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Abstract
Lexicographic Depth First Search (LexDFS) is a special variant of a Depth First Search (DFS),
which was introduced by Corneil and Krueger in 2008. While this search has been used in various
applications, in contrast to other graph searches, no general linear time implementation is known to
date. In 2014, Köhler and Mouatadid achieved linear running time to compute some special LexDFS
orderings for cocomparability graphs. In this paper, we present a linear time implementation of
LexDFS for chordal graphs. Our algorithm even implements the extended version LexDFS+ and is,
therefore, able to find any LexDFS ordering for this graph class. To the best of our knowledge this
is the first unrestricted linear time implementation of LexDFS on a non-trivial graph class. In the
algorithm we use a search tree computed by Lexicographic Breadth First Search (LexBFS).
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1 Introduction

Graph searches are among the most basic algorithms in computer science. Nevertheless,
they are very powerful tools and can be used to compute many important graph properties.
For example, Breadth First Search (BFS) is the standard procedure for testing bipartiteness
or computing shortest paths with respect to the number of edges. Similarly, Depth First
Search (DFS) can be used in algorithms to find strongly connected components in directed
graphs [24] or to test for planarity [14].

In 1976, Rose, Tarjan, and Lueker [21] proposed a modified variant of BFS to compute
perfect vertex elimination orderings of chordal graphs. This search, since named Lexicographic
Breadth First Search (LexBFS), uses the ordering of the already visited vertices and visits
the vertex with lexicographically largest neighborhood next. Rose, Tarjan, and Lueker also
gave a linear time implementation of LexBFS using partition refinement, which, for example,
also provides a linear time greedy algorithm for finding minimum colorings of chordal graphs.
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It was only in 2008 that a corresponding lexicographical variant for DFS was introduced
by Corneil and Krueger [8]. Similar to LexBFS, this search computes perfect elimination
orderings on chordal graphs. Therefore, it can be used to find minimum colorings as well
as all minimal separators and all maximal cliques on this graph class [25]. Besides this,
LexDFS was used in the field of data mining to design an efficient hierarchical clustering
algorithm [10]. However, no general linear time implementation of LexDFS is known to date.
An implementation with running time in O(min{n2, n+m logn}) is given in [17]. Spinrad
announced an O(m log logn)-implementation [23] which has not been published as of yet.
In [15], Köhler and Mouatadid present the first linear time algorithm to compute a LexDFS
cocomparability ordering, that is, a special class of LexDFS orderings can be computed in
linear time on cocomparability graphs using modular decomposition. However, there are
LexDFS orderings of cocomparability graphs that cannot be computed by this approach.
Even more restricting, it is not possible to choose an arbitrary start vertex for the search.
Nevertheless, this result can be used to design linear time algorithms which find minimum
path covers [5], maximum matchings [20] as well as maximum independent sets, minimum
clique covers and minimum vertex covers [6] on cocomparability graphs.

Search trees are an important concept in the theory of graph searches. Already in 1972,
Tarjan [24] gave a complete characterization of DFS-trees as so-called palm trees. However,
no algorithm that determines whether a given spanning tree of a graph G is a DFS-tree of G
was specified in that work. Using the concept of palm trees, Hopcroft and Tarjan developed a
linear time algorithm for testing planarity of a graph [14]. In 1985, Hagerup [12] formulated
the problem of checking whether a given spanning tree of G can be obtained by a DFS and
presented a linear time algorithm for this problem. In the same year, Hagerup and Novak [13]
presented a linear time algorithm for the recognition of BFS-trees. Similar results were
obtained by Korach and Ostfeld [16] for DFS-trees and Manber [19] for BFS-trees. Recently,
Beisegel et al. [1, 2] studied the search tree recognition problem for LexBFS, LexDFS and
other searches.

Our Contribution

In this paper, we give the first linear time implementation of LexDFS on chordal graphs. We
show for all graphs that the computation of a LexDFS ordering is linear time equivalent to
the construction of a LexDFS search tree, i.e., there are linear time reductions between both
problems. The combination of this result with some properties of search trees of LexBFS
on chordal graphs yields a linear time implementation of LexDFS+, an extended version of
LexDFS, which uses vertex orderings to break ties during the search. This implementation is
able to compute any LexDFS ordering of a given chordal graph. To the best of our knowledge
this is the first unrestricted linear time implementation of LexDFS on a non-trivial graph
class. Furthermore, we show that testing whether a given ordering is in fact a LexDFS
ordering is linear time equivalent to the recognition of LexDFS search trees.

2 Preliminaries

Throughout this paper, we consider finite, simple, undirected and connected graphsG = (V,E)
with n = |V | vertices and m = |E| edges. An edge between u and v is simply denoted by uv.
For a vertex v ∈ V , the neighborhood of v is denoted by N(v), i.e., N(v) = {u ∈ V | uv ∈ E}.
For a subset S ⊆ V , we define the neighborhood as N(S) = {v ∈ V \ S | ∃u ∈ S : uv ∈ E}.

Given a subset S of vertices in G, the subgraph of G induced by S is denoted by G[S],
where V (G[S]) = S and E(G[S]) = {uv ∈ E(G) | u ∈ S, v ∈ S}. The subgraph induced by
V (G) \ S is denoted by G− S and, in the case where S contains just one element, we simply
write G− v instead of G− {v}.
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A graph G that contains no induced cycle of length larger than 3 is called chordal. Other
equivalent definitions of chordal graphs can be found in [4]. A tree is an acyclic connected
graph and a spanning tree of a graph G is an acyclic connected subgraph of G which contains
all vertices of G. A tree together with a distinguished root vertex s is said to be rooted. In
such a rooted tree a vertex v is an ancestor of vertex w if v is an element of the unique path
from w to the root s. In particular, if v is adjacent to w, it is called the parent of w. A
vertex w is called a descendant (child) of v if v is an ancestor (the parent) of w.

A (connected) graph search is, in the most general sense, a mechanism for systematically
visiting all vertices of a graph. Starting at a vertex s ∈ V , we expand the set of vertices
S beginning with S = {s} by moving a vertex from N(S) to S, which may also add
new neighbors to N(S) in consequence. The result of this procedure is a search ordering
σ = (v1 = s, v2, . . . , vn) of the vertices of the graph listing the vertices in order of occurrence.
For any linear vertex ordering σ we write u ≺σ v if u appears before v in the ordering and
say that u is to the left of v and that v is to the right of u. Furthermore, σ− denotes the
reverse ordering of σ, that is, σ− = (vn, vn−1, . . . , v1).

There are many graph search protocols which differ in the way in which a vertex from
N(S) is chosen next. The two most common graph searches are Breadth First Search and
Depth First Search which can be simply described as using a queue and a stack to store the
vertices in N(S), respectively. Given a graph search protocol P and a vertex ordering σ, we
say that σ is a P-ordering if there exists a valid P search on G that returns σ.

In [8], Corneil and Krueger present a characterizing four point property of DFS orderings.

I Lemma 1 ([8]). A vertex ordering σ is a DFS ordering of a graph G = (V,E) if and only
if for every triple a ≺σ b ≺σ c where ac ∈ E and ab /∈ E there is a vertex d with a ≺σ d ≺σ b
such that db ∈ E.

In the same paper, the authors introduced Lexicographic Depth First Search (LexDFS,
see Algorithm 1), a variant of DFS which uses labels and their lexicographic order to break
ties during the search.

Algorithm 1 Lexicographic Depth First Search.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: Ordering σ of V starting at s

1 begin
2 label(s)← (0);
3 foreach vertex v ∈ V − s do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do prepend i to label(w);

The idea of using such a lexicographic order of labels originates from an algorithm for
the calculation of perfect elimination orderings of chordal graphs, given by Rose, Lueker,
and Tarjan [21], since named Lexicographic Breadth First Search (LexBFS, see Algorithm 2).

Both LexDFS and LexBFS are special variants of the standard searches and, thus, every
LexDFS ordering is also a DFS ordering and every LexBFS ordering is also a BFS ordering.
In both algorithms, the vertices are labeled by their already visited neighbors (see line 7

ESA 2020
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Algorithm 2 Lexicographic Breadth First Search.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: Ordering σ of V starting at s

1 begin
2 label(s)← (n);
3 foreach vertex v ∈ V − s do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do append (n− i) to label(w);

in Algorithm 1 and 2). While in LexDFS vertices visited later in the search have a larger
significance for the lexicographic order of the label, in LexBFS it is the opposite, i.e., vertices
visited earlier have a larger impact.

Corneil and Krueger [8] also present a four point property of LexDFS orderings.

I Lemma 2 ([8]). A vertex ordering σ is a LexDFS ordering of a graph G = (V,E) if and
only if for every triple a ≺σ b ≺σ c where ac ∈ E and ab /∈ E there is a vertex d with
a ≺σ d ≺σ b such that db ∈ E and dc /∈ E.

A variant of LexDFS and LexBFS is the technique of “multisweeping”. This describes the
multiple application of some graph search, where each run of the search uses the ordering
given by the previous application as a so-called “tie-break” rule, that is, a priority list which
decides which vertex can be visited next in those cases where the given search paradigm allows
several different options. It was first used by Simon [22] in an algorithm for the recognition of
interval graphs which is flawed as was shown by Ma [18]. Nevertheless, “multisweeping” has
proven to be very fruitful in recent years [5, 9]. In the case of LexDFS, this technique implies
a new search scheme known as LexDFS+: Given a ordering ρ of the vertices, LexDFS+(ρ) is
computed by executing a regular LexDFS with the modification that in line 5 of Algorithm 1
the rightmost element with regard to ρ is chosen among all vertices with lexicographically
largest label. The searches DFS+, BFS+ and LexBFS+ are defined analogously. Note that
all these searches yield unique orderings, as there are no more ties to break in the algorithms.

It is not difficult to see that, given the reverse of a search ordering as tie break, such a
procedure yields that same ordering again. For a more general result see Corneil et al. [7].

I Observation 3. Let G = (V,E) be a graph and let σ be a vertex ordering of G. The
ordering σ is a LexDFS ordering of G if and only if LexDFS+(σ−) is equal to σ. This also
holds for LexBFS and LexBFS+(σ−).

Using a technique called partition refinement, LexBFS can be implemented in linear
time [11, 21]. Given a set S, we call Q = (Q1, Q2, . . . , Qk) a partition of S if S =

⋃k
i=1 Qi

with non-empty, pairwise disjoint sets Qi (Qi ∩ Qj = ∅ for i 6= j). Note that a partition
is an ordered list of subsets. We say that a subset S′ ⊆ S refines Q if Qi is replaced by a
subpartition (Ai, Bi) where Ai = Qi∩S′ and Bi = Qi \Ai whenever both sets are non-empty.
In particular, for LexBFS we start with Q = (V ) and starting vertex s. Now, we refine Q with
{s} which separates s in a single set. Afterwards, we refine with N(s). In the first iteration,
this yields the partition ({s}, N(s), V \ (N(s) ∪ {s})). The vertex whose neighborhood is
used to refine the partition classes is called a pivot. Choose the next pivot v from N(s) and
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refine with {v} and then N(v). For Qi = {v}, repeat refining using an element from the
set Qi+1 as the next pivot, maintaining the order of the partition classes created so far. As
shown in [11], this final partition can be computed in linear time and it is actually a LexBFS
ordering. The pivot is just the vertex visited by the search and it pulls its neighbors to the
front of each set. Unfortunately, no linear time implementation of partition refinement for
LexDFS is known to date.

Usually, a graph search is associated with a search tree which is a spanning tree of the
graph. Given a BFS ordering σ = (v1, . . . , vn), a vertex vi is typically connected to the
leftmost neighbor in (v1, . . . , vi−1), i.e., it is connected to the vertex that was current at the
point at which vi was added to N(S). On the contrary, given a DFS ordering σ = (v1, . . . , vn),
a vertex vi is connected to the rightmost neighbor in (v1, . . . , vi−1), i.e., it is connected to
the neighbor which occurred last before vi itself was visited. These two different approaches
of constructing a search tree give rise to the following definition.

I Definition 4 ([2]). Given a search ordering σ = (v1, . . . , vn) of a given search on a
connected graph G = (V,E), the first-in tree (or F-tree) of σ is the tree consisting of the
vertex set V and an edge from each vertex different from v1 to its leftmost neighbor in σ.
The last-in tree (or L-tree) of σ is the tree consisting of the vertex set V and an edge from
each vertex vi different from v1 to its rightmost neighbor vj in σ with j < i. In both cases, v1
is the root of the search tree.

The notation of F -trees and L-trees was introduced in [2], where the recognition problem
of these search trees was studied. In contrast to the original definition, we always assume
that a search tree has a designated root. In particular, two search trees on a graph G are
equal if they use the same edge set and if they have the same root. Given a search protocol
P and a spanning tree T of G rooted in s, we say that T is an L-tree (F-tree) of P on G if
there is a P-ordering of G starting at s with L-tree (F-tree) T .

Although, it would be most natural to consider the F-tree for LexBFS, the L-tree of
LexBFS is a key ingredient in our procedure on chordal graphs.

3 Search Orderings and Trees of LexDFS

Given a search ordering, it is easy to construct the corresponding search tree in linear time
by simply using Definition 4. However, if we are only given a search tree, then it is not
immediately clear how to find a search ordering that results in this tree. In this section,
we present a linear time algorithm that computes a LexDFS ordering for a given L-tree of
LexDFS. Using this result we prove that both recognition and creation of search orderings
and L-trees are linear time equivalent in the case of LexDFS.

The main idea of this algorithm is to use a special tie-break rule in form of a ordering
of the vertices τ such that a simple run of DFS+(τ) on the tree is a LexDFS ordering of G
with tree T . This tie-break rule τ is computed by using a form of partition refinement which
moves from the leaves of the tree towards its root. The pseudo code of this procedure is
given in Algorithm 3.

Before we begin with the analysis of this algorithm we present some general results on
L-trees of DFS. The first is a lemma by Tarjan [24] which characterizes L-trees of DFS.

I Lemma 5 ([24]). Let G = (V,E) be a graph and let T be a spanning tree of G. Then T is
an L-tree of G generated by DFS if and only if for each edge uv ∈ E it holds that either u is
an ancestor of v in T or v is an ancestor of u in T .

ESA 2020
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Algorithm 3 Ordering(G, T , s, ρ).

Input: Connected graph G = (V,E), an L-tree T of DFS on G rooted in s ∈ V ,
ordering ρ of V ending with vertex s

Output: ordering σ of V starting at s
1 begin
2 β ← reverse of a BFS ordering of T starting at s;
3 Q ← (V );
4 for i ← 1 to n do
5 v ← β(i);
6 refine Q with {w ∈ N(v) | w ≺β v};
7 order every set in Q with respect to ρ− and move {s} to the leftmost position;
8 τ ← reverse of the final order of vertices in Q;
9 σ ← DFS+(τ) on T ;

10 return σ;

In order to make sure that Algorithm 3 returns a DFS ordering of G with L-tree T , we
prove the following statement.

I Lemma 6. Let T be an L-tree of some DFS on G rooted in s and let σ be a DFS ordering
of T starting at s. Then σ is a DFS ordering of G with L-tree T .

Proof. We show that σ is a DFS ordering of G by proving that it fulfills the characterization
given in Lemma 1. Let a, b and c be three vertices in G with a ≺σ b ≺σ c, ac ∈ E(G) and
ab /∈ E(G). We have to show that there is a vertex d with a ≺σ d ≺σ b such that db ∈ E(G).
Assume that ac ∈ E(T ). As σ is a DFS ordering of the tree T , there is a vertex d with
a ≺σ d ≺σ b and db ∈ E(T ) ⊆ E(G) due to Lemma 1. Therefore, we can assume that ac
is not contained in E(T ). By Lemma 5 this implies that a is an ancestor of c in T . Let
P = (a = w1, . . . , wk = c) be the unique path between a and c in T . As σ is a DFS ordering
of T , it holds that a ≺σ w2 ≺σ . . . ≺σ c. If there is an 1 < i < k such that wi = b, then wi−1
is a vertex between a and b in σ with wi−1b ∈ E(G). Otherwise, there exists an 1 ≤ i < k

with wi ≺σ b ≺σ wi+1 and wiwi+1 ∈ E(T ). As in the first case there exists a vertex d with
a �σ wi ≺σ d ≺σ b and db ∈ E(T ) ⊆ E(G). By Lemma 1, this proves that σ is a DFS
ordering.

Let T ′ be the L-tree of σ with regard to G and assume for contradiction that there is
an edge uv in T ′ that is not part of T . Due to Lemma 5, we can assume without loss of
generality that u is an ancestor of v in T . Since uv is not part of T , vertex u is not the
parent of v in T . Let w be the parent of v in T . Note that this means that w is a descendant
of u in T . Since σ is a DFS ordering on T , vertex w must be to the left of v and to the
right of u in σ. Since vw ∈ E(G), edge uv cannot be part of T ′, as T ′ is the L-tree of σ; a
contradiction. J

With these results on DFS we can proceed to the analysis of Algorithm 3. First we will
prove correctness.

I Theorem 7. Let T be an L-tree of some DFS on G rooted in s and let ρ be an arbitrary
ordering of V ending in s. Let σ be the ordering produced by Algorithm 3 with input (G,T, s, ρ).
Then T is an L-tree of LexDFS rooted in s if and only if σ is a LexDFS ordering of G.
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Proof. Assume σ is a LexDFS ordering of G. Due to Lemma 6, the L-tree of σ is T and,
therefore, it is an L-tree of LexDFS.

For the other direction, assume that T is an L-tree of LexDFS. Let σ∗ be a LexDFS
ordering of G such that the L-tree of σ∗ is T and the common prefix of σ and σ∗ is maximal
among all LexDFS orderings with L-tree T . If σ and σ∗ are equal, then we are done.
Otherwise let i ∈ {1, . . . , n} be the first index for which v = σ(i) 6= σ∗(i) = v∗. By Lemma 6,
both σ and σ∗ are DFS orderings with L-tree T and v and v∗ have the same parent p in
T . If v and v∗ have the same neighborhood in the set S = {σ(j) | j < i}, then v could
have been taken by LexDFS instead of v∗ and this choice would not have had an impact
on the L-tree of the ordering, due to Lemma 5. Hence, there must be a vertex w ∈ S with
wv∗ ∈ E(G) and wv /∈ E(G) and for all vertices x with w ≺σ x ≺σ v it holds that both v
and v∗ are adjacent to x or both are not adjacent to x. Note that w is an ancestor of both v
and v∗ in T and therefore, it is to the right of both vertices in β.

However, this means that before the iteration of the for-loop in lines 4–6, where we
consider vertex w, both v and v∗ are in the same set of Q. After this iteration, vertex v∗ is
in a set of Q to the left of the set containing v. Therefore, v∗ is to the right of v in τ , as
τ uses the reverse ordering of Q. Thus, the search DFS+(τ) visits v∗ before v, as both are
children of p; a contradiction to v being to the left of v∗ in σ. J

As seen in the proof, it is not necessary to use the reverse of a BFS ordering for β. Any
ordering will suffice, where for every vertex w all ancestors in T are to the right of w in the
ordering. Having shown that Algorithm 3 returns a correct LexDFS ordering for any L-tree
of LexDFS, we will now evaluate its running time.

I Lemma 8. Algorithm 3 has running time in O(n+m).

Proof. Algorithm 3 begins with an execution of BFS which can be done in linear time. In
the for-loop we iterate through the neighborhood of every vertex exactly once. Thus, the
overall costs are in O(n+m). To sort the sets of Q with respect to ρ− we iterate through
ρ− and move the considered vertex to the end of its set. The final DFS+(τ) can be executed
in linear time by first sorting the neighborhoods of all vertices with respect to τ . J

The last results imply that the construction of an L-tree of LexDFS is linear time
equivalent to the computation of a LexDFS ordering.

I Theorem 9. For a given graph family G and O(M) ⊇ O(n + m) the following two
statements are equivalent:
1. There is an algorithm with running time in O(M) that computes a LexDFS ordering for

any graph in G and any starting vertex s.
2. There is an algorithm with running time in O(M) that creates an L-tree of LexDFS for

any graph in G and any root s.

Proof. It is easy to see that the L-tree of an arbitrary vertex ordering can be constructed
in O(n + m). Therefore, an O(M)-algorithm for the computation of a LexDFS ordering
starting at s directly implies an O(M)-algorithm for the creation of an L-tree of LexDFS
rooted in s.

If, on the other hand, we can compute an L-tree of LexDFS rooted in s in time O(M),
then we can use Algorithm 3 to create a corresponding LexDFS ordering in linear time, due
to Theorem 7 and Lemma 8. J

ESA 2020
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This linear time equivalence does not only hold for the computation but also for the
recognition of L-trees and orderings of LexDFS. To prove this we need the following two
technical lemmas.

I Lemma 10. Let T be an L-tree of a DFS on G rooted in s, let ρ be an arbitrary ordering
of V ending with s and let σ be the ordering produced by Algorithm 3 with input (G,T, s, ρ).
Furthermore, let v and w be two vertices in G with v ≺σ w which have the same parent in T
and the same neighborhood in the set Y = {x | x ≺σ v}. Then v is to the right of w in ρ.

Proof. As v is to the left of w in σ by assumption, vertex v was taken before w in DFS+(τ).
Since v and w have the same parent in T , it holds that v is to the right of w in τ . If the
vertex v is pulled by a vertex x in the for-loop of Algorithm 3, then x is adjacent to v and
has a smaller distance to the root s in T . By Lemma 5, vertex x is an ancestor of v in T and
x is to the left of v in σ. As v and w have the same neighborhood in Y , the vertex x is also
adjacent to w and pulls it, too. This implies that v and w are in the same set of Q after the
for-loop. Therefore, v has to be to the right of w in ρ, as it is to the right of w in τ . J

I Lemma 11. Let T be an L-tree of LexDFS on G rooted in s and let σ be a vertex ordering
of a graph G starting at s whose corresponding L-tree is T . Algorithm 3 returns σ for input
(G,T, s, σ−) if and only if σ is a LexDFS ordering of G.

Proof. If Algorithm 3 returns σ for input (G,T, s, σ−), then, by Theorem 7, σ is a LexDFS
ordering of G.

Therefore, we assume that σ is a LexDFS ordering and Algorithm 3 returns the LexDFS
ordering σ∗ for input (G,T, s, σ−) with σ 6= σ∗. Let i ∈ {1, . . . , n} be the first index where
v = σ(i) 6= σ∗(i) = v∗ and let σi be the prefix of the first i− 1 elements of σ (and σ∗). It
follows that v and v∗ have the same neighborhood in σi and, thus, the same parent in T .
Since v is to the right of v∗ in σ− it follows from Lemma 10 that v must be to the left of v∗
in σ∗; a contradiction. J

Now we can prove the linear time equivalence of tree recognition and ordering verification
for LexDFS.

I Theorem 12. For a given graph family G and O(M) ⊇ O(n + m) the following two
statements are equivalent:
1. There is an algorithm with running time in O(M) that checks for any graph G in G and

any vertex s whether a given ordering beginning in s is a LexDFS ordering of G.
2. There is an algorithm with running time in O(M) for any graph G in G and any vertex

s that checks whether a given spanning tree rooted in s is an L-tree of LexDFS on G.

Proof. Assume we have an algorithm A for the recognition of LexDFS orderings with running
time in O(M). For a given spanning tree T of G rooted in s we first decide in linear time
whether T is an L-tree of DFS (see [12, 16]). If not, then it is not an L-tree of LexDFS.
Otherwise, we execute Algorithm 3 with the input (G,T, s, ρ), where ρ is an arbitrary ordering
of the vertices of G, and get the vertex ordering σ as result in linear time. Due to Theorem 7,
T is an L-tree of LexDFS if and only if σ is an LexDFS ordering of G. We use A to decide
this in time O(M).

Now assume we have an algorithm A for the recognition of L-trees of LexDFS with
running time in O(M) and get a vertex ordering σ starting at s. We first create the L-tree
T of σ in linear time and check whether T is an L-tree of LexDFS in time O(M). If not, σ
is not an LexDFS ordering of G. Otherwise, we call Algorithm 3 with input (G,T, s, σ−).
Due to Lemma 11, the resulting vertex ordering is equal to σ if and only if σ is a LexDFS
ordering of G. J
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Note that this result does not hold for search orderings and their corresponding trees in
general (if P 6= NP). Beisegel et al. [1, 2] show for example that the recognition problem of
F-trees of both LexBFS and LexDFS is NP-complete, whereas it is easy to recognize the
corresponding orderings.

4 LexDFS on Chordal Graphs

We will now use the results of the last section to derive a linear time implementation of
LexDFS for chordal graphs. We first show that LexBFS and LexDFS have the same set of
L-trees on chordal graphs. This fact is also implied by a more general result in [1]. Since this
work has not been published yet and we only need a special case here, we give an alternative
proof for the sake of completeness.

In [3], Berry et al. show that a whole range of different graph search schemes share
the same set of search orderings on chordal graphs. Among these searches are variants of
both LexDFS and LexBFS, called CompLexDFS and CompLexBFS, respectively. For these
algorithms we replace line 5 in both Algorithm 1 and 2 by “choose a component C of the
graph induced by the unnumbered vertices and take a vertex in C with lexicographically
largest label”.

I Lemma 13 ([3]). For any chordal graph G a linear vertex ordering is a CompLexDFS
ordering if and only if it is a CompLexBFS ordering.

We now show that both LexDFS and LexBFS compute the same L-trees as their respective
Comp-variants for any graph.

I Lemma 14. A spanning tree T of a graph G rooted in s is an L-tree of LexDFS (LexBFS)
on G if and only if T is an L-tree of CompLexDFS (CompLexBFS) on G.

Proof. Since every ordering of LexDFS is also an ordering of CompLexDFS, every L-tree of
LexDFS on G is also an L-tree of CompLexDFS.

For the reverse we first introduce some technical definitions. Let τ = (w1, . . . , wn) be
some ordering of the vertices of G. We define Cτ (wi) to be the connected component of
G − {w1, . . . , wi−1} containing wi. Now, consider a CompLexDFS ordering σ of G with
L-tree T . Let σ∗ be the LexDFS+(σ−) ordering of G. We claim that T is the L-tree of σ∗.
To this end, we show that Cσ(v) = Cσ∗(v) for every vertex v ∈ V . Furthermore, we show
that for every vertex w ∈ Cσ(v) = Cσ∗(v) it holds that the label of w at point where v is
chosen in σ is the same as the label of w when v is chosen in σ∗.

Assume for contradiction that v is the leftmost vertex in σ which does not fulfill both
of these properties. Let w be the rightmost vertex in σ with w ≺σ v such that w has a
neighbor in Cσ(v). Due to choice of v, it holds that Cσ(w) = Cσ∗(w) and both components
are labeled the same at the moment w is chosen in the respective search. As the labels cannot
be changed from outside of the component, there must be a vertex in Cσ(v) that is between
w and v in σ∗. Let x be the leftmost vertex in σ∗ with this property. At the point where x is
chosen by σ∗ the labels of both x and v are the same as in σ at the point when v was chosen.
Therefore, the labels of x and v must be the same at the point where x was chosen in σ∗.
However, v is to the right of x in σ− and it has to be chosen before x in σ∗; a contradiction.

Now, let T ∗ be the L-tree of σ∗ and assume that the parent of vertex y in T is p and the
parent of y in T ∗ is p∗ 6= p. Due to the observation above, both p and p∗ must be to the left
of y in both σ and σ∗. Therefore, it holds that p ≺σ∗ p∗ and p∗ ≺σ p. However, this is a
contradiction to the observation above since p would be in Cσ(p∗) but not in Cσ∗(p∗).

Since no special property of LexDFS and CompLexDFS is used in the proof above, the
claim also holds for LexBFS and CompLexBFS. J
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Combining Lemmas 13 and 14 yields the following corollary.

I Corollary 15. Let G = (V,E) be a chordal graph and T be a spanning tree of G rooted in
s ∈ V . The tree T is an L-tree of LexDFS of G if and only if T is an L-tree of LexBFS of G.

Using this corollary, we can compute an L-tree of LexDFS rooted in vertex s for any
chordal graph G by using LexBFS. This tree can then be used as the input for Algorithm 3
to return a LexDFS ordering for G. Furthermore, it is possible to implement LexDFS+ in
linear time for chordal graphs using the same approach (see Algorithm 4).

Algorithm 4 LexDFS+ on chordal graphs.

Input: Chordal graph G = (V,E), vertex s ∈ V , ordering ρ of V ending with s
Output: The LexDFS+(ρ) ordering σ of G

1 begin
2 π ← LexBFS+(ρ) ordering of G;
3 T ← L-tree of π;
4 σ ← Ordering(G, T , s, ρ);
5 return σ;

I Theorem 16. Let G = (V,E) be a chordal graph, s be a vertex in V and ρ be an arbitrary
ordering of V ending in s. Then for input (G, s, ρ) Algorithm 4 produces the LexDFS+(ρ)
ordering of G in time O(n+m).

Proof. Due to Corollary 15, the tree T is an L-tree of LexDFS. By Theorem 7, Ordering(G,
T , s, ρ) produces a LexDFS ordering of G starting at s.

It remains to show that σ is also the LexDFS+(ρ) ordering. Let σ∗ be the LexDFS+(ρ)
ordering of G and assume that σ 6= σ∗. Let i ∈ {1, . . . , n} be the first index where
v = σ(i) 6= σ∗(i) = v∗ and let σi be the prefix of the first i− 1 elements of σ (and σ∗). It
follows that v and v∗ have the same neighborhood in σi and v∗ must be to the right of v in ρ.

Assume that v is to the left of v∗ in the LexBFS+(ρ) ordering π. Since v ≺ρ v∗, vertex v
had a larger label than v∗ at the point where it was chosen in π. This implies that there
is a vertex w with w ≺π v ≺π v∗ such that wv ∈ E(G) but wv∗ /∈ E(G). Due to Lemma 5,
vertex w has to be an ancestor of v in T and, therefore, w is in σi. This is a contradiction as
v and v∗ have the same neighbors in σi.

Therefore, we can assume that v∗ is to the left of v in π. If v and v∗ have the same parent
in T , then vertex v has to be to the right of v∗ in ρ, due to Lemma 10; a contradiction. Thus,
assume that p is the parent of v but not the parent of v∗ in T . However since p is in σi,
vertex v∗ is adjacent to p in G and, therefore, is a descendant of p in T , due to Lemma 5. Let
x be the unique child of p in T , which is an ancestor of v∗. Note that x 6= v since otherwise
v ≺π v∗. Furthermore, it holds that both x ≺π v∗ and v ≺σ x and every neighbor of x
which is to the left of x in π is an element of σi, due to the choice of i. If x has the same
neighborhood in σi as v and v∗, then v∗ ≺ρ x and, due to Lemma 10, it holds that x ≺σ v; a
contradiction. Thus, x has a neighbor in σi which is neither a neighbor of v nor of v∗. Let y
be the rightmost vertex in σi with this property. Since σ is a LexDFS ordering there must be
a vertex z with y ≺σ z ≺σ v such that vz ∈ E(G) and xz /∈ E(G), due to Lemma 2. Since z
is also adjacent to v∗ we can use Lemma 2 again leading to a vertex u with z ≺σ u ≺σ x
that is adjacent to x but not to v∗. Due to the choice of y, vertex u must be to the right of
v in σ. This is contradiction to p being the parent of x in the L-tree T of σ.

Since all three steps can be executed in linear time (see Lemma 8), the algorithm has
linear running time in total. J
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Figure 1 The graph G = (V,E) on the left side is chordal. In the middle, the L-tree of a LexBFS
starting at s is shown. Vertex labels correspond to the index in the search ordering. On the right
side, the same tree is shown, but now the labeling fits to a LexDFS starting at s.

It follows from Observation 3 that Algorithm 4 is able to compute any LexDFS ordering
of a chordal graph G.

I Corollary 17. Algorithm 4 can compute any LexDFS ordering of a chordal graph G.

This result does not hold for efficient implementations of graph searches in general. One
example is Maximal Neighborhood Search (MNS) introduced by Corneil and Krueger in
2008 [8] as a generalization of both LexBFS and LexDFS. This search can be implemented
with linear running time by implementing LexBFS. However, not every MNS ordering is a
LexBFS ordering, so this approach can only compute a subset of the MNS orderings of a
graph. Observation 3 also leads to an easy recognition algorithm of LexDFS orderings.

I Corollary 18. LexDFS orderings can be recognized in linear time on chordal graphs.

Note that this result can also be achieved using Theorem 12 and the fact that L-trees of
LexDFS on chordal graphs can be recognized in linear time (see [1]).

To illustrate the final procedure of Algorithm 4, we give the following example.

I Example 19. Given the chordal graph in Figure 1, start vertex s and ρ = (a, b, . . . , j, s),
we begin by computing a LexBFS+(ρ) ordering using partition refinement. The first pivot is
s with neighborhood N(s) = {d, c, b, a}, which yields the partition (s)(d, c, b, a)(j, i, h, g, f, e).
With d as the next pivot, we obtain (s)(d)(c)(b, a)(h)(j, i, g, f, e). After a few more steps, we
have π = (s, d, c, b, a, h, g, f, e, j, i) which is the LexBFS+(ρ) ordering. Now, we consider the
L-tree T induced by this ordering, which is shown in Figure 1.

By Corollary 15, we see that T is also an L-tree of LexDFS rooted in s. We first compute
the ordering β and, as seen before, we can use any ordering where the children of a vertex
are always to the left of their parent. Thus, we can use β = π−, although it is not a BFS
ordering of T , since T is an L-tree and not a standard F-tree.

Now, we iterate through β and use partition refinement, beginning with Q = β, to
compute a final tie-breaking rule τ (see Algorithm 3). Vertex i has an empty neighborhood
to the left so nothing has to be done. Vertex j as neighbor i to the left in β, so the first
refinement of Q occurs. After processing vertices e and f with empty left neighborhoods, we
refine for g with {e, f, i, j}. This yields the intermediate partition (i)(j, e, f)(g, h, a, b, c, d, s).
Finally, we obtain Q = (i)(j)(e, f)(a)(g)(h)(b)(c)(d)(s).
Q is post-processed to compute τ . Here, we sort (e, f) with respect to ρ−, which is the

only part of Q with more than one vertex. Furthermore, we move s to the leftmost position
and reverse the whole ordering. This yields τ = (d, c, b, h, g, a, e, f, j, i, s). Now, we perform
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a final DFS+(τ) on the tree T . We start in s and follow the unique path to c. Vertex c has
two children in T and τ forces us to take h, since h is to the right of b in τ . Similarly, j is
chosen after g due to τ . The final LexDFS+(ρ) ordering is (s, d, c, h, g, j, i, f, e, b, a). It is
shown on the right side of Figure 1.

5 Conclusion

In this paper, we have presented the first linear time implementation of LexDFS on chordal
graphs. This is already the second important subclass of perfect graphs, the other being
cocomparability graphs, that admits a linear time implementation of LexDFS. In contrast
to the algorithm for cocomparability graphs [15], however, our approach can compute any
LexDFS ordering with arbitrary start vertices. Thus, it also yields the first unrestricted
linear time implementation of LexDFS on interval graphs, which are the intersection of
cocomparability graphs and chordal graphs. It remains an open question whether this result
can be algorithmically exploited to efficiently solve problems on other subclasses of chordal
graphs besides interval graphs in linear time.

In the light of these results, the question of whether LexDFS can be executed in linear
time in general is even more interesting. There are several open questions. Can the search
tree approach be extended? Are there other graph classes where rooted L-trees of LexBFS
and LexDFS coincide or is this a characteristic property of chordal graphs? It is also possible
that there are other graph classes and other modifications of graph searches that produce a
tree equal to an L-tree of LexDFS in linear time on graphs of this particular class.

However, if the answer was “no”, that is, we cannot find a general linear time algorithm
for LexDFS, it is an interesting question whether recognizing LexDFS orderings can be
done faster than actually generating one. In particular, is it possible to check in linear time
whether a given vertex ordering or a search tree belongs to LexDFS?
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