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Abstract
The dynamic trees problem is to maintain a forest subject to edge insertions and deletions while
facilitating queries such as connectivity, path weights, and subtree weights. Dynamic trees are a
fundamental building block of a large number of graph algorithms. Although traditionally studied
in the single-update setting, dynamic algorithms capable of supporting batches of updates are
increasingly relevant today due to the emergence of rapidly evolving dynamic datasets. Since
processing updates on a single processor is often unrealistic for large batches of updates, designing
parallel batch-dynamic algorithms that achieve provably low span is important for many applications.

In this work, we design the first work-efficient parallel batch-dynamic algorithm for dynamic
trees that is capable of supporting both path queries and subtree queries, as well as a variety of
nonlocal queries. Previous work-efficient dynamic trees of Tseng et al. were only capable of handling
subtree queries [ALENEX’19, (2019), pp. 92–106]. To achieve this, we propose a framework for
algorithmically dynamizing static round-synchronous algorithms to obtain parallel batch-dynamic
algorithms. In our framework, the algorithm designer can apply the technique to any suitably
defined static algorithm. We then obtain theoretical guarantees for algorithms in our framework by
defining the notion of a computation distance between two executions of the underlying algorithm.

Our dynamic trees algorithm is obtained by applying our dynamization framework to the parallel
tree contraction algorithm of Miller and Reif [FOCS’85, (1985), pp. 478–489], and then performing
a novel analysis of the computation distance of this algorithm under batch updates. We show that k

updates can be performed in O(k log(1 + n/k)) work in expectation, which matches the algorithm of
Tseng et al. while providing support for a substantially larger number of queries and applications.
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1 Introduction

The dynamic trees problem, first posed by Sleator and Tarjan [27] is to maintain a forest of
trees subject to the insertion and deletion of edges, also known as links and cuts. Dynamic
trees are used as a building block in a multitude of applications, including maximum flows [27],
dynamic connectivity and minimum spanning trees [11], and minimum cuts [19], making
them a fruitful line of work with a rich history. There are a number of established sequential
dynamic tree algorithms, including link-cut trees [27], top trees [28], Euler-tour trees [15],
and rake-compress trees [5], all of which achieve O(log(n)) time per operation.

Since they already perform such little work, there is often little to gain by processing
single updates in parallel, hence parallel applications often process batches of updates. We
are therefore concerned with the design of parallel batch-dynamic algorithms. Parallel batch-
dynamic algorithms have been developed for several graph problems including incremental
connectivity [26], Euler-Tour trees [29], and for fully dynamic connectivity [1]. Parallel
batch-dynamic algorithms have also been recently studied in the MPC model [16, 10].

By applying batches it is often possible to obtain significant parallelism while preserving
work efficiency. However, designing and implementing dynamic algorithms is difficult, and
arguably even more so in the parallel setting.

The goals of this paper are twofold. First and foremost, we are interested in designing a
parallel batch-dynamic algorithm for dynamic trees that supports a wide range of applications.
On another level, based on the observation that parallel dynamic algorithms are usually quite
complex and difficult to design, we are also interested in easing the design process of parallel
batch-dynamic algorithms as a whole. To this end, we propose a framework for algorithmically
dynamizing static parallel algorithms to obtain efficient parallel batch-dynamic algorithms.
We then define a cost model that captures the computation distance between two executions
of the static algorithm which allows us to bound the runtime of dynamic updates. There are
several benefits of using algorithmic dynamization, some more theoretical some practical:
1. Proving correctness of a batch dynamized algorithm relies simply on the correctness of

the parallel algorithm, which presumably has already been proven.
2. It is easy to implement different classes of updates. For example, for dynamic trees, in

addition to links and cuts, it is very easy to update edge weights or vertex weights for
supporting queries such as path length, subtree sums, or weighted diameter. One need
only change the values of the weights and propagate.

3. Due to the simplicity of our approach, we believe it is likely to make it easier to program
parallel batch-dynamic algorithms, and also result in practical implementations.

Using our algorithmic dynamization framework, we obtain a parallel batch-dynamic algorithm
for rake-compress trees that generalizes the sequential data structure work efficiently without
loss of generality. Specifically, our main contribution is the following theorem.

I Theorem 1. The following operations can be supported on a bounded-degree dynamic tree
of size n using the CRCW PRAM:

Batch insertions and deletions of k edges in O(k log(1 + n/k)) work in expectation and
O(log(n) log∗(n)) span w.h.p.
Batch connectivity, subtree sum, and path sum queries for batches of size k in O(k log(1 +
n/k)) work in expectation and O(log(n)) span w.h.p.
Independent parallel connectivity, subtree sum, path sum, diameter, lowest common
ancestor, center, and median queries in O(logn) time per query w.h.p.

Arbitrary-degree trees can be handled by transforming them into bounded degree trees using
known techniques. We compare the capabilities of parallel rake-compress trees with other
dynamic tree algorithms in Table 1. In summary, they support more operations than existing
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2:2 Parallel Batch-Dynamic Trees via Change Propagation

Table 1 The known capabilities of various dynamic tree algorithms. Nonlocal queries are
operations such as computing centers and medians. Our work extends rake-compress trees [5], which
were previously only sequential, to also support parallel operations.

Parallel Operations Queries Supported
Updates Queries Path Subtree Nonlocal

Link-cut trees [27]
(Parallel) Euler-tour trees [15, 29]
Top trees [28]
Rake-compress trees [5]
Parallel rake-compress trees (this paper)

parallel data structures, and support the same broad set of operations as existing non-parallel
data structures. Theorem 1 is obtained by dynamizing the parallel tree contraction algorithm
of Miller and Reif [20] and performing a novel analysis of the computation distance.

Standalone algorithms for dynamic parallel tree contraction have previously been proposed,
but are inefficient and not fully general. In particular, Reif and Tate [25] give an algorithm for
parallel dynamic tree contraction that can process a batch of k leaf insertions or deletions in
O(k log(n)) work. Unlike our algorithm, theirs is not work efficient, as it performs Ω(n log(n))
work for batches of size Ω(n), and it can only modify the tree at the leaves.

Lastly, as some evidence of the applicability of algorithmic dynamization, in the full
version of this paper [2], we demonstrate two other applications of the technique. Specifically,
we consider map-reduce based computations, and dynamic sequences with splitting and
joining. To summarize, the main contributions of this paper are:
1. An algorithmic framework for dynamizing round-synchronous parallel algorithms, and a

cost model for analyzing the performance of algorithms resulting from the framework
2. An analysis of the computation distance of Miller and Reif’s tree contraction algorithm

under batch edge insertions and deletions, which shows that it can be efficiently dynamized
3. The first work-efficient parallel algorithm for batch-dynamic trees that supports subtree

queries, path queries, and nonlocal queries such as centers and medians.

Technical overview

A round-synchronous algorithm consists of a sequence of rounds, where a round executes in
parallel across a set of processes, and each process runs a sequencial round computation reading
and writing from shared memory and doing local computation. The round synchronous model
is similar to Valiant’s well-known Bulk Synchronous Parallel (BSP) model [30], except that
communication is done via shared memory. Algorithmic dynamization works by running the
round-synchronous algorithm while tracking all write-read dependences – i.e., a dependence
from a write in one round to a read in a later round. Then, whenever a batch of changes
are made to the input, change propagation propagates the changes through the original
computation, only rerunning round computations if the values they read have changed. We
note that depending on the algorithm, changes to the input could drastically change the
underlying computation, introducing new dependencies, or invalidating old ones. Part of the
novelty of this paper is bounding the work and span of this update process.

The idea of change propagation has been applied in the sequential setting and used to
generate efficient dynamic algorithms [3, 4]. The general idea of parallel change propagation
has also been used in various practical systems [9, 14, 7, 23, 24] but none of them have been
analyzed theoretically.
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To capture the cost of running the change propagation algorithm for a particular parallel
algorithm and class of updates we define a computational distance between two computations,
which corresponds to the total work of the round computations that differ in the two
computations. The input configuration for a computation consists of the input I, stored in
shared memory, and an initial set of processes P . We show the following bounds, where the
work is the sum of the time of all round computations, and span is the sum over rounds of
the maximum time of any round computation in that round.

I Theorem 2. Given a round-synchronous algorithm A that with input configuration (I, P )
does W work in R rounds and S span, then, on the CRCW PRAM,
1. the initial run of the algorithm with tracking takes O(W ) work in expectation and

O(S +R logW ) time w.h.p.,
2. running change propagation from input configuration (I, P ) to configuration (I ′, P ′) takes

O(W∆ + R′) work in expectation and O(S′ + R′ logW ′) time w.h.p., where W∆ is the
computation distance between the two configurations, and S′,R′,W ′ are the maximum
span, rounds and work for the two configurations.

We show that the work can be reduced to O(W∆), and that the logW and logW ′ terms can
be reduced to log∗W when the round-synchronous algorithms have certain restrictions that
are satisfied by all of our example algorithms, including our main result on dynamic trees.
We also present similar results in other parallel models of computation.

With our dynamization framework and cost model, we develop an algorithm for dynamic
trees that support a broad set of queries including subtree sums, path queries, lowest common
ancestors, diameter, center, and median queries. This significantly improves over previous
work on batch-dynamic Euler tour trees [29], which only support subtree sums.

Our dynamic trees algorithm is a parallel version of the sequential rake-compress tree (RC
tree) data structure. Previous work showed that in the sequential setting, one can generate
an RC tree (or forest) as a byproduct of Miller and Reif’s tree contraction process, which
supports the wide collection of queries mentioned above, all in logarithmic time, w.h.p. [5].
Our approach generalizes this sequential algorithm to allow for batches of edge insertions or
deletions, work efficiently in parallel. The challenge is in analyzing the computation distance
incurred by batch updates in the parallel batch-dynamic setting. In Section 4 we do just
that, and obtain the following result:

I Theorem 3. In the round synchronous model, Miller and Reif’s tree contraction algorithm
does O(n) work in expectation and has O(logn) rounds and span w.h.p. Furthermore, given
forests T with n vertices, and T ′ with k modifications to the edge list of T , the computation
distance of the algorithm on the two inputs is O(k log(1 + n/k)) in expectation.

The bounds can then be plugged into Theorem 2 to show that a set of k edges can be inserted
or deleted in a batch in O(k log(1 + n/k)) work in expectation and O(log2 n) span w.h.p.
We show that the span can be improved to O(logn log∗ n) w.h.p. on the CRCW PRAM
model. The last step in obtaining our dynamic trees framework is to plug the dynamized
tree contraction algorithm into the RC trees framework [5] (see Section 5).

2 Preliminaries

2.1 Parallel Models
The parallel random access machine (PRAM) model is a classic parallel model with p

processors that work in lock-step, connected by a parallel shared-memory [17]. In this paper
we primarily consider the Concurrent-Read Concurrent-Write model (CRCW PRAM), where
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2:4 Parallel Batch-Dynamic Trees via Change Propagation

memory locations are allowed to be concurrently read and concurrently written to. If multiple
writers write to the same location concurrently, we assume that an arbitrary writer wins.
We analyze algorithms on the CRCW PRAM in terms of their work and span. The span (or
parallel time) of an algorithm is the minimum running time achievable when arbitrarily many
processors are available. The work is the product of the span and the number of processors.

The threaded random access machine (TRAM) is closely related to the PRAM, but more
closely models current machines and programming paradigms [8]. In the binary forking
TRAM (binary forking model for short), a process can fork another process to run in parallel,
and can join to wait for all forked calls to complete. In the binary forking model, the work
of an algorithm is the total number of instructions it performs, and the span is the longest
chain of sequentially dependent instructions.

2.2 Parallel Primitives
The following parallel procedures are used throughout the paper. Scan takes as input an
array A of length n, an associative binary operator ⊕, and an identity element ⊥ such that
⊥⊕ x = x for any x, and returns the array (⊥,⊥⊕A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕n−2

i=0 A[i])
as well as the overall sum, ⊥⊕n−1

i=0 A[i]. Scan takes O(n) work and O(logn) span (assuming
⊕ takes O(1) work) [17] on the CRCW PRAM, and in the binary forking model.

Filter takes an array A and a predicate f and returns a new array containing a ∈ A for
which f(a) is true, in the same order as in A. Filter can be done in O(n) work and O(logn)
span on the CRCW PRAM (assuming f takes O(1) work) [17], and in the binary forking
model. The Approximate Compaction problem is similar to a Filter. It takes an array A and
a predicate f and returns a new array containing a ∈ A for which f(a) is true where some
of the entries in the returned array can have a null value. The total size of the returned
array is at most a constant factor larger than the number of non-null elements. Gil et al. [12]
describe a parallel approximate compaction algorithm that uses linear space and achieves
O(n) work and O(log∗(n)) span w.h.p. on the CRCW PRAM.

A semisort takes an input array of elements, where each element has an associated key
and reorders the elements so that elements with equal keys are contiguous. The purpose is
to collect equal keys together, rather than sort them. Semisorting a sequence of length n can
be performed in O(n) expected work and O(logn) depth w.h.p. on the CRCW PRAM [13]
and in the binary forking model [8], assuming access to a uniformly random hash function
mapping keys to integers in the range [1, nO(1)].

3 Dynamization Framework

3.1 Round-synchronous algorithms
In this framework, we consider dynamizing algorithms that are round synchronous. The
round synchronous framework encompasses a range of classic BSP [30] and PRAM algorithms.
A round-synchronous algorithm consists of M processes, with process IDs bounded by
O(M). The algorithm performs sequential rounds in which each active process executes, in
parallel, a round computation. At the end of a round, any processes can decide to retire,
in which case they will no longer execute in any future round. The algorithm terminates
once there are no remaining active processes – i.e., they have all retired. Given a fixed
input, round-synchronous algorithms must perform deterministically. Note that this does not
preclude us from implementing randomized algorithms (indeed, our dynamic trees algorithm
is randomized), it just requires that we provide the source of randomness as an input to
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the algorithm, so that its behavior is identical if re-executed. An algorithm in the round
synchronous framework is defined in terms of a procedure ComputeRound(r, p), which
performs the computation of process p in round r. The initial run of a round-synchronous
algorithm must specify the set P of initial process IDs.

Memory model

Processes in a round-synchronous algorithm may read and write to local memory that is not
persisted across rounds. They also have access to a shared memory. The input to a round-
synchronous algorithm is the initial contents of the shared memory. Round computations
can read and write to shared memory with the condition that writes do not become visible
until the end of the round. Reads can only access shared locations that have been written to,
and shared locations can only be written to once, hence concurrent writes are not permitted.
The contents of the shared memory at termination is considered to be the algorithm’s output.
Change propagation is driven by tracking all reads and writes to shared memory.

Pseudocode

We describe round-synchronous algorithms using the following primitives:
1. The read instruction reads the given shared memory locations and returns their values,
2. The write instruction writes the given value to the given shared memory location.
3. Processes may retire by invoking the retire process instruction.

Measures

The following measures will help us to analyse the efficiency of round-synchronous algorithms.
For convenience, we define the input configuration of a round-synchronous algorithm as the
pair (I, P ), where I is the input to the algorithm (i.e. the initial state of shared memory)
and P is the set of initial process IDs.

I Definition 4 (Initial work, Round complexity, and Span). The initial work of a round-
synchronous algorithm on some input configuration (I, P ) is the sum of the work performed
by all of the computations of each processes over all rounds when given that input. Its round
complexity is the number of rounds that it performs, and its span is the sum of the maximum
costs per round of the computations performed by each process.

3.2 Change propagation
Given a round-synchronous algorithm, a dynamic update consists of a change to the input
configuration, i.e. changing the contents of shared memory, and/or adding or deleting
processes. The initial run and change propagation algorithms maintain the following data:
1. Rr,p, the memory locations read by process p in round r
2. Wr,p, the memory locations written by process p in round r
3. Sm, the set of round, process pairs that read memory location m
4. Xr,p, which is true if process p retired in round r
Algorithm 1 depicts the procedure for executing the initial run of a round-synchronous
algorithm before making any dynamic updates.

To help formalize change propagation, we define the notion of an affected computation.
The task of change propagation is to identify the affected computations and rerun them.

ESA 2020



2:6 Parallel Batch-Dynamic Trees via Change Propagation

Algorithm 1 Initial run.

1: procedure Run(P )
2: local r ← 0
3: while P 6= ∅ do
4: for each process p ∈ P do in parallel
5: ComputeRound(r, p)
6: Rr,p ← {memory locations read by p in round r}
7: Wr,p ← {memory locations written to by p in round r}
8: Xr,p ← (true if p retired in round r else false)
9: for each m ∈ ∪p∈P Rr,p do in parallel
10: Sm ← Sm ∪ {(r, p) | m ∈ Rr,p ∧ p ∈ P}
11: P ← P \ {p ∈ P : Xr,p = true}
12: r ← r + 1

I Definition 5 (Affected computation). Given a round-synchronous algorithm A and two
input configurations (I, P ) and (I ′, P ′), the affected computations are the round and process
pairs (r, p) such that either:
1. process p runs in round r on one input configuration but not the other
2. process p runs in round r on both input configurations, but reads a variable from shared

memory that has a different value in one configuration than the other
The change propagation algorithm is depicted in Algorithm 2. It works by maintaining the
affected computations as three disjoint sets, P , the set of processes that read a memory
location that was rewritten, L, processes that outlived their previous self, i.e. that retired
the last time they ran, but did not retire when re-executed, and D, processes that retired
earlier than their previous self. First, at each round, the algorithm determines the set of
computations that should become affected because of shared memory locations that were
rewritten in the previous round (Lines 12–14). These are used to determine P , the set of
affected computations to rerun this round (Line 15). To ensure correctness, the algorithm
must then reset the reads that were performed by the computations that are no longer alive,
or that will be reran, since the set of locations that they read may differ from last time
(Lines 18–19). Lines 22–26 perform the re-execution of all processes that read a changed
memory location, or that lived longer (did not retire) than in the previous configuration.
The algorithm then subscribes the reads of these computations to the memory locations that
they read (Lines 28–29). Finally, on Lines 32–36, the algorithm updates the set of changed
memory locations (U), the set of computations that lived longer than their previous self (L)
and the set of computations that retired earlier then their previous self (D).

3.3 Correctness
In this section, we sketch a proof of correctness of the change propagation algorithm
(Algorithm 2). Intuitively, correctness is assured because of the write-once condition on
global shared memory, which ensures that computations can not have their output overwritten,
and hence do not need to be re-executed unless data that they depend on is modified.

I Lemma 6. Given a dynamic update, re-executing only the affected computations for each
round will result in the same output as re-executing all computations on the new input.

Proof. Since by definition they read the same values, computations that are not affected,
if re-executed, would produce the same output as they did the first time. Since all shared
memory locations can only be written to once, values written by processes that are not



U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:7

Algorithm 2 Change propagation.

1: // U = sequence of memory locations that have been modified
2: // P + = sequence of new process IDs to create
3: // P− = sequence of process IDs to remove
4: procedure Propagate(U , P +, P−)
5: local D ← P− // Processes that died earlier than before
6: local L← P + // Processes that lived longer than before
7: local A ← ∅ // Affected computations at each round
8: local r ← 0
9: while U 6= ∅ ∨D 6= ∅ ∨ L 6= ∅ ∨ ∃r′ ≥ r : (Ar′ 6= ∅) do
10: // Determine the computations that become affected
11: // due to the newly updated memory locations U

12: local A′ ← ∪m∈U Sm

13: for each r′ ∈ ∪(r′,p)∈A′{r′} do in parallel
14: Ar′ ← Ar′ ∪ {p | (r′, p) ∈ A′}
15: local P ← Ar \D // Processes to rerun
16: // Forget the prior reads of all processes that are
17: // now dead or will be rerun on this round
18: for each m ∈ ∪p∈P∪DRr,p do in parallel
19: Sm ← Sm \ {(r, p) | m ∈ Rr,p ∧ p ∈ P ∪D}
20: local Xprev = {p 7→ Xr,p | p ∈ P}
21: // (Re)run all changed or newly live processes
22: for each process p in P ∪ L do in parallel
23: ComputeRound(r, p)
24: Rr,p ← {memory locations read by p in round r}
25: Wr,p ← {memory locations written to by p in round r}
26: Xr,p ← (true if p retired in round r else false)
27: // Remember the reads performed by processes on this round
28: for each m ∈ ∪p∈P∪LRr,p do in parallel
29: Sm ← Sm ∪ {(r, p) | m ∈ Rr,p ∧ p ∈ P ∪ L}
30: // Update the sets of changed memory locations,
31: // newly live processes, and newly dead processes
32: U ← ∪p∈(P∪L)Wr,p

33: L′ ← {p ∈ P | Xprev
p = true ∧Xr,p = false}

34: L← L ∪ L′ \ {p ∈ L | Xr,p = true}
35: D′ ← {p ∈ P | Xprev

p = false ∧Xr,p = true}
36: D ← D ∪D′ \ {p ∈ D | Xprev

p = true}
37: r ← r + 1

re-executed can not have been overwritten, and hence it is safe to not re-execute them, as
their output is preserved. Therefore re-executing only the affected computations will produce
the same output as re-executing all computations. J

I Theorem 7 (Consistency). Given a dynamic update, change propagation correctly updates
the output of the algorithm.

Proof sketch. Follows from Lemma 6 and the fact that all reads and writes to global shared
memory are tracked in Algorithm 2, and since global shared memory is the only method by
which processes communicate, all affected computations are identified. J
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2:8 Parallel Batch-Dynamic Trees via Change Propagation

3.4 Cost analysis
To analyze the work of change propagation, we need to formalize a notion of computation
distance. Intuitively, the computation distance between two computations is the work
performed by one and not the other. We then show that change propagation can efficiently
re-execute the affected computations in work proportional to the computation distance.

I Definition 8 (Computation distance). Given a round-synchronous algorithm A and two
input configurations, the computation distance W∆ between them is the sum of the work
performed by all of the affected computations with respect to both input configurations.

I Theorem 9. Given a round-synchronous algorithm A with input configuration (I, P ) that
does W work in R rounds and S span, then
1. the initial run of the algorithm with tracking takes O(W ) work in expectation and

O(S +R · log(W )) span w.h.p.,
2. running change propagation on a dynamic update to the input configuration (I ′, P ′) takes

O(W∆ +R′) work in expectation and O(S′ +R′ log(W ′)) span w.h.p., where S′, R′,W ′
are the maximum span, rounds, and work of the algorithm on the two input configurations,

These bounds hold on the CRCW PRAM and in the binary forking TRAM model.

Proof. We begin by analyzing the initial run. By definition, all executions of the round
computations, ComputeRound, take O(W ) work and O(S) span in total, with at most
an additional O(log(M)) = O(log(W )) span to perform the parallel for loop. We will show
that all additional work can be charged to the round computations, and that at most an
additional O(log(W )) span overhead is incurred.

We observe that Rr,p,Wr,p and Xr,p are at most the size of the work performed by the
corresponding computations, hence the cost of Lines 6 – 8 can be charged to the computation.
The reader sets Sm can be implemented as dynamic arrays with lazy deletion (this will be
discussed during change propagation). To append new elements to Sm (Line 10), we can
use a semisort performing linear work in expectation to first bucket the shared memory
locations in ∪p∈PRr,p, whose work can be charged to the corresponding computations that
performed the reads. This adds an additional O(log(W )) span w.h.p. since the number of
reads is no more than W in total. Finally, removing retired computations from P (Line 11)
requires a compaction operation. Since compaction takes linear work, it can be charged to
the execution of the corresponding processes. The span of compaction is at most O(log(W )).

Summing up, we showed that all additional work can be charged to the round computations,
and the algorithm incurs at most O(log(W )) additional span per round w.h.p. Hence the
cost of the initial run is O(W ) work in expectation and O(S +R · log(W )) span w.h.p.

We now analyze the change propagation procedure (Algorithm 2). The core of the work
is the re-execution of the affected readers on Line 23, which, by definition takes O(W∆) work,
and O(S′) span, with at most O(log(W ′)) additional span to perform the parallel for loop.
Since some rounds may have no affected computations, the algorithm could perform up to
O(R′) additional work to process these rounds. We will show that all additional work can be
charged to the affected computations, incurring at most an additional O(log(W ′)) span.

Lines 12 – 14 bucket the newly affected computations by round. This can be achieved
with an expected linear work semisort and by maintaining the Ar sets as dynamic arrays. The
work is chargeable to the affected computations and the span is at most O(log(W ′)) w.h.p.
Computing the current set of affected computations (Line 15) requires a filter/compaction
operation, whose work is charged to the affected computations and span is at most O(log(W ′)).

Updating the reader sets Sm (Line 19) can be done as follows. We maintain Sm as
dynamic arrays with lazy deletion, meaning that we delete by marking the corresponding slot
as empty. When more than half of the slots have been marked empty, we perform compaction,
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whose work is charged to the updates and whose span is at most O(log(W ′)). In order to
perform deletions in constant time, we augment the set Rr,p so that it remembers, for each
entry m, the location of (r, p) in Sm. Therefore these updates take constant amortized work
each (using a dynamic array), charged to the corresponding affected computations, and at
most O(log(W ′)) span if a resize/compaction is triggered.

Xprev can be implemented as an array of size |P |, with work charged to the affected
computations in P . As in the initial run, the cost of updating Rr,p,Wr,p and Xr,p can also
be charged to the work performed by the affected computations.

Updating the reader sets Sm (Line 29) is a matter of appending to dynamic arrays, and,
as mentioned earlier, remembering for each m ∈ Rr,p, the location of (r, p) in Sm. The work
can be charged to the affected computations, and the span is at most O(log(W ′)).

Collecting the updated locations U (Line 32) can similarly be charged to the affected
computations, and incurs no more than O(log(W ′)) span. On Lines 33 – 36, the sets L′ and
D′ are computed by a compaction over P , whose work is charged to the affected computations
in P . Updating L and D correspondingly requires a compaction operation, whose work is
charged to the affected computations in L and D respectively. Each of these compactions
costs O(log(W ′)) span.

We can finally conclude that all additional work performed by change propagation
can be charged to the affected computations, and hence to the computation distance W∆,
while incurring at most O(log(W ′)) additional span per round w.h.p. Therefore the total
work performed by change propagation is O(W∆ + R′) in expectation and the span is
O(S′ +R′ · log(W ′)) w.h.p. J

We now show that for a special class of round-synchronous algorithms, the span overhead
can be reduced. Our dynamic trees algorithm falls into this special case.

I Definition 10. A restricted round-synchronous algorithm is a round-synchronous algorithm
such that each round computation performs only a constant number of reads and writes, and
each shared memory location is read only by a constant number of computations, and only in
the round directly after it was written.

I Theorem 11. Given a restricted round-synchronous algorithm A with input configuration
(I, P ) that does W work in R rounds and S span, then
1. the initial run of the algorithm with tracking takes O(W ) work and O(S + R log∗(W ))

span w.h.p. on the CRCW PRAM and O(S +R log(W )) span in the binary forking model,
2. change propagation on a dynamic update to the input configuration (I ′, P ′) takes O(W∆)

work (in expectation on the CRCW PRAM), and O(S′ +R′ log∗(W ′)) span w.h.p. on the
CRCW PRAM and O(S′+R′ log(W ′)) span in the binary forking model, where S′, R′,W ′
are the maximum span, rounds, and work of the algorithm on the two input configurations.

Proof sketch. Rather than recreate the entirety of the proof of Theorem 9, we simply sketch
the differences. In essence, we obtain the result by removing the uses of scans, and semisorts,
which were the main cause of the O(log(W ′)) span overhead and the randomized work.
Instead, we rely only on (possibly approximate) compaction, which is only randomized on
the CRCW PRAM. We also lose the R′ term in the work since computations can only read
from locations written in the previous round, and hence the set of rounds on which there
exists an affected computation must be contiguous.

The main technique that we will make use of is the sparse array plus compaction technique.
In situations where we wish to collect a set of items from each executed process, we would, in
the unrestricted model, require a scan, which costs O(log(W ′)) span on the CRCW PRAM.
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If each executed process, however, only produces a constant number of these items, we can
allocate an array that is a constant size larger than the number of processes, and each process
can write its set of items to a designated offset. We can then perform (possibly approximate)
compaction on this array to obtain the desired set, with at most a constant factor additional
blank entries. This takes O(log∗(W ′)) span w.h.p. on the CRCW PRAM, and O(log(W ′))
span in the binary forking model.

Maintaining Sm in the initial run and during change propagation is the first bottleneck,
originally requiring a semisort. Since each computation performs a constant number of writes,
we can collect the writes using the sparse array plus compaction technique. Since, in the
restricted model, each modifiable will only be read by a constant number of readers, we can
update Sm in constant time.

To compute the affected computations Ar also originally required a semisort, but in the
restricted model, since all reads happen on the round directly after the write, no semisort is
needed, since they will all have the same value of r. Collecting the affected computations
from the written modifiables can also be achieved using the sparse array and compaction
technique, using the fact that each computation wrote to a constant number of modifiables,
and each modifiable is subsequently read by a constant number of computations. Additionally,
Ar will be empty at the beginning of round r, so computing P requires only a compaction.

Lastly, collecting the updated locations U can also be performed using the sparse array
and compaction technique. In summary, we can replace all originally O(log(W ′)) span
operations with (approximate) compaction in the restricted setting, and hence we obtain
the given span bounds since this takes O(log∗(W ′)) span w.h.p. on the CRCW PRAM, and
O(log(W ′)) span in the binary forking model. J

I Remark 12 (Space usage). We do not formally specify an implementation of the memory
model, but one simple way to achieve good space bounds is to use hashtables to implement
global shared memory. Each write to a particular global shared memory location maps to
an entry in the hashtable. When a round computation is invalidated during a dynamic
update, its writes can be purged from the hashtable to free up space, preventing unbounded
space blow up. Since the algorithm must also track the reads of each global shared memory
location, using this implementation, the space usage is proportional to the number of shared
memory reads and writes. In the restricted round-synchronous model, the number of reads
must be proportional to the number of writes, and hence the space usage is proportional to
the number of writes.

4 Dynamizing Tree Contraction

In this section, we show how to obtain a dynamic tree contraction algorithm by applying our
dynamization technique to the static tree contraction algorithm of Miller and Reif [20]. In
Section 5, we will show how to use this to obtain a parallel batch-dynamic trees framework.

Tree contraction

Tree contraction is the process of shrinking a tree down to a single vertex by repeatedly
performing local contractions. Each local contraction deletes a vertex and merges its adjacent
edges if it had degree two. Tree contraction has a number of useful applications, studied
extensively in [21, 22, 5]. It can be used to perform various computations by associating
data with edges and vertices and defining how data is accumulated during local contractions.

Various versions of tree contraction have been proposed depending on the specifics of
local contractions. We consider an undirected variant of the randomized version proposed
by Miller and Reif [20], which makes use of two operations: rake and compress. The former
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removes all nodes of degree one from the tree, except in the case of a pair of adjacent degree
one vertices, in which case only one of them is removed by tiebreaking on the vertex IDs.
The latter operation, compress, removes an independent set of vertices of degree two that
are not adjacent to any vertex of degree one. Compressions are randomized with coin flips
to break symmetry. Miller and Reif showed that it takes O(logn) rounds w.h.p. to fully
contract a tree of n vertices in this manner.

Input forests

The algorithms described here operate on undirected forests F = (V,E), where V is a set of
vertices, and E is a set of undirected edges. If (u, v) ∈ E, we say that u and v are adjacent,
or that they are neighbors. A vertex with no neighbors is said to be isolated, and a vertex
with one neighbor is called a leaf.

We assume that the forests given as input have bounded degree. That is, there exists
some constant t such that each vertex has at most t neighbors. We will explain how to handle
arbitrary-degree trees momentarily.

The static algorithm

The static tree contraction algorithm (Algorithm 3) works in rounds, each of which takes a
forest from the previous round as input and produces a new forest for the next round. On
each round, some vertices may be deleted, in which case they are removed from the forest
and are not present in all remaining rounds. Let F i = (V i, Ei) be the forest after i rounds
of contraction, and thus F 0 = F is the input forest. We say that a vertex v is alive at round
i if v ∈ V i, and is dead at round i if v 6∈ V i. If v ∈ V i but v 6∈ V i+1 then v was deleted in
round i. There are three ways for a vertex to be deleted: it either finalizes (Line 32), rakes
(Line 21), or compresses (Line 26). Finalization removes isolated vertices. Rake removes all
leaves from the tree, with one special exception. If two leaves are adjacent, then to break
symmetry and ensure that only one of them rakes, the one with the lower identifier rakes into
the other (Line 8). Finally, compression removes an independent set of degree two vertices
that are not adjacent to any degree one vertices, as in Miller and Reif’s algorithm. The choice
of which vertices are deleted in each round is made locally for each vertex based upon its
own degree, the degrees of its neighbors, and coin flips for itself and its neighbors (Line 13).
For coin flips, we assume a function Heads(i, v) which indicates whether or not vertex v
flipped heaps on round i. It is important that Heads(i, v) is a function of both the vertex
and the round number, as coin flips must be repeatable for change propagation to be correct.

The algorithm produces a contraction data structure which serves as a record of the
contraction process. The contraction data structure is a tuple, (A,D), where A[i][u] is a
list of pairs containing the vertices adjacent to u in round i, and the positions of u in the
adjacency lists of the adjacent vertices. D[u] stores the round on which vertex u contracted.
The algorithm also records leaf[i][u], which is true if vertex u is a leaf at round i. An
implementation of the tree contraction algorithm in our framework is shown in Algorithm 3.

Updates

We consider update operations that implement the interface of a batch-dynamic tree data
structure. This requires supporting batches of links and cuts. A link (insertion) connects two
trees in the forest by a newly inserted edge. A cut (deletion) deletes an edge from the forest,
separating a single tree into two trees. We formally specify the interface for batch-dynamic
trees and give a sample implementation of their operations in terms of the tree contraction
data structure in the full version of this paper [2].
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Algorithm 3 Tree contraction algorithm.

1: procedure ComputeRound(i, u)
2: local ((v1, p1), ..., (vt, pt)), ` ← read(A[i][u], leaf[i][u])
3: if vi =⊥ ∀i then // A vertex with no neighbors finalizes
4: DoFinalize(i, u)
5: else if ` then // A leaf vertex rakes if its neighbor is
6: local (v, p) ← (vi, pi) such that vi 6=⊥ // not a leaf, or if it has the lower ID
7: local `′ ← read(leaf[i][v])
8: if ¬`′ ∨ u < v then DoRake(i, u, (v, p))
9: else DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
10: else // If the vertex has exactly two
11: if ∃(v, p), (v′, p′) : {v1, ..., vt} \ {⊥} = {v, v′} then // neighbors, it will compress
12: local `′, `′′ ← read(leaf[i][v], leaf[i][v′]) // if neither of them are
13: local c ← Heads(i, u) ∧ ¬Heads(i, v) ∧ ¬Heads(i, v′) // leaves and it flips heads
14: if (¬`′ ∧ ¬`′′ ∧ c) then // and they both flip tails
15: DoCompress(i, u, (v, p), (v′, p′))
16: else
17: DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
18: else
19: DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
20:
21: procedure DoRake(i, u, (v, p)) // When a vertex rakes, it replaces itself with
22: write(A[i + 1][v][p], ⊥) // null (⊥) in its neighbor’s adjacency list in
23: write(D[u], i) // in the next round
24: retire process
25:
26: procedure DoCompress(i, u, (v, p), (v′, p′)) // When a vertex compresses, it replaces itself
27: write(A[i + 1][v][p], (v′, p′)) // with its opposite neighbors in each neighbor’s
28: write(A[i + 1][v′][p′], (v, p)) // adjacency list in the next round
29: write(D[u], i)
30: retire process
31:
32: procedure DoFinalize(i, u)
33: write(D[u], i)
34: retire process
35:
36: procedure DoAlive(i, u, ((v1, p1), ..., (vt, pt)))// If a vertex remains alive, it writes itself into
37: local nonleaves ← 0 // its neighbors’ adjacency lists in the next
38: for j ← 1 to t do // round. It must also determine whether it
39: if vj 6=⊥ then // it will be a leaf in the next round
40: write(A[i + 1][vj ][pj ], (u, j))
41: nonleaves += 1 - read(leaf[i][vj ])
42: else
43: write(A[i + 1][u][j], ⊥)
44: write(leaf[i + 1][u], nonleaves = 1)

Handling trees of arbitrary degree

To handle trees of arbitrary degree, we can split each vertex into a path of vertices, one for
each of its neighbors. This technique is standard and has been described in [18], for example.
This results in a tree of degree 3, with at most O(n+m) vertices and O(m) edges for an
initial tree of n vertices and m edges. For edge-weighted trees, the additional edges can be
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given a suitable identity weight to preserve query values. It is simple to maintain such a
transformation dynamically. For a batch insertion, a work-efficient semisort can be used
to group each new neighbor by their endpoints, and then for each vertex, an appropriate
number of new vertices can be added to the path. Batch deletion can be handled similarly.

4.1 Analysis
We now analyse the initial work, round, complexity, span, and computation distance of the
tree contraction algorithm. This section is dedicated to proving the following theorem.

I Theorem 13. Given a forest of n vertices, the initial work of tree contraction is O(n)
in expectation, the round complexity and the span is O(log(n)) w.h.p. and the computation
distance induced by updating k edges is O(k log(1 + n/k)) in expectation.

Let F = (V,E) be the set of initial vertices and edges of the input tree, and denote by
F i = (V i, Ei), the set of remaining (alive) vertices and edges at round i. We use the term at
round i to denote the beginning of round i, and in round i to denote an event that occurs
during round i. For some vertex v at round i, we denote the set of its adjacent vertices by
Ai(v), and its degree with δi(v) =

∣∣Ai(v)
∣∣. A vertex is isolated at round i if δi(v) = 0. When

multiple forests are in play, it will be necessary to disambiguate which is in focus. For this,
we will use subscripts: for example, δiF (v) is the degree of v in the forest F i, and EiF is the
set of edges in the forest F i.

4.1.1 Analysis of construction
We first show that the static tree contraction algorithm is efficient. This argument is similar
to Miller and Reif’s argument in Theorem 2.1 of [21].

I Lemma 14. For any forest (V,E), there exists β ∈ (0, 1) such that E
[∣∣V i∣∣] ≤ βi |V |,

where V i is the set of vertices remaining after i rounds of contraction.

Proof. We begin by considering trees, and then extend the argument to forests. Given a
tree (V,E), consider the set V ′ of vertices after one round of contraction. We would like to
show there exists β ∈ (0, 1) such that E [|V ′|] ≤ β |V |. If |V | = 1, then this is trivial since
the vertex finalizes (it is deleted with probability 1). For |V | ≥ 2, Consider the following
sets, which partition the vertex set:
H = {v : δ(v) ≥ 3}
L = {v : δ(v) = 1}
C = {v : δ(v) = 2 ∧ ∀u ∈ A(v), u /∈ L}
C ′ = {v : δ(v) = 2} \ C

Note that at least half of the vertices in L must be deleted, since all leaves are deleted, except
those that are adjacent to another leaf, in which case exactly one of the two is deleted. Also,
in expectation, 1/8 of the vertices in C are deleted. Vertices in H and C ′ necessarily do not
get deleted. Now, observe that |C ′| ≤ |L|, since each vertex in C ′ is adjacent to a distinct
leaf. Finally, we also have |H| < |L|, which follows from standard arguments about compact
trees. Therefore in expectation,

1
2 |L|+

1
8 |C| ≥

1
4 |L|+

1
8 |H|+

1
8 |C

′|+ 1
8 |C| ≥

1
8 |V |

vertices are deleted, and hence

E [|V ′|] ≤ 7
8 |V | .
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Equivalently, for β = 7
8 , for every i, we have E

[∣∣V i+1
∣∣ ∣∣ Vi] ≤ β ∣∣V i∣∣, where V i is the set of

vertices after i rounds of contraction. Therefore E
[∣∣V i+1

∣∣] ≤ βE
[∣∣V i∣∣]. Expanding this

recurrence, we have E
[∣∣V i∣∣] ≤ βi |V |. To extend the proof to forests, simply partition the

forest into its constituent trees and apply the same argument to each tree individually. Due
to linearity of expectation, summing over all trees yields the desired bounds. J

I Lemma 15. On a forest of n vertices, after O(logn) rounds of contraction, there are no
vertices remaining w.h.p.

Proof. For any c > 0, consider round r = (c+ 1) · log1/β(n). By Lemma 14 and Markov’s
inequality, we have

P [|V r| ≥ 1] ≤ βrn = n−c. J

Proof of initial work, rounds, and span in Theorem 13

Proof. At each round, the construction algorithm performs O
(∣∣V i∣∣) work, and so the total

work is O
(∑

i E
[∣∣V i∣∣]) in expectation. By Lemma 14, this is O(|V |) = O(n). The round

complexity and the span follow from Lemma 15. J

4.1.2 Analysis of dynamic updates
Intuitively, tree contraction is efficiently dynamizable due to the observation that, when a
vertex locally makes a choice about whether or not to delete, it only needs to know who its
neighbors are, and whether or not its neighbors are leaves. This motivates the definition of
the configuration of a vertex v at round i, denoted κiF (v), defined as

κiF (v) =
{

({(u, `iF (u)) : u ∈ AiF (v)}), if v ∈ V iF
dead, if v 6∈ V iF ,

where `iF (u) indicates whether δiF (u) = 1 (the leaf status of u). Consider some input forest
F = (V,E), and let F ′ = (V, (E \ E−) ∪ E+) be the newly desired input after a batch cut
with edges E− and/or a batch-link with edges E+. We say that a vertex v is affected at
round i if κiF (v) 6= κiF ′(v).

I Lemma 16. The execution in the tree contraction algorithm of process p at round r is an
affected computation if and only if p is an affected vertex at round r.

Proof. The code for ComputeRound for tree contraction reads only the neighbors, and
corresponding leaf statuses, which are precisely the values encoded by the configuration.
Hence if vertex p is alive in both forests the computation p is affected if and only if vertex p
is affected. If instead p is dead in one forest but not the other, vertex p is affected, and the
process p will have retired in one computation but not the other, and hence it will be an
affected computation. Otherwise, if vertex p is dead in both forests, then the process p will
have retired in both computations, and hence be unaffected. J

This means that we can bound the computation distance by bounding the number of affected
vertices. First, we show that vertices that are not affected at round i have nice properties.

I Lemma 17. If v is unaffected at round i, then either v is dead at round i in both F and
F ′, or v is adjacent to the same set of vertices in both.

Proof. Follows directly from κiF (v) = κiF ′(v). J
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I Lemma 18. If v is unaffected at round i, then v is deleted in round i of F if and only if v
is also deleted in round i of F ′, and in the same manner (finalize, rake, or compress).

Proof. Suppose that v is unaffected at round i. Then by definition it has the same neighbors
at round i in both F and F ′. The contraction process depends only on the neighbors of the
vertex, and hence proceeds identically in both cases. J

If a vertex v is not affected at round i but is affected at round i + 1, then we say that v
becomes affected in round i. A vertex can become affected in many ways.

I Lemma 19. If v becomes affected in round i, then at least one of the following holds:
1. v has an affected neighbor u at round i which was deleted in either F i or (F ′)i.
2. v has an affected neighbor u at round i+ 1 where `i+1

F (u) 6= `i+1
F ′ (u).

Proof. First, note that since v becomes affected, we know v does not get deleted, and
furthermore that v has at least one child at round i. If v were to be deleted, then by Lemma
18 it would do so in both forests, leading it to being dead in both forests at the next round
and therefore unaffected. If v were to have no children, then v would rake, but we just argued
that v cannot be deleted.

Suppose that the only neighbors of v which are deleted in round i are unaffected at
round i. Then v’s set of children in round i+ 1 is the same in both forests. If all of these are
unaffected at round i+ 1, then their leaf statuses are also the same in both forests at round
i+ 1, and hence v is unaffected, which is a contradiction. Thus case 2 of the lemma must
hold. In any other scenario, case 1 of the lemma holds. J

I Lemma 20. If v is not deleted in either forest in round i and `i+1
F (v) 6= `i+1

F ′ (v), then v is
affected at round i.

Proof. Suppose v is not affected at round i. If none of v’s neighbors are deleted in this round
in either forest, then `i+1

F (v) = `i+1
F ′ (v), a contradiction. Otherwise, if the only neighbors that

are deleted do so via a compression, since compression preserves the degree of its endpoints,
we will also have `i+1

F (v) = `i+1
F ′ (v) and thus a contradiction. So, we consider the case of one

of v’s children raking. However, since v is unaffected, we know `iF (u) = `iF ′(u) for each child
u of v. Thus if one of them rakes in round i in one forest, it will also do so in the other, and
we will have `i+1

F (v) = `i+1
F ′ (v). Therefore v must be affected at round i. J

Lemmas 19 and 20 give us tools to bound the number of affected vertices for a consecutive
round of contraction: each affected vertex that is deleted affects its neighbors, and each
affected vertex whose leaf status is different in the two forests at the next round affects its
neighbor. This strategy actually overestimates which vertices are affected, since case 1 of
Lemma 19 does not necessarily imply that v is affected at the next round. We wish to show
that the number of affected vertices at each round is not large. Intuitively, we will show
that the number of affected vertices grows only arithmetically in each round, while shrinking
geometrically, which implies that their total number can never grow too large. Let Ai denote
the set of affected vertices at round i. We begin by bounding the size of |A0|.

I Lemma 21. For a batch update of size k, we have |A0| ≤ 3k.

Proof. The computation for a given vertex u at most reads its neighbors, and if it has a
single neighbor, its neighbor’s leaf status. Therefore, the addition/deletion of a single edge
affects at most 3 vertices at round 0. Hence |A0| ≤ 3k. J
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We say that an affected vertex u spreads to v in round i, if v was unaffected at round i and
v becomes affected in round i in either of the following ways:
1. v is a neighbor of u at round i and u is deleted in round i in either F or F ′, or
2. v is a neighbor of u at round i + 1 and the leaf status of u changes in round i, i.e.,

`i+1
F (v) 6= `i+1

F ′ (v).
Let s = |A0|. For each of F and F ′, we now inductively construct s disjoint sets for each
round i, labeled Ai1, A

i
2, . . . A

i
s. These sets will form a partition of Ai. First, arbitrarily

partition A0 into s singleton sets, and let A0
1, . . . , A

0
s be these singleton sets. In other words,

each affected vertex in A0 is assigned a unique number 1 ≤ j ≤ s, and is then placed in A0
j .

Given sets Ai1, . . . , Ais, we construct sets Ai+1
1 , . . . , Ai+1

s as follows. Consider some
v ∈ Ai+1 \ Ai. By Lemmas 19 and 20, there must exist at least one u ∈ Ai such that u
spreads to v. Since there could be many of these, let Si(v) be the set of vertices which spread
to v in round i. Define

ji(v) =
{
j, if v ∈ Aij
minu∈Si(v)

(
j where u ∈ Aij

)
, otherwise

In other words, ji(v) is v’s set identifier if v is affected at round i, or otherwise the minimum
set identifier j such that a vertex from Aij spread to v in round i. We can then produce the
following for each 1 ≤ j ≤ k:

Ai+1
j = {v ∈ Ai+1 | ji(v) = j}

Informally, each affected vertex from round i which stays affected also stays in the same
place, and each newly affected vertex picks a set to join based on which vertices spread to it.

We say that a vertex v is a frontier at round i if v is affected at round i and at least
one of its neighbors in either F or F ′ is unaffected at round i. It is easy to show that any
frontier at any round is alive in both forests and has the same set of unaffected neighbors in
both at that round, and thus, the set of frontier vertices at any round is the same in both
forests. It is also easy to show that if a vertex v spreads to some other vertex in round i,
then v is a frontier at round i. We show next that the number of frontier vertices within
each Aij is bounded.

I Lemma 22. For any i, j, each of the following statements hold:
1. The subforests induced by Aij in each of F i and (F ′)i are trees.
2. Aij contains at most 2 frontier vertices.
3. |Ai+1

j \Aij | ≤ 2.

Proof. Statement 1 follows from rake and compress preserving connectedness, and the fact
that if u spreads to v then u and v are neighbors in both forests either at round i or round
i + 1. We prove statement 2 by induction on i, and conclude statement 3 in the process.
At round 0, each A0

j contains at most 1 frontier. We now consider some Aij . Suppose there
is a single frontier vertex v in Aij . If v compresses in one of the forests, then v will not
be a frontier in Ai+1

j , but it will spread to at most two newly affected vertices which may
be frontiers at round i + 1. Thus the number of frontiers in Ai+1

j will be at most 2, and
|Ai+1
j \Aij | ≤ 2.
If v rakes in one of the forests, then v must also rake in the other forest (if not, then

v could not be a frontier, since its neighbor would be affected). It spreads to one newly
affected vertex (its neighbor) which may be a frontier at round i+ 1. Thus the number of
frontiers in Ai+1

j will be at most 1, and |Ai+1
j \Aij | ≤ 1.
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Now suppose there are two frontiers u and v in Aij . Due to statement 1 of the Lemma,
each of these must have at least one affected neighbor at round i. Thus if either is deleted,
it will cease to be a frontier and may add at most one newly affected vertex to Ai+1

j , and
this newly affected vertex might be a frontier at round i+ 1. The same can be said if either
u or v spreads to a neighbor due to a leaf status change. Thus the number of frontiers
either remains the same or decreases, and there are at most 2 newly affected vertices. Hence
statements 2 and 3 of the Lemma hold. J

Now define AiF,j = Aij ∩ V iF , that is, the set of vertices from Aij which are alive in F at
round i. We define AiF ′,j similarly for forest F ′.

I Lemma 23. For every i, j, we have

E
[∣∣AiF,j∣∣] ≤ 6

1− β ,

and similarly for AiF ′,j.

Proof. Let F iA,j denote the subforest induced by AiF,j in F i. By Lemma 22, this subforest
is a tree, and has at most 2 frontier vertices. By Lemma 14, if we applied one round of
contraction to F iA,j , the expected number of vertices remaining would be at most β ·E[|AiF,j |].
However, some of the vertices that are deleted in F iA,j may not be deleted in F i. Specifically,
any vertex in AiF,j which is a frontier or is the neighbor that spread to a frontier might not
be deleted. There are at most two frontier vertices and two associated neighbors. By Lemma
22, two newly affected vertices might also be added. We also have |A0

F,j | = 1. Therefore we
conclude the following, which similarly holds for forest F ′:

E
[∣∣∣Ai+1

F,j

∣∣∣] ≤ βE
[∣∣AiF,j∣∣]+ 6 ≤ 6

∞∑
r=0

βr = 6
1− β . J

I Lemma 24. For a batch update of size k, we have for every i,

E
[∣∣Ai∣∣] ≤ 36

1− β k.

Proof. Follows from Lemmas 21 and 23, and the fact that

∣∣Ai∣∣ ≤ s∑
j=1

(∣∣AiF,j∣∣+
∣∣AiF ′,j

∣∣) . J

Proof of computation distance in Theorem 13

Proof. Let F be the given forest and F ′ be the desired forest. Since each process of tree
contraction does constant work each round, Lemma 16 implies that the algorithm does
O
(∣∣Ai∣∣) work at each round i, so W∆ =

∑
i

∣∣Ai∣∣.
Since at least one vertex is either raked or finalized each round, we know that there are

at most n rounds. Consider round r = log1/β(1 + n/k), using the β given in Lemma 14. We
now split the rounds into two groups: those that come before r and those that come after.

For i < r, we bound E
[∣∣Ai∣∣] according to Lemma 24, yielding∑

i<r

E
[∣∣Ai∣∣] = O(rk) = O

(
k log

(
1 + n

k

))
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work. Now consider r ≤ i < n. For any i we know
∣∣Ai∣∣ ≤ ∣∣V iF ∣∣+ ∣∣V iF ′

∣∣, because each affected
vertex must be alive in at least one of the two forests at that round. We can then apply the
bound given in Lemma 14, and so

∑
r≤i<n

E
[∣∣Ai∣∣] ≤ ∑

r≤i<n

(
E
[∣∣V iF ∣∣]+ E

[∣∣V iF ′

∣∣])
≤
∑
r≤i<n

(
βin+ βin

)
= O(nβr)

= O

(
nk

n+ k

)
= O(k),

and thus

E [W∆] = O
(
k log

(
1 + n

k

))
+O(k) = O

(
k log

(
1 + n

k

))
. J

5 Parallel Rake-compress Trees

Dynamic trees typically provide support for dynamic connectivity queries. Most dynamic
tree data structures also support some form of augmented value query. For example, Link-cut
trees [27] support root-to-vertex path queries, and Euler-tour trees [15] support subtree sum
queries. Top trees [28, 6] support both path and subtree queries, as well as nonlocal queries
such as centers and medians, but no parallelization of them is known. The only existing
parallel batch-dynamic tree data structure is that of Tseng et al. [29], which is based on
Euler-tour trees, and hence only handles subtree queries.

Rake-compress trees [5] (RC trees) are another sequential dynamic trees data structure,
based on tree contraction, and have also been shown to be capable of handling both path
and subtree queries, as well as nonlocal queries, all in O(log(n)) time. In this section, we will
explain how our parallel batch-dynamic algorithm for tree contraction can be used to derive
a parallel batch-dynamic version of RC trees, leading to the first work-efficient algorithm for
batch-dynamic trees that can handle this wide range of queries. We use a slightly different
set of definitions than the original presentation of RC trees in [5], which correct some subtle
corner cases and simplify the exposition, although the resulting data structure is equivalent.
All of the query algorithms for sequential RC trees therefore work on our parallel version.

Contraction and clusters

RC trees are based on the idea that the tree contraction process can be interpreted as a
recursive clustering of the original tree. Formally, a cluster is a connected subset of vertices
and edges of the original tree. Note, importantly, that a cluster may contain an edge without
containing both of its endpoints. The boundary vertices of a cluster C are the vertices v /∈ C
that are adjacent to an edge e ∈ C. The degree of a cluster is the number of boundary
vertices of that cluster. The vertices and edges of the original tree form the base clusters.
Clusters are merged using the following simple rule: Whenever a vertex v is deleted, all of
the clusters that have v as a boundary vertex are merged with the base cluster containing v.
This implies that all clusters formed will have degree at most two. A cluster of degree zero is
called a nullary cluster, a cluster of degree one a unary cluster, and a cluster of degree two a
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binary cluster. All non-base clusters have a unique representative vertex, which corresponds
to the vertex that was deleted to form it. The full version of this paper [2] provides additional
details and some diagrams that explain what each kind of cluster looks like.

5.1 Building and maintaining RC trees
Given a tree and an execution of the tree contraction algorithm, the RC tree consists of
nodes which correspond to the clusters formed by the contraction process. The children of
a node are the nodes corresponding to the clusters that merged together to form it. An
example tree, a clustering, and the corresponding RC tree are depicted in Figure 1. Note
that in the case of a disconnected forest, the RC tree will have multiple roots.

We will sketch here how to maintain an RC tree subject to batch-dynamic updates in
parallel using our algorithm for parallel batch-dynamic tree contraction. This requires just
two simple augmentations to the tree contraction algorithm. Recall that tree contraction
(Algorithm 3) maintains an adjacency list for each vertex at each round. Whenever a neighbor
u of a vertex v rakes into v, the process u writes a null value into the corresponding position in
v’s adjacency list. This process can be augmented to also write, in addition to the null value,
the identity of the vertex that just raked. Second, when storing the data for a neighboring
edge in a vertex’s adjacency list, we additionally write the name of the representative vertex
if that edge corresponds to a compression, or null if the edge is an edge of the original tree.
The RC tree can then be inferred using this augmented data as follows.
1. Given any cluster C with representative v, its unary children can be determined by

looking at the vertices that raked into v. The children are precisely the unary clusters
represented by these vertices. For the final cluster, these are its only children.

2. Given a binary or unary cluster C with representative v, its binary children can be
determined by inspecting v’s adjacency list at the moment it was deleted. The binary
clusters corresponding to the edges adjacent to v at its time of death are the binary
children of the cluster C.

It then suffices to observe that this information about the clusters can be recorded during
the contraction process. By employing change propagation, the RC tree can therefore be
maintained subject to batch-dynamic updates. Since each cluster consists of a constant
amount of information, this can be done in the same work and span bounds as the tree
contraction algorithm. We therefore have the following result.
I Theorem 25. We can maintain a rake-compress tree of a tree on n vertices subject to
batch insertions and batch deletions of size k in O(k log(1 + n/k)) work in expectation and
O(log2(n)) span per update w.h.p. The span can be improved to O(log(n) log∗(n)) w.h.p. on
the CRCW PRAM.

5.2 Applications
Most kinds of queries assume that the vertices and/or edges of the input tree are annotated
with data, such as weights or labels. In order to support queries, each cluster is annotated
with some additional information. The algorithm must then specify how to combine the
data from multiple constituent clusters whenever a set of clusters merge. These annotations
are generated during the tree contraction algorithm, and are therefore available for querying
immediately after performing an update.

Once the clusters are annotated with the necessary data, the queries themselves typically
perform a bottom-up or top-down traversal of the RC tree, or possibly in the case of more
complicated queries, a combination of both. A variety of queries is described in [5].

ESA 2020



2:20 Parallel Batch-Dynamic Trees via Change Propagation

a

c

b d e h i

f

g j

k l

(a) A tree.
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(b) A recursive clustering of the tree produced
by tree contraction. Clusters produced in earlier
rounds are depicted in a darker color.
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(c) The corresponding RC tree. (Non-base) unary clusters are shown as circles,
binary clusters as rectangles, and the finalize (nullary) cluster at the root with
two concentric circles. The base clusters (the leaves) are labeled in lowercase, and
the composite clusters are labeled with the uppercase label of their representative
vertex.

Figure 1 A tree, a clustering, and the corresponding RC tree.

Batch queries

We can also implement batch queries, in which we answer k queries simultaneously in
O(k log(1 + n/k)) work in expectation and O(log(n)) span w.h.p. This improves upon the
work bound of O(k log(n)) obtained by simply running independent queries in parallel. The
idea is to detect when multiple traversals would intersect, and to eliminate redundant work
that they would perform. An example in which this technique is applicable is finding a
representative vertex of a connected component. When traversing upwards, if multiple query
paths intersect, then only one proceeds up the tree and subsequently brings the answer back
down for the other ones. The following theorem is the main tool that we can use for analyzing
batch queries. The proof is similar to that of the computation distance in Theorem 13, and
can be found in the full version of this paper [2].

I Theorem 26. Given a tree on n vertices and a corresponding RC tree, k root-to-leaf paths
in the RC tree touch O(k log(1 + n/k)) distinct RC tree nodes in expectation.

In the full version of this paper [2], we will show that batch connectivity, subtree sum, and
path sum queries given batches of size k can be answered in O(k log(1 + n/k)) work in
expectation and O(log(n)) span w.h.p.

6 Conclusion

In this paper we showed that we can obtain work-efficient parallel batch-dynamic algorithms
by applying an algorithmic dynamization technique to corresponding static algorithms. Using
this technique, we obtained the first work-efficient parallel algorithm for batch-dynamic
trees that supports more than just subtree queries. Our framework also demonstrates the
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broad benefits of algorithmic dynamization; much of the complexity of designing parallel
batch-dynamic algorithms by hand is removed, since the static algorithms are usually simpler
than their dynamic counterparts. We note that although the round synchronous model
captures a very broad class of algorithms, the breadth of algorithms suitable for dynamization
is less clear. To be suitable for dynamization, an algorithm additionally needs to have small
computational distance between small input changes. As some evidence of broad applicability,
however, the practical systems mentioned in the technical overview of the introduction have
been applied broadly and successfully – again without any theoretical justification, yet.
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