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Abstract
Let G = (V,E) be an undirected graph on n vertices with non-negative capacities on its edges. The
mincut sensitivity problem for the insertion of an edge is defined as follows.

Build a compact data structure for G and a given set S ⊆ V of vertices that, on receiving any
edge (x, y) ∈ S × S of positive capacity as query input, can efficiently report the set of all pairs from
S × S whose mincut value increases upon insertion of the edge (x, y) to G.

The only result that exists for this problem is for a single pair of vertices (Picard and Queyranne,
Mathematical Programming Study, 13 (1980), 8-16). We present the following results for the single
source and the all-pairs versions of this problem.
1. Single source: Given any designated source vertex s, there exists a data structure of size O(|S|)1

that can output all those vertices from S whose mincut value to s increases upon insertion of
any given edge. The time taken by the data structure to answer any query is O(|S|).

2. All-pairs: There exists an O(|S|2) size data structure that can output all those pairs of vertices
from S × S whose mincut value gets increased upon insertion of any given edge. The time taken
by the data structure to answer any query is O(k), where k is the number of pairs of vertices
whose mincut increases.

For both these versions, we also address the problem of reporting the values of the mincuts upon
insertion of any given edge. To derive our results, we use interesting insights into the nearest and
the farthest mincuts for a pair of vertices. In addition, a crucial result, that we establish and use in
our data structures, is that there exists a directed acyclic graph of O(n) size that compactly stores
the farthest mincuts from all vertices of V to a designated vertex s in the graph. We believe that
this result is of independent interest, especially, because it also complements a previously existing
result by Hariharan et al. (STOC 2007) that the nearest mincuts from all vertices of V to s is a
laminar family, and hence, can be stored compactly in a tree of O(n) size.
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1 Introduction

Let G = (V,E) be a graph on n = |V | vertices and m = |E| edges with a non-negative
capacity on each edge. A mincut for a pair of vertices u and v is a set of edges with
least capacity whose removal disconnects v from u. It is a fundamental concept in graph
theory. Moreover, the area of designing algorithms for the mincut and its variants has been
extensively researched ever since the seminal result on the maxflow-mincut duality by Ford
and Fulkerson [5].

It is often the case that one is more interested in the mincuts between vertices belonging
to a relatively small part of the input graph than the mincuts between all vertices. Hence,
consider a subset of vertices S ⊆ V and any subset of pairs of vertices Q ⊆ S × S whose
mincut we are interested in. The objective is to have the knowledge about how sensitive the
mincuts of pairs of vertices from Q are, with respect to any change in the subgraph induced
by S. This change could be a change in the capacity of an existing edge in the subgraph
induced by S or insertion of a new edge between any two vertices in S. This knowledge
of the impact on various mincuts due to any change in the network can make the network
administrators well prepared for such changes when they indeed occur in future.

An important measure of the impact of a change in the capacity of an edge is the number
of pairs of vertices whose mincut value changes. The change in the capacity of an edge could
be either an increase or a decrease. We focus on the case when the capacity of an edge is
allowed to increase only. For this data structure problem, the query input is a new edge with
positive capacity or an existing edge whose capacity is increased. It can easily be observed
that as far as the mincut between any pair of vertices is concerned, increasing the capacity of
an existing edge (x, y) by amount ∆ is equivalent to adding one more edge between x and y
with capacity ∆. So henceforth, we only consider the insertion of an edge. On receiving any
such edge, the objective is to efficiently report the pairs of vertices whose mincut increases.

Based on the discussion above, we now formally define the problem of mincut sensitivity.

I Problem 1. Preprocess G = (V,E), a set S ⊆ V , and a set Q ⊆ S × S to build a compact
data structure that, on receiving any edge (x, y) ∈ S × S of positive capacity as query input,
can efficiently report all those pairs from Q whose mincut value increases upon insertion of
the edge (x, y) to G.

We expect the bounds for the data structure of Problem 1 to depend on only the size of S
instead of V . For simultaneously achieving efficient query time and compact space, the only
previous solution that exists for this problem is for a single pair of vertices only, i.e., when
|Q| = 1. It consists of a data structure that occupies O(|S|) space and achieves O(1) query
time. This solution follows from an observation made by Picard and Queyranne in their
seminal paper [11].
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1.1 Our Contribution
We address the single source and the all-pairs versions of Problem 1, along with the problem
of reporting the new value of the mincut between any pair of vertices after the edge insertion.

Single source all destinations: In the single source case, we are interested in the mincuts
between a designated vertex s ∈ S and all other vertices from set S, i.e., the (s, t)-mincut,
for all t ∈ S \ {s}.

I Theorem 2. For an undirected graph and any subset S of vertices with a designated vertex
s ∈ S, there exists an O(|S|) size data structure that can report all those vertices from S

whose mincut value to s increases upon insertion of any given edge from S × S. The time
taken by this data structure to answer any such query is O(|S|).

The O(|S|) space and O(|S|) query time of our data structure for undirected graphs can
be much less than O(|V |) for smaller S. Also, it is in sharp contrast with the following lower
bound result for directed graphs that we also prove.

I Theorem 3. Any data structure for a directed graph to answer a mincut sensitivity query
from a designated source vertex to any designated subset of q vertices must use Ω(q2) bits of
space for at least one directed graph.

The proof of Theorem 3 basically establishes that any such data structure can be used to
store any balanced bipartite graph on 2|S| vertices implicitly. Interestingly, the same proof
also establishes an Ω(|S|2) lower bound for the single source version of two other fundamental
problems for directed graphs, namely, reachability sensitivity as well as distance sensitivity for
the insertion of an edge. These facts add more significance to the result stated in Theorem 2
for the single source mincut sensitivity.

All-pairs: When considering the mincuts between all pairs of vertices in S, i.e., the (u, v)-
mincut, for all u, v ∈ S such that u 6= v, we obtain the following result.

I Theorem 4. For an undirected graph and any subset S of vertices, there exists an O(|S|2)
size data structure that can report all those pairs of vertices from S × S whose mincut value
increases upon insertion of any given edge from S × S. The time taken by the data structure
to answer any such query is O(k), where k is the number of pairs whose mincut increases.

Note that the query time of the data structure in Theorem 4 is optimal. Moreover, if
the objective is to report just the number of all-pairs from the set S × S whose mincut
increases upon insertion of any given edge, our data structure can accomplish this objective
in O(min(k, |S| log |S|)) time, which is O(|S| log |S|) always.

I Remark 5. Our results for mincut sensitivity directly extend to maxflow sensitivity as well
due to the equivalence between maxflow and mincut [5].

To achieve all our results, we use interesting insights into the nearest and the farthest
mincuts for a pair of vertices – two concepts that exist since the seminal work of Ford and
Fulkerson on maximum flow [5]. Additionally, a crucial result about the farthest mincuts
that we establish and use in one of our data structures is the following.

I Theorem 6. For an undirected graph on n vertices and a designated source vertex s, there
exists a directed acyclic graph (DAG) of size O(n) that compactly stores the farthest mincuts
from all vertices v ∈ V \{s} to s. For any v, the set of vertices defining the farthest mincut
from v to s can be reported in time that is of the order of the size of the set.

ESA 2020
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The graph theoretic result of Theorem 6 is of independent interest in addition to its
applications in the mincut sensitivity problem. This is because, not only it adds to our
understanding of mincuts, but it also complements an earlier result of Hariharan et al. [9]
that showed that the nearest mincuts from all vertices to s form a laminar family, and hence,
can be stored in a tree data structure occupying only O(n) space.

1.1.1 On reporting the value of mincut
In addition to reporting the pairs of vertices whose mincut increases upon insertion of a
given edge, it may be important to output the new values of their mincuts. Indeed, if the
edge capacities in the graph are integral and the inserted edge has unit capacity, our data
structures from Theorems 2 and 4 can also report the new values of the affected mincuts upon
insertion of an edge, i.e., the value of the mincut will be increased by one for the reported
pairs of vertices. However, if there is no restriction on the capacity of the inserted edge, we
show that even for the single source case it is not possible to accomplish this objective with
any data structure of subquadratic size.

I Theorem 7. There exists a set G of undirected graphs on n vertices with integer edge
capacities in the range [1, n2+ε] (for any ε > 0) for which the following claim holds true.
Any data structure for an undirected graph that can report the value of the mincut between a
designated source vertex and any other vertex upon insertion of any edge of integer capacity
polynomial in n must require Ω(n2ε logn) bits of space for at least one graph from G.

For the all-pairs case, it turns out that any such data structure also provides a gener-
alization of the flow-tree [6, 8]. That is, the data structure will also be able to report the
mincut value between a vertex u and a pair {x, y} of vertices for any u, x, y ∈ V . Chitnis,
Kamma, and Krauthgamer [4] showed that there will be total O(n2) distinct mincut values
separating any vertex from any pair of vertices in an undirected graph. However, to the best
of our knowledge, designing an O(n2) size data structure that returns the value of any such
mincut in non-trivial query time is still an open problem.

1.2 Overview of our results
We begin with the result of Picard and Queyranne [11] for mincut sensitivity for a source-
destination pair (s, t). For any maximum flow f from s to t, let Gf be the corresponding
residual graph. Notice that there is no path from s to t in Gf . Let R be the set of vertices
which are reachable from s in Gf , and let T be the set of vertices from which t is reachable
in Gf . Picard and Queyranne [11] made the following crucial observation.

I Lemma 8 (Picard and Queyranne [11]). The maxflow from s to t increases upon insertion
of an edge (x, y) if and only if x belongs to R and y belongs to T .

Without loss of generality, we can assume that the vertices of set S are labeled from 1
to |S|. Based on Lemma 8, the data structure for mincut sensitivity for a (s, t)-pair where
s, t ∈ S, stores each of R ∩ S and T ∩ S in Boolean arrays indexed by the vertices of set S.

The subsets R and V \T in Lemma 8 turn out to be the smallest, and the largest subsets
of vertices defining a mincut from s to t, respectively. In the literature on mincuts, R and
V \T are respectively called the nearest and the farthest mincut from s to t; we define these
notions more formally in the next section. Therefore, in order to design a compact and
efficient data structure for the single source and the all-pairs versions of the mincut sensitivity
problem, it is natural to explore if we can have a compact way to store these two types of cuts
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for multiple pairs of vertices. We now provide an overview of the compact data structures
for the nearest and the farthest mincuts, and the way these data structures are used to solve
the mincut sensitivity problem.

Compact data structures for the nearest and the farthest mincuts

Interestingly, Hariharan et al. [9] showed that the nearest mincuts from all vertices to a
designated vertex s in an undirected graph form a laminar family – If the subsets of vertices
defining the nearest mincuts from u to s, and v to s intersect, then one of them must be
a subset of the other. As a result, the nearest mincuts from all vertices to s can be stored
compactly in a tree data structure occupying O(n) space only. However, the farthest mincuts
do not constitute a laminar family. Let Fu and Fv be the subsets of vertices that define the
farthest mincuts to s from u and v respectively. It is quite possible that Fu and Fv intersect
each other but none of them is a subset of the other. In other words, two intersecting farthest
mincuts to s may cross each other. Moreover, there may be Θ(n) vertices whose farthest
mincuts to s cross the farthest mincut of a single vertex to s. This poses a challenge for
designing a compact data structure for storing all the farthest mincuts to s. However, we
overcome this challenge using crucial insights into the farthest mincuts.

Using the submodularity of cuts, we first establish the existence of a DAG on O(n) nodes
that stores the farthest mincuts from all vertices to any designated vertex s. However, this
DAG could have O(n2) edges, and establishing the sparsity of the DAG turns out to be the
main hurdle. We overcome this by proving the following interesting property of the farthest
mincuts to s:

For any three vertices, either the intersection of their farthest mincuts to s is empty or
the farthest mincut from at least one of them is a subset of one of the other two.

Using this property, we are able to prune away all the unnecessary edges from the DAG
structure storing farthest mincuts to s. As a result, each node in the DAG turns out to have
at most 2 incoming edges, so the size of the DAG is O(n).

For the objective of solving mincut sensitivity for a subset S ⊆ V , we present data
structures for the nearest mincuts (likewise the farthest mincuts) that consist of vertices of
S only instead of V . Their size is O(|S|). See Theorem 18 and Theorem 6.

Solving the mincut sensitivity problem

For solving the single source mincut sensitivity problem, we use the tree data structure
storing the nearest mincuts and the DAG data structure storing the farthest mincuts, from
all vertices of the set S to s. The size of the data structure is O(|S|). Following Lemma 8, it
takes O(|S|) time using this data structure to determine whether the insertion of a given
edge increases the (s, v)-mincut value for any vertex v ∈ S. This leads to O(|S|2) time to
find all vertices from S whose mincut value from s increases due to the insertion of a given
edge. In order to reduce the query time to O(|S|), we make use of the following insight:

A vertex x ∈ S belongs to the farthest mincut from v to s if and only if x is reachable
from v in the DAG structure storing the farthest mincuts to s.

Solving the all-pairs version of the mincut sensitivity problem with optimal query time
turns out to be more challenging. As the underlying graph is undirected, the subset of vertices
that defines the farthest mincut from u to v is the complement of the subset of the vertices
that defines the nearest mincut from v to u. As a result, keeping the nearest-mincut tree
data structure for each vertex of S suffices to solve this problem. The data structure takes
O(1) time to determine for any pair (u, v), whether insertion of an edge, say (x, y), increases
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(u, v)-mincut value. This observation implies an O(|S|2) time algorithm for computing all
pairs of vertices from set S whose mincut value increases upon insertion of edge (x, y). But it
is quite wasteful if k, the number of pairs whose mincut value increases, is much smaller than
|S|2. To accomplish O(k) query time, we make use of multiple insights into the structure of
the nearest mincuts. The most crucial insight is the following:

The vertices whose mincut value to s increases upon insertion of an edge (x, y) lie
contiguously on the paths from x and y to their lowest common ancestor in the tree that
stores the nearest mincuts to s.

This insight leads to an O(|S|+ k) query time. To get rid of the additive factor of |S|,
we use another insight that helps finding the right pool of vertices whose nearest-mincut tree
we need to query.

1.3 Related work
Our research is related to the field of dynamic graph algorithms that emphasizes on efficient
data structures to handle changes in a network. For dynamic graph algorithms, the objective
is to maintain the solution of a problem for an online sequence of edge insertions or deletions
with worst case time complexity better than that of the best static algorithm. There do exist
efficient dynamic algorithms for maintaining a global mincut – an incremental algorithm by
Goranci, Henzinger, and Thorup [7], and a fully dynamic algorithm by Thorup [12]. However,
there does not exist any dynamic algorithm for all-pairs mincuts whose worst case time
complexity is better than the best static algorithm. Hartmann and Wagner [10] presented
a fully dynamic algorithm for maintaining an all-pairs mincut tree for undirected graphs.
Although it achieves a significant speedup over the best static algorithm on many real world
graphs, its worst case asymptotic time complexity is not better than the best static algorithm
for an all-pairs mincut tree.

1.4 Organization of the paper
Equipped with notations, definitions, and well known lemmas introduced in Section 2, we
present the compact data structures for nearest and farthest mincuts in Sections 3 and
Section 4, respectively. The data structures for the single source and the all-pairs versions
of the mincut sensitivity problem are presented in Section 5 and 6 respectively. Due to
the space constraint, the proofs of some theorems and lemmas had to be omitted from this
version. So we recommend the reader to refer to the full version of this paper [2].

2 Preliminaries

Our results consider an undirected graph G = (V,E) on n vertices where each edge is assigned
a non-negative capacity through a function c : E → R+.

I Definition 9 ((s, t)-cut). A subset of edges whose removal disconnects t from s is called
an (s, t)-cut. An (s, t)-mincut is an (s, t)-cut of smallest capacity.

I Definition 10 (set defining a cut). A subset A ⊂ V is said to define an (s, t)-cut if s ∈ A
and t /∈ A. The corresponding cut is denoted by cut(A, Ā) or more compactly cut(A).

When there is no scope of confusion, we do not distinguish between a mincut and the set
defining the mincut. We can extend the capacity function c on edges to any subset A ⊂ V in
a natural way as follows: c(A) denotes the sum of the capacities of all those edges which have
exactly one endpoint in A. With this generalization, we now state a well-known property of
cuts, namely, the submodularity of cuts.
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I Lemma 11 (Submodularity of cuts). Given an undirected graph G = (V,E) with positive
edge capacities, the following inequality holds true for any two subsets A,B ⊂ V .

c(A) + c(B) ≥ c(A ∪B) + c(A ∩B)

The following lemma states an important property of an (s, t)-mincut.

I Lemma 12. Let A ⊂ V define an (s, t)-mincut with s ∈ A. For any subset A′ ⊂ A with
s /∈ A′, if α is the number of edges incident on A′ from V \A, and β is the number of edges
incident on A′ from A\A′, then α ≤ β.

2.1 The nearest and the farthest mincuts
I Definition 13 (Nearest and farthest mincuts from s to t). The subset A ⊂ V with s ∈ A is
said to define the nearest (likewise the farthest) mincut from s to t if (1) cut(A, Ā) defines
an (s, t)-mincut, and (2) For every other subset A′ ⊂ V that defines an (s, t)-mincut, A ⊂ A′

(likewise A′ ⊂ A). We use sNt and sFt to denote the nearest and the farthest mincut from s

to t, respectively.

One can easily show using Lemma 11 that the nearest and the farthest mincut from s to t
are unique. Additionally, tNs and sFt partition the set of vertices V as stated in the following
lemma.

I Lemma 14. For any pair of vertices s, t ∈ V , (i) sNt ∩ tNs = ∅, and (ii) sFt = V \tNs .

In the light of Lemma 14, we can restate Lemma 8 for undirected graphs as follows.

I Lemma 15 (Picard and Queyranne [11]). The insertion of an edge (x, y) can increase the
mincut between s and t if and only if x ∈ sNt and y ∈ tNs or vice versa.

I Remark 16. In order to explore the relationship among the farthest mincuts from a set of
vertices to a vertex s, we focus only on the connected component of s. This is because for
each vertex outside this component, its farthest mincut to s is obvious. Therefore, without
loss of generality we assume G to be connected in the rest of the paper.

3 A compact data structure for all nearest mincuts to vertex s

The following theorem plays the key role in compactly storing all nearest mincuts to s.

I Theorem 17 (Hariharan et al. [9]). For any two distinct vertices u, v ∈ S, either uNs and
vNs are mutually disjoint or one of them is a subset of the other.

For a given subset S ⊆ V , let N = {xNs ∩ S|x ∈ S\{s}}. Using Theorem 17 we can
arrange the sets of N in a forest of disjoint trees as follows. We refer to a vertex in this
forest as node. For each set present in N , we create a unique node in the forest. We assign
each vertex v ∈ S to the node ν corresponding to vNs ∩ S. The parent of a node ν is defined
as the unique node µ such that the set corresponding to µ is the smallest superset of the set
corresponding to ν, if such a superset exists. If no such superset exists, ν will be the root of
a tree. We create a dummy node and assign it as the parent of the root of every tree in this
forest. Let us denote the resulting rooted tree by T (s). Figure 1 shows an example graph
and the corresponding T (s) for the case S = V .

It can be observed that if a vertex v ∈ S is assigned to node ν, then the subtree rooted
at ν stores the set vNs ∩ S. So it follows that a vertex, say x, belongs to vNs ∩ S if either x
and v are assigned to the same node in T (s) or the node containing v is an ancestor of the
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Figure 1 (a) The nearest mincut from a vertex to s is encircled with same color. (b) Tree T (s).

node containing x. This check can be easily done in O(1) time if we augment T (s) to answer
lowest common ancestor (LCA) query for any pair of nodes (see [3]). We can thus state the
following theorem.

I Theorem 18. For an undirected graph G = (V,E), a subset S ⊆ V , and any vertex s ∈ S,
there exists an O(|S|) size data structure T (s) that can report in O(1) time whether x ∈ vNs
for any x, v ∈ S.

4 A compact data structure for all farthest mincuts to vertex s

In this section, we present a novel data structure that compactly stores the farthest mincuts
to vertex s from a subset of vertices. Our main result can be summarized as follows.

I Theorem 19. For an undirected graph G = (V,E), any subset S ⊆ V , and a designated
vertex s ∈ S, there exists a directed acyclic graph D(s) having O(|S|) nodes and O(|S|) edges
that can report vFs ∩ S in time of the order of the size of vFs ∩ S for any v ∈ S\{s}.

Lemma 14(ii) implies that sNv = V \vFs . So we can compute sNv ∩ S in O(|S|) time once
we have vFs ∩ S. Therefore, we can state the following corollary of Theorem 19.

I Corollary 20. For an undirected graph G = (V,E), any subset S ⊆ V , and a designated
vertex s ∈ S, there exists a data structure of O(|S|) size that takes just O(|S|) time to
compute sNv ∩ S for any v ∈ S\{s}.

Next, we show how to compute a DAG storing all farthest mincuts to s in space O(|S|2).
Thereafter, we reduce its space complexity to O(|S|) only.

4.1 A DAG of size O(|S|2)
Our data structure to store all farthest mincuts to a designated vertex s uses the observation
captured in Lemma 21. In its core, it tells us that certain farthest mincuts are related by a
subset relation which can be exploited to store them compactly.

I Lemma 21. Let x and v be any two vertices in G. If x ∈ vFs , then xFs ⊆ vFs .

Proof. We use Lemma 11 on the submodularity of cuts and provide a proof by contradiction.
Let A and B refer to the sets vFs and xFs , respectively. It is given that x ∈ vFs . Assume that
xFs * vFs . This would imply that B\A 6= ∅, hence A must be a proper subset of A ∪B.

Observe that A∩B defines a valid (x, s)-cut since x is present in both A and B, whereas
s /∈ xFs . This observation implies that c(A ∩ B) ≥ c(B) since B defines an (x, s)-mincut.
This inequality and Lemma 11 imply the following inequality.

c(A ∪B) ≤ c(A) (1)
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Now observe that A ∪ B defines a valid (v, s)-cut since v belongs to A, whereas s belongs
neither to A nor to B. Since A defines a (v, s)-mincut, so Inequality 1 implies that c(A ∪B)
must be equal to the capacity of an (v, s)-mincut. But A is a proper subset of A ∪ B.
This would imply that the cut defined by A is not the farthest mincut from v to s – a
contradiction. J

Let F = {vFs ∩ S | v ∈ S\{s}}. We now use Lemma 21 to build a directed acyclic graph
D = (V, E) that stores F as follows. We use node to refer to a vertex of this DAG.

For each set present in F , we create a unique node in D. The set of nodes thus created
constitutes V. We denote by F(ν) the set in F corresponding to node ν. The edge set E of
D is defined as follows.

E = {(ν, µ) | F(µ) ⊂ F(ν)}

It can be observed that if X ⊂ Y for any two sets X and Y in F , then |X| < |Y |. Hence D
is acyclic. To efficiently retrieve xFs ∩ S for any given x ∈ S, we can augment D as follows.

We create an array Js indexed by vertices of set S such that for any v ∈ S \ {s}, Js[v]
stores the pointer to node µ that corresponds to vFs ∩ S, that is, F(µ) = vFs ∩ S.
Each node µ of D stores a list L(µ) of all those vertices v ∈ S such that Js[v] = µ.
We introduce a dummy node and add an edge from it to every other node which has no
incoming edge.

Lemma 22 follows immediately from Lemma 21 and the construction of D described above.

I Lemma 22. Let x and u be any two vertices of set S. x is present in uFs ∩ S if and only
if either Js[u] = Js[x] or there is an edge from Js[u] to Js[x] in D.

Lemma 22 implies that for each vertex v ∈ S\{s}, vFs ∩ S is the set of vertices stored in the
list L(Js[v]) and the lists of all the nodes with an incoming edge from Js[v] in D.

The subset relation ⊂ is transitive. So, if there is a path from a node ν to another node
µ in D, then (ν, µ) is also an edge in D. In other words, the transitive closure of D is D
itself. This observation in conjunction with Lemma 22 leads us to the following lemma which
will be crucial for our data structure for the single source mincut sensitivity problem.

I Lemma 23. Let x and u be any two vertices in set S. x is present in uFs ∩ S if and only
if Js[x] is reachable from Js[u] in D.

Notice that D has O(|S|) nodes, but it could have Θ(|S|2) edges. So the total space
occupied by D could be Θ(|S|2). A natural idea to overcome this hurdle is to remove as
many edges as possible from D without affecting the reachability between any pair of its
vertices so that Lemma 23 continues to hold. In other words, we compute another DAG Dτ

which is the transitive reduction of D. Aho, Garey, and Ullman [1] showed that computing
the transitive reduction of a DAG is as easy as computing its transitive closure. While in
general a transitive reduction does not always lead to a reduced number of edges, it does so
in the case of D. In the following subsection we present crucial insights into crossing farthest
mincuts that ensure that each node of Dτ will have at most two incoming edges. The data
structure D(s) in Theorem 19 for storing all farthest mincuts to s is Dτ only.

4.2 Bounding the in-degree of Dτ by 2
A set of vertices I ⊂ V is said to be a set of incomparable vertices with respect to the mincuts
to s if for each u, v ∈ I with u 6= v it holds that u /∈ vFs and v /∈ uFs . The following lemma
highlights an important property for a pair of incomparable vertices.
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I Lemma 24. For any two incomparable vertices u and v, there does not exist any edge
between the set uFs ∩ vFs and the set V \(uFs ∪ vFs ).

We shall now use Lemma 12 and Lemma 24 to derive the following lemma which will play a
crucial role in establishing that Dτ has indegree 2 only.

I Lemma 25. For any three incomparable vertices u, v, w ∈ V , uFs ∩ vFs ∩ wFs = ∅.

Proof. We give a proof by contradiction. Let B,L, and R denote the sets uFs , vFs , and wFs ,
respectively. Figure 2(i) illustrates these sets. For a clear distinction, we have used different
colors for these sets in this figure, and correspondingly assigned the labels B (for blue), L
(for light green), and R (for red) to these sets.
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Figure 2 Intersection of the farthest mincuts to s.

Suppose the common intersection B ∩ L ∩R of these sets (shown shaded in Figure 2(i))
is not an empty set. By applying Lemma 24 for B ∩ L, L ∩ R, R ∩ B, we can infer that
each vertex in the common intersection will have edges incident only from the sets B ∩ L,
L ∩R, R ∩B. Considering the set B ∩ L ∩R as a single entity, let α, β, γ be the number of
edges incident on it from (B ∩ L)\R, (R ∩B)\L, (L ∩R)\B, respectively. As the graph is
connected (see Remark 16), we have:

α+ β + γ > 0. (2)

Let us consider the set (B ∩ L)\R, that is, the set B ∩ L after removing the common
intersection B ∩ L ∩ R. It follows from Lemma 24 that the edges incident on this set will
be from B\L and L\B only, apart from the edges incident from B ∩ L ∩R. Similar claims
hold for the sets (B ∩R)\L and (R ∩ L)\B as well. Figure 2(ii) shows these sets as shaded
regions along with the edges incident on them. For example, l, b, α are the number of edges
incident on (B ∩ L)\R from B\L, L\B, and B ∩R ∩ L, respectively.

The rest of the proof is as follows. Exploiting the fact that u, v, w are incomparable,
we suitably apply Lemma 12 to arrive at inequalities that eventually leads to contradict
Inequality 2.

B defines an (s, u)-mincut. Since u is incomparable with both v and w, it is not present
in the set B ∩ (R ∪ L) shown shaded in Figure 2(iii). Notice that the number of edges
incident on this set from V \B is b+ b′ + γ whereas the number of edges incident on this set
from the rest of B, that is, the set B\(R ∪L) (enclosed by dotted boundary in Figure 2(iii))
is at most l + r. So we get the following inequality by substituting B and B ∩ (R ∪ L) in
place of A and A′ respectively in Lemma 12:

b+ b′ + γ ≤ l + r (3)
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In Figure 2, R defines an (s, w)-mincut and L defines an (s, v)-mincut. Hence, with
similar arguments as above, analyzing the (s, w)-mincut in Figure 2(iv), and analyzing the
(s, v)-mincut in Figure 2(v), we get the following inequalities, respectively:

r + r′ + α ≤ b′ + l′, l + l′ + β ≤ b+ r′

Adding the above inequalities with Inequality 3 and canceling identical terms on either sides
we get α+ β + γ ≤ 0. This contradicts Inequality 2 and completes the proof. J

The following is a simple corollary of Lemma 25.

I Corollary 26. Let A ∈ F . If U, V,W are any three distinct sets from F such that
A ⊂ U, A ⊂ V , and A ⊂W . Then at least one of the sets from {U, V,W} must be a proper
subset of one of the remaining two.

We can use Corollary 26 to establish the following lemma.

I Lemma 27. The indegree of any node in Dτ will be at most 2.

Figure 3 shows farthest mincuts from a sample of vertices to s in our example graph.
Notice that the farthest mincut bFs crosses the farthest mincut dFs . Also, the farthest mincuts
from j and g to s are identical, so j and g are mapped to a single node in Dτ .

s

a

c
b

d

e h

l k

j

i

g

1
1

8 4

8 4

1
1

9
4 2

2
1

4

4

4

(a)

a, c b d

e, h

i k, l

g, j(b)

Figure 3 (a) A dotted boundary defines a farthest mincut to s from a vertex of the same color.
(b) The DAG Dτ .

5 Single source mincut sensitivity for insertion of an edge

We now present an O(|S|) space data structure that can report all those vertices from S

whose mincut value to s increases upon insertion of any given edge (x, y) ∈ S × S. The data
structure will consist of the tree structure T (s) from Theorem 18 and DAG structure D(s)
from Theorem 19.

Let Ax = {v ∈ S|x ∈ sNv } and Ay = {v ∈ S|y ∈ sNv }. It follows from Lemma 15 that
if (s, v)-mincut increases, then v must belong to Ax or Ay. Furthermore, for any v ∈ Ax,
(s, v)-mincut increases if y ∈ vNs . Using Theorem 18, it takes just O(1) time to do this check
for any given v ∈ Ax (likewise Ay). So, in order to report all vertices from S whose mincut
from s increases upon insertion of edge (x, y) in O(|S|) time, all we need is an O(|S|) time
algorithm to compute Ax and Ay. We now provide O(|S|) time algorithm to compute Ax;
we can compute Ay in O(|S|) time in a similar manner.

It follows from Lemma 14(ii) that computing Ax is equivalent to computing the set
Āx = {v ∈ S|x ∈ vFs }. Recall that Js[x] is the node containing x in D(s). It follows from
Lemma 23 that x ∈ vFs if and only if Js[x] is reachable from Js[v] in D(s). Therefore, we can
compute Āx by first reversing the edges of D(s) and then traversing all the nodes reachable
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from Js[x]. For each node λ reachable from Js[x] in the reversed D(s), x is present in vFs for
each vertex v ∈ L(λ). Since D(s) has O(|S|) edges, it takes O(|S|) time to reverse it and
traverse it to compute Āx. This establishes the proof of Theorem 2 for the single source
mincut sensitivity problem.

6 All-pairs mincut sensitivity data structure for insertion of an edge

Our data structure consists of the nearest-mincut tree T (z) from Theorem 18 for each z ∈ S.
Each of these trees occupies O(|S|) space, so the space occupied by the data structure is
O(|S|2). For the rest of this section, x, y, z are any arbitrary vertices from S. Upon insertion
of edge (x, y), let k be the number of pairs of vertices from S × S whose mincut value
increases. We present an O(k) time algorithm to output all these pairs using four insights
into the nearest-mincut trees. Our first insight is stated in Lemma 28. It implies that for
all vertices belonging to a node µ in T (z), it suffices to determine for any single vertex, say
u ∈ µ, whether the (z, u)-mincut value increases upon insertion of any given edge.

I Lemma 28. Let u, v ∈ S be any two vertices belonging to the same node in T (z). Upon
insertion of any given edge, (u, z)-mincut value increases iff (v, z)-mincut value increases.

Let µ and ν be the nodes in T (z) containing x and y respectively. Our second insight,
stated in the following lemma, specifies the location of vertices in T (z) whose mincut value
to s increases upon insertion of edge (x, y).

I Lemma 29. Let ω = LCA(µ, ν) in T (z). Upon insertion of edge (x, y), the mincut value
from z to only those vertices may increase that belong to the nodes of (1) the path from µ to
ω but excluding ω, and (2) the path from ν to ω but excluding ω.

ω

µ ν

yx

Figure 4 The tree T (z) from the perspective of µ and ν. If v is a vertex whose node in T (z) does
not belong to either of ω-ν and ω-µ paths, then v must be present in one of the subtrees hanging
from these paths (shown in blue). Now consider any node, say γ, lying on the path from ω to the
root of T (z). Both x and y belong to the subtree rooted at γ.

Proof. Let us view T (z) from the perspective of the paths from µ and ν to the root of T (z).
The reader is advised to refer to Figure 4 for a better understanding. If v is a vertex whose
node in T (z) does not belong to these paths, then v must be present in one of the subtrees
(shown in blue in Figure 4) hanging from these paths. Notice that neither x nor y belongs to
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the subtree containing v. So it follows from Lemma 15 that the mincut from z to v is not
affected by the insertion of edge (x, y). Now consider any node, say γ, lying on the path from
ω to the root of T (z). Both x and y belong to the subtree rooted at γ. So using Lemma
15 again, the mincut from z to any vertex of γ remains unaffected by the insertion of edge
(x, y). J

Our third and most crucial insight is that the vertices whose mincut value to z increases
upon insertion of edge (x, y) belong to a contiguous sequence of nodes on the paths from the
node containing y and the node containing x to their LCA in T (z). The following lemma
states this insight for the node containing y.

I Lemma 30. Let ω be the LCA of the nodes containing x and y in T (z). Let u and v be
any two vertices lying on the path from the node containing y to ω in T (z) such that the node
containing u is an ancestor of the node containing v. If (z, u)-mincut value increases upon
insertion of edge (x, y), then (z, v)-mincut value also increases upon insertion of (x, y).

Proof. It follows from the construction of T (z) that y ∈ vNz and vNz ⊆ uNz . It is given that
the insertion of edge (x, y) increases (z, u)-mincut value and u is an ancestor of y in T (z).
So Lemma 15 implies:

x ∈ zNu (4)

It follows from Lemma 14(i) that zNu ∩ uNz = ∅. So v /∈ zNu since v ∈ uNz . Applying Lemma
14(ii), we get v ∈ uFz . So it follows from Lemma 21 that vFz ⊆ uFz . Applying Lemma 14(ii)
again, it follows that zNu ⊆ zNv . Using this fact and Equation 4, we can infer that x ∈ zNv .
Since we have already established that y ∈ vNz , so using Lemma 15 we can conclude that
(z, v)-mincut value will also increase upon insertion of edge (x, y). J

It is a simple corollary of Lemma 30 that if (y, z)-mincut value does not increase upon
insertion of edge (x, y), then for any vertex v present in any ancestor of the node containing
y in T (z), (v, z)-mincut value will also not increase. So, to compute all-pairs of vertices
whose mincut increases, we need to explore the nearest-mincut tree of only those vertices z
whose mincut value to y (and likewise to x) increases.

We now describe how to process T (z) for a vertex z given that (y, z)-mincut value increases
upon insertion of (x, y). For each such z, first we enumerate all vertices present in the node,
say ν, to which y belongs. We then begin an upward traversal of T (z) starting from the
parent of ν. For any node, say λ, that we traverse, we pick any arbitrary vertex from it, say
v, and determine whether x ∈ zNv by querying T (v). It takes O(1) time to answer this query
(see Theorem 18). If x ∈ zNv , it follows from Lemma 28 that each vertex present in λ has its
mincut value to z increased. So we enumerate all vertices from λ, and continue processing
the parent of λ in a similar manner. If x /∈ zNv , we stop the traversal. It follows from Lemma
30 that the vertices enumerated in this way are precisely the vertices whose mincut value to
z increases. To efficiently identify each vertex z, such that the (y, z)-mincut value increases
upon insertion of edge (x, y), we exploit the fourth insight into the nearest-mincut trees
which is stated in the following lemma. This lemma can be seen as a corollary of Lemma 15.

I Lemma 31. (y, z)-mincut value increases upon insertion of edge (x, y) iff x ∈ zNy .

It follows from Lemma 31 that the vertices present in the node containing x and its
ancestors in T (y) are precisely the vertices whose mincut value to y increases. We can identify
all these vertices in optimal time by traversing T (y) upward from the node containing x.
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We have described above the processing of each z such that the (y, z)-mincut value
increases due to the insertion of edge (x, y). A similar processing must be carried out for all
vertices z, such that the (x, z)-mincut value increases due to the insertion of edge (x, y).

It follows from the description given above that we can compute all those pairs of vertices
from S × S whose mincut value increases upon the insertion of any given edge in O(k) time,
where k is the number of these pairs. If our goal is to just report the value of k, we can
accomplish it in O(min(k, |S| log |S|)) time by suitably augmenting the nearest-mincut trees.
We can thus conclude with Theorem 32 which extends Theorem 4.

I Theorem 32. For an undirected graph G = (V,E), and a subset S of vertices, there exists
an O(|S|2) size data structure that can report all pairs of vertices whose mincut increases
upon insertion of a query edge. The guaranteed query time is O(k), where k is the number
of pairs whose mincut increases. We can also report k in O(min(k, |S| log |S|)) time.
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