility measure [22]. Kempa and Kociumaka showed that
ρ(BWT (T )) can be upper bounded by O(γ log2 n) [20]. However, γ is independent of the
alphabet ordering and the following result is immediate.

I Corollary 4. Any alphabet ordering is an O(log2 n)-approximation for AO.

We also introduce a specialization of AO, one where we impose more constraints on the
ordering given to alphabet symbols.

I Problem 5 (Constrained Alphabet Ordering (CAO)). Given a set of d strings T1, . . . , Td of
total length N , find an ordering π on the symbols $i (1 ≤ i ≤ d) such that $π(1) ≺ $π(2) . . . ≺
$π(d) ≺ 0 . . . ≺ σ − 1 and ρ(BWT (T1$1T2$2 . . . Td$d)) is minimized.

We call $1, $2, . . . , $d special symbols. In Section 5.3, we provide an example where an
optimal ordering of special symbols removes a factor of Ω(logσ d) in the number of runs,
demonstrating that this can be a worthwhile preprocessing step. We refer to [8] for an
immediate use case in bioinformatics, where the input is a large collection of DNA reads.

I Theorem 6. The constrained alphabet ordering problem can be solved in linear time.

In the full version [4] of this paper, we extend these hardness results to the related problem
of ordering source vertex on Wheeler graphs. Wheeler graphs are a recently introduced class
of graphs which allow for BWT based indexing [2, 13, 18].

3 Preliminaries: L-reductions

Our inapproximability results use L-reductions [9]. We will be reducing a problem A, with
some known inapproximability results, to a new problem B. We will use the following
notation:

OPTA(x) denotes the cost of an optimal solution to the instance x of Problem A.
cA(y) denotes the cost of a solution y to an instance x of Problem A (suppressing the x
in the notation cA(x, y)).
Since all problems presented here are minimization problems the approximation ratio can
be written as RA(x, y) = cA(y)

OPTA(x) , which is ≥ 1.
Let fA(x) = x′ be a mapping of an instance x of Problem A to instance x′ of Problem B.
Let y′ be a solution to instance x′ = fA(x) and gB(y′) = y be the mapping of a solution
y′ to a solution y for instance x.

Taking x, y, x′ y′ as above, an L-reduction is defined by the pair of functions (fA, gB),
computable in polynomial time, such that there exist constants α, β > 0, where for all x and
y the following two conditions hold:

OPTB(fA(x)) ≤ αOPTA(x) and cA(gB(y′))−OPTA(x) ≤ β
(
cB(y′)−OPTB(fA(x))

)
.

As a result, RB(x′, y′) = 1 + ε implies RA(x, y) ≤ 1 +αβε = 1 +O(ε). L-reductions preserve
APX-hardness [32].
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4 Hardness of Alphabet Ordering

We will demonstrate a sequence of L-reductions from the (1, 2)-TSP Cycle problem, where
the aim is to find a Hamiltonian cycle of minimum weight through an undirected complete
graph on n vertices where all edges have weights either 1 or 2. The (1, 2)-TSP Cycle problem
is APX-hard, even with only Θ(n) edges of weight 1 [33]. The first reduction is to (1, 2)-TSP
Path, where the goal is to find a Hamiltonian path of minimum weight, rather than a cycle.

I Lemma 7. (1,2)-TSP Path is APX-hard, even with only Θ(n) edges of weight 1.

Proof. We will give an approximation preserving reduction from (1, 2)-TSP to (1, 2)-TSP
Path. By the APX-hardness of (1, 2)-TSP Cycle, we obtain Lemma 7.

Let x be the input graph G for (1, 2)-TSP Cycle and let fA map the graph G to an
identical graph G′. Let gB map the (1, 2)-TSP Path y′ given to G′ to the cycle in G obtained
by connecting the end points of the path with an edge of weight at most 2. Hence the cost
cB(y′) is always at most the cost cA(gB(y′)). At the same time, the weight OPTA(x) of an
optimal cycle in G is bound above by the weight OPTB(fA(x)) of an optimal path in G′
plus 2. Thus, cB(y′) ≤ cA(gB(y′)) and OPTA(x) ≤ OPTB(fA(x)) + 2. Therefore,

OPTB(fA(x))
cB(y′) ≤ 1+ε =⇒ OPTA(x)

cA(gB(y′)) ≤
OPTB(fA(x)) + 2

cB(y′) ≤ 1+ε+ 2
n
≤ 1 +O(ε). J

We proceed to present our reduction which consists of two phases.

4.1 Reduction Phase 1
Given a complete graph on n vertices and m = Θ(n) edges of weight 1 as input to (1,2)-TSP
Path, remove all edges of weight 2. We call the resulting graph G. Construct the incidence
matrix for G (a row for each edge, and a column for each vertex, where the two 1’s in a
row indicate which two vertices are incident to the edge for that row). Then add 2` rows
of all 0’s to bottom of the matrix, where ` = 4m. Next, add two additional columns cs
and ct where cs[i] = 1 if i ∈ {m + 2,m + 4, . . . ,m + 2`} and 0 otherwise, and ct[i] = 1 if
i ∈ {m+ 1,m+ 3, . . . ,m+ 2`− 1} and 0 otherwise (see Figure 2). We call this matrix M .

Figure 2 The modified incidence matrix for the graph G. Each of the first m rows is for an edge.
The bottom 2` = 8m rows are added as are the outer two most columns.

ESA 2020
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We now present an intermediate problem that we call Column Ordering (CO), which
is: given a matrix M constructed as above, find an optimal ordering on the columns so as
to minimize the number of runs in its linearization. We will use Mπ to denote the matrix
M with the ordering π applied to its columns and L(Mπ) to denote the string obtained by
concatenating the rows of Mπ from top to bottom. We call L(Mπ) the linearization of Mπ.

Next, we describe the function which maps solutions of our instance of Column Ordering
back to a solution of (1, 2)-TSP Path. Ignoring the added columns cs and ct, the ordering π
induces a collection of disjoint paths in G, which we call P , where two vertices form an edge
if their columns are adjacent and there exists a row with 1’s in both columns. Given P we
create a (1,2)-TSP Path by connecting the paths in P with |P | − 1 edges of weight 2. Note
that this can be done in linear time.

I Lemma 8. If cs and ct are the first and last columns of Mπ respectively, then the cost of
our CO solution is ρ(L(Mπ)) = 2m1 + 4(m−m1) + 2`+ 1 = 4m− 2m1 + 2`+ 1, where m1
is the number of rows whose edges are in the collection of paths P . The corresponding cost
of the solution to (1,2)-TSP Path is m1 + 2(n− 1−m1) = 2(n− 1)−m1.

Proof. Ignoring the first run of L(Mπ) for the moment, every row in Mπ corresponding to
an edge in P contributes two runs to ρ(L(Mπ)) (e.g. 0 . . . 0110 . . . 0). Any row whose edge
is not in P and not in the bottom 2` rows, contributes four (e.g. 0 . . . 010 . . . 010 . . . 0) and
there are m−m1 such (rows) edges. The extra 2` rows in total contribute 2` runs. Adding
the “+1” term for the start of L(Mπ) gives the desired expression. The second statement
follows from the TSP Path having m1 edges of weight 1 and the n− 1 edges in total needed
to form a Hamiltonian path. J

I Lemma 9. If cs and ct are not the first and last columns respectively, then the solution to
CO is sub-optimal.

Proof. If ct is first and cs is last, then one extra run is contributed over cs being first and
ct last, while maintaining the rest of the ordering to be the same. In any configuration
where either cs or ct are not ends of the matrix, the bottom rows will contribute at least
3` runs. Letting m∗1 denote the optimal number of edges of P , then the optimal ρ(L(Mπ∗))
is 4m− 2m∗1 + 2`+ 1 < 4m+ 2` ≤ 3`. Note that the first inequality is strict since we can
always find at least one edge for P . J

It is immediate from Lemmas 8 and 9 that an optimal solution for CO is one which
maximizes m1, and this provides an optimal solution for (1,2)-TSP Path. We now must show
that our reduction is also an L-reduction. Lemmas 10 and 11 consider the two possible cases.

I Lemma 10. If cs and ct are the first and last columns respectively in a solution to CO,
then the L-reduction conditions hold.

Proof. By Lemmas 8 and 9, the optimal cost for the instance of CO can be expressed as
4m− 2m∗1 + 2`+ 1 and the optimal cost for the instance of (1,2)-TSP Path as 2(n− 1)−m∗1.
To prove Condition (i), we need to show there exists an α > 0 such that

4m− 2m∗1 + 2`+ 1 ≤ α(2(n− 1)−m∗1)

Since m = Θ(n) there exists a constant C > 1, such that for n large enough m ≤ Cn. The
left hand side can be bounded above by 4Cn− 2m∗1 + 8Cn+ 1 = 12Cn− 2m∗1 + 1 (recall
` = 4m). Since m∗1 ≤ n− 1 it is easy to find such an α for n ≥ 2. Below is the inequality for
Condition (ii), which is true for β ≥ 1/2.

(2(n− 1)−m1)− (2(n− 1)−m∗1) ≤ β
(

(4m− 2m1 + 2`+ 1)− (4m− 2m∗1 + 2`+ 1)
)
J
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I Lemma 11. If cs and ct are not the first and last columns respectively in a solution to
CO, the L-reduction conditions still hold.

Proof. Condition (i) holds since the optimal solution values to the overall problem have not
changed. For Condition (ii), we consider the two scenarios:

Scenario 1: cs or ct are not at the far ends of Mπ. Then the cost of the solution for
CO, which is at least 3`, exceeds the cost for any solution considered in Lemma 10.
Furthermore, any corresponding solution for (1,2)-TSP Path has already been considered
in Lemma 10, where now the right-hand is larger than it was in Lemma 10.
Scenario 2: ct is the first column of Mπ and cs is the last. Then, again, we have already
considered a solution in Lemma 10 which has solution cost one less for CO and yet had
the same solution cost for (1,2)-TSP Path.

This completes the proof. J

4.2 Reduction Phase 2
Given the matrix M as constructed in Phase 1 from G, we will now construct a string T
as input to the problem AO. It is easier to describe T in terms of its substrings, which are
created by iterating through the matrix M as follows:

For 1 ≤ j ≤ n+ 2, 1 ≤ i ≤ m+ 2`: if Mi,j = 1 output the substring 10i+12Cj
For 1 ≤ j ≤ n+ 2: output the substring 0m+2`+22Cj
Append to each substring created above a unique $i symbol (1 ≤ i ≤ 2m+ 2`+ n+ 2).

The string T is the concatenation of these substrings in any order and |T | = O(n2). The
alphabet set Σ is {0, 1, 2} ∪ {C1, C2, . . . , Cn+2} ∪ {$1, $2, . . . , $2m+2`+n+2} and σ = Θ(n).

Given a solution π to this instance of AO we use the relative ordering given to the Ci
symbols as the ordering for the columns of Mπ. For the analysis of why this works, we define
some properties that we would like BWT (T ) and π to have. For any symbol a ∈ Σ we will
call the maximal set of indices where the F column of the sorted circular shift matrix has
only a’s as the a-block. Our goal will be to“simulate” the linearization of L(Mπ) within the
0-block of BWT (T ). We let Cs and Ct denote the symbols for columns cs and ct respectively.

The following are the key properties that an optimal solution π∗ will have:
1. For a fixed j, all Cj symbols are placed adjacently in BWT (T );
2. All 2 symbols are placed adjacently in BWT (T );
3. The symbol 2 is adjacent to the symbol 0 in the ordering;
4. The $i symbols are ordered in such a way as to minimize the number of runs of 1 in the

0-block of BWT (T ).
5. The symbols Cs and Ct are both positioned at the beginning and end respectively of the

alphabet ordering given to the Ci symbols.
The 0-block of BWT (T ) will consist of 0’s, 1’s, and $i symbols. All $i symbols will be
adjacent within the 0-block. This is since the $i symbols succeeded by 0, are all succeeded by
the substring 0m+2`+22 and every occurrence of 0m+2`+22 preceded by a $i symbol (when T
is viewed as a circular string). Let r0 denote the number of runs created in the 0-block of
BWT (T ), minus the number of $i symbols in the 0-block of BWT (T ).

I Lemma 12. Unless all of the above properties hold, the solution to AO is suboptimal.

Proof. If any of Properties 1–3 are violated, we can exchange our solution with one which
maintains the value r0 but reduces the runs created in other blocks. This is since the alphabet
ordering can be modified to have these properties, while at the same time maintaining the
relative orderings of symbols within the 0-block. In the case of Property 4, given that

ESA 2020
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Properties 1–3 hold, modifying the solution so that the property holds can only decrease r0,
while it maintains the number of runs created in other blocks. Assuming properties 1–4 hold,
there are two possibilities, either Cs and Ct are extremal or they are not.

In the case of being extremal, if Cs < Ct, then by Property 4, the 2` = 8m instances of
1’s in the bottom 2` rows of Mπ shall correspond to 4m runs of two consecutive 1’s in
the 0-block of BWT (T ). The upper rows of Mπ shall correspond to at most 2m runs
of 1’s in the 0-block of BWT (T ). Hence, in the 0-block there are at most 6m+ 1 runs
of 1’s making at most 6m+ 2 runs of zeros to surround them, so that r0 ≤ 12m+ 3. In
the case where Ct < Cs, one additional run of 1’s is created over the same configuration
where the positions of Cs and Ct are swapped.
In the case of them not being extremal, considering only the last 2` rows of Mπ, there
are 8m runs of lonely 1’s in the 0-block of BWT (T ), and at least 8m+ 1 runs of 0’s to
surround them, leading to r0 ≥ 16m+ 1.

This completes the proof. J

As mentioned earlier, we aim to have a substring of BWT (T ) within the 0-block which is
the same as L(Mπ) except for the lengths of its runs, i.e., the number of runs will be the
same. We will call this substring the simulation of L(Mπ).

I Lemma 13. If all Properties 1–5 hold, then r0 = ρ(L(Mπ))−1 and ρ(BWT (T )) = r0+σ−1.

Proof. We will first show that when Properties 1–5 hold, r0 = ρ(L(Mπ))− 1, i.e., that the
simulation works. Within the 0-block of BWT (T ), row i is simulated by the characters
preceding each substring 0i+12. Note that they all appear consecutively in the 0-block.
Within the simulation of the ith row, if the value of the jth column of Mπ is 0, then the
characters preceding substrings of the form 0i+12Cj are all 0. If the value of the jth column
of M is 1, then there exists a single substring of the form 0i+12Cj preceded by a 1, and the
remaining substrings of the form 0i+12Cj are all preceded by 0. Note that all characters
preceding 0i+12Cj are consecutive within the ith row, however, the unique $’s following each
substring allow the characters following each 0i+12Cj to have their orders swapped. Because
of Property 5, in the column ordering of Mπ there will never be a run of more than two
consecutive 1’s in L(Mπ). Hence, when Property 4 is applied, we know that 1’s which would
are adjacent in L(Mπ) are adjacent in the 0-block. Combining all these observations gives us
that L(Mπ) is successfully simulated within the 0-block. The “−1” term in the expression
for r0 arises due to Property 2. This is since the 0 symbol in 0-block of BWT (T ) that is
adjacent to the 2-block does not contribute a run. We have shown r0 = L(Mπ)− 1.

Finally, the fact that ρ(BWT (T )) = r0 + σ − 1 follows from Properties 1–3 which cause
every symbol except 1 to contribute exactly one run to ρ(BWT (T )) outside of the simulation
(1’s first appearance is within the simulation). J

I Lemma 14. If all Properties 1–5 hold, the L-reduction conditions are satisfied.

Proof. By Lemma’s 12 and 13 we have the optimal cost for AO being r∗0 + σ − 1 and
optimal cost for CO as r∗0 + 1. For Condition (i) note that σ = Θ(n) and because there
are at most 5 runs created by each row, m + 2` ≤ r∗0 ≤ 5(m + 2`), so that r∗0 = Θ(n).
Hence, we can find an α such that r∗0 + σ − 1 ≤ α(r∗0 + 1). For Condition (ii), we have
(r0 + 1)− (r∗0 + 1) ≤ β((r0 + σ − 1)− (r∗0 + σ − 1)) with β = 1. J

I Lemma 15. If any of Properties 1–5 are violated, the L-reduction conditions are satisfied.
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Proof. Condition (i) is satisfied since optimal values for the overall problem are unchanged.
For Condition (ii), if any of the first four properties are violated, we have already shown in
Lemma 14 that the inequality holds in the harder case where ρ(L(Mπ)) has the same value
but the overall number of runs in BWT (T ) is less. If the first four properties hold and the
fifth property does not hold, there are two cases. In the first case, if Ct is ordered first and
Cs last, then swapping Cs and Ct modifies both sides of the inequality for Condition (ii) by
the same amount. In the second case, if either Cs or Ct are not ordered first or last, the left
hand side of the inequality in Condition (ii), that is

(
ρ(L(Mπ))− ρ(L(Mπ∗))

)
, will be large,

as this corresponds to the columns cs and ct not being first or last. However, the right-hand
side

(
(r0 + σ − 1) − (r∗0 + σ − 1)

)
will be large as well, perhaps even larger as there may

exist runs of three of four 1’s in L(Mπ) that cannot be simulated in the 0-block of BWT (T ).
In particular, r0 ≥ ρ(L(Mπ))− 1 and ρ(L(Mπ∗)) = r∗0 + 1, so that with β = 1

ρ(L(Mπ))− ρ(L(Mπ∗)) ≤ (r0 + 1)− ρ(L(Mπ∗)) ≤ β
(

(r0 + σ − 1)− (r∗0 + σ − 1)
)
. J

We have shown an L-reduction from (1,2)-TSP Path to AO. This combined with Lemma 7
completes the proof for Theorem 2.

4.3 Proof of Corollary 3
Assuming ETH, there exists no 2o(n) time algorithm for Hamiltonian Path Problem [10].
Our reduction allows us to determine the minimum number of paths in G needed to cover all
the vertices and can hence solve Hamiltonian Path. This can be done by first constructing
an incidence matrix for G and then applying the rest of the reduction as in Section 4. Since
the alphabet size σ is linear in n and |T | = Θ(n2), an |T |O(1) · 2o(σ) time algorithm for AO
would imply an 2o(n) time algorithm for Hamiltonian Path, a contradiction.

5 Constrained Alphabet Ordering

5.1 Reducing to a Simpler Problem
Recall that we wish to find an ordering on the special symbols $1, . . . , $d such that the number
of runs in the BWT of T = T1$1 . . . Td$d is minimized and the $ symbols are lexicographically
before other symbols. We will consider our alphabet to be over integers that are bounded
by NO(1), where N = |T |. Let s be an arbitrary substring of T without $ symbols. The
symbols in T which are followed by s$i will form a contiguous portion of BWT (T ). However,
their ordering within that contiguous portion is determined by the relative ordering given
to $i symbols. Hence, we can arrange the symbols within this portion of BWT (T ) so that
identical symbols are placed adjacently.

For example, let c1s$1, c2s$2, ...., cts$t be substrings of T . The symbols c1, c2, ... ct will
be contiguous in BWT (T ) in some order. Now, suppose that c2 = c4 = c7. By rearranging
the $2, $4, and $7 to be adjacent within the relative ordering of the $ symbols, we can make
c2, c4, and c7 appear consecutively. Taking this one step further, we can also change the
relative ordering of $2, $4, and $7, so that if the substrings αc2s$2, βc4$4, and αs$7 occur in
T , then the two α’s will be adjacent in the contiguous portion of BWT (T ) corresponding to
the substrings c2s$2, c4s$4, and c7s$7.

Hence, the set of symbols Bs = {x | xs$i is a substring of T for some i ∈ [1, d]} can be
modeled as a tuple where each symbol appears only once within the tuple. Along with each
symbol x in Bs, we will maintain a set ∆x

s = {$i | xs$i is a substring of T}. We will arrange
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all non-empty tuples Bs in the lexicographic ordering of s. As such, these tuples can be
constructed by first assigning any ordering to the $ symbols (where they are lexicographically
first in the alphabet) and then using the longest common prefix (LCP) between consecutive
suffixes in lexicographic order. These values are obtained directly from the longest common
prefix array. The suffix array and longest common prefix array can both be constructed in
linear time assuming an integer alphabet of size NO(1) [11]. We will define the problem of
ordering the symbols within these tuples as a new problem.

I Problem 16 (Tuple Ordering (TO)). Given a list of tuples t1, . . . , tq in a fixed order, each
containing a subset of symbols from Σ, order the symbols in each tuple such that the total
number of runs in the string formed by their concatenation t1 · t2 · . . . · tq is minimized (not
considering ‘(’, ‘)’ and commas, of course).

We will show that TO can be solved in linear time. To map solutions of TO back to
solutions of CAO, a tuple for Bs needs to maintain pointers to each tuple Bxs, where x is a
symbol. Then given a solution to TO, we start with the tuple for Bε. The ordering given to
symbols within this tuple provides us with a partial ordering on the $ symbols. The symbols
in ∆x

ε associated with the first symbol x within the tuple are ordered before the symbols ∆y
ε

associated with the second symbol y, etc. Then for a symbol x, the tuple for Bx provides a
refinement of this partial ordering. In particular, it provides a partial ordering on ∆x

ε . To
recover the total ordering on $ symbols, we recursively refine the partial ordering at our
current tuple by examining all of the tuples which the current tuple points to. Note that this
works since for a given tuple for Bs, the sets ∆x

s are disjoint. The time required to recover
this solution is proportional to N .

5.2 Solving the Tuple Ordering Problem in Linear Time
We show how to reduce the TO problem to the single-source shortest path problem on a
DAG G, which is constructed as follows. For each tuple ti, create two sets of vertices Li and
Ri, both of size |ti|, such that for each symbol c ∈ ti, there exists a vertex with label c in Li
as well as in Ri. Between each pair of vertices u ∈ Li and v ∈ Ri, where the label of u is not
equal to the label of v, create a directed edge of weight 1 from u to v. If |ti| = 1, then create
a directed edge of weight 1 from the unique vertex in Li to the unique vertex in Ri. For each
Ri and Li+1 (1 ≤ i ≤ q− 1), and each pair u ∈ Ri and v ∈ Li+1, create a directed edge from
u to v, with weight 1 if they have the same label, and weight 2 otherwise. Finally, create a
start vertex s and directed edges of weight 1 from s to each vertex in L1, and an end vertex e
with directed edges of weight 1 from each vertex in Rq to e. See Figure 3 for an illustration.

Clearly, the shortest path from s to e is the one with the fewest edges of weight 2, and
this path gives us a tuple ordering which minimizes the number of runs created by the tuples.
To obtain this ordering, for a tuple ti, place as the left-most symbol the label of the vertex
used in Li within the shortest path, and the right-most symbol the label of the vertex used
in Ri within the shortest path. The other symbols can be ordered arbitrarily. Because G a
DAG, this shortest path can be found in time proportional to the number of edges, which is
O(σ2q). Next, we show how to solve this in time proportional to the number of vertices of G.

Rather than constructing the edges in G, we can work from left-to-right maintaining the
shortest path from s to the vertices in our current level of G, either Li or Ri. Suppose our
current level is Li and we wish to extend the solution to the level Ri. Assuming |ti| ≥ 2, we
identify the vertices v1 and v2 in Li with the first and second shortest paths (they may have
the same length) from s, respectively. For each vertex u in Ri, if the label of u is not the
same as the label for v1, we make the shortest path to u the path from s to v1, then the edge
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Figure 3 The graph G constructed for the tuple ordering instance (0, 1, 2), (0, 1), (2), (1, 2, 3).

from v1 to u, otherwise we make it the path from s to v2, then the edge from v2 to u. If
|ti| = 1, we make the shortest path from s to u the path from s to the unique vertex v in Li,
then the edge from v to the unique vertex u. To extend a solution from Ri to Li+1, we first
identify the vertex v1 in Ri with the shortest path from s. For each vertex u in Li+1, if a
vertex with matching label vu exists in Ri, we take as the shortest path to u the shorter of
the following two paths: (i) the path from s to v1, then from v1 to u, or (ii) the path from
s to vu, then from vu to u. If no such vertex with matching label exists in Ri, take as the
shortest path from s to u the path from s to v1, then from v1 to u.

5.3 An Example of the Effectiveness of CAO

Lastly, we provide an example where the $ symbol ordering greatly reduces the number
of runs in the BWT. Let d be the number of strings and n the length of the strings. It
is possible for a set of special symbols to be ordered such that the number of runs is
Ω(nd). Let σ = 2 and d = σn. Consider the d distinct binary strings concatenated with
special symbols in lexicographic order. Under the ordering $1 < $2 ... < $d, the string
BWT (T ) alternates between the $’s, 0’s, and 1’s, yielding Ω(nd) runs. On the other
hand, for this same case, arranging the $’s in the optimal ordering will give O(d) runs in
total. This is since for any substring s of T , the contiguous section of BWT (T ) containing
the characters preceding s$i for i ∈ [1, d] contains at most the start of two runs. For
example, with n = 3, we would have T = 000$1001$2010$3011$4100$5101$6110$7111$8.
The number of runs in BWT (T ) under the naive ordering $1 < $2 < . . . < $8, is 32
with BWT (T ) = 01010101010101$8$101$2$3010101$4$501$6$7. The number of runs using
an optimal ordering $3 < $5 < $2 < $7 < $4 < $6 < $1 < $8 is 19 with BWT (T ) =
00001111110001$8$101$2$3001110$4$501$6$7.
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