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Abstract
We study networks of processes which all execute the same finite-state protocol and communicate
thanks to a rendez-vous mechanism. Given a protocol, we are interested in checking whether there
exists a number, called a cut-off, such that in any networks with a bigger number of participants,
there is an execution where all the entities end in some final states. We provide decidability and
complexity results of this problem under various assumptions, such as absence/presence of a leader
or symmetric/asymmetric rendez-vous.
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1 Introduction

Networks with many identical processes. One of the difficulty in verifying distributed systems
lies in the fact that many of them are designed for an unbounded number of participants.
As a consequence, to be exhaustive in the analysis, one needs to design formal methods
which takes into account this characteristic. In [21], German and Sistla introduce a model
to represent networks with a fix but unbounded number of entities. In this model, each
participant executes the same protocol and they communicate between each other thanks
to rendez-vous (a synchronization mechanism allowing two entities to change their local
state simultaneously). The number of participants can then be seen as a parameter of the
model and possible verification problems ask for instance whether a property holds for all the
values of this parameter or seeks for some specific value ensuring a good behavior. With the
increasing presence of distributed mechanisms (mutual exclusion protocols, leader election
algorithms, renaming algorithms, etc) in the core of our computing systems, there has been
in the last two decades a regain of attention in the study of such parameterized networks.

Surprisingly, the verification of these parameterized systems is sometimes easier than the
case where the number of participants is known. This can be explained by the following
reason: in the parameterized case the procedure can adapt on demand the number of
participants to build a problematic execution. It is indeed what happens with the liveness
verification of asynchronous shared-memory systems. This problem is Pspace-complete
for a finite number of processes and in NP when this number is a parameter [14]. It is
hence worth studying the complexity of the verification of such parameterized models and
many recent works have attacked these problems considering networks with different means
of communication. For instance in [16, 13, 7, 6] the participants communicate thanks to
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46:2 Cut-Off in Parameterized Rendez-Vous Networks

broadcast of messages, in [11, 2] they use a token-passing mechanism , in [10] a message
passing mechanism and in [18] the communication is performed through shared registers.
The relative expressiveness of some of those models has been studied in [4]. Finally in his
survey [15], Esparza shows that minor changes in the setting of parameterized networks,
such as the presence of a controller (or equivalently a leader), might drastically change the
complexity of the verification problems.

Cut-off to ease the verification. When one has to prove the correctness of a distributed
algorithm designed to work for an unbounded number of participants, one technique consists
in proving that the algorithm has a cut-off, i.e. a bound on the number of processes such
that if it behaves correctly for this specific number of processes then it will still be correct
for any bigger networks. Such a property allows to reduce the verification procedure to the
analysis of the algorithm with a finite number of entities. Unfortunately, as shown in [3],
many parameterized systems do not have a cut-off even for basic properties. Instead of
checking whether a general class of models admits a cut-off, we propose in this work to study
the following problem: given a representation of a system and a class of properties, does
it admit a cutoff ? To the best of our knowledge, looking at the existence of a cutoff as a
decision problem is a subject that has not received a lot of attention although it is interesting
both practically and theoretically. First, in the case where this problem is decidable, it
allows to find automatically cutoffs for specific systems even though they belong to a class
for which there is no general results on the existence of cutoff. The search of cutoffs has been
studied in [1] where the authors propose a semi-algorithm for verification of parameterized
networks with respect to safety properties. This algorithm stops when a cutoff is found.
However it is not stated how to determine the existence of this cutoff, neither if this is
possible or not. In [25], the authors propose a way to compute dynamically a cutoff, but
they consider systems and properties for which they know that a cutoff exists. Second,
from the theoretical point of view, the cutoff decision problem is interesting because it goes
beyond the classical problems for parameterized systems that usually seek for the existence
of a number of participants which satisfies a property or check that a property hold for all
possible number of participants. Note that in the latter case, one might be in a situation
that for a property to hold a minimum number of participants is necessary (and below this
number the property does not hold), such a situation can be detected with the existence of a
cutoff but not with the simple universal quantification.

Rendez-vous networks. We focus on networks where the communication is performed by
rendez-vous. There are different reasons for this choice. First, we are not aware of any
technique to decide automatically the existence of a cut-off in parameterized systems, it is
hence convenient to look at this problem in a well-known setting. Another aspect which
motivates the choice of this model is that the rendez-vous communication corresponds
to a well-known paradigm in the design of concurrent/distributed systems (for instance
rendez-vous in the programming languages C or Java can be easily implemented thanks to
wait/notify mechanisms). Rendez-vous communication seems as well a natural feature for
parameterized systems used to model for instance crowds or biological systems (at some point
we consider symmetric rendez-vous which can be seen less common in computing systems but
make sense for these other applications). Last but not least, rendez-vous networks are very
close to population protocols [5] for which there has been in the last years a regain of interest
in the community of formal methods [17, 8, 9]. Population protocols and rendez-vous networks
are both based on rendez-vous communication, but in population protocols it is furthermore
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required that all the fair executions converge to some accepting set of configurations (see [17]
for more details). In our case, we seek for the existence of an execution ending with all the
processes in a final state. The similarities between the two models let us think that the
formal techniques we use could be adapted for the analysis of some population protocols.

Our contributions. We study the Cut-off Problem (C.O.P.) for rendez-vous networks. It
consists in determining whether, given a protocol labeled with rendez-vous primitives, there
exists a bound B, such that in any networks of size bigger than B where the processes all run
the same protocol there is an execution which brings all the processes to a final state. We
assume furthermore that in our network, there could be one extra entity, called the leader,
that runs its own specific protocol. We first show that C.O.P. is decidable by reducing it to a
new decision problem on Petri nets. Unfortunately we show as well that it is non elementary
thanks to a reduction from the reachability problem in Petri nets[12]. We then show that
better complexity bounds can be obtained if we assume the rendez-vous to be symmetric
(i.e. any process that requests a rendez-vous can as well from the same state accept one
and vice-versa) or if we assume that there is no leader. For each of these restrictions, new
algorithmic techniques for the analysis of rendez-vous networks are proposed. The following
table sums up the complexity bounds we obtain.

Table 1 Complexity results obtained for the Cut-Off Problem.

Asymmetric rendez-vous Symmetric rendez-vous

Presence of a leader Decidable and non-elementary PSpace
Absence of leader EXPSpace NP

Due to lack of space, omitted details and proofs can be found in [23].

2 Modeling networks with rendez-vous communication

We write N to denote the set of natural numbers and [i, j] to represent the set {k ∈ N | i ≤
k and k ≤ j} for i, j ∈ N. For a finite set E, the set NE represents the multisets over E. For
two elementsm,m′ ∈ NE , we denotem+m′ the multiset such that (m+m′)(e) = m(e)+m′(e)
for all e ∈ E. We say that m ≤ m′ if and only if m(e) ≤ m′(e) for all e ∈ E. If m ≤ m′,
then m′ −m is the multiset such that (m′ −m)(e) = m′(e)−m(e) for all e ∈ E. The size
of a multiset m is given by |m| = Σe∈Em(e). For e ∈ E, we use sometimes the notation e
for the multiset m verifying m(e) = 1 and m(e′) = 0 for all e′ ∈ E \ {e} and the notation
〈〈e1, e1, e2, e3〉〉 to represent the multiset with four elements e1, e1, e2 and e3.

2.1 Rendez-vous protocols

We are now ready to define our model of networks. We assume that all the entities in the
network (called sometimes processes) behave similarly following the same protocol except one
entity, called the leader, which might behave differently. The communication in the network is
pairwise and is performed by rendez-vous through a communication alphabet Σ. Each entity
can either request a rendez-vous, with the primitive ?a, or answer to a rendez-vous, with the
primitive !a where a belongs to Σ. The set of actions is hence RV (Σ) = {?a, !a | a ∈ Σ}.

CONCUR 2020



46:4 Cut-Off in Parameterized Rendez-Vous Networks

I Definition 1 (Rendez-vous protocol). A rendez-vous protocol P is a tuple 〈Q,QP , QL,Σ, qi,

qf , q
L
i , q

L
f , E〉 where Q is a finite set of states partitioned into the processes states QP and

the leader states QL, Σ is a finite alphabet, qi ∈ QP [resp. qL
i ∈ QL] is the initial state of

the processes [resp. of the leader], qf ∈ QP [resp. qL
f ∈ QL] is the final state of the processes

[resp. of the leader], and E ⊆ (QP ×RV (Σ)×QP )∪ (QL ×RV (Σ)×QL) is the set of edges.

A configuration of the rendez-vous protocol P is a multiset C ∈ NQ verifying that there
exists q ∈ QL such that C(q) = 1 and C(q′) = 0 for all q′ ∈ QL \ {q}, in other words there
is a single entity corresponding to the leader. The number of processes in a configuration
C is given by |C| − 1. We denote by C(n) the set of configurations C involving n processes,
i.e. such that |C| = n + 1. The initial configuration with n processes C(n)

i is such that
C

(n)
i (qi) = n and C(n)

i (qL
i ) = 1 and C(n)

i (q) = 0 for all q ∈ Q \ {qi, q
L
i }. Similarly the final

configuration with n processes C(n)
f verifies C(n)

f (qf ) = n and C(n)
f (qL

f ) = 1 and C(n)
f (q) = 0

for all q ∈ Q \ {qf , q
L
f }. Hence in an initial configuration all the entities are in their initial

state and in a final configuration they are all in their final state. The notation C represents
the whole set of configurations equals to

⋃
n∈N C(n).

We are now ready to formalize the behavior of a rendez-vous protocol. In this matter,
we define the relation →⊆

⋃
n≥1 C(n) × C(n) as follows : C → C ′ if, and only if, there is

a ∈ Σ and two edges (q1, ?a, q2), (q′1, !a, q′2) ∈ E such that C(q1) > 0 and C(q′1) > 0 and
C(q1) +C(q′1) ≥ 2 and C ′ = C − (q1 + q′1) + (q2 + q′2). Intuitively it means that in C there is
one entity in q1 that requests a rendez-vous and one entity in q′1 that answers to it and they
both change their state to respectively q2 and q′2. We need the hypothesis C(q1) +C(q′1) ≥ 2
in case q1 = q′1. We use →∗ to represent the reflexive and transitive closure of →. Note
that if C →∗ C ′ then |C| = |C ′|, in other words there is no deletion or creation of processes
during an execution.

qi qf

?c

?d
q?a

?b

!d

?a
qL qL

i

!a

!b
qL

f
!c

Figure 1 A rendez-vous protocol.

I Example 2. Figure 1 provides an example of rendez-vous protocol where the process states
are represented by circles and the leader states by diamond.

2.2 The cut-off problem
We can now describe the problem we address. It consists in determining given a protocol
whether there exists a number of processes such that if we put more processes in the network
it is always possible to find an execution which brings all the entities from their initial state
to their final state. This cut-off problem (C.O.P.) can be stated formally as follows:

Input: A rendez-vous protocol P;
Output: Does there exist a cut-off B ∈ N such that C(n)

i →∗ C(n)
f for all n ≥ B ?

I Example 3. The rendez-vous network represented in Figure 1 admits a cut-off equal to 3.
For n = 3, we have indeed an execution C(3)

i →∗ C(3)
f : 〈〈qL

i , qi, qi, qi〉〉
d−→ 〈〈qL

i , qi, q, qf 〉〉
a−→

〈〈qL, qi, q, qf 〉〉
b−→ 〈〈qL

i , qi, qf , qf 〉〉
c−→ 〈〈qL

f , qf , qf , qf 〉〉 (we indicate for each transition the
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label of the corresponding rendez-vous). For n = 4, the following sequence of rendez-vous leads
to an execution C(4)

i →∗C
(4)
f : 〈〈qL

i , qi, qi, qi, qi〉〉
d−→ 〈〈qL

i , qi, qi, q, qf 〉〉
a−→ 〈〈qL, qi, qi, qi, qf 〉〉

d−→
〈〈qL, qi, q, qf , qf 〉〉

b−→ 〈〈qL
i , qi, qf , qf , qf 〉〉

c−→ 〈〈qL
f , qf , qf , qf , qf 〉〉. Then for any n > 4, we can

always come back to the case where n = 3 (if n is odd) or n = 4 (if n is even). In fact, we
can always let 3 or 4 processes in qi and move pairwise the other processes, one in q and one
in qf . Then the processes in q can be brought in qf thanks to the rendez-vous a and b and
the leader loop between qL

i and qL. Note that if we delete the edge (q, ?a, qi), this protocol
does not admit anymore a cut-off but for all odd number n ≥ 3, we have C(n)

i →∗ C(n)
f .

2.3 Petri nets
As we shall see there are some strong connections between rendez-vous protocols and Petri
nets, this is the reason why we recall the definition of this latter model.

I Definition 4 (Petri net). A Petri net N is a tuple 〈P, T, Pre, Post〉 where P is a finite
set of places, T is a finite set of transitions, Pre : T 7→ NP is the precondition function and
Post : T 7→ NP is the postcondition function.

A marking of a Petri net is a multiset M ∈ NP . A Petri net defines a transition relation
⇒⊆ NP × T × NP such that M t=⇒M ′ for M,M ′ ∈ NP and t ∈ T if and only if M ≥ Pre(t)
and M ′ = M − Pre(t) + Post(t). The intuition behind Petri nets is that marking put
tokens in some places and each transition consumes with Pre some tokens and produces
others thanks to Post in order to create a new marking. We write M ⇒M ′ iff there exists
t ∈ T such that M t=⇒ M ′. Given a marking M ∈ NP , the reachability set of M is the set
Reach(M) = {M ′ ∈ NP |M ⇒∗ M ′} where ⇒∗ is the reflexive and transitive closure of ⇒.
One famous problem in Petri nets is the reachability problem:

Input: A Petri net N and two markings M and M ′;
Output: Do we have M ′ ∈ Reach(M) ?

This problem is decidable [32, 27, 28, 29] and non elementary [12]. Another similar problem
that we will refer to and which is easier to solve is the reversible reachability problem:

Input: A Petri net N and two markings M and M ′;
Output: Do we have M ′ ∈ Reach(M) and M ∈ Reach(M ′)?

It has been shown in [31] to be EXPSpace-complete.

3 Back and forth between rendez-vous protocols and Petri nets

3.1 From Petri nets to rendez-vous protocols
We will see here how the reachability problem for Petri nets can be reduced to the C.O.P.
which gives us a non-elementary lower bound for this latter problem. We consider in the
sequel a Petri net N = 〈P, T, Pre, Post〉 and two markings M,M ′ ∈ NP . Without loss of
generality we can assume that M and M ′ are of the following form: there exists pi ∈ P
such that M(pi) = 1 and M(p) = 0 for all p ∈ P \ {pi} and there exists pf ∈ P such that
M ′(pf ) = 1 and M ′(p) = 0 for all p ∈ P \ {pf}. Taking these restrictions on the markings
does not alter the complexity of the reachability problem.

We build from N a rendez-vous protocol PN which admits a cut-off if and only if
M ′ ∈ Reach(M). The states of the processes in PN are matched to the places of N , the
number of processes in a state corresponding to the number of tokens in the associated
place, and the leader is in charge to move the processes in order to simulate the changing

CONCUR 2020
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pi

t1

p2 p3

t2

pf

qL
i!a

qL
s

!pr(pi)

!b

!co(p
i )

!p
r(
p

2)

!pr(
p3)

!co(
p2)

!c
o(
p

3)!pr(p
f )

qL
f

!co(pf )

R

qi

?a

pi
?pr(pi)

p2

?p
r(
p 2

) p3
?pr(p3)

pf

?pr(p
f )

qf

?co(p
2 ) ?c

o(
p f

)?co(p
i ) ?c

o(
p 3

)

?b

Figure 2 A Petri net N and its associated rendez-vous network PN .

on the number of tokens. The protocol is equipped with an extra state R, the reserve state,
where the leader stores at the beginning of the simulation the number of processes which
will simulate the tokens: when a transition produces a token in a place p, the leader moves a
process from R to p and when it consumes a token from a place p, the leader moves a process
from p to qf . Figure 2 provides an example of a Petri net and its associated rendez-vous
network. In this net, the transition letter a is used to put as many processes as necessary
to simulate the number of tokens in the places in the reserve state R. The letters pr(pj)
are used to simulate the production of a token in the place pj by moving a process from
R to pj and the letter co(pj) are used to simulate the consumption of a token in the place
pj by moving a process from pj to qf . It is then easy to see that each loop on the state
qL

s simulates a transition of the Petri net whereas the transition from qL
i to qL

s is used to
build the initial marking and the transition from qL

s to qL
f is used to delete one token from

the single place pf and move the corresponding process to qf . Finally, the letter b is used
to ensure the cutoff property by moving from qi to qf the extra processes not needed to
simulate the tokens. This construction gives us a hardness result for the C.O.P. thanks to
the fact that the reachability problem in Petri nets is non-elementary [12].

I Theorem 5. The C.O.P. is non-elementary.

3.2 From rendez-vous protocols to Petri nets
We now show how to encode the behavior of a rendez-vous protocol into a Petri net
and give a reduction from the C.O.P. to a problem on the built Petri net. We consider
a rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q

L
i , q

L
f , E〉. From P, we build a Petri

net NP = 〈P, T, Pre, Post〉 with P = {pq | q ∈ Q} and T = {ti, tLf } ∪ {t(q1,q2,a,q′
1,q′

2) |
q1, q2, q

′
1, q
′
2 ∈ Q and a ∈ Σ and (q1, !a, q′1), (q2, ?a, q′2) ∈ E}. Intuitively in NP , we have a

place for each state of P , the transition ti puts tokens corresponding to new processes in the
place corresponding to the initial state qi, the transition tLf consumes a token in the place
corresponding to the final state of the leader qL

f and each transition t(q1,q2,a,q′
1,q′

2) simulates
the protocol respecting the associated semantics (it checks that there is one process in q1
another one in q2 and that they can communicate thanks to the communication letter a ∈ Σ
moving to q′1 and q′2). Figure 3 represents the Petri net NP for the protocol P of Figure 1
(the transitions are only labeled with the letter of the rendez-vous).

Unfortunately we did not find a way to reduce directly the C.O.P. to the reachability
problem in Petri nets which would have lead directly to the decidability of C.O.P. However we
will see how the C.O.P. on P can lead to a decision problem on NP . We consider the initial
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pqf

pqi

pq

pqL
f

pqL
i

pqL

ti

d
2

c

a

a

b

tL
f

Figure 3 The Petri net NP for the protocol P of Figure 1.

marking M0 ∈ NP such that M0(pqL
i

) = 1 and M0(p) = 0 for all p ∈ P \{pqL
i
} and the family

of markings (M (n)
f ){n∈N} such that M (n)

f (pqf
) = n and M (n)

f (p) = 0 for all p ∈ P \ {pqf
}.

From the way we build the Petri net NP , we deduce the following lemma:

I Lemma 6. For all n ∈ N, C(n)
i →∗ C(n)

f in P iff M
(n)
f ∈ Reach(M0) in NP .

This leads us to propose a cut-off problem for Petri nets, which asks whether given an
initial marking and a specific place, there exists a bound B ∈ N such that for all n ≥ B it is
possible to reach a marking with n tokens in the specific place and none in the other. This
single place cut-off problem (single place C.O.P.) can be stated formally as follows:

Input: A Petri net N , an initial marking M0 and a place pf ;
Output: Does there exist B ∈ N such that for all n ≥ B, we have M (n) ∈ Reach(M0)
in N where M (n) is the marking verifying M (n)(pf ) = n and M (n)(p) = 0 for all
p ∈ P \ {pf}?

Thanks to Lemma 6, we can then conclude the following proposition which justifies the
introduction of the single place C.O.P. in our context.

I Proposition 7. The C.O.P. reduces to the single place C.O.P.

4 Solving C.O.P. in the general case

We show how to solve the C.O.P. by solving the single place C.O.P. To the best of our
knowledge this latter problem has not yet been studied and we do not see direct connections
with existing studied problems on Petri nets. It amounts to check if for some B ∈ N we have
{M ∈ NP | M(p) = 0 for all p ∈ P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0). We know from
[26] that the projection of the reachability set on the single place pf is semilinear (that can
be represented by a Presburger arithmetic formula), however this does not help us since we
furthermore require the other places different from pf to be empty.

4.1 Formal tools and associated results
For P,P′ ⊆ Nn, we let P+P′ = {p+p′ | p ∈ P and p′ ∈ P′} and we shall sometimes identify
an element p ∈ Nn with the singleton {p}. A subset P of Nn for n > 0 is said to be periodic
iff 0 ∈ P and P + P ⊆ P. Such a periodic set P is finitely generated if there exists a finite set
of elements {p1, . . . ,pk} ⊂ Nn such that P = {λ1.p1 + . . .+ λk.pk | λi ∈ N for all i ∈ [1, k]}.

CONCUR 2020



46:8 Cut-Off in Parameterized Rendez-Vous Networks

A semilinear set of Nk is then a finite union of sets of the form b + P where b ∈ Nk and P
is finitely generated. Semilinear sets are particularly useful tools because they are closed
under the classical operations (union, complement and projection) and they provide a finite
representation of infinite sets of vectors of naturals. Furthermore they can be represented
by logical formulae expressed in Presburger arithmetic which is the decidable first-order
theory of natural numbers with addition. A formula φ(x1, . . . , xk) of Presburger arithmetic
with free variables x1, . . . , xk defines a set JφK ⊆ Nk given by {v ∈ Nk | v |= φ} (here
|= is the classical satisfiability relation for Presburger arithmetic and it holds true if the
formula holds when replacing each xi by v[i]). In [22], it was proven that a set S ⊆ Nk

is semilinear iff there exists a Presburger formula φ such that S = JφK. Note that the set
{M ∈ NP | M(p) = 0 for all p ∈ P \ {pf}} has a single interesting component, the other
being 0. We will hence need the following result to show it is indeed semilinear.

I Lemma 8. Every periodic subset P ⊆ N is semilinear.

We now recall some connections between Petri nets and semilinear sets. Let N =
〈P, T, Pre, Post〉 be a Petri net with P = {p1, . . . , pk}, this allows us to look at the markings
as elements of Nk or of NP . Given a language of finite words of transitions L ⊆ T ∗ and a
marking M , let Reach(M,L) be the reachable markings produced by L from M defined by
{M ′ ⊆ Nk | ∃w ∈ L such that M w=⇒M ′} where we extend in the classical way the relation
⇒ over words of transitions by saying M ε=⇒M and if w = t.w′, we have M w=⇒M ′ iff there
existsM ′′ such thatM t=⇒M ′′

w′

=⇒M ′. A flat expression of transitions is a regular expression
over T of the form T1T2 . . . T` where each Ti is either a finite word in T ∗ or of the form w∗

with w ∈ T ∗. For a flat expression FE, we denote by L(FE) its associated language. In [20],
the following result relating flat expressions of transitions and their produced reachability
set is given (it has then been extended to more complex systems [19]).

I Proposition 9 ([20]). Let N = 〈P, T, Pre, Post〉 be a Petri net, FE a flat expression
of transitions and M ∈ NP a marking. Then Reach(M,L(FE)) is semilinear (and the
corresponding Presburger formula can be computed).

4.2 Deciding if a bound is a single-place cut-off
We prove that if one provides a bound B ∈ N, we are able to decide whether it corresponds
to a cut-off as defined in the single place C.O.P. Let N = 〈P, T, Pre, Post〉 be a Petri
net with an initial marking M0 ∈ NP , a specific place pf ∈ P and a bound B ∈ N. We
would like to decide whether the following inclusion holds {M ∈ NP |M(p) = 0 for all p ∈
P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0). An important point to decide this inclusion lies in
the fact that the set {M ∈ NP |M(p) = 0 for all p ∈ P \{pf} and M(pf ) ≥ B} is semilinear
and this allows us to use a method similar to the one proposed in [24] to check whether the
reachability set of a Petri net equipped with a semilinear set of initial markings is universal.
One key point is the following result which is a reformulation of a Lemma in [30]. This result
was originally stated for Vector Addition System with States (VASS), but it is well known
that a Petri net can be translated into a VASS with an equivalent reachability set.

I Proposition 10 ([24, Theorem 1]). Let N = 〈P, T, Pre, Post〉 be a Petri net, M ∈ NP a
marking and S ⊆ NP a semilinear set of markings. If S ⊆ Reach(M) then there is a flat
expression FE of transitions such that S ⊆ Reach(M,L(FE)).
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Following the technique used in [24], this proposition provides us a tool to solve our
inclusion problem. We use two semi-procedures, one searches for a M ′ ∈ {M ∈ NP |
M(p) = 0 for all p ∈ P \ {pf} and M(pf ) ≥ B} but not in Reach(M0) and the other one
searches a flat expression of transitions FE such that {M ∈ NP | M(p) = 0 for all p ∈
P \ {pf} and M(pf ) ≥ B} ⊆ Reach(M0, L(FE)).

I Proposition 11. For a Petri net N = 〈P, T, Pre, Post〉, a marking M0 ∈ NP , a place
pF ∈ P and a bound B ∈ N, testing whether {M ∈ NP | M(p) = 0 for all p ∈ P \
{pf} and M(pf ) ≥ B} ⊆ Reach(M0) is decidable.

4.3 Finding the bound

We now show why the single-place C.O.P. is decidable. Let N = 〈P, T, Pre, Post〉 be a
Petri net with a marking M0 ∈ NP and a place pf ∈ P . One key aspect is that the set of
markings reachable from M0 with no token in the other places except pf is semilinear. This
is a consequence of the following proposition.

I Proposition 12 ([30, Lemma IX.1]). Let S ⊆ NP be a semilinear set of markings. Then
the set Reach(M0) ∩ S is a finite union of sets b + P where b ∈ NP and P ⊆ NP is periodic.

From this proposition and Lemma 8, we can deduce the following result.

I Proposition 13. Reach(M0) ∩ {M ∈ NP |M(p) = 0 for all p ∈ P \ {pf}} is semilinear.

Another key point for the decidability of the single-place C.O.P. is the ability to test
whether the intersection of the reachability set of a Petri net with a linear set is empty. In
fact, it reduces to the reachability problem.

I Lemma 14. If S ⊆ NP is a linear set of the form b + P where P is finitely generated,
then testing whether Reach(M0) ∩ S = ∅ is decidable.

The previous results allow us to design two semi-procedures to decide the single place
C.O.P. The first one enumerates the B ∈ N and uses the result of Proposition 11 to check if
one is a cut-off. The other one uses the fact that if there does not exist a cut-off then the
set {M /∈ Reach(M0) |M(p) = 0 for all p ∈ P \ {pf}} is semi-linear (by Proposition 13) and
infinite and it includes a semi-linear set of the form {b + λ.p | λ ∈ N} with b,p ∈ NP and
0 < p. In this latter case we have Reach(M0) ∩ {b + λ.p | λ ∈ N} = ∅ and we use the result
of Lemma 14 to enumerate the b,p and find a pair satisfying this property.

I Theorem 15. The single place C.O.P. is decidable.

Thanks to Proposition 7, we obtain the result which concludes this section.

I Corollary 16. The C.O.P. is decidable.

5 The specific case of symmetric rendez-vous

Even though the C.O.P. is decidable, the lower bound is quite bad as mentioned in Theorem
5 and the decision procedure presented in the proof of Theorem 15 is quite technical. We
show here that for a specific family of rendez-vous protocols, solving C.O.P. is easier.
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5.1 Definition and basic properties
A rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q

L
i , q

L
f , E〉 is symmetric if it respects the

following property: for all q, q′ ∈ Q and a ∈ Σ, we have (q, !a, q′) ∈ E iff (q, ?a, q′) ∈ E. In
this context we denote such transitions by (q, a, q′). We furthermore assume w.l.o.g. that
in the underlying graph of P for every states q in QP there is a path from qi to q and a
path from q to qf (otherwise an initial configuration can never reach a configuration with a
process in q or from a configuration with a process in q a final configuration can never been
reached). We now work under these hypotheses.

In symmetric rendez-vous protocols, it is always possible to bring in any state as many
pairs of processes one desires from the initial state qi and to remove as many pairs of processes
(and bring them to the final state qf ). To perform such actions, it is enough to move pairs
of processes following the same path (as the rendez-vous are symmetric, this is allowed
by the semantics of rendez-vous protocols). We now state these properties formally. Let
P = 〈Q,QP , QL,Σ, qi, qf , q

L
i , q

L
f , E〉 be a symmetric rendez-vous protocol.

I Lemma 17. Let C ∈ C verifying C(|C|−1)
i →∗ C. Then:

1. for all C ′ ∈ C such that C(q) ≤ C ′(q) and (C(q) = C ′(q)) mod 2 for all q ∈ Q, we have
C

(|C′|−1)
i →∗ C ′,and,

2. for all C ′ ∈ C such that |C ′| = |C| and C ′(q) ≤ C(q) for all q ∈ Q \ {qf} and (C(q) =
C ′(q)) mod 2 for all q ∈ Q, we have C(|C′|−1)

i →∗ C ′.

As a consequence, we show that there is a cut-off in P iff a final configuration with an
even number and another one with an odd number of processes are reachable in P.

I Lemma 18. There exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B iff there exists an
even nE ∈ N and an odd nO ∈ N such that C(nE)

i →∗ C(nE)
f and C(nO)

i →∗ C(nO)
f .

5.2 The even-odd abstraction
We now present our tool to decide C.O.P. for a symmetric rendez-vous protocol P =
〈Q,QP , QL,Σ, qi, qf , q

L
i , q

L
f , E〉. We build an abstraction of the transition system (C,→)

where we only remember the state of the leader and whether the number of processes in
each state is even (denoted by E) or odd (O). Let Ê = O and ̂̂E = E. The set of even-odd
configurations is ΓEO = QL × {E,O}QP . To an even-odd configuration (qL, γ) ∈ ΓEO, we
associate the set of configurations J(qL, γ)K ⊆ C such that J(qL, γ)K = {C ∈ C | C(qL) =
1 and C(q) = 0 mod 2 iff γ(q) = E}. We now define the even-odd transition relation

99K⊆ ΓEO×E×E×ΓEO. We have (qL
1 , γ1)

e,e′

99K (qL
2 , γ2) iff one the following conditions holds:

1. e = (qL
1 , a, q

L
2 ) and e′ = (q1, a, q2) belongs to QP × RV (Σ) × QP and if q1 = q2 then

γ2 = γ1 else γ2(q1) = γ̂1(q1), γ2(q2) = γ̂1(q2) and γ2(q) = γ1(q) for all q ∈ QP \ {q1, q2}.
2. e, e′ ∈ QP × RV (Σ)×QP and qL

1 = qL
2 and e = (q1, a, q2) and e′ = (q3, a, q4) and there

exists γ′ ∈ {E,O}QP such that:
if q1 = q2 then γ′ = γ1 else γ′(q1) = γ̂1(q1), γ′(q2) = γ̂1(q2) and γ′(q) = γ1(q) for all
q ∈ QP \ {q1, q2}, and,
if q3 = q4 then γ2 = γ′ else γ2(q3) = γ̂′(q3), γ2(q4) = γ̂′(q4) and γ2(q) = γ′(q) for all
q ∈ QP \ {q3, q4}.

The relation
e,e′

99K reflects how the parity of the number of processes changes when performing
a rendez-vous involving edges e and e′. For instance, the first case illustrates a rendez-vous
between the leader and a process, hence the parity of the number of states in q1 and in



F. Horn and A. Sangnier 46:11

q2 changes except when these two control states are equal. The second case deals with a
rendez-vous between two processes and it is cut in two steps to take care of the cases like for
instance q1 6= q2 and q3 6= q4 and q1 6= q4 and q2 = q3; in fact here the parity of the number
of processes in q2 should not change, since the first transition adds one process to q2 and the
second one removes one from it. We write (qL

1 , γ1) 99K (qL
2 , γ2) iff there exists e, e′ ∈ E such

that (qL
1 , γ1)

e,e′

99K (qL
2 , γ2) and 99K∗ denotes the reflexive and transitive closure of 99K.

As said earlier, (ΓEO, 99K) is an abstraction of (C,→). We will prove that this abstraction
is enough to solve the C.O.P. For this, we define the following abstract configurations in ΓEO:

(qL
i , γ

E
i ) and (qL

f , γ
E
f ) are such that γE

i (q) = γE
f (q) = E for all q ∈ QP ;

(qL
i , γ

O
i ) and (qL

f , γ
O
f ) are such that γO

i (q) = γO
f (q) = E for all q ∈ QP \ {qi, qf} and

γO
i (qf ) = γO

f (qi) = E and γO
i (qi) = γO

f (qf ) = O.
Note that we have then {C(n)

i | n is even} ⊆ J(qL
i , γ

E
i )K and {C(n)

i | n is odd} ⊆ J(qL
i , γ

O
i )K

and {C(n)
f | n is even} ⊆ J(qL

f , γ
E
f )K and {C(n)

f | n is odd} ⊆ J(qL
f , γ

O
f )K. According to the

definitions of the relations → and 99K, we can easily deduce this first result.

I Lemma 19 (Completeness). Let n ∈ N. If C(n)
i →∗ C(n)

f and n is even [resp. n is odd]
then (qL

i , γ
E
i ) 99K∗ (qL

f , γ
E
f ) [resp. (qL

f , γ
O
i ) 99K∗ (qL

f , γ
O
f )].

The two next lemmas show that our abstraction is sound for C.O.P. The first one can be
proved by induction on the length of the path in (ΓEO, 99K) using Point 1. of Lemma 17.

I Lemma 20. If (qL
i , γ

E
i ) 99K∗ (qL, γ) [resp. (qL

i , γ
O
i ) 99K∗ (qL, γ)] then there exists n ∈

N \ {0} such that n is even [resp. n is odd] and C(n)
i →∗ C with C ∈ J(qL, γ)K.

Using Point 2. of Lemma 17 we obtain the soundness of our abstraction.

I Lemma 21 (Soundness). If (qL
i , γ

E
i ) 99K∗ (qL

f , γ
E
f ) [resp. (qL

i , γ
O
i ) 99K∗ (qL

f , γ
O
f )] then there

exists n ∈ N such that n is even [resp. n is odd] and C(n)
i →∗ C(n)

f .

Thanks to the Lemmas 18, 19 and 21 to solve the C.O.P. when the considered rendez-vous
protocol is symmetric it is enough to check whether (qL

i , γ
E
i ) 99K∗ (qL

f , γ
E
f ) and (qL

i , γ
O
i ) 99K∗

(qL
f , γ

O
f ). But since the transition system (ΓEO, 99K) has a finite number of vertices whose

number is bounded by |QL| ·2|QP |, these two reachability questions can be solved in NPspace
in |Q|. By Savitch’s theorem, we obtain the following result.

I Theorem 22. C.O.P. restricted to symmetric rendez-vous protocols is in PSpace.

6 Supressing the leader

6.1 Definition and properties
A rendez-vous protocol P = 〈Q,QP , QL,Σ, qi, qf , q

L
i , q

L
f , E〉 has no leader when QL = {qL

f }
and qL

i = qL
f and the transition relation does not refer to the state in QL, i.e. E ⊆

QP ×RV (Σ)×QP . We can then assume that P = 〈QP ,Σ, qi, qf , E〉 and delete any reference
to the leader state. We suppose again w.l.o.g. that in the considered rendez-vous protocols
without leader there is a path from qi to q and a path from q to qf for all q in QP . Rendez-vous
protocols with no leader enjoy some properties easing the resolution of the C.O.P.

I Lemma 23. Let P = 〈QP ,Σ, qi, qf , E〉 be a rendez-vous protocol with no leader. Then the
following properties hold:
1. If C(n)

i →∗ C(n)
f and C(m)

i →∗ C(m)
f for m,n ∈ N, then C(n+m)

i →∗ C(n+m)
f .

2. There exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B iff there exists N ∈ N such
that C(N)

i →∗ C(N)
f and C(N+1)

i →∗ C(N+1)
f .
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Proof.
1. This point is a direct consequence of the semantics of rendez-vous protocols associated

with the fact that there is no leader. In fact assume C(n)
i →∗ C(n)

f and C(m)
i →∗ C(m)

f .
And consider the configuration C such that C(qi) = m, C(qf ) = n and C(q) = 0 for all
q ∈ QP \ {qi, qf}. Then it is clear that we have C(n+m)

i →∗ C →∗ C(n+m)
f , the first part

of this execution mimicking the execution C(n)
i →∗ C(n)

f and the last part mimics the
execution C(m)

i →∗ C(m)
f on the m processes left in qi in C.

2. If there exists B ∈ N such that C(n)
i →∗ C(n)

f for all n ≥ B, then we have C(B)
i →∗ C(B)

f

and C(B+1)
i →∗ C(B+1)

f . Assume now that there exists N ∈ N such that C(N)
i →∗ C(N)

f

and C
(N+1)
i →∗ C(N+1)

f . We show that for all n ≥ N2, we have C(n)
i →∗ C(n)

f . Let
n ≥ N2 and let R ∈ [0, N − 1] be such that (n = R) mod N . By definition of the
modulo, there exists A ≥ 0 such that n = A ·N +R. Since n ≥ N2, we have necessarily
A ≥ N . As a consequence we can rewrite n as: n = R · (N + 1) + (A − R) · N .
But then since C(N)

i →∗ C(N)
f , by 1. we have C((A−R)·N)

i →∗ C((A−R)·N)
f and since

C
(N+1)
i →∗ C(N+1)

f , by 1. we have C(R·(N+1))
i →∗ C(R·(N+1))

f . By a last application of 1.
we get C(n)

i →∗ C(n)
f . J

6.2 The symmetric case
We will now see how the procedure proposed in the proof of Theorem 22 to solve in polynomial
space the C.O.P. for symmetric rendez-vous protocols can be simplified when there is no
leader. Let P = 〈QP ,Σ, qi, qf , E〉 be a symmetric rendez-vous protocol with no leader and
let (ΓEO, 99K) be the abstract transition system of (C,→) as defined in Section 5.2. If we
adapt the results of Lemmas 18, 19 and 21 to the no leader case, we deduce that to solve
the C.O.P. it is enough to check whether γE

i 99K∗ γE
f and γO

i 99K∗ γO
f (we have deleted the

leader states from these results). Note that by definition γE
i = γE

f , hence the only thing to
verify is if γO

i 99K∗ γO
f holds. This check can be made efficiently using the fact that there

is no leader, because any reodering of a path is still a path in (ΓEO, 99K) (since we do not
need to worry anymore about the leader state) and we can delete the pairs of edges that
consecutively repeat since they have the same action on the parity.

I Lemma 24. If γ 99K∗ γ′ then there exists k ≤ |E|2 and e1, e
′
1, e2, e

′
2, . . . , ek, e

′
k ∈ E such

that γ
e1,e′

1
99K γ1

e2,e′
2

99K . . .
ek,e′

k
99K γ′.

It means that if γO
i 99K∗ γO

f then there is a path of polynomial length (in the size of P)
between these two abstract configurations. It is hence enough to guess such a sequence of
polynomial length and to check that it effectively corresponds to a path in (ΓEO, 99K).

I Theorem 25. C.O.P. for symmetric rendez-vous protocols with no leader is in NP.

6.3 Upper bound for the C.O.P. with no leader
We now prove that the C.O.P. for rendez-vous protocols with no leader reduces to the
reversible reachability problem in Petri nets. Let P = 〈QP ,Σ, qi, qf , E〉 be a rendez-vous
protocol with no leader and such that w.l.o.g. there is no edge going out of qf

1.

1 To achieve this, we can simply duplicate qf adding a new final state q′
f and for each edge going into qf

we add an edge from the same state to q′
f
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qi

?a

qf

!a

!b
?b

a b bR aR

pqi

2
2
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pqf
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qi

2 2

tR
i

Figure 4 A rendez-vous protocol with no leader P and the associated Petri net N ′
P .

Let NP = 〈P, T, Pre, Post〉 be the Petri net whose construction is provided in Section 3.2
(where we have removed all the places corresponding to leader states as well as the transition
tLf ). From NP , we build the reverse Petri net NR

P obtained by keeping the same set of
places and reversing all the transitions. Formally NR

P = 〈PR, TR, P reR, PostR〉, where
PR = {pR | p ∈ P}, TR = {tR | t ∈ T} and for all pR ∈ PR and tR ∈ TR, we have
PreR(tR)(pR) = Post(t)(p) and PostR(tR)(pR) = Pre(t)(p). Let MR

0 be the marking such
that MR

0 (pR) = 0 for all pR ∈ PR and (MR,(n)
f ){n∈N} be the family of markings verifying

M
R,(n)
f (pR

qf
) = n and MR,(n)

f (p) = 0 for all p ∈ PR \ {pR
qf
}. A direct consequence of Lemma

6 and of the definition of NR
P is that C(n)

i →∗ C(n)
f iff MR

0 ∈ Reach(MR,(n)
f ) for all n ∈ N.

From NP and NR
P , we build the Petri net N ′P obtained by taking the disjoint unions of

places and transitions of the two nets except for the place pqf
and pR

qf
which are merged

in a single place pqf
. Formally, N ′P = 〈P ′, T ′, P re′, Post′〉 where P ′ = (P ∪ PR) \ {pR

qf
},

T ′ = T ∪ TR, Pre′(t)(p) = Pre(t)(p) and Post′(t)(p) = Post(t)(p) and Pre′(t)(pR) =
Post′(t)(pR) = 0 for all p ∈ P , pR ∈ PR and t ∈ T , Pre′(tR)(pR) = PreR(tR)(pR) and
Post′(tR)(pR) = PostR(tR)(pR) and Pre′(tR)(p) = Post′(tR)(p) = 0 for all pR ∈ PR,
p ∈ P \ {pqf

} and t ∈ T , and Pre′(tR)(pqf
) = PreR(tR)(pR

qf
)) and Post′(tR)(pqf

) =
PostR(tR)(pR

qf
)) (this last case corresponds to the merging of pqf

and pR
qf
). Figure 4 provides

an example of this latter Petri net.
We now explain why this new net is useful to solve the C.O.P. when there is no leader.

First remember that thanks to Point 2. of Lemma 23 it is enough to check whether there
exists N ∈ N such that C(N)

i →∗ C(N)
f and C

(N+1)
i →∗ C(N+1)

f . Intuitively, in N ′P this
property will be witnessed by the fact that we can bring N + 1 tokens in pqf

using transitions
in T and remove N tokens from pqf

thanks to the transitions in TR letting hence one token
in pqf

and similarly if there is already a token in pqf
we can bring N others and remove

afterwards N + 1. As for NP , we let M0 be the marking with no token, and (M (n)){n∈N}
be the family of markings such that M (n)(pqf

) = n and M (n)(p) = 0 for all p ∈ P ′ \ {pqf
}.

Note that since there is no leader, we have here M0 = M (0). The next lemma states the
correctness of our reduction to the reversible reachability problem.

I Lemma 26. There exists N ∈ N such that C(N)
i →∗ C(N)

f and C(N+1)
i →∗ C(N+1)

f iff
M (1) ∈ Reach(M0) and M0 ∈ Reach(M (1)) in the Petri net N ′P .

Since we know that the reversible reachability problem for Petri net is EXPspace-
complete [31], we obtain the following complexity result.

I Theorem 27. C.O.P. restricted to rendez-vous protocols with no leader is in EXPSpace.

We were not able to propose a lower bound for the C.O.P. apart for the general case,
but when there is no leader, we know that there is a protocol which admits a cut-off whose
value is exponential in the size of a protocol. This protocol is shown on Figure 5. To bring
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qi q1?1
!1

q2
!2

?2

q3
!3

?3

· · · qn
!n

?n

!a

qf
!a

?a

Figure 5 A rendez-vous protocol with no leader and an exponential cut-off.

a process in q1, we need in fact two processes, to bring a process in q2 and empty q1, we
need four processes and so on. The letter a is then used to ensure that as soon as we have
processes only in qn and in qi (and at least one of them in each of these states), there is a
way to bring all of them in qf .

7 Conclusion

We have shown here that the C.O.P. is decidable for rendez-vous networks. Furthermore
we have provided complexity upper bounds when considering restrictions on the networks
such as symmetric rendez-vous or absence of leader. Unfortunately, we did not succeed in
finding matching lower bounds. Reducing other problems to the C.O.P. is in fact tedious
without leader or when allowing only symmetric rendez-vous, because it is then quite hard
to enforce that a specific number of processes are in some states which is a property that
is in general needed to design reductions. However we have some hope to either improve
our upper bounds or find matching lower bounds. We wish as well to understand in which
matters the techniques we used could be adapted to other parameterized systems and more
specifically to population protocols. Finally, one of the justification to consider the cutoff
problem is that in some distributed systems it could be the case that a correctness property
does not hold for any number of processes, but that a minimal number of participants is
needed to reach a goal. It could be interesting to study a variant of our cutoff problem where
we do not require all the processes to reach a final state but we want to know given a number
of processes how many among them can be brought in such a state. An interesting property
could be to check whether there exists a bound b such that for any number of processes, the
minimal number that can not be brought to a final state by any execution is always lower
than b. In such networks, it would mean that at most b entities have to be sacrificed to let
the others reach the final state.
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