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Abstract

Regular functions from infinite words to infinite words can be equivalently specified by MSO-
transducers, streaming ω-string transducers as well as deterministic two-way transducers with
look-ahead. In their one-way restriction, the latter transducers define the class of rational functions.
Even though regular functions are robustly characterised by several finite-state devices, even the
subclass of rational functions may contain functions which are not computable (by a Turing machine
with infinite input). This paper proposes a decision procedure for the following synthesis problem:
given a regular function f (equivalently specified by one of the aforementioned transducer model), is
f computable and if it is, synthesize a Turing machine computing it.

For regular functions, we show that computability is equivalent to continuity, and therefore the
problem boils down to deciding continuity. We establish a generic characterisation of continuity for
functions preserving regular languages under inverse image (such as regular functions). We exploit
this characterisation to show the decidability of continuity (and hence computability) of rational
and regular functions. For rational functions, we show that this can be done in NLogSpace (it
was already known to be in PTime by Prieur). In a similar fashion, we also effectively characterise
uniform continuity of regular functions, and relate it to the notion of uniform computability, which
offers stronger efficiency guarantees.
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43:2 Synthesis of Computable Regular Functions of Infinite Words

1 Introduction

Let Inputs and Outputs be two arbitrary sets of elements called inputs and outputs respectively.
A general formulation of the synthesis problem is as follows: for a given specification
of a function S : Inputs → 2Outputs relating any input u ∈ dom(S)1 to a set of outputs
S(u) ⊆ Outputs, decide whether there exists a (total) function f : dom(S)→ Outputs such
that (i) for all u ∈ dom(S), f(u) ∈ S(u) and (ii) f satisfies some additional constraints such
as being computable in some way, by some device which is effectively returned by the synthesis
procedure. Assuming the axiom of choice, the relaxation of this problem without constraint
(ii) always has a positive answer. However with additional requirement (ii), a function f
realising S may not exist in general. In this paper, we consider the particular case where
the specification S is functional,2 in the sense that S(u) is singleton set for all u ∈ dom(S).
Even in this particular case, S may not be realisable while satisfying requirement (ii).

The latter observation on the functional case can already be made in the Church approach
to synthesis [1, 18], for which Inputs,Outputs are sets of infinite words and f is required to be
implementable by a Mealy machine (a deterministic automaton which can output symbols).
More precisely, an infinite word α over a finite alphabet Σ is a function α : N → Σ and is
written as α = α(0)α(1) . . .. The set of infinite words over Σ is denoted by Σω. In Church
ω-regular synthesis, we have Inputs = Σωi and Outputs = Σωo , and functions S are specified by
ω-automata over Σi.Σo. Thus, such an automaton defines a language L ⊆ (Σi.Σo)ω and in
turn, through projection, a function SL defined by SL(i1i2 . . . ) = {o1o2 · · · | i1o1i2o2 · · · ∈ L}.
Such a specification is said to be synchronous, meaning that they alternatively read an input
symbol and produce an output symbol deterministically. It is also ω-regular because it can
be represented as an automaton over Σi.Σo. As an example, consider Σi = Σo = {a, b,@}
and the function Sswap defined only for all words of the form u1σ@u2 such that u1 ∈ {a, b}∗
and σ ∈ {a, b} by S(u1σ@u2) = σu1@u2. The specification S is easily seen to be synchronous
and ω-regular, but not realisable by any Mealy machine. This is because a Mealy machine is
an input deterministic model and so cannot guess the last symbol before the @ symbol.

Computability of functions over infinite words. In Church synthesis, the notion of com-
putability used for requirement (ii) is that of being computable by a Mealy machine. While
this makes sense in a reactive scenario where output symbols (reactions) have to be produced
immediately after input symbols are received, this computability notion is too strong in a
more relaxed scenario where reactivity is not required. Instead, we propose here to investigate
the synthesis problem for functional specifications over infinite words where the computab-
ility assumption (ii) for f is just being computable by some algorithm (formally a Turing
machine) running on infinite inputs. In other words, our goal is to synthesize algorithms
from specifications of functions of infinite words. There are classical computability notions
for infinite objects, like infinite sequences of natural numbers, motivated by real analysis,
or computation of functions of real numbers. The model of computation we consider for
infinite words is a deterministic machine with 3 tapes : a read-only one-way tape holding the
input, a two-way working tape with no restrictions and a write-only one-way output tape.
All three tapes are infinite on the right. A function f is computable if there exists such a
machine M such that, if its input tape is fed with an infinite word x in the domain of f ,
then M outputs longer and longer prefixes of f(x) when reading longer and longer prefixes

1 dom(S) is the domain of S, i.e. the set of inputs that have a non-empty image by S.
2 In this case, we just write S(u) = v instead of S(u) = {v}.
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of x. This machine model has been defined in [25, Chap. 2]. If additionally one requires the
existence of a computable function m : N→ N such that for all i ∈ N, for all infinite input x,
M writes at least i output symbols when reading m(i) input symbols of x, we obtain the
notion of uniform computability. This offers promptness guarantees on the production of
output symbols with respect to the number of symbols read on input.

Obviously, not all functions are computable. In this paper, we aim to solve the following
synthesis problem: given a (finite) specification of a (partial) function f from infinite words
to infinite words, is f computable (respectively uniformly computable)? If it is the case,
then the procedure should return a Turing machine computing f (respectively uniformly
computing f).

Examples. The function Sswap is computable. Since it is defined over all inputs containing
at least one @ symbol, if a Turing machine is fed with such a word, it suffices for it to read
its input until the first @ symbol is met, store in memory the symbol σ ∈ {a, b} just before
@, come back to the beginning of the tape and start producing the output infinite word
σu1@u2.

Over the alphabet Σ = {a, b}, consider the function f∞ defined by f∞(u) = aω if u
contains infinitely many as, and by bω otherwise. This simple function is not computable,
as it requires to read the whole infinite input to produce even the very first output symbol.
For any word u ∈ Σ∗, we denote by u its mirror (e.g. abaa = aaba). Consider the (partial)
function fmir defined on (Σ∗])ω by f(u1]u2] . . .) = u1]u2] . . .. It is computable by a machine
that stores its input u1 in memory until the first ] is read, then outputs u1, and proceeds
with u2, and so on. It is however not uniformly computable. Indeed, if it were, with some
m : N→ N, then, for inputs u1]u2] · · · such that |u1| > m(1), it is impossible to determine
the first output symbol (which is the last of u1) by reading only a prefix of length m(1) of u1.

Finally, consider the (partial) function fdbl defined on (Σ∗])ω by f(u1]u2] . . .) = u1u1]

u2u2 ] . . .. Similarly as before, it is computable but also uniformly computable: to determine
the ith output symbol, it suffices to read an input prefix of length at most i. Indeed, let
u1]u2] . . . ]u be a prefix of length i of the input x, then u1u1]u2u2] . . . ]u is a prefix of f(x)
of length ≥ i.

Computability and continuity. There are strong connections between computability and
continuity: computable functions are continuous for the Cantor topology, that is where words
are close to each other if they share a long common prefix. Intuitively, it is because the very
definition of continuity asks that input words sharing longer and longer prefixes also share
longer and longer output prefixes. It is the case of the functions fmir and fdbl seen before.
Likewise, uniformly computable functions are uniformly continuous. The reverse direction
does not hold in general: assuming an effective enumeration M1,M2, . . . of Turing machines
(on finite word inputs), the function fhalt defined as fhalt(aω) = b1b2b3 . . . where bi ∈ {0, 1} is
such that bi = 1 iff Mi halts on input ε, is not computable but (uniformly) continuous (as it
is defined on a single point).

Beyond synchronous functions: regular functions. functional specifications in Church
ω-regular synthesis problem range over the class of synchronous functions as described
before: they can be specified using automata over Σi.Σo. For example, while Sswap and f∞
are synchronous, fmir and fdbl are not. In this paper, we intend to go much beyond this
class by dropping the synchronicity assumption and consider the so-called class of regular
functions. It is a well-behaved class, captured by several models such as streaming ω-string
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43:4 Synthesis of Computable Regular Functions of Infinite Words

transducers (SST), deterministic two-way Muller transducers with look around (2DMTla),
and also by MSO-transducers [2, Thm. 1, Prop. 1]. We propose the model of deterministic
two-way transducers with a prophetic Büchi look-ahead (2DFTpla) and show that they
are equivalent to 2DMTla. This kind of transducer is defined by a deterministic two-way
automaton without accepting states, extended with output words on the transitions, and
which can consult another automaton, called the look-ahead automaton, to check whether an
infinite suffix satisfies some regular property. We assume this automaton to be a prophetic
Büchi automaton [7, Sec. 7], because this class is naturally suited to implement a regular
look-ahead, while capturing all regular languages of infinite words. Look-ahead is necessary
to capture functions such as f∞. Two-wayness is needed to capture, for instance, functions
fdbl and fmir.

Contributions. We call effectively reg-preserving functions those functions that effectively
preserve regular languages by inverse image [24, 19, 23, 20]. This includes for instance rational
functions, regular functions and the more general class of polyregular functions [4, 11]. We
first show that for effectively reg-preserving functions, computability and continuity coincide,
respectively, uniform computability and uniform continuity (Section 3, Theorem 6). To the
best of our knowledge, this connection was not made before. The connection is effective, in the
sense that when f is effectively reg-preserving and continuous (resp. uniformly continuous),
we can effectively construct a Turing machine computing f (resp. uniformly computing f).

For rational functions (functions defined by non-deterministic one-way Büchi transducers),
we show that continuity and uniform continuity are decidable in NLogSpace (Section 5,
Theorem 12). Continuity and uniform continuity for rational functions were already known
to be decidable in PTime, from Prieur [21, Prop. 4]. However, Prieur’s proof techniques do
not transfer to the two-way case. We then prove that continuity (and hence computability)
is decidable for regular functions given by deterministic Büchi two-way transducers with
look-ahead (Section 5, Theorem 16). Using our techniques, we also get the decidability of
uniform continuity for regular functions (also Theorem 16). Our proof technique relies on
a characterisation of non-continuous reg-preserving functions by the existence of pairs of
sequences of words which have a nice regular structure (Section 4, Corollary 10). Based on this,
we derive a decision procedure for continuity of rational functions by checking in NLogSpace
a structural transducer pattern. For regular functions, we rely on a characterisation of the
form of output words produced by idempotent loops in two-way transducers [3]. Most of the
proofs have been sketched and the full proofs can be found in full version [10].

Related work. To the best of our knowledge, our results are new and the notion of continuity
has not been extensively studied in the transducers literature over infinite words. The work
by Prieur [21] is the closest to ours, while [8] looks at continuity of regular functions encoded
by ω-automata.

Notions of continuity with respect to language varieties have been studied for rational
functions of finite words in [5]. Our notion of uniform continuity can be linked to continuity
with respect to a particular language variety which was not studied in [5] (namely the
non-erasing variety generated by languages of the shape uA∗). A quite strong Lipschitz
continuity notion, called bounded variation due to Choffrut (e.g. [9]), was shown to capture,
over finite words, the sequential functions (the corresponding topology is however trivial,
hence simple continuity is not very interesting in this context).

Another result connecting computability and continuity is from [6] where the authors find
that some notion of computability by AC0 circuits corresponds, over sequential functions, to
continuity with respect to some language variety.
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Our result on rational functions has been extended recently to rational functions of
infinite words over an infinite alphabet in [12]. More precisely, continuity for functions of
infinite data words defined by (one-way) transducers with registers has been shown to be
decidable. The proof of [12] goes by reduction to the finite alphabet setting and uses the
result presented in this paper, which is publicly available on Arxiv [10], to decide continuity.

Finally, a discussion and comparison of Church ω-synthesis with our work is given in the
conclusion of this paper.

2 Languages, Automata and Transducers over ω-Words

Given a finite set Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words over
Σ, and by Σ∞ the set of finite and infinite words. Let Σj represent the set of all words over
Σ with length j. We denote by |u| ∈ N ∪ {∞} the length of u ∈ Σ∞ (in particular |u| =∞
if u ∈ Σω). For a word w = a1a2a3 . . . , w[:j] denotes the prefix a1a2 . . . aj of w. Let w[j]
denote aj , the jth symbol of w and w[j:] denote the suffix aj+1aj+2 . . . of w. For a word
w and i ≤ j, w[i:j] denotes the factor of w with positions from i to j, both included. For
two words u, v ∈ Σ∞, u � v (resp. u ≺ v) denotes that u is a prefix (resp. strict prefix) of
v (in particular if u, v ∈ Σω, u � v iff u = v). For u ∈ Σ∗, let ↑u denote the set of words
w ∈ Σ∞ having u as prefix i.e. u � w. Let mismatch be a function which takes two words,
and returns a boolean value, denoted by mismatch(u, v) for u and v; it returns true if there
exists a position i ≤ |u|, |v| such that u[i] 6= v[i], and returns false otherwise. The longest
common prefix between two words u and v is denoted by u ∧ v and their distance is defined
as d(u, v) = 0 if u = v, and 2−|u∧v| if u 6= v.

A Büchi automaton is a tuple B = (Q,Σ, δ, Q0, F ) consisting of a finite set of states Q,
a finite alphabet Σ, a set Q0 ⊆ Q of initial states, a set F ⊆ Q of accepting states, and
a transition relation δ ⊆ Q × Σ × Q. A run ρ on a word w = a1a2 . . . ∈ Σω starting in a
state q1 in B is an infinite sequence q1

a1→ q2
a2→ . . . such that (qi, ai, qi+1) ∈ δ for all i ∈ N.

Let Inf(ρ) denote the set of states visited infinitely often along ρ. The run ρ is a final run
iff Inf(ρ) ∩ F 6= ∅. A run is accepting if it is final and starts from an initial state. A word
w ∈ Σω is accepted (w ∈ L(B)) iff it has an accepting run. A language L of ω-words is called
ω-regular if L = L(B) for some Büchi automaton B.

An automaton is co-deterministic if any two final runs on any word w are the same [7,
Sec. 7.1]. Likewise, an automaton is co-complete if every word has at least one final run. A
prophetic automaton P = (QP ,Σ, δP , Q0, FP ) is a Büchi automaton which is co-deterministic
and co-complete. Equivalently, a Büchi automaton is prophetic iff each word admits a unique
final run. The states of the prophetic automaton partition Σω: each state q defines a set of
words w such that w has a final run starting from q. For any state q, let L(P, q) be the set of
words having a final run starting at q. Then Σω = ]q∈QP

L(P, q). It is known [7, Thm. 7.2]
that prophetic automata capture ω-regular languages.

Transducers. We recall the definitions of one-way and two-way transducers over infinite
words. A one-way transducer A is a tuple (Q,Σ,Γ, δ, Q0, F ) where Q is a finite set of states,
Q0, F respectively are sets of initial and accepting states; Σ,Γ respectively are the input and
output alphabets; δ ⊆ (Q×Σ×Q× Γ∗) is the transition relation. We equip A with a Büchi
acceptance condition. A transition in δ of the form (q, a, q′, γ) represents that from state q,
on reading a symbol a, the transducer moves to state q′, producing the output γ. Runs, final
runs and accepting runs are defined exactly as in Büchi automata, with the addition that
each transition produces some output ∈ Γ∗.
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43:6 Synthesis of Computable Regular Functions of Infinite Words

The output produced by a run ρ, denoted out(ρ), is obtained by concatenating the
outputs generated by transitions along ρ. Let dom(A) represent the language accepted by
the underlying automaton of A, ignoring the outputs. The relation computed by A is defined
as [[A]] = {(u, v) ∈ Σω × Γω | u ∈ dom(A), ρ is an accepting run of u, out(ρ) = v}.3 We say
that A is functional if [[A]] is a function. A relation (function) is rational iff it is recognised
by a one-way (functional) transducer.

Two-way transducers extend one-way transducers and two-way finite state automata. A
two-way transducer is a two-way automaton with outputs. In [2, Prop. 1], regular functions
are shown to be those definable by a two-way deterministic transducer with Muller acceptance
condition, along with a regular look-around (2DMTla). In this paper, we propose an alternative
machine model for regular functions, namely, 2DFTpla. A 2DFTpla is a deterministic two-way
automaton with outputs, along with a look-ahead given by a prophetic automaton.

Let Σ` = Σ] {`}. Formally, a 2DFTpla is a pair (T , A) where A = (QA,Σ, δA, SA, FA) is
a prophetic Büchi automaton and T = (Q,Σ,Γ, δ, q0) is a two-way transducer s.t. Σ and Γ
are finite input and output alphabets, Q is a finite set of states, q0 ∈ Q is a unique initial
state, δ : Q × Σ` × QA → Q × Γ∗ × {−1,+1} is a partial transition function. T has no
acceptance condition: every infinite run in T is a final run. A two-way transducer stores its
input `a1a2 . . . on a two-way tape, and each index of the input can be read multiple times.
A configuration of a two-way transducer is a tuple (q, i) ∈ Q × N where q ∈ Q is a state
and i ∈ N is the current position on the input tape. The position is an integer representing
the gap between consecutive symbols. Thus, before `, the position is 0, between ` and
a1, the position is 1, between ai and ai+1, the position is i+ 1 and so on. The 2DFTpla is
deterministic: for every word w = `a1a2a3 . . . ∈ `Σω, every input position i ∈ N, and state
q ∈ Q, there is a unique state p ∈ QA such that aiai+1 . . . ∈ L(A, p). Given w = a1a2 . . .,
from a configuration (q, i), on a transition δ(q, ai, p) = (q′, γ, d), d ∈ {−1,+1}, such that
aiai+1 . . . ∈ L(A, p), we obtain the configuration (q′, i + d) and the output γ is appended
to the output produced so far. This transition is denoted as (q, i) ai,p/γ−→ (q′, i + d). A run
ρ of a 2DFTpla (T , A) is a sequence of transitions (q0, i0 = 0)

ai0 ,p1/γ1−→ (q1, i1)
ai1 ,p2/γ2−→ · · · .

The output of ρ, denoted out(ρ) is then γ1γ2 · · · . The run ρ reads the whole word w if
sup{in | 0 ≤ n < |ρ|} = ∞. The output [[(T , A)]](w) of a word w on run ρ is defined only
when sup{in | 0 ≤ n < |ρ|} =∞, and equals out(ρ). 2DFTpla are equivalent to 2DMTla, and
capture all regular functions (see full version [10] for the proof).

I Theorem 1. A function f : Σω → Γω is regular iff it is 2DFTpla definable.

I Example 2. Consider the function g : Σω → Γω over Σ = Γ = {a, b} such that g(uabω) =
uubω for u ∈ Σ∗ and g(bω) = bω. The 2DFTpla is shown in Figure 1 with the prophetic
look-ahead automaton A on the right. The transitions are decorated as α, p | γ, d where
α ∈ {a, b}, p is a state of A, γ is the output and d is the direction. In transitions not using the
look-ahead information, the decoration is simply α | γ, d. Notice that L(A, p1) = `Σ∗abω,
L(A, p2) = `bω, L(A, p3) = Σ+abω, L(A, p4) = abω. Each word in `Σω has a unique
final run; L(A, p1) ∪ L(A, p2) = `dom(g). The remaining states ensure that each word in
(`Σω\`dom(g)) ] Σω has a unique final run. y

3 We assume that final runs always produce infinite words, which can be enforced syntactically by a Büchi
condition such that any input word produces non-empty output in a single loop execution containing
Büchi accepting state.
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q1 q2q0
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α, p3 | α,+1
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α | ε,−1
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`
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b

b

a

a

Figure 1 A 2DFTpla with automaton on the right implementing the look-ahead.

We also use a look-ahead-free version of two-way transducers in some of the proofs, where
we also have a Büchi acceptance condition given by a set of states F , just as for Büchi
automata. The resulting model is called two-way deterministic Büchi transducer (2DBT).
The definitions of configuration, run, and the semantics are done just like for 2DFTpla.

3 Computability versus Continuity

Computability of a function on infinite words can be described intuitively in the following
way: there is an algorithm which, given access to the input word, can enumerate the letters
in the output word. We also investigate a stronger notion of computability, which we call
uniform computability. The main idea is that given some input word x and some position j
one can compute the jth position of the output in time that depends on j but not on x. An
appealing aspect of uniform computability is that it offers a uniform bound on the number
of input symbols one needs to read in order to produce the output at some fixed precision.

I Definition 3 (Computability/Uniform computability). A function f : Σω → Γω is computable
if there exists a deterministic multitape Turing machine M computing it in the following
sense. The machine M has a read-only one-way input tape, a two-way working tape, and
a write-only one-way output tape. All tapes have a left delimiter ` and are infinite to the
right. Let x ∈ dom(f). For any j ∈ N, let M(x, j) denote the output produced by M till the
time it moves to the right of position j, onto position j + 1 in the input (or ε if this move
never happens). The function f is computable by M if for all x ∈ dom(f), for all i ≥ 0,
there exists j ≥ 0 such that f(x)[:i] �M(x, j).

Moreover if there exists a computable function m : N→ N (called a modulus of continuity
for M) such that for all x ∈ dom(f), for all i ≥ 0, f(x)[:i] � M(x,m(i)), f is called
uniformly computable.

It turns out that there is a quite strong connection between computability and continuity
of functions. In particular computable functions are always continuous. This can be seen
intuitively since given a deterministic Turing machine, it must behave the same on the
common prefixes of two words. Hence two words with a very long common prefix must have
images by the machine that have a somewhat long common prefix. This connection also
transfers to uniform computability and uniform continuity. We start by formally defining
continuity and uniform continuity. We interchangeably use the following two definitions [22]
of continuity.
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43:8 Synthesis of Computable Regular Functions of Infinite Words

I Definition 4 (Continuity/Uniform continuity).
1. A function f : Σω → Γω is continuous at x ∈ dom(f) if (equivalently)

(a) for all (xn)n∈N converging to x, where xi∈dom(f) for all i ∈ N, (f(xn))n∈N converges.
(b) ∀i ≥ 0 ∃j ≥ 0 ∀y ∈ dom(f), |x ∧ y| ≥ j ⇒ |f(x) ∧ f(y)| ≥ i

2. A function is continuous if it is continuous at every x ∈ dom(f).
3. A function f : Σω → Γω is uniformly continuous if:

there exists m : N→ N, called a modulus of continuity for f such that,
∀i ≥ 0, ∀x, y ∈ dom(f), |x ∧ y| ≥ m(i)⇒ |f(x) ∧ f(y)| ≥ i.

I Example 5. As explained in the introduction, the function f∞ is not continuous, and, as
we will see later, is thus not computable. The function fhalt is continuous, even uniformly
continuous (it is constant) yet is obviously not computable. The function fmir is computable,
however is not uniformly continuous, two words can be arbitrarily close but with far away
outputs: consider an]ω and anb]ω. Finally, the function fdbl is uniformly computable. y

We now investigate the relationship between continuity and computability for functions
that are effectively reg-preserving. More precisely, we say that a function f : Σω → Γω is
effectively reg-preserving if there is an algorithm which, for any automaton recognizing a
regular language L ⊆ Γω, produces an automaton recognizing the language f−1(L) = {u |
f(u) ∈ L}.

Two well-studied classes (see e.g. [13]) of reg-preserving functions are the rational and
the regular functions, which we will study in Section 5. As announced, continuity and
computability coincide for effectively reg-preserving functions:

I Theorem 6. An effectively reg-preserving function f : Σω → Γω is computable (resp.
uniformly computable) if and only if it is continuous (resp. uniformly continuous).

Proof. ⇒) This implication is easy and actually holds without the reg-preserving assumption.
If f is computable by some machine M , then it is not difficult to see that it is continuous.
Intuitively, the longer the prefix of input x ∈ dom(f) is processed by M , the longer the
output produced by M on that prefix, which converges to f(x), according to the definition
of computability. More details of this proof can be found in full version. Moreover, if f is
uniformly computable, then the modulus of continuity of M is in particular a modulus of
continuity for f and is thus uniformly continuous.

Algorithm 1 Algorithm describing M .

Input: x ∈ Σω
1 out := ε ; ; // this is written on the working tape
2 for i = 0 to +∞ do
3 for γ ∈ Γ do
4 if f(↑x[:i]) ⊆ ↑out.γ then
5 out := out.γ ; ; // append to the working tape
6 output γ ; ; // this is written on the output tape

⇐) The converse direction is less trivial and makes use of the reg-preserving assumption.
Suppose that f is continuous. We design the machine M , represented as Algorithm 1, which
is shown to compute f . This machine processes longer and longer prefixes x[:i] of its input
x (for loop at line 2), and tests (line 4) whether a symbol γ can be safely appended to the
output. The test ensures that the invariant out � f(x) is preserved at any point. Moreover,
the continuity of f at x ensures that out is updated infinitely often. The only thing left to
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obtain computability is that the test of line 4 is decidable. Let u and v be two words, deciding
f(↑u) ⊆ ↑v is equivalent to deciding if dom(f) ∩ ↑u ⊆ f−1(↑v). These sets are effectively
regular since u, v are given and f is effectively reg-preserving, and dom(f) = f−1(Γω). Since
the constructions are effective, and the languages are regular, the inclusion is decidable.

We only have left to show that if f is moreover uniformly continuous, then M has a
computable modulus of continuity. We start by showing that f has a computable modulus of
continuity. Let us consider the predicate P (i, j) : ∀x, y |x ∧ y| ≥ j ⇒ |f(x) ∧ f(y)| ≥ i. Then
we define m : i 7→ min {j| P (i, j)}. Since f is uniformly continuous, m is indeed well defined
and is a modulus of continuity of f . To show that m is computable, we only have to show
that P (i, j) is decidable.

Let us consider the negation of P (i, j): there exist u, x1, x2, v1, v2, w1, w2 such that
|u| = j, and f(uxk) = vkwk for k ∈ {1, 2} with |v1| = |v2| = i and v1 6= v2. Hence to
decide ¬P (i, j), we only have to find two words v1 6= v2 in Γi, such that S 6= ∅ where
S = {vw | v ∈ Σj , ∃w1, w2, s.t. vw1 ∈ f−1(↑v1), vw2 ∈ f−1(↑v2)}. Since f is effectively
reg-preserving, S is effectively regular. By searching exhaustively for words v1, v2 ∈ Γi we
get decidability of P (i, j). We only have left to define a modulus of continuity for M . Let
m′ : N→ N be defined by m′(i) = m(i) + i. If we read m(i) symbols, we know we can output
at least i symbols. Hence in each of the next i steps, we are guaranteed to output a letter.
Hence m′ is a modulus of continuity for M and f is uniformly computable. J

I Remark 7. Note that we focus on functions that are effectively reg-preserving, but Al-
gorithm 1 is actually more general than that. The continuity-computability equivalence
indeed carries over to any class of functions for which the test in line 4 is decidable.

4 A Characterisation of Continuity and Uniform Continuity

We provide here a characterisation of continuity (and uniform continuity) for reg-preserving
functions (we don’t need effectiveness here). The characterisation is based on a study of
some particular properties of sequences and pairs of sequences which we define below:

I Definition 8. Let f : Σω → Γω.
Let (xn)n∈N be a sequence of words in dom(f) converging to x ∈ Σω, such that (f(xn))n∈N

is not convergent. Such a sequence is called a bad sequence at x for f .
Let (xn)n∈N and (x′n)n∈N be two sequences in dom(f) both converging to x ∈ Σω, such

that either (f(xn))n∈N is not convergent, (f(x′n))n∈N is not convergent, or limn f(xn) 6=
limn f(x′n). Such a pair of sequences is called a bad pair of sequences at x for f .

A pair of sequences is synchronised if it is of the form: ((uvnwzω)n , (uvnw′z′ω)n)

I Proposition 9. A function is not continuous if and only if it has a bad pair at some point
of its domain. A function is not uniformly continuous if and only if it has a bad pair.

Proof. The case of continuous functions is obtained just by definition. For uniform continuity,
consider a function f with a bad pair ((xn)n∈N , (x′n)n∈N), and let us show that it is not
uniformly continuous. We can assume that both (f(xn))n∈N and (f(x′n))n∈N converge.
Otherwise we can extract subsequences that converge, by compactness of Γω. Moreover,
since the pair is bad, one can assume that they converge to different limits y 6= y′. Let i
be such that y[i] 6= y′[i]. For any j, one can find N such that for all n ≥ N , |xn ∧ x′n| ≥ j

since both sequences converge to x. Since (f(xn))n∈N converges to y, we can ensure that N
is large enough so that for all n ≥ N , |f(xn) ∧ y| ≥ i. We can also ensure that for n ≥ N ,
|f(x′n)∧ y′| ≥ i holds. Let n ≥ N , we have both |xn ∧x′n| ≥ j and |f(xn)∧ f(x′n)| < i, which
means that f is not uniformly continuous.
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Let f be a function which is not uniformly continuous, we want to exhibit a bad pair
of f . According to the definition, there exists i such that for all j there exist xj , x′j with
|xj ∧ x′j | ≥ j but |f(xj) ∧ f(x′j)| < i. By compactness of Σω, there exists a subsequence
of (xj)j∈N which is convergent. Let

(
xτ(j)

)
j∈N, with τ : N → N increasing, denote such a

subsequence. Then we have for all j that |xτ(j)∧x′τ(j)| ≥ τ(j) ≥ j and |f(xτ(j))∧f(x′τ(j))| < i.
Therefore up to renaming the sequences, we can assume that for all j, |xj ∧ x′j | ≥ j and
|f(xj) ∧ f(x′j)| < i, with (xj)j∈N being convergent. By repeating the process of extracting
subsequences, we can assume that

(
x′j
)
j∈N, (f(xj))j∈N,

(
f(x′j)

)
j∈N are also convergent. Since

for any j, |xj ∧ x′j | ≥ j, the two sequences converge to the same limit. In the end we obtain
that ((xj)j∈N ,

(
x′j
)
j∈N) is a bad pair for f at limj xj = limj x

′
j .

Note that in case dom(f) is not compact, then we may not have a subsequence of (xj)j∈N
which converges in dom(f). However, the definition of bad pairs does not require convergence
in the domain; it only asks for convergence to some x, which need not be in dom(f). J

The main result of this section is the following lemma which says that one can restrict to
considering only synchronised bad pairs. In the following sections this characterisation will
be used to decide continuity/uniform continuity.

I Lemma 10 (Characterisation). A reg-preserving function is not continuous if and only if it
has a synchronised bad pair at some point of its domain. A reg-preserving function is not
uniformly continuous if and only if it has a synchronised bad pair.

Sketch of Proof. This lemma extends Proposition 9. It shows that, in the case of reg-
preserving functions, one can restrict to considering synchronised pairs, which are much
easier to deal with. The proof is done in several steps but due to a lack of space, we only
sketch these steps, the full proof being given in full version [10].

First we show that for a reg-preserving function f , if there is a bad pair at some x, then
there is one at some regular z, i.e. z = uvω for some finite words u, v. Moreover, for the case
of non-uniform continuity, we show that z can be chosen so that x ∈ dom(f)⇔ z ∈ dom(f).

In the second step, since we have two sequences converging to regular z, we show how
to replace the bad pair by a bad pair of regular sequences, still using the fact that f is
reg-preserving. Finally, we prove that we can synchronise these two regular sequences and
end up with a synchronised bad pair at z. J

5 Deciding Continuity and Uniform Continuity

We first show how to decide (uniform) continuity for rational and then for regular functions.

Rational case. We exhibit structural patterns which are shown to be satisfied by a one-way
Büchi transducer iff the rational function it defines is not continuous (resp. not uniformly
continuous). We express those patterns in the pattern logic defined in [15, Sec. 6], which is
based on existential run quantifiers of the form ∃π : p u|v−−→ q where π is a run variable, p, q
are state variables and u, v are word variables. Intuitively, there exists a run π from state p
to state q on input u, producing output v. A one-way transducer is called trim if each of its
states appears in some accepting run. Any one-way Büchi transducer can be trimmed in
polynomial time. The structural patterns for trim transducers are given in Figures 2 and 3.
The predicate init(p) expresses that p is initial while acc(p) expresses that it is accepting.
The predicate mismatch expresses the existence of a mismatch between two words, as defined
in Section 2.
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φcont =

∃π1 : p1
u|u1−−−→ q1, ∃π′

1 : q1
v|v1−−−→ q1

∃π2 : p2
u|u2−−−→ q2, ∃π′

2 : q2
v|v2−−−→ q2, ∃π′′

2 : q2
w|w2−−−→ r2(

init(p1) ∧ init(p2) ∧ acc(q1)
)
∧(

mismatch(u1, u2) ∨ (v2 = ε ∧mismatch(u1, u2w2))
)

p1 q1

p2 q2 r2

u|u1

v|v1

u|u2

v|v2

w|w2

Figure 2 Pattern characterising non-continuity of rational functions given by trim one-way Büchi
transducers.

φu-cont =

∃π1 : p1
u|u1−−−→ q1, ∃π′

1 : q1
v|v1−−−→ q1, ∃π′′

1 : q1
w|w1−−−→ r1

∃π2 : p2
u|u2−−−→ q2, ∃π′

2 : q2
v|v2−−−→ q2, ∃π′′

2 : q2
w|w2−−−→ r2(

init(p1) ∧ init(p2)
)
∧(

mismatch(u1, u2) ∨ (v1 = ε ∧mismatch(u1w1, u2))
∨(v1 = v2 = ε ∧mismatch(u1w1, u2w2))

)
p1 q1 r1

p2 q2 r2

u|u1

v|v1

w|w1

u|u2

v|v2

w|w2

Figure 3 Pattern characterising non-uniform continuity of rational functions given by trim
one-way Büchi transducers.

I Lemma 11. A trim one-way Büchi transducer defines a non-continuous (resp. non-
uniformly continuous) function if and only if it satisfies the formula φcont of Fig. 2 (resp.
the formula φu-cont of Fig. 3).

Sketch of Proof. Showing that the patterns of Figure 2 and Figure 3 induce non-continuity
and non-uniform continuity, respectively, is quite simple. Indeed, the first pattern φcont is a
witness that (uvnwz)n∈N is a bad sequence at a point uvω of its domain, for z a word with a fi-
nal run from r2, which entails non-continuity by Proposition 9 (if a sequence s is bad then (s, s)
is bad). Similarly, the pattern φu-cont witnesses that the pair

(
(uvnwz)n∈N , (uvnw′z′)n∈N

)
is

synchronised and bad (with z, z′ words that have a final run from r1, r2, respectively), which
entails non-uniform continuity by Lemma 10.

For the other direction, we again use Lemma 10. From a synchronised bad pair, we can
find a pair of runs with a synchronised loop, such that iterating the loop does not affect the
existing mismatch between the outputs of the two runs, which is in essence what the pattern
formulas of Figure 2 and Figure 3 state. The full proof is available in full version [10]. J

I Theorem 12. Deciding if a one way Büchi transducer defines a continuous (resp. uniformly
continuous) function can be done in NLogSpace.

Proof. Let T be a one way Büchi transducer defining a function f . From Lemma 11, if
T is trim, non-continuity of f is equivalent to T satisfying the formula φcont of Fig. 2.
This formula is expressed in the syntax of the pattern logic from [15], where it is proved
that model-checking pattern formulas against transducers can be done in NLogSpace [15,
Thm. 6]. This yields the result.

If T is not trim, then we modify the formula φcont to additionally express that there must
be some accepting run from r2 on some input. Equivalently, we express that there exists
a run from r2 to some accepting state s, and a run looping in s, in the following way: we
just add the quantifiers ∃π3 : r2

α|β−−→ s ∃π4 : s γ|τ−−→ s to φcont and the constraint acc(s) which
requires s to be accepting.

The proof for non-uniform continuity, using formula φu-cont is similar. J
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α1α1α1

α2α2α2

α3α3α3

β1β1β1

β2β2β2

β3β3β3

γ1

2 more copies of u2

u2 u2 u2 u2

α1α1α1

α2α2α2
α1α1α1

α3α3α3
α2α2α2

α1α1α1
α3α3α3

α2α2α2

α3α3α3

β1β1β1

β2β2β2
β1β1β1

β3β3β3β2β2β2
β1β1β1

β3β3β3β2β2β2

β3β3β3

γ1 γ1 γ1

Figure 4 Pumping u2. α1, α2, α3, β1, β2, β3, γ1 are the outputs seen on u2. The blue, red and
green arrows are part of the run r while reading u2.

Regular case. The case of regular functions is more intricate. We have to exploit the form
of the output words produced by idempotent loops of two-way transducer runs. Idempotent
loops always exist for sufficiently long inputs and indeed have a nice structure which allows
one to characterise the form of the output words produced when iterating such loops [3].
A detailed definition of idempotent loops, based on the traversal monoid is in [3]. We
have abstracted the main property of idempotent loops which is sufficient in our context,
and for which it is not necessary to know the precise definition of idempotency. So, given
a deterministic two-way transducer T on finite words (we need the notion only for finite
words) and an input word u1u2u3, we will say that u2 is idempotent in (u1, u2, u3) (or just
idempotent when u1, u3 are clear from the context), if in the run r of T on u1u2u3, the
restriction of r to u2 (which is a sequence of possibly disconnected runs on u2) is idempotent
i.e. we can pump u2 any number of times in the context of u1 and u3 and still get a valid
run of T [3]. See Figure 4, if the sequence of states visited before reading first position of
u2 (at first vertical dashed line in figure) and the sequence of states visited after reading
u2 (at second vertical dashed line), we can pump u2, in other words concatenate the run
shown in left to itself multiple times. In right side figure, the partial run is shown where
u2 is concatenated with itself twice. Observe that the outputs on the factors that is shown
on each blue, red and green arrow remain same and the output words are concatenated in
pumped word in a systematic manner.

Given a language of ω-words L ⊆ Σω, we denote by Pref(L) the set of finite prefixes
of words in L, i.e. Pref(L) = {u ∈ Σ∗ | ∃v ∈ L, with u � v}. In order to deal with look-
aheads more easily, we remove look-aheads by considering words annotated with look-ahead
information. Given a 2DFTpla (T , P ) over alphabet Σ and with a set of look-ahead states QP ,
realising a function f , we define T̃ , a 2DBT over Σ×QP which simulates (T , P ) over words
annotated with look-ahead states, and which accepts only words with a correct look-ahead
annotation with respect to P (the formal definition can be found in full version [10]). We
denote by f̃ the function it realises, in particular for all words u ∈ dom(f), there exists
a unique annotated word ũ ∈ dom(f̃) such that f̃(ũ) = f(u), as P is prophetic. For any
annotated word ũ, π(ũ) = u stands for its Σ-projection.

From T̃ , we define T∗, a deterministic two-way transducer of finite words over the input
alphabet Σ×QP . Its domain is restricted to Pref(dom(f̃)) (which is a regular set) and it
behaves just as T̃ until it reaches the right border of its input for the first time, after which it
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accepts iff the input was indeed a prefix of dom(f̃) which, as said before, is a regular property
which can be checked by T∗ while simulating T̃ . We let f∗ be the function realised by T∗
(which depends on T ). We have that, for any infinite word x ∈ dom(f̃), f̃(x) = limu≺x f∗(u).

The following lemma is a first characterisation of non-continuity which we can get by
exploiting the existence of synchronised bad pairs.

I Lemma 13. Let f : Σω → Γω be a regular function defined by some deterministic two-way
transducer T with look-ahead and let QP be the set of look-ahead states. Then f is not
continuous (resp. uniformly continuous) iff there exist finite words u1, u

′
1, u2, u

′
2, u3, u

′
3 ∈

(Σ×QP )∗ such that u1u2u3, u
′
1u
′
2u
′
3 ∈ dom(f∗) and

1. π(u1) = π(u′1), π(u2) = π(u′2), and x = π(u1)π(u2)ω ∈ dom(f) (resp. x ∈ Σω),
2. u2 and u′2 are idempotent in (u1, u2, u3) and (u′1, u′2, u′3) respectively (for T∗),
3. there exists i such that for all n ≥ 1, f∗(u1u

n
2u3)[i] 6= f∗(u′1u′2

n
u′3)[i].

Sketch of Proof. For the if direction, since dom(f∗) = Pref(dom(f̃)), for any n there are
some u4,n, u

′
4,n such that the words xn = u1u

n
2u4,n and x′n = u′1u

′
2
n
u′4,n are both in dom(f̃).

Moreover, the sequences (π(xn))n∈N and (π(x′n))n∈N both converge to x. However, since
there is a mismatch between f∗(u1u

n
2u3) and f∗(u′1u′2

n
u′3) at position i, and by definition

of f∗ we have f∗(u1u
n
2u3) � f̃(xn) and f∗(u′1u′2

n
u′3) � f̃(x′n), there is also one between

f̃(xn) and f̃(x′n) at position i. Thus the pair
(
(π(xn))n∈N , (π(x′n))n∈N

)
is a bad pair and

we conclude by Lemma 10.
In the other direction, as for the rational case, we start from Lemma 10 stating that

it suffices to check for a synchronised bad pair. Like in the rational case, we successively
extract subsequences of the synchronised bad pair and at each step we need to preserve
synchronicity as well as badness. The main idea is that if we iterate enough times the loop
in the synchronised bad pair, we will end up with synchronised idempotent loops. The more
detailed version is available in [10]. J

Given a deterministic two-way transducer T (i.e. with a trivial look-ahead) defining a
function f and words u1, u2, u3 ∈ Σ∗ such that u1u2u3 ∈ Pref(dom(T )) and u2 is idempotent
for T , we say that u2 is “producing” in (u1, u2, u3) if the run of T on u1u2u3 produces some
output when reading at least one symbol of u2, at some point in the run. If u2 is producing,
then |f∗(u1u

i
2u3)| < |f∗(u1u

i+1
2 u3)| for all i ≥ 1.

Our goal is now to give another characterisation of (non-) continuity, which replaces the
quantification on n in Lemma 13 by a property which does not need iteration, and therefore
which is more amenable to an algorithmic check. It is based on the following key result.

I Lemma 14. Let Σ be an alphabet such that # 6∈ Σ. Let g : Σω → Γω be a regular function
defined by some deterministic two-way transducer U . There exists a function ρU : (Σ∗)3 → Γ∗
defined on all tuples (u1, u2, u3) such that u2 is idempotent and u1u2u3 ∈ Pref(dom(g)), and
which satisfies the following conditions:
1. if u2 is producing in (u1, u2, u3), then ρU (u1, u2, u3) ≺ ρU (u1u2, u2, u2u3)
2. for all n ≥ 1, ρU (u1, u2, u3) � g∗(u1u

n
2u3)

3. for all n ≥ 1, ρU (u1, u2, u3) = g∗(u1u
n
2u3) if u2 is not producing in (u1, u2, u3)

4. the finite word function ρ′U : u1#u2#u3 7→ ρU (u1, u2, u3) is (effectively) regular.

Proof. The proof of Lemma 14 is based on a thorough study of the form of the output words
produced by idempotent loops [3]. The whole proof, which requires technical notions, can be
found in full version [10]. J
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Note that the previous lemma is stated for transducers without look-ahead. It is however
sufficient as we apply it to transducers of the form T̃ . In particular, we use this lemma to
characterise the continuity of a function defined by a 2DFTpla T by using the function ρT̃ .

Unlike in Lemma 13, in the following characterisation, we do not need to iterate the loop
to check existence of a mismatch for all iterations, as we just need to inspect ρT̃ (u1, u2, u3).

I Lemma 15. Let f : Σω → Γω be a function defined by some deterministic two-way
transducer T with look-ahead and let QP be the set of look-ahead states. The function f is not
continuous (resp. not uniformly continuous) iff there exist u1, u

′
1, u2, u

′
2, u3, u

′
3 ∈ (Σ×QP )∗

such that u1u2u3, u
′
1u
′
2u
′
3 ∈ dom(f∗) and

1. π(u1) = π(u′1), π(u2) = π(u′2), and x = π(u1)π(u2)ω ∈ dom(f) (resp. x ∈ Σω)
2. u2 and u′2 are idempotent in (u1, u2, u3) and (u′1, u′2, u′3) respectively (for T̃ )
3. there is a mismatch between ρT̃ (u1, u2, u3) and ρT̃ (u′1, u′2, u′3).

Sketch of proof. We show how to replace condition 3 of Lemma 13 by condition 3 of
this lemma. One direction is easy: if ρT̃ (u1, u2, u3)[i] 6= ρT̃ (u′1, u′2, u′3)[i] for some i,
then by Condition 2 of Lemma 14, we get the result. Conversely, assume there is i
such that f∗(u1u

n
2u3)[i] 6= f∗(u′1(u′2)nu′3)[i] for all n ≥ 1 and u2, u

′
2 are both producing

(the other cases are similar and done in full version). By Condition 1 of Lemma 14,
ρT̃ (u1, u2, u3) ≺ ρT̃ (u1u2, u2, u2u3) ≺ · · · ≺ ρT̃ (u1u

k
2 , u2, u

k
2u3) for all k ≥ 1, and similarly

for the u′i. Therefore, for large enough k, ρT̃ (u1u
k
2 , u2, u

k
2u3) and ρT̃ (u′1u′2

k
, u′2, u

′
2
k
u′3),

have length at least i. By Condition 2, x = ρT̃ (u1u
k
2 , u2, u

k
2u3) � f∗(u1u

n
2u3) and x′ =

ρT̃ (u′1u′2
k
, u′2, u

′
2
k
u′3) � f∗(u′1u′2

n
u′3) for all n ≥ 2k + 1, from which we get x[i] 6= x′[i]. J

Finally, we show how to decide continuity by reduction to the emptiness problem of bounded-
visit two-way Parikh automata [17, 14]. (Full details are in full version [10])

I Theorem 16. Continuity and uniform continuity are decidable for regular functions.

Sketch of proof. The proof is based on Lemma 15. First, we encode words u1, u
′
1, u2, u

′
2 as

words over the alphabet (Σ×QP 2) to hard-code condition 1 of the lemma. In particular, we
define the language L of words of the form w1#w2#u3#u′3 such that w1, w2 ∈ (Σ×QP 2)∗
represent u1, u

′
1, u2, u

′
2 and such that conditions 1 and 2 of the lemma are satisfied. Condition

2 and condition π(u1)π(u2)ω ∈ dom(f) are simple because they are regular properties of
words, the domain of f being regular. For condition 3, we need counters to identify positions
i and j such that ρT̃ (u1, u2, u3)[i] 6= ρT̃ (u1, u2, u3)[j], and later on check that i = j. In
particular, we rely on the model of two-way Parikh automata which extend two-way automata
with counters which can be only incremented and tested at the end of the computation.
If such automata visit any input position a bounded number of times, their emptiness is
decidable [17, 14]. We show that L is definable by an automaton which (1) visits any input
boundedly many times, and (2) simulates the transducer obtained by Lemma 14.4. J

6 Discussion and Further Directions

Summary. In this paper, we have studied two notions of computability for rational and
regular functions, shown their correspondences to continuity notions which we proved to
be decidable. The notion of uniform computability asks for the existence of a modulus of
continuity, which tells how far one has to go in the input to produce a certain amount of
output. It would be interesting to give a tight upper bound on modulus of continuity for
regular functions, and we conjecture that it is always a linear (affine) function in that case.
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Discussion on Church synthesis. This work is motivated by a synthesis problem: given a
specification of a function of infinite words (as a transducer), does there exist an algorithm to
compute it and if true, synthesize such an algorithm. We have established in the introduction
that even in the setting of Church ω-regular synthesis, this question makes sense as some
(functional and synchronous) ω-regular specifications may describe functions which are not
even computable. Here we compare our work with Church synthesis and address some open
question. The Church ω-regular synthesis problem is known be decidable [18]. The setting
we consider in this paper is orthogonal: Church ω-regular synthesis considers non-functional
specifications but they have to be synchronous, while we consider functional specifications but
they can be represented by way more expressive automata devices (two-way transducers with
look-ahead). Moreover, Church synthesis asks for computability by Mealy machines while our
goal is to relax this notion to more general computability notions. A corollary of our results
is that the Church ω-regular synthesis problem when the specification is functional and the
function realising the specification is only required to be computable, can be decided in
NLogSpace. An interesting open question that we do not solve here is the extension of this
latter result to non-functional specifications. More precisely, we leave the following problem
open: given an automaton over Σi.Σo defining an ω-regular synchronous specification S, is S
realisable by a computable function? This question was partially answered in [16], where
S is assumed to be total, i.e. dom(S) = Σω

i . Intuitively, it is shown that in this case, if S
is realisable, then it is realisable by a bounded delay function, i.e. a function which can be
implemented by a deterministic transducer which needs to read at most i+K input symbols
before outputting the ith output symbol, where K is a constant that depends only on f and
not on the input. The open case where S is partial is more challenging. For example, the
function Sswap has partial domain, is computable, but not bounded delay computable.

Other future directions. Another interesting direction is to find a transducer model which
captures exactly the computable, and uniformly computable, rational and regular functions.
For rational functions, the deterministic (one-way) transducers are not sufficient, already for
uniform computability, as witnessed by the rational function which maps any word of the
form anbω to itself, and any word ancω to a2ncω. For regular functions, we conjecture that
2DFT characterise the computable ones, but we have not been able to show it yet.

Finally, much of our work deals with reg-preserving functions in general. An interesting
line of research would be to investigate continuity and uniform continuity for different classes of
functions which have this property. One natural candidate is the class of polyregular functions
introduced in [4] which enjoy several different characterisations and many nice properties,
including being effectively reg-preserving. This means that continuity and computability also
coincide, however deciding continuity seems challenging.
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