
Analysis of the Period Recovery Error Bound
Amihood Amir
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://u.cs.biu.ac.il/~amir
amir@esc.biu.ac.il

Itai Boneh
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
barbunyaboy2@gmail.com

Michael Itzhaki
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
michaelitzhaki@gmail.com

Eitan Kondratovsky
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://u.cs.biu.ac.il/~kondrae
kondrae@cs.biu.ac.il

Abstract
The recovery problem is the problem whose input is a corrupted text T that was originally periodic,
and where one wishes to recover its original period. The algorithm’s input is T without any
information about either the period’s length or the period itself. An algorithm that solves this
problem is called a recovery algorithm. In order to make recovery possible, there must be some
assumption that not “too many” errors corrupted the initial periodic string. This is called the error
bound. In previous recovery algorithms, it was shown that a given error bound of n

(2+ε)p can lead to
O(log1+ε n) period candidates, that are guaranteed to include the original period, where p is the
length of the original period (unknown by the algorithm) and ε > 0 is an arbitrary constant.

This paper provides the first analysis of the relationship between the error bound and the number
of candidates, as well as identification of the error parameters that still guarantee recovery. We
improve the previously known upper error bound on the number of corruptions, n

(2+ε)p , that outputs
O(log1+ε n) period candidates. We show how to (1) remove ε from the bound, (2) relax the error
bound to allow more errors while keeping the candidates set of size O(logn). It turns out that this
relaxation on the previously known upper bound is quite challenging.

To achieve this result we provide what, to our knowledge, is the first known non-trivial lower
bound on the Hamming distance between two periodic strings. This proof leads to an error bound,
that produces a family of period candidates of size 2 log3 n. We show that this result is tight and
further provide a compact representation of the period candidates. We call this representation the
canonic period seed.

In addition to providing less restrictive error bounds that guarantee a smaller candidate set, we
also provide a hierarchy of more restrictive upper error bounds that asymptotically reduces the size
of the potential period candidate set.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation → Sorting and searching

Keywords and phrases Period Recovery, Period Recovery Hierarchy, Hamming Distance

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.5

Funding Amihood Amir : Partly supported by ISF grant 1475/18 and BSF grant 2018141.

© Amihood Amir, Itai Boneh, Michael Itzhaki, and Eitan Kondratovsky;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://u.cs.biu.ac.il/~amir
mailto:amir@esc.biu.ac.il
mailto:barbunyaboy2@gmail.com
mailto:michaelitzhaki@gmail.com
https://u.cs.biu.ac.il/~kondrae
mailto:kondrae@cs.biu.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Analysis of the Period Recovery Error Bound

1 Introduction

Deterministic algorithms live in a “sterile” world: The problem is combinatorially clean, the
environment is exact and unchanging, and thus the result is well defined. Reality is seldom
so accommodating. Therefore, when applying algorithms to real world problems, one is
generally required to approximate a solution.

Such approximations are derived from two sources: (1) Problems that can’t be solved
efficiently, due to their inherent complexity, and (2) input that has been corrupted by various
error-inducing sources. Theoretical Computer Science, in the field of Algorithms Development
and Analysis, solves the above first problem by optimization algorithms (see e.g. [11–13, 22]).
These are algorithms that come provably close to the optimal solution. The second problem
is generally solved using the assumption that the input incurred the smallest number of
possible corruptions (see e.g. [1, 15–17]). Two examples are the following:

The first solution to the Human Genome Sequencing project [21] used “shotgun sequen-
cing”. Since the genome can not be read in its entirety, we are really presented with a “soup”
of small subsequences of the genome. These subsequences need to be combined to produce
the full sequence. The assumption was that the shortest common superstring [20] is the
solution, i.e. the shortest string that can be cut into the input subsequences. Of course,
there is no absolute guarantee that the original input was, indeed, the shortest. But this is
the assumption that was made. Whenever there is statistical support for an assumption on
the nature of the output, this support strengthens the result, but one can never be 100%
sure that the produced output is indeed the “real” one.

The second example deals with Evolutionary Biology. By 1987, 145 races of humans were
identified. The question was, how did the different races evolved? Cann, Stoneking, and
Wilson [7] wrote their paper on human evolution, based on mitochondrial DNA. The idea
is to fix a gene, and by its differences in the different races, construct a tree depicting the
evolution, with races having smaller differences in the gene being closer to each other in the
tree than races with greater differences. These evolutionary trees are constructed with the
idea of parsimony in mind [8]. Clearly, though, the resulting tree is not the initial one, since
different genes cause different trees, which then need to be reconciled [4, 9, 18,19].

The above two are just examples of our shortcoming in approximating scientific phenomena.
The scientific paradigm for reconstructing a phenomenon, at best can produce a measure of
confidence, but never guarantee that the result of the algorithm indeed recovers the initial
object.

The reconstruction task is the problem in which one has sampled a corrupted text T that
was originally periodic, and wishes to recover its original period phenomenon. The input is T
without any information about either the period’s length nor the period itself. This problem
seems doomed since in most cases, even one error can lead to an ambiguity. However, in
2012, Amir et. al [3] introduced the recovery model. They have achieved some surprising
results. They identified a phenomenon - periodicity - where one can get a corrupted input
and produce a very small set of solutions (logarithmic in the input size), one of which is
guaranteed to be the initial uncorrupted source, provided that the number of errors is
reasonably bounded. This result was succeeded by additional papers, dealing with various
types of error measures [2, 14], and recovering different phenomena [5].

In the recovery model for periodic strings, the output is a set of period candidates that
must include the original period. Algorithms in such a model assume that the number
of errors introduced into the text is limited. The error bound ensures that the recovery
algorithm outputs a set of at most o(n) candidates. However, there has not been a systematic
study of what types of errors are to be bound, or whether the bound is tight. Nor has the
relation between the error bound and the number of potential candidates ever been studied.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:3

One of the topics that this work investigates is different types of error bounds. An error
bound type is defined by the variables that it limits. We may consider a universal error
bound, i.e. that in the entire string T there do not appear more than a constant number
of errors. We may say that the number of errors is a function of the length of T . Another
possibility is that the number of errors is a function of cycles of the period. In other words,
how many copies of the period have to pass by without corruption. This last is the type of
error considered historically. Some of those variables allow a degree of freedom, some are
known while others might be unknown, and even without the ability to be estimated. For
example, the historic error bound of [3] has a known value n, which is the length of input
T , an unknown value p, the length of the original period (which is not part of the input),
a set degree of freedom ε, and a parameter c determined by the metric. We can say in an
abbreviated manner that previously known error bounds are of (n, p, ε, c)-type.

In this paper, we make the first attempt at a systematic analysis of the required error
bound for recovery of a periodic string under mismatch errors. The only currently known
relations between error bounds and number of candidates are: (1) the trivial bound of |Σ|n/2

candidates for n possible errors, where Σ is the alphabet, since all possible periodic strings
are candidates, and (2) The bound shown in Amir et al. [3]: Let T be an n-length periodic
string with period P of length p. For ε > 0, if we are guaranteed that there are no more than

n
(2+ε)p mismatch errors, then a set of log1+ε n candidates can be constructed in O(n logn)
time, that is guaranteed to include the original period P .

Amir et al. [3] proved their error bound result for pseudo-local metrics. For simplicity,
we consider the Hamming distance as the distance metric, i.e. errors counted as the number
of replacements. All our results can be easily extended to c-pseudo local metrics.

We desire answers to the following questions:
Past upper bounds depended on p. The first question to ask is whether this dependency is
essential. In this paper, we study the case where the upper bound on errors is the number
k. We are departing from the historical (n, p, ε, c)-type upper bounds, and instead consider
k-type bounds, where k is either known or could be estimated. In this case, when one wants
to reproduce the original periodic phenomena, the period length is unknown. On the other
hand, the estimation of the number of corrupt copies of the period, as high as k, is assumed
to be known.

In previous results, there is a “degree of freedom” variable ε. it seems that ε is not a
natural variable to have in the upper bound formula. Its only use was to support the analysis.
Indeed, one might want ε to be as close to zero as possible to relax upper bound on errors.
However, this aim increases the number of candidates. This observation leads to our second
question, whether it is possible to improve such analysis and get rid of ε without having too
many candidates.

The second question leads to a greater task of how significant the upper bound of (n, p, c)-
type can be relaxed while ensuring o(n) candidates. This paper uses algebraic techniques to
improve the upper bound on errors while preserving the property of o(n) candidates. We
give a partial answer, but believe that the question of how can be upper bound be further
relaxed, and yet offer o(n) periodic candidates is difficult and open to future research.

This paper successfully answers the above two questions.
However, on the path toward that goal, our first non-trivial insight is that even a single

error (when k = 1) in text T might result in Θ(n) indistinguishable candidates. That is,
without any additional knowledge on the problem, having a universal upper bound with o(n)
candidates is impossible. We further show that if the original period is repeated in the text
k + 1 times, i.e. there exists a single complete uncorrupted occurrence of the original period,
then it is still possible to construct an example with Θ(n

k(k+1)) = Θ(n) candidates.

ESA 2020

5:4 Analysis of the Period Recovery Error Bound

The novel combinatorial results are that (1) if the number of original period repetitions is
2k + 1 or higher then there is at most one candidate, i.e. the original period can be recovered,
and (2) if the period originally repeated 2k times or higher (k ≥ 2) then there are at most 2
indistinguishable candidates. We conclude that when k is known, the only required additional
knowledge to find a constant number of period candidates is whether p ≤ n

2k+1 or p ≤ n
2k ,

respectively. Analysing the candidate set size when the number of repetitions is in the range
between k + 1 and 2k requires future research.

We highlight a connection between (n, p)-type and k-type upper bounds. Assume the
case when k is unknown, but the above assumption about the repetitions holds. Then we
should look at all possible k values and add their number of candidates. This leads us to the
bounds bn−p2p c and b

n
2pc, respectively. However, there are Θ(n) different values for k, and

we require that the number of candidates must be o(n), therefore we provide a new proof
methodology.

In this paper, we analyze the b n2pc upper bound on errors, and prove that the number
of candidates is 2 log3 n and that this bound is tight by providing a family of examples.
Moreover, we show that these candidates can be represented by a single canonic period seed.

Finally, we show a hierarchy of more restricted upper bounds of (n, p, ε, c)-type that yield
Θ(log(i) n) candidates, where log(i) n is log log · · · logn i times.

In Fig. 1 we show the known bounds and the results of this paper. The formulae on the
horizontal axis are error bounds, we show a hierarchy of candidate set size upper bounds. In
various cases we show examples where this upper bound is indeed tight.

Error Bound

Number of Candidates

Length n string, Length p period
known result
this paper

Σ𝑛/2

∑𝑛
n

log1+𝜀 𝑛

2 log3 𝑛

loglog n

log(i) n

log*n

1
𝑛

(1+𝜀)𝑝
𝑛

2∙(2(𝑖))((log
(𝑖) 𝑝) 1+𝜀)

𝑛

2𝑝1+𝜀
𝑛

2+𝜀 𝑝

𝑛

2𝑝

𝑛−𝑝

𝑝
𝑛

* p ≤ n/3. Two canonic period constructed.

*

Figure 1 The results of this paper.

This paper is organized as follows: In Section 5, we discuss the k-type upper bounds. In
Section 6, we tighten the logarithmic bound on the number of candidates. While in [3] the
log base was dependent on ε of the allowed error bound, we show that for all ε the bound

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:5

is 2 log3 n. In this section, we introduce a new algebraic method to analyze the distance
between periodic strings derived by different seeds. This enables us to further tighten the
upper error bounds to b n2pc, and construct a single canonic period seed, where no more than
2 log3 n candidates derived from it, among which the initial period is guaranteed to exist.
Finally, in Section 7, we give a hierarchy of upper bounds that produce decreasing number of
candidates that include the original period. The hierarchy decreases from logn via log logn,
log(i) n, to log∗ n.

2 Preliminaries

Let Σ be an alphabet. A string T over Σ is a finite sequence of letters from Σ. By T [i], for
0 ≤ i ≤ t− 1, we denote the ith letter of T . The empty string is denoted by λ. By T [i..j]
we denote the string T [i] . . . T [j] called a substring of T (if i > j, then the substring is the
empty string). A substring is called a prefix if i = 0 and a suffix if j = t − 1. The prefix
of length j + 1 is denoted by T [..j]. While by T [i..] we denote the suffix which starts from
index i in T . We will follow the convention of using capital letters for string names, and the
same small letter for the length of the string. For example: the length of string T is t. Other
notations we use is T [−i] = T [t− i].

An n-length string T is periodic if T = P kP ′, where k ∈ N, k ≥ 2, and P ′ is a prefix of
P (the prefix might be empty). P k is the concatenation of P to itself k times. It is clear
that P is a substring of T and p ≤ t/2.

If T is periodic, the shortest P , such that T = P kP ′ is called the period of T . There is
a unique such period by the periodicity lemma [10]. The periodicity lemma states that for
two different periods of lengths p and q, where n ≥ p+ q − gcd(p, q), there exists a period
of length gcd(p, q), where gcd(a, b) is the greatest common divisor of a and b. A string P is
primitive if there is no string S such that P = Sk and k > 1.

The recovery problem seeks the original period of a corrupted text T . The corruption
may have caused T to be non periodic. Thus there may be a number of indistinguishable
periods that generate strings of length t. We are seeking an error bound on the distance
between these strings and T that forces only a small set of such periods.

I Example 1. T = abaabaab, then P = aba is the period. In our exposition, for the sake of
brevity, we may denote this string by T = P 2 2

3 . We allow ourselves to use fractions x
y where

x
y × t is an integer. In this example, we could not use 1

4 because 1
4 × 3 is not an integer.

Let T and S be two n-length strings, their Hamming distance, denoted by Ham(T, S),
is the number of mismatches between these strings. The Hamming distance represents the
number of substitutions required to convert one string to the other.

Let P be a primitive string of length p. Let T be a n-length string, P∞ denotes the
periodic string of length `, where the value of ` is clear from the context. For example, in
the expression Ham(T, P∞), both operands T and P∞ should be of equal lengths, ` = n. P
is called a period candidate with bound e if Ham(T, P∞) ≤ e. If ` = n, we denote TP = P∞.
This notation simplifies the expressions when dealing with two different periodic candidates
of T . For example, when observing Ham(TP , TQ), where P and Q are two different periods.

Let P be a periodic candidate of T . The substring ranges of the form [i, i+ p− 1], where
i = 1, p+ 1, 2p+ 1, . . . , (bnp c − 1)p+ 1 denote full occurrences of P in T . A full occurrence
[i, i+p− 1] is called an exact occurrence of P if P = T [i..i+p− 1], otherwise it is a corrupted
occurrence.

ESA 2020

5:6 Analysis of the Period Recovery Error Bound

3 A universal Error Bound Does not Allow Recovery

We begin by proving that a universal error bound, even if it is a single error in the string, does
not suffice for o(n) candidates. We describe an example of Ω(n) indistinguishable candidates
when there is only a single corruption in some periodic text. Then we generalize it to any
number of corruptions k ∈ N.

I Example 2. Let T = a2`ba4`+1, where n = 6` + 2. We show that there are n
6 indistin-

guishable period candidates.
The original periodic source of the text T is one of the following.

C = {a2`b a2`b a2`, a2`ba a2`ba a2`−2, a2`ba2 a2`ba2 a2`−4, . . . , a2`ba` a2`ba`}
= {(a2`b)2+ 2`

2`+1 , (a2`ba)2+ 2`−2
2`+2 , (a2`ba2)2+ 2`−4

2`+3 , . . . , (a2`ba`)2}
Each such possible source text has a different period. And for each such source, the

number of the introduced corruptions is exactly 1. The second b is replaced by an a.
It is clear that |C| = O(n), because of the following reason. Observe that the third

occurrence of the period is not complete, only a suffix of it occurs. It begins with a2` and for
each successive item, the length of the suffix of the third period occurrence decreases by 2,
until it becomes the empty string. Thus, |C| = `+ 1 ≈ n

6 .

It is easy to generalize the example to the case where k corruptions are allowed and
there are k + 1 full occurrences of the period, in other words, we still have one uncorrupted
periodic occurrence. In this case, the constructed example would has Ω(n

k(k+1)) = Ω(n)
indistinguishable period candidates.

I Example 3. T = a`kba`k
2+k−`−1, where n = `k2 + `k + k, k ≥ 2, and ` ≥ k. We show

that there are Ω(n
k(k+1)) indistinguishable period candidates.

The original periodic source of the text T is one of the following.
C = {(a`kb)k a`k, (a`kba)k a`k−k, (a`kba2)k a`k−2k, . . . , (a`kba`)k}
= {(a`kb)k+ `k

`k+1 , (a`kba)k+ `k−k
`k+2 , (a`kba2)k+ `k−2k

`k+3 , . . . , (a`kba`)k}
Thus, |C| = `+ 1 = Θ(n

k(k+1)).

4 Results

Our main contributions are the following.

I Theorem 4. Let k be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k + 1 full occurrences in T . Then the number of possible candidates for
P is at most 1.

I Theorem 5. Let k ≥ 2 be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k full occurrences in T . Then the number of possible candidates for P is
at most 2.

I Theorem 6. Let P be a period for which Ham(T, TP) ≤ b n2pc, and p ≤ t
3 . Then the

number of possible candidates for P is at most 2 log3(n) = O(logn).

5 k-Type Upper Error Bounds

In this section, we prove Theorems 4 and 5. Doing so requires a few new lemmas. We begin
by examining the case where k = 1. Then we generalize our results to any k ∈ N.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:7

Let P,Q be two period candidates of T , with lengths p, q, respectively. Without loss of
generality, assume p > q. We recall a useful lemma that was proven when P fully occurs at
least twice.

I Lemma 7 ([3]). For any two periods P and Q, if they both fully occur at least twice, then
Ham(TP , TQ) ≥ 2.

In [3], it is claimed that for the general case Ham(TP , TQ) ≥ n
p . Our Corollary 10 is

exactly this result. However, the previous proof fails to handle properly the case where
⌊
n
p

⌋
is odd. We take care of this missed case.

I Lemma 8. Let T be a text and assume there is at most one corruption error in T . Further
assume that T is a corruption of an original periodic string TP where the period P fully
occurs at least 3 times in T (neither the period nor its length is part of the input) . Then
there is a single period candidate for the original text.

Proof. Let us assume in contradiction that there are P and Q two possible period candidates
for T , P 6= Q. We begin by showing that p 6= q. If p = q, there are three occurrences
of P and Q which are of the same length, but Ham(TP , TQ) ≤ 2. It means that one full
occurrence of P is equal to the corresponding full occurrence of Q, namely, P = Q. As a
consequence, p 6= q. The proof is divided into three cases.
Case 1. When q | p. Let k = p

q .
P is primitive, against each full occurrence of P there are Qk. That is, each full
occurrence of P in TP should cause at least 1 mismatch with TQ, otherwise P is not
primitive, thus Ham(TP , TQ) ≥ 3. However, one error is assumed thus, Ham(TP , TQ) ≤
Ham(T, TP) +Ham(T, TQ) = 2. Thus, we got a contradiction.

Case 2. When q | 2p and q - p.
First, we observe that q must be even. Let Q = QPQS , where QP and QS are exactly the
first and last half of Q of lengths q/2. We observe the prefix of length 3q

2 of the three first
full occurrences of P . It is easy to see that against the first and third occurrence of P in
TP , there are QPQSQP in TQ. On the other hand, against the second full occurrence of
P there are QSQPQS . It is clear that QP 6= QS , otherwise Q is not primitive. Thus, we
must have at least 3 mismatches between TP and TQ, in contradiction.

Case 3. Otherwise, when q - 2p and q - p.
From the alignment lemma, the number of mismatches between TP and TQ is at least 4,
in contradiction. J

I Corollary 9. For any two periods P and Q that fully occur at least three times, then
Ham(TP , TQ) ≥ 3.

I Corollary 10. Let k ≥ 2. For any two periods P and Q that fully occur at least k times,
then Ham(TP , TQ) ≥ k.

Proof. If k is even then use Lemma 7 on all disjoint consecutive pairs of full occurrences of
P against the rotations of Q. If k is odd, use Lemma 7 for all full occurrences of P except
its last three full occurrences. Handle these occurrences by Corollary 9. J

We now have the tools to prove the main theorems. The proofs can be found in the full
version of this paper.

I Theorem 4. Let k be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k + 1 full occurrences in T . Then the number of possible candidates for
P is at most 1.

ESA 2020

5:8 Analysis of the Period Recovery Error Bound

I Theorem 5. Let k ≥ 2 be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k full occurrences in T . Then the number of possible candidates for P is
at most 2.

6 Tighter Bounds for 2 log3 n Candidates

In this section we relax the constraints of Amir et al. [3] regarding the number of allowed
mismatches, and yet provide a much smaller candidate set. The main tool in achieving this is
a string combinatorics theorem that improves the best known lower bound on the Hamming
distance between two periodic strings.

6.1 Lower bound on the Hamming distance between strings
We start by improving the best known lower bound on the number of errors between two
periodic strings. We provide a new nontrivial expression that tightens the lower bound
and give tight examples. Our formula results from a careful analysis of the Turning Points,
Windows, and Adjacency Strings of the two strings.

I Definition 11. A string P is called Non-trivial if it contains at least two distinct characters.

I Theorem 12. Let P,Q be non-periodic, non-trivial strings of lengths p, q, respectively, s.t.
q < p, q - p, and let p = aq + b, 0 < b < q, then
1. ∀m, 4 ≤ m < q

gcd(p,q) , Ham(Pm, Q∞) ≥ m(a+ 1)− 2 +
⌊
mb
q

⌋
2. ∀m, 2 ≤ m < q

gcd(p,q) , Ham(Pm, Q∞) ≥ m(a+ 1)− 2

In the next subsections, we provide the proof of Theorem 12 in-depth.
For pedagogical reasons and for simplicity and comprehensibility, we will prove the theorem
for strings of co-prime lengths and binary alphabet, Σ = {α, β}, and then show a reduction
from the general case to the simplified cases.

Troughout the proof, we will assume w.l.o.g that p > q and that α appears in Q at least
as many times as β. We will also let a, b satisfy p = aq + b, a, b > 0.

We begin with definitions that will help in understanding the motive and correctness of
the proof and methods.

6.1.1 Groundwork
I Definition 13 (Index mapping function). The index mapping function is defined as follows:

δm : [0, p− 1]→ [0, q − 1], where δm(i) = i+ (m− 1)p mod q

The index mapping function maps the index of the mth occurrence of P [i] in Pm to the
corresponding index in Q∞. Note, that the mapping function is also dependent on the
lengths of P,Q. We refrain from indexing the function with these symbols for simplicity’s
sake.

I Definition 14 (Adjacency string). Let P,Q be strings of co-prime lengths, and p > q. The
adjacency string Q̃p is a string of length q that satisfies ∀i, 0 ≤ i < q, Q̃p[i] = Q[i · p mod q].
The adjacency subset-string P̃q is a multi-string of length q that satisfies

∀i, 0 ≤ i < q, P̃q[i] = {P [j]|j ≡q i · p}

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:9

A subset string is a string where each string-position might contain several characters.
The term was originally defined at [6]. Note that in our case, the same character can recur
multiple times at a single position.
The motivation behind this representation is to encapsulate the index-mapping function. It
holds that ∀m, i, j where j ≡q i · p implies Q̃p[(j + m) mod q] = Q[δm+1(i)]. In words, it
means that a character in P̃ that aligns against Q̃p[i], will align against Q̃p[i+ 1] in its next
recurrence. P̃ was defined for mere convenience; Q[i] = Q̃p[j]→ P [i+ n · q] ∈ P̃q[j], for all
i+ n · q < p 1.
We will often omit the subscript and simply write Q̃, P̃ . Fig. 2 shows an example of an
adjacency string. In this example, one can see that if a character σ in P is aligned with Q̃[i],
the next occurrence of σ will align with Q̃[(i+ 1) mod q].

Figure 2 Example for adjacency string, Definition 14.

During the proof, we refer to the symbol “β” as Black node, and to “α” as White node.

I Definition 15. The m-forward window W f
m(i) is the multi-set of characters in Q that

align against P̃ [i] in the next m repetitions of P , which is {Q̃[i], ..., Q̃[i+m− 1]}
The m-backward window W b

m(i) is the multi-set of characters in P that align against Q̃[i] in
the next m repetitions of P , which is {P̃ [i], ..., P̃ [i−m+ 1]}

In Fig. 3 we see an example for backwards and forwards windows. One can see that W b
3 (2)

contains all the characters that touch Q̃[2] in the next 3 repetitions of P , and that W f (0)
contains all the characters that touch P̃ [0] in the next 3 repetitions. It is also apparent that
W b

3 contains the character ‘0′ twice.

Figure 3 Example for backward and forward windows, Definition 15.

1 The converse is not true for, as the mapping function maps to characters in Q.

ESA 2020

5:10 Analysis of the Period Recovery Error Bound

I Definition 16 (Heavy index). We say that i is a heavy index if it satisfies |P̃ [i]| =
⌈
p
q

⌉
=

a+ 1.

We will call the last b characters of P heavy characters.

I Corollary 17. ∀m, i, the number of characters in W b
m(i) are at least am+

⌊
mb
q

⌋
.

Proof. Considering P̃ has at least a characters at every index, and the number of heavy
indices in any m repetitive recurrences is at least

⌊
mb
q

⌋
, giving the required result. The heavy

indices are distributed equally in P̃ because in P , the if the heavy indices are 0, 1, ..., j − 1,
then on the next recurrence they will align with j, j + 2, ..., 2(j − 1), and so on, and by
abstract algebra the distribution of heavy indices in P̃ is equal, though not probabilistic. J

I Definition 18 (Turning points). Let t1, t2, ..., t` be the indices such that
Q̃p[ti] 6= Q̃p[ti + 1 mod q]. We call these indices Turning points.

This definition will help in counting mismatches; Turning points create mismatches, as a
character that matches a turning point will create a mismatch in the next recurrence of P .

See Fig. 4 for an example of Turning points.

Figure 4 Example for Turning points, Definition 18.

I Corollary 19. ` is even.

Proof. Given that turning points are the only indices that satisfy q[ti] 6= q[ti+1], and therefore
if ` is odd, then it can be expressed as 2`′ + 1, and

q[t1] 6= q[t2]... 6= q[t2`′+1] 6= q[t1]→
q[t1] = q[t3] = ... = q[t2`′+1] 6= q[t1]→
q[t1] 6= q[t1] J

I Corollary 20. ` ≥ 2

Proof. Let us assume that ` = 0. Since there are no turning points, there is no index s.t.
Q̃p[i] 6= Q̃p[i+ 1], and consequently the string Q is trivial, a contradiction.
This means ` ≥ 1, and by using Corollary 19, ` ≥ 2. J

I Corollary 21. Ham(P 2, Q∞) ≥
∑̀
i=1
|P̃ [i]| ≥ a`.

Proof. Let i be a turning point. By the definition of adjacency string, all the characters in
P̃ [i] will align in the next two repetitions against Q̃[i], Q̃[(i+ 1) mod q]. By the definition
of turning point, Q̃[i] 6= Q̃[(i+ 1) mod q] and accordingly each character in P̃ [i] will cause

exactly one mismatch. Hence, the minimal number of mismatches is
∑̀
i=1
|P̃ [i]|. Considering

that ∀i, P̃ [i] contains at least a characters, the expression is at least a`. J

Given the above facts, we can now proceed to the proof of Theorem 12.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:11

6.1.2 Co-prime proof
In this subsection, we constrain p, q to be co-prime, namely, gcd(p, q) = 1.

Proof. We will divide the proof to 3 cases, and treat each of them separately.

I Case 1 (` ≥ 4.). When m = 2, it holds that

Ham(P 2, Q∞) ≥ 4a = 2(a+ 1)− 2 + 2a > 2(a+ 1)− 2 +
⌊

2b
q

⌋
.

We can,accordingly, assume that m ≥ 3.
Using Corollary 17, at least 4

⌊
mb
q

⌋
indices in the m-backward windows of the turning

points are heavy; So using Corollary 21, every m+ 1 repetitions we get at least that many
mismatches in addition to the already-calculated number. Set em =

⌊
mb
q

⌋
. Given that m ≥ 3,

it holds that either em ≥ 1, or em+2 ≤ 1 2, and thus em+2 ≤ 4em + 1.
Using the above results, we show that Ham(P 2m, Q∞) causes more mismatches than

allowed for Ham(P 2m+1, Q∞).

Ham(P 2m, Q∞) ≥ 4am+ 4e2m−1

≥ 4am+ e2m+1 − 1 ≥ 4am− 1 + e2m+1

≥ (2m+ 1)(a+ 1) + 2am− a− 2m− 2 + e2m+1

≥ (2m+ 1)(a+ 1) + 2(m− 1)(a− 1)− 3 + a+ e2m+1

≥ (2m+ 1)(a+ 1)− 2 + e2m+1 y

In the rest of the cases, there are only two turning points. We denote, for simplicity,
tw, tb as the turning points from white to black and from black to white, respectively.

I Case 2. [` = 2, (tb−tw) mod q = 1] In words, it means that there is only one occurrence
of the character β in Q. Let ib be an index such that Q̃[ib] = β. By the assumptions, this
index is unique.

Let W = W b
m(ib). Let c = |W |, and set cw to be the number of white characters in W .

The number of black characters in the window, denoted by cb satisfies cb = c− cw. Using
Corollary 17, we can claim c ≥ ma+

⌊
mb
q

⌋
.

If cb = 0, then the black character that must exist in P (since it is not trivial), did not
align against the only black character of Q, and thus created m mismatches, so we can
assume w.l.o.g that at least one black character appears in the window, as it reduces the
number of errors by at least 1.

Putting it all together and maximizing cw to be c− 1, leads to

Ham(Pm, Q∞) ≤ cw · 1 + (c− cw) · (m− 1)
≤1 (c− 1) · 1 +m(c− (c− 1))(m− 1)
= m+ c− 2

= m+ am+
⌊
mb

q

⌋
− 2

= m(a+ 1)− 2 +
⌊
mb

q

⌋
(1)

y

2 If 3b
q < 1, then 5b

q < 2

ESA 2020

5:12 Analysis of the Period Recovery Error Bound

I Case 3 (` = 2, (tb − tw) mod q 6= 1). First, define d = (tb − tw) mod q.

I Corollary 22. The number of mismatches caused by each character on index i in the
adjacency string P̃ after m repetitions is the minimum between the number of white nodes
and black nodes in the m-forward windows of i.

Proof. Each character creates a mismatch by either aligning with a white index or a black
index, so the smallest number of mismatches a character can cause is the minimum between
the black and white indices in its next occurrences. J

We consider three cases here; the first is where m ≥ d+ 1. The second is where m ≤ d,
and also m ≥ 4. The last is m ≤ d,m ∈ {2, 3}.

I Case 3.1 (m ≥ d+ 1). Recall that there are at least as many white characters as black.
Mark Ww = W b

m−1(tw), and Wb = W b
2 (tw + 2). Since d ≥ 2 and q ≥ m + 1, there are no

overlaps between the windows, and all the indices in Wb are black.
InWw, all of the characters will align against both tw, tw+1, and hence create a mismatch.

Note that each of the indices {tw − 1, ..., tw − m + 3} will also align against tw − 1 and
tw + 2, hence creating two mismatches. Thus, the total sum of mismatches is at least
a(2 + 2((tw−1)− (tw−m+ 3) + 1)) = 2a(m−2), as each index of P̃ has at least a characters.

Considering that m > d, tw + 1 will align against tb + 1 and tw + 2 will align against
tb + 2, and as a consequence we get at least 2 mismatches for each index, regardless of
m. Therefore the total number of mismatches is at least 2a, which leads to a total sum of
2a(m− 1) mismatches in both windows. Evaluating this value:

2a(m− 1) = 2am− 2a
= am+ am− 2a
= m(a+ 1) + a(m− 2)−m
≥ m(a+ 1)− 2 (by minimizing m to 2)

We now show
⌊
mb
q

⌋
additional mismatches. The number of heavy indices in the m-

backwards window of tw + 1 is at least
⌊
mb
q

⌋
, and all of the characters in the window create

at least one mismatch, leading to
⌊
mb
q

⌋
additional mismatches. y

I Case 3.2 (4 ≤ m, m ≤ d). First, it is trivial (yet crucial) to see that d ≥ 4. Using
the previous method, we consider W b

m−1(tw). Given that m ≤ d, and using Corollary 22,
any character at position tw − i will cause min(i + 1,m − i − 1) mismatches, so we have
1 + 2 + ... +

⌊
m
2
⌋

+ ... + 2 + 1 ≥ a(1 + 2(m − 3) + 1) = 2a(m − 2) mismatches. The same
claim can be made for W b

m−1(tb), summing up to at least 4a(m − 2) mismatches after m
repetitions.

Ham(Pm, Q∞) ≥ 4a(m− 2)
≥ m(a+ 1)−m+ 3am− 8a ≥ m(a+ 1) +m(3a− 1)− 8a
≥ m(a+ 1) + 4(3a− 1)− 8a ≥ m(a+ 1) + 12a− 8a− 4
≥ m(a+ 1) + 4(a− 1) ≥ m(a+ 1)

We now need to find
⌊
mb
q

⌋
−2 additional mismatches. The inequality

⌊
(m−1)b

q

⌋
≥
⌊
mb
q

⌋
−1

holds, and accordingly we have an additional 2
⌊

(m−1)b
q

⌋
≥ 2(

⌊
mb
q

⌋
−1) ≥

⌊
mb
q

⌋
−2 mismatches.

y

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:13

Figure 5 Example for strings decomposition (Definition 25).

I Case 3.3 (m ≤ d, 2 ≤ m ≤ 3). In this case, we only have to show that Ham(Pm, Q∞) ≥
m(a+ 1)− 2.
If m = 2, then we have 2a = m(a+ 1)− 2 mismatches directly from Corollary 21.
If m = 3, then tw, tw − 1, tb, tb − 1 will all create at least one mismatch, which results in 4a
mismatches, and

4a = 3a+ a = 3(a+ 1)− 2 + a− 1 ≥ 3(a+ 1)− 2 = m(a+ 1)− 2 y

J

6.1.3 Non-divisible proof
The case of gcd(p, q) = 1 was proven in Subsection 6.1.2. We now prove that the theorem is
true for the more general version, where q - p. Let gcd(p, q) = g > 1, and let q′ = q

g , p
′ = p

g ,
and p′ = a′q′ + b′.

I Corollary 23.
⌊
mb
q

⌋
=
⌊
mb′

q′

⌋
Proof.⌊
mb

q

⌋
=
⌊
m(p mod q)

q

⌋
=
⌊
m(g(a′q′ + b′) mod gq′)

gq′

⌋
=
⌊
m(gb′ mod gq′)

gq′

⌋
=
⌊
mgb′

gq′

⌋
=
⌊
mb′

q′

⌋
J

I Corollary 24. a′ = a

We will now decompose P and Q to smaller strings of co-prime lengths.

I Definition 25 (Decomposed strings). Given strings P,Q, gcd(p, q) = g, the decomposed
string of P at index i is Pi = P [i]P [i+ g]...P [i+ (p′ − 1)g]. The decomposed strings of Q are
defined respectively.

I Corollary 26. ∃i s.t. Pi is non-trivial.

Proof. If such an index does not exist, for each index i, Pi is trivial, hence ∀i, Pi = cp
′ , and

accordingly P = (P [0]...P [g − 1])p′ , and P is periodic, a contradiction to our assumptions.
The same claim can be made about Q. J

I Definition 27. Let P,Q be strings, and let i, j be the minimal indices such that Pi and Pj
are not trivial. We will say P,Q are aliens if i 6= j, and we will say P,Q are similar if i = j.
If gcd(p, q) = 1, then P,Q are aliens regardless.

The latter definition is rather synthetic, since we only consider the minimal indices.

ESA 2020

5:14 Analysis of the Period Recovery Error Bound

I Case 1 (P,Q are aliens). Let i, j be the minimal indices s.t. Pi, Qj are non-trivial.
In this case, Ham(Pm, Q∞) ≥ Ham(Pmi , c∞i) +Ham(cp

′m
j , Q∞j), where Pi = cp

′

i , Qj = cq
′

j .
Now,

Ham(Pmi , c∞i) = m ·Ham(Pi, cp
′

i) ≥ m (1)

Ham(cp
′m
j , Q∞j) ≥ m ·Ham(cp

′

j , Q

⌊
p′m
q′

⌋
j)

≥
⌊
p′m

q′

⌋
=
⌊
m(a′q′ + b′)

q′

⌋
= ma′ +

⌊
mb′

q′

⌋
= ma+

⌊
mb

q

⌋
(2)

So,

Ham(Pm, Q∞) ≥ Ham(Pmi , c∞i)+Ham(cp
′m
j , Q∞j) ≥ m+am+

⌊
mb

q

⌋
= m(a+1)+

⌊
mb

q

⌋
y

I Corollary 28. If P,Q are alien strings of non co-prime lengths, then Ham(Pm, Q∞) ≥
m(a+ 1) +

⌊
mb
q

⌋
, for all m > 0.

I Case 2 (P,Q are similar). Let i, j be the minimal indices s.t. Pi, Qj are not trivial. It
holds that

Ham(Pm, Q∞) ≥ Ham(Pmi , Q∞i) ≥ m(a′ + 1)− 2 +
⌊
mb′

q′

⌋
= m(a+ 1)− 2 +

⌊
mb

q

⌋
Which is exactly the required expression, with the LCM occurring more often. y

6.2 Candidates for periods
I Definition 29. Let T be a text, and P a string. We say that P is a periodic seed (or seed)
of T , if Ham(T, P∞) = k → t ≥ 2kp and P is non-periodic.

I Lemma 30. Let P,Q be non-trivial strings of co-prime lengths (i.e., gcd(p, q) = 1), then
Ham(P q, Qp) ≥ d(p − 2) + q, where d is the number of occurrences of the less frequent
character in either P or Q.

Proof. Let P,Q be non-trivial strings of co-prime lengths p, q. Let σS be the number of
occurrences of a character σ in a string S.
In the LCM, i.e., when the strings P,Q appear enough times to perfectly align with each
other, each characters of P aligns with each character of Q exactly once (using basic abstract
algebra properties). It means that Ham(P q, Qp) = αPβQ + βPαQ.
Seeing that P,Q are both binary strings implies βP = p− αP , and βQ = q − αQ.
Assume αQ ≥ βQ, and that βQ ≥ d ≥ 1.

Ham(P q, Qp) = αPβQ + βPαQ

= αP (q − αQ) + (p− αP)αQ
≥1 (p− 1)(q − αQ) + 1αQ
= (p− 1)d+ (q − d)
= d(p− 2) + q

(1) is true since aQ ≥ bQ, so be minimizing bP we minimize the expression. J

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:15

I Lemma 31. For alien strings Q,P s.t. q ≤ p
4 , gcd(p, q) = 1 and p = aq + b, 2 ≤ m < q,

Ham(Pnq+m, Q∞) ≥ n(p+ q − 2) +m

⌈
p

q

⌉
− 2 +

⌊
mb

q

⌋
Proof. Using Theorem 12, we only need to show this is true when d ≥ 2,m ≤ d, where d
is (tb − tw) mod q, as defined. Because the case where d = 1 ∨m ≥ 4 ∨m > d is proved
regardless of m, d and when m ≤ 1 the expression can simply evaluate to 0. If q ≤ p

4 , then
either m ≥ 4 or n ≥ 1. One case is already proven, so we can presume n ≥ 1. Naturally,
m ≤ 3, as otherwise the lemma is trivially proven.
By Lemma 30, the distance at the LCM is d(p− 2) + q. Consider the distance at the LCM in
the original expression: p+q−2. The difference between these values is (d−1)(p−2) ≥ p−2.
This means the number of mismatches is increased by at least p− 2 every LCM.

By Theorem 12, Ham(Pm,Q∞)≥m(a+1)−2, and we attempt to show thatHam(Pm,Q∞)
≥ m(a+ 1)− 2 +

⌊
mb
q

⌋
, leaving us to show that the additional p− 2 mismatches are greater

than
⌊
mb
q

⌋
. Evaluate:

p− 2 = aq + b− 2 ≥ b >
⌊
mb

q

⌋
J

I Theorem 32. Let T be a text, and let P be a seed of T such that p ≤ t
4 , then for all

strings Q s.t. q < p, q - p, then Q can not be a seed of T .

Proof. Let P be a seed of T of length p ≤ t
4 , and assume Q is a seed of T , and q < p, q - p.

In this proof, we use the same notations as in Theorem 31.
Set occp =

⌊
t
p

⌋
= nq +m, 0 ≤ m < q, and set p = aq + b, 1 ≤ b < q. nq +m ≥ 4.

Obviously, t < (nq + m + 1)p. Therefore the maximum number of mismatches between
T and P∞, marked as kp is at most

⌊
nq+m

2
⌋
. The number of occurrences of Q in T is

occq =
⌊
t
q

⌋
=
⌊

(nq+m+1)p−1
q

⌋
, and thus the number of mismatches between T and Q∞,

marked as kq accordingly is at most
⌊ occq

2
⌋
.

By the triangle inequality, Ham(Pnq+m, Q∞) ≤ Ham(T, P∞) +Ham(T,Q∞) ≤ kp +kq.
We will show that Ham(Pnq+m, Q∞) > kp + kq, which will lead to a contradiction.

We split the proof into two cases - in the first case P,Q are aliens, and in the second,
P,Q are similar (See Definition 27).

6.2.1 Proof for alien strings
Begin by evaluating the minimal number of errors:

Ham(Pnq+m, Q∞) ≥ n(p+ q − 2) +m(a+ 1)− 2 +
⌊
mb

q

⌋
Since we required p ≤ t

4 , then n ≥ 1 or m ≥ 4. We consider both cases.

I Case 1 (n = 0,m ≥ 4). Begin by re-evaluating the previous expressions by setting n = 0,
which will lead to significantly shorter expressions.

Ham(Pnq+m, Q∞) = n(p+ q − 2) +m(a+ 1)− 2 +
⌊
mb

q

⌋
= m(a+ 1)− 2 +

⌊
mb

q

⌋
(1)

occp = m (2)

occq =

⌊
(m+1)p−1

q

⌋
2 (3)

ESA 2020

5:16 Analysis of the Period Recovery Error Bound

Again split into two cases:
1. b ≥ q

2
2. b < q

2

I Case 1.1 (b ≥ q
2). In this case,

⌊
mb
q

⌋
≥
⌊
mq
2q

⌋
=
⌊
m
2
⌋
. Seeing that the latter is exactly

the value of kp, let’s us subtract
⌊
m
2
⌋
from both sides of the equation, which leads to the

following inequality:

m(a+ 1)− 2 > kq =

⌊

(m+1)p−1
q

⌋
2

Given that we required b ≥ q

2 , we will evaluate
⌊

(m+1)p−1
q

⌋
in worst-case settings in terms of

mismatches, i.e. b = q − 1.⌊
(m+ 1)p− 1

q

⌋
≤
⌊

(m+ 1)((a+ 1)q − 1)− 1
q

⌋
=
⌊
q(m+ 1)(a+ 1)−m− 2

q

⌋
≤ (a+1)(m+1)−1

What left to prove is m(a+ 1)− 2 >
⌊

(a+1)(m+1)−1
2

⌋
.

m(a+ 1)− 2 >
⌊

(a+ 1)(m+ 1)− 1
2

⌋
→ 2m(a+ 1)− 4 > (a+ 1)(m+ 1)− 1

→ 2am+ 2m− 4 > am+ a+m+ 1− 1
→ am+m− a− 4 > 0
→ a(m− 1) +m− 4 > 0
→ 2m− 5 > 0→ m ≥ 3 y

I Case 1.2 (b < q
2). In this case, we suppose that

⌊
mb
q

⌋
= 0, and again evaluate

⌊
(m+1)p−1

q

⌋
in worst-case settings (b = q

2).

(m+ 1)p− 1 ≤ (m+ 1)((a+ 0.5)q − 1)− 1 ≤ (m+ 1)(a+ 0.5)q − 1

Using the above result, the inequality
⌊

(m+1)p−1
q

⌋
≤ (m+ 1)(a+ 0.5)− 1 holds, and thereby

the resulting inequality is

m(a+ 1)− 2 >
⌊

(m+ 1)(a+ 0.5)− 1
2

⌋
+
⌊m

2

⌋
Further evaluation leads to

m(a+ 1)− 2 >
⌊

(m+ 1)(a+ 0.5)− 1
2

⌋
+
⌊m

2

⌋
→ 4m(a+ 1)− 8 > (m+ 1)(2a+ 1)− 2 + 2m
→ 4am+ 4m > 2am+m+ 2a+ 2m+ 1 + 8− 2
→ 2am+m− 2a ≥ 8
→ 2a(m− 1) +m ≥ 8
→ 2 · 3 + 4 ≥ 8 (Setting a = 1,m = 4) y

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:17

I Case 2 (n ≥ 1,m ∈ {0, 1}). This case is rather complicated. Begin by examining the case
m = 0 which is the easier one.

I Case 2.1 (m = 0). Recall that nq+m ≥ 4→ nq ≥ 3→ q ≥ 3∨n ≥ 2. We require nq ≥ 3
and not nq ≥ 4, so we will also be able to use the expression when m = 1.
In this case, the number of occurrences of Q in T is occq ≤ np+ a, so we need to show that
n(p+ q − 2) >

⌊
np+a

2
⌋

+
⌊
nq
2
⌋
. We will multiply it by 2 to obtain

2n(p+ q − 2) > np+ a+ nq

→ n(p+ q − 4) ≥ a+ 1
→ n((a+ 1)q − 3) ≥ a+ 1
→1 n(2q − 3) ≥ 2→ q ≥ 3 ∨ n ≥ 2 y

(1) - Because we are incrementing a increments the left hand-side by qn, and the right
hand-side by only 1 (qn > 1).

I Corollary 33. Ham(Qa+m+1, P 2) ≥ 2m, m < a

Proof. First, define P→i as the string cyclic shift of P i positions to the right.
Consider the hamming distance Ham(Qm+1, Qm+1

→(q−b)). The first string is aligned with the
first repetition of P , the other is aligned with the second repetition of P .
Since there are m full repetitions of Q in both strings, there are at least 2m mismatches.
Using the triangle inequality:

2m ≤ Ham(Qm+1, Qm+1
→(q−b)) ≤ Ham(Qm+1, P)+Ham(P,Qm+1

→(q−b)) ≤ Ham(Qa+m+1, P 2)

J

I Corollary 34. If Q is a seed of a text with tail size t = t− (nq + 1)p s.t. t ≥ 2q − b, then
Q is also the seed of a text with tail size 2q − b− 1.

The proof is trivial: any additional occurrence of Q in T will cause at-least 2 more verified
mismatches. We allow one mismatch for 2 occurrences so it is always possible to reduce the
number of mismatches by 2 and the number of occurrences by 1.

I Lemma 35. If Ham(Qa+1, P 2) = 0, then b ≥ 2

Proof. By definition, q(a + 1) > p. If Ham(Qa+1, P 2) = 0, then P = QaQ[..b], and that
P [..q − b] = Q[b..]→ Q[..q − b] = Q[b..].
Assume b = 1. This means Q[..q − 1] = Q[1..], or

Q[0] = Q[1], Q[1] = Q[2], ...Q[−2] = Q[−1]

Which implies that Q is a trivial periodic string, contradiction. J

I Case 2.2 (m = b = 1). In this case, Q can occur at most a times in the tail without
creating an extra mismatch. Thus, we will suppose it occurs exactly a times in the tail.
n(p+ q − 2) >

⌊
np+a

2
⌋

+
⌊
nq+1

2
⌋

This is almost exactly the same as the case where m = 0, with the difference of kp, which
changed from

⌊
nq
2
⌋
to
⌊
nq+1

2
⌋
. If either n or q are even, it is exactly the same expression as

before, and accordingly we presume q 6= 2→ q ≥ 3→ p ≥ 4.
Evaluating the expression in a similar manner to case 2.1 will lead to the inequality

n(2q − 3) ≥ 3, and by setting q = 3, n = 1, we get 1 · (2 · 3− 3) = 3 ≥ 3. y

ESA 2020

5:18 Analysis of the Period Recovery Error Bound

I Case 2.3 (m = 1, b > 1). This case is trivial. Requiring b ≥ 2 results in p ≥ q + 2, which
in turn causes an additional mismatch on the LCM expression p+ q − 2, but creates only
one additional occurrence for Q, and the problem can be reduced to previous case. y

I Case 3 (n ≥ 1,m ≥ 2). This is the simplest case of the three. We have p > q ≥ 3, as
m < q < p, and m ≥ 2.

Proof. The length of T is at most (nq +m+ 1)p− 1. The string Q occurs in nqp characters
exactly np times. And (m+ 1)p− 1 = (m+ 1)(aq + b)− 1 = maq +mb+ aq + b− 1, which
contains a(m+ 1) +

⌊
b(m+1)−1

q

⌋
instances of Q.

The inequality
⌊
b(m+1)−1

q

⌋
≤
⌊
bm
q

⌋
+ 1 holds, and as a result we claim that the number of

occurrences of Q in T is
⌊
b(m+1)−1

q

⌋
+ 1.

The expression
⌊
bm
q

⌋
also appears inHam(Pm, Q∞), so we can subtract it from both sides,

which will simplify the expression to n(p+ q− 2) +m(a+ 1)− 2 >
⌊
np+a(m+1)+1

2

⌋
+
⌊
nq+m

2
⌋
.

Multiply it by 2, and get the following:

2n(p+ q − 2) + 2m(a+ 1)− 4 > np+ a(m+ 1) + 1 + nq +m

→ n(p+ q − 4) + 2am+ 2m− 4 > am+ a+ 1 +m

→ n((a+ 1)q − 3) + am− a+m ≥ 6
→1 n(2q − 3) + 2m− 1 ≥ 6
→2 3n+ 2m ≥ 7→ 3 · 1 + 2 · 2 ≥ 7

(1) - Setting a to minimum (a = 1)
(2) - Setting q to minimum (q = 3) J

y

6.2.2 Proof for similar strings
We now present the proof of the theorem when gcd(p, q) > 1, and i = j.

We use the definition of Pi, Qi, p′, q′ as usual, and also define Ti as T [i]T [i+ g][T + 2g]....
Because t is not necessarily divisible by g some Ti might be shorter than the others.
Let i be the index such that both Pi, Qi are non-trivial. The inequality ∀j, Tj ≥ 4p′ holds as
t ≥ 4pg.
As kp is the maximal number of full occurrences of P in T , the number of occurrences of Pi
in Ti is at least kp. Proof for kq is the same.

We now have Qi, Pi, Ti, where Pi ≤ |Ti|4 and gcd(Pi, Qi) = 1, and therefore Pi and Qi
cannot both be seeds of Ti, or in other words, Ham(pnq+m

i , q∞i) > kq + kp. In contrast,
we know that Ham(pnm+q, q∞) ≥ Ham(pnq+m

i , q∞i) > kq + kp, and P,Q cannot both be
seeds. J

I Definition 36 (Binary Renaming Function). A binary renaming function is a function
from general alphabet to binary alphabet, δ : Σ→ {a, b}. The generalized renaming function
δ∗ : Σ∗ → {a, b}∗ is defined in the standard way:
1. δ∗(ε) = ε

2. δ∗(P) = δ(P [0])δ∗(P [1..])

I Lemma 37. Let P,Q be non-trivial strings over Σ. W.l.o.g p≥q. ∀δ∗,m, Ham(Pm, Q∞) ≥
Ham(δ∗(P)m, δ∗(Q)∞)

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:19

Proof. Let ei be an indicator on mismatch on index i between Pm and Q∞, and e′i be
defined respectively for δ∗(Pm), δ∗(Q∞). Since ei = 0 indicates a match, then e′i = 0 as well,
which implies e′i ≤ ei. The contrary is not true. The direct implication is our lemma. J

I Corollary 38. Theorem 12 is true for general alphabet.

I Corollary 39. Theorem 43 is true for general alphabet.

Proof. Assume there are P,Q ∈ Σ∗ that contradict 43. This means that Ham(T, P∞) +
Ham(T,Q∞) ≤ kp + kq, but using Lemma 37,

∃δ∗, Ham(T, P∞)+Ham(T,Q∞) ≥ Ham(δ∗(T), δ∗(P)∞)+Ham(δ∗(T), δ∗(Q)∞) >1 kq+kp

And (1) is true directly from Theorem 43. J

6.3 The Number of Candidates
I Lemma 40. Let T be text, and let P,Q be periodic seeds of T , such that p > q, q - p, p ≤ t

3 .
Then, ∃g s.t. p = 3g, q = 2g.

The proof appears in the full version of the paper,

I Corollary 41. Given a text T , there is at most one periodic seed P of length t
4 < p ≤ t

3 .

I Corollary 42. If P,Q are seeds of a text T and p = q then Ham(P,Q) ≤ 1

Proof. Assume Ham(P,Q) ≥ 2, and that ` =
⌊
t
p

⌋
. Using the definition of a seed,

Ham(P `, Q`) ≤ Ham(T, P∞) + Ham(T,Q∞) ≤ `, at the same time Ham(P `, Q`) = 2`,
contradiction. J

I Theorem 43. There are at most 2 log3 n candidates of length ` ≤ t
3

Proof. We begin by proving a useful lemma regarding the number of candidates of divisible
length.

I Lemma 44. If there are two candidates of length g, there is at most one candidate of
length 2g.

The proof appears in the full version of the paper.

I Corollary 45. If all of the periods of length ` ≤ n divide n, then there are at most 2 log3 n

periods of length ≤ n.

The proof appears in the full version of the paper. J

I Corollary 46. There are at most 2 periods that are canonical.

Proof. As we have proved, if there are 3 different periods, then the length of the shortest
period, divides the length of the longer periods, and by simple induction the minimal period’s
length divides the lengths of the rest of the periods, and is canonical to them.
If there are no 3 different periods then we can call all of the periods canonical. J

I Corollary 47 (Generalized gcd-theorem). Let T be a text, and let P,Q be seeds of T that
occur at least 3 full times in T , then T has a seed of length gcd(p, q).

ESA 2020

5:20 Analysis of the Period Recovery Error Bound

7 The Error Upper Bounds Hierarchy

The previously known [3] upper error bound was b n
(2+ε)pc and led to O(log1+ε n) period

candidates. To achieve a hierarchy of upper bounds, we follow similar techniques to those
of [3]. The innovation is the new Hamming distance error bounds that we define. All the
upper bounds in this section are of (n, p, ε)-type. We do not get rid of ε at the moment.
However, we feel that by methods similar to those of Section 6, the ε can be eliminated from
the error bounds.

I Lemma 48. Let T be the input text. For any period P , assume that Ham(T, TP) ≤
n

(2+ε)·(2(i))((log(i) p)1+ε)
. Then there are O(log(i+1) n) candidates for P , for any i ≥ 0. Note

that, for i = 0, the upper bound is Ham(T, TP) ≤ n
(2+ε)·p1+ε

I Lemma 49. Let T be the input text. For any period P , assume that Ham(T, TP) ≤ n
(2+ε)p+1 .

Then there are O(log∗ n) candidates for P

I Lemma 50. Lemmas 48 and 49 have tight examples.

8 Conclusions and Open Problems

We showed that b n2pc is a tight upper error bound and it results in 2 log3 n candidates if P
fully occurs at least 3 times in T . Otherwise, if P fully occurs twice (maybe with a tail) then
we provide an example with Ω(n) candidates.

It is easy to show that our result can be generalized to c-pseudo local metrics [3]. Such a
metric ∆ behaves like Hamming distance in the manner that for every pair of equal length
strings T and S, ∆(T, S) ≤ c ·Ham(T, S). An example of such a metric is swap distance,
where the distance counted by the number of swaps of two consecutive letters (each letter can
only participate in a single swap). It is easy to verify that b n2cpc is a tight upper bound, and
the result of canonic period seed can also be applied to such metrics. By a similar fashion,
replacing (2 + ε) by (2c+ ε) in the hierarchy upper bounds allows the hierarchy generalization
to c-pseudo local metrics.

In this paper, corruptions are of the replacement type. That is, the error count is the
number of changed letters. It is of interest to analyze different types of error distance metrics
besides the Hamming Distance. One example of such a metric, that has been considered in
the recovery algorithms literature, is the Edit Distance [2, 14].

It is of interest to apply the ideas of section 6 to the log(i) hierarchy and eliminate the
dependence on ε.

Finally, can the hierarchy be extended to the other side? Come up with tight error
bounds that lead to a set of nε period candidates, where ε < 1.

References
1 S. Aluru, A. Apostolico, and S. V. Thankachan. Efficient alignment free sequence comparison

with bounded mismatches. In Proc. 19th Research in Computational Molecular Biology
Conference, RECOMB, pages 1–12, 2015.

2 A. Amir, M. Amit, G.M.Landau, and D. Sokol. Period recovery of strings over the hamming
and edit distances. Theortetical Computer Science, 710:2–18, 2018.

3 A. Amir, E. Eisenberg, A. Levy, E. Porat, and N. Shapira. Cycle detection and correction.
ACM Trans. Alg., 9(1):13, 2012.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:21

4 A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees - metrics
and efficient algorithms. Proc. FOCS 94, pages 758–769, 1994.

5 A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat. Can we recover the cover? In Proc.
28st Annual Symposium on Combinatorial Pattern Matching (CPM), LIPICS, 2017.

6 A. Amir, M. Lewenstein, and E. Porat. Approximate subset matching with “don’t care”s. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 305–306, 2001.

7 R.L. Cann, M. Stoneking, and A.C. Wilson. Mitochondrial DNA and human evolution. Nature,
325(6099):31–36, 1987.

8 M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Proc. 25th Annual ACM Symposium on the Theory of Computing, pages 137–145, 1993.

9 M. Farach, T. M. Przytycka, and M. Thorup. Computing the agreement of trees with bounded
degrees. Proc. 3rd European Symposium on Algorithms, pages 381–393, 1995.

10 N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math.
Soc., 16:109–114, 1965.

11 S. Har-Peled and S. Mahabadi. Proximity in the age of distraction: Robust approximate
nearest neighbor search. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1–15, 2017.

12 S. Heydrich and A. Wiese. Faster approximation schemes for the two-dimensional knapsack
problem. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 79–98,
2017.

13 C. Kalaitzis. An improved approximation guarantee for the maximum budgeted allocation
problem. In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1048–
1066, 2016.

14 T. Kociumaka, J. Radoszewski, W. Rytter, J. Straszyński, T. Waleń, and W. Zuba. Faster
recovery of approximate periods over edit distance. In Proc. 25th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS, pages 233–240. Springer, 2018.

15 L.A.B. Kowada, D. Doerr, S. Dantas, and J. Stoye. New genome similarity measures based
on conserved gene adjacencies. In Proc. 20th Research in Computational Molecular Biology
Conference, RECOMB, pages 204–224, 2016.

16 A. Ojewole, J.D. Jou, V.G. Fowler, and B.R. Donald. Bbk* (branch and bound over k*): A
provable and efficient ensemble-based algorithm to optimize stability and binding affinity over
large sequence spaces. In Proc. 21st Research in Computational Molecular Biology Conference,
RECOMB, pages 157–172, 2017.

17 A. Sobih, A. I. Tomescu, and V. Mäkinen. Metaflow: Metagenomic profiling based on whole-
genome coverage analysis with min-cost flows. In Proc. 20th Research in Computational
Molecular Biology Conference, RECOMB, pages 111–121, 2016.

18 M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement
subtree. Information Processing Letters, 48(2):77–82, 1993.

19 M. A. Steel and D. Penny. Distributions of tree comparison metrics - some new results. Syst.
Biol., 42:126–141, 1993.

20 E. Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5:313–323, 1990.

21 J. C. Venter and Celera Genomics Corporation. The sequence of the human genome. Science,
(291):1304–1351, 2001.

22 C. Wulff-Nilsen. Approximate distance oracles for planar graphs with improved query time-
space tradeoff. In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
351–362, 2016.

ESA 2020

	Introduction
	Preliminaries
	A universal Error Bound Does not Allow Recovery
	Results
	k-Type Upper Error Bounds
	Tighter Bounds for 2log_3 n Candidates
	Lower bound on the Hamming distance between strings
	Groundwork
	Co-prime proof
	Non-divisible proof

	Candidates for periods
	Proof for alien strings
	Proof for similar strings

	The Number of Candidates

	The Error Upper Bounds Hierarchy
	Conclusions and Open Problems

