
Monte Carlo Tree Search Guided by Symbolic
Advice for MDPs
Damien Busatto-Gaston
Université Libre de Bruxelles, Brussels, Belgium
damien.busatto-gaston@ulb.ac.be

Debraj Chakraborty
Université Libre de Bruxelles, Brussels, Belgium
debraj.chakraborty@ulb.ac.be

Jean-Francois Raskin
Université Libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

Abstract
In this paper, we consider the online computation of a strategy that aims at optimizing the expected
average reward in a Markov decision process. The strategy is computed with a receding horizon
and using Monte Carlo tree search (MCTS). We augment the MCTS algorithm with the notion of
symbolic advice, and show that its classical theoretical guarantees are maintained. Symbolic advice
are used to bias the selection and simulation strategies of MCTS. We describe how to use QBF and
SAT solvers to implement symbolic advice in an efficient way. We illustrate our new algorithm using
the popular game Pac-Man and show that the performances of our algorithm exceed those of plain
MCTS as well as the performances of human players.

2012 ACM Subject Classification Theory of computation→ Theory of randomized search heuristics;
Theory of computation → Convergence and learning in games

Keywords and phrases Markov decision process, Monte Carlo tree search, symbolic advice, simulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.40

Supplementary Material http://di.ulb.ac.be/verif/debraj/pacman/

Funding This work is partially supported by the ARC project Non-Zero Sum Game Graphs:
Applications to Reactive Synthesis and Beyond (Fédération Wallonie-Bruxelles), the EOS project
Verifying Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), and the COST Action
16228 GAMENET (European Cooperation in Science and Technology).

Acknowledgements Computational resources have been provided by the Consortium des Équipe-
ments de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique
(F.R.S.-FNRS) under Grant No. 2.5020.11.

1 Introduction

Markov decision processes (MDP) are an important mathematical formalism for modeling
and solving sequential decision problems in stochastic environments [23]. The importance of
this model has triggered a large number of works in different research communities within
computer science, most notably in formal verification, and in artificial intelligence and
machine learning. The works done in these research communities have respective weaknesses
and complementary strengths. On the one hand, algorithms developed in formal verification
are generally complete and provide strong guarantees on the optimality of computed solutions
but they tend to be applicable to models of moderate size only. On the other hand, algorithms
developed in artificial intelligence and machine learning usually scale to larger models but
only provide weaker guarantees. Instead of opposing the two sets of algorithms, there have

© Damien Busatto-Gaston, Debraj Chakraborty, and Jean-Francois Raskin;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 40; pp. 40:1–40:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-7266-0927
mailto:damien.busatto-gaston@ulb.ac.be
https://orcid.org/0000-0003-0978-4457
mailto:debraj.chakraborty@ulb.ac.be
mailto:jraskin@ulb.ac.be
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
http://di.ulb.ac.be/verif/debraj/pacman/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

been recent works [2, 14, 6, 12, 11, 19, 1] that try to combine the strengths of the two
approaches in order to offer new hybrid algorithms that scale better and provide stronger
guarantees. The contributions described in this paper are part of this research agenda: we
show how to integrate symbolic advice defined by formal specifications into Monte Carlo Tree
Search algorithms [7] using techniques such as SAT [21] and QBF [24].

When an MDP is too large to be analyzed offline using verification algorithms, receding
horizon analysis combined with simulation techniques are used online [17]. Receding horizon
techniques work as follows. In the current state s of the MDP, for a fixed horizon H, the
receding horizon algorithm searches for an action a that is the first action of a plan to act
(almost) optimally on the finite horizon H. When such an action is identified, then it is
played from s and the state evolves stochastically to a new state s′ according to the dynamics
specified by the MDP. The same process is repeated from s′. The optimization criterion
over the H next step depends on the long run measure that needs to be optimised. The tree
unfolding from s that needs to be analyzed is often very large (e.g. it may be exponential
in H). As a consequence, receding horizon techniques are often coupled with sampling
techniques that avoid the systematic exploration of the entire tree unfolding at the expense
of approximation. The Monte Carlo Tree Search (MCTS) algorithm [7] is an increasingly
popular tree search algorithm that implements these ideas. It is one of the core building
blocks of the AlphaGo algorithm [25].

While MCTS techniques may offer reasonable performances out of the shelf, they usually
need substantial adjustments that depend on the application to really perform well. One
way to adapt MCTS to a particular application is to bias the search towards promising
subspaces taking into account properties of the application domain [16, 26]. This is usually
done by coding directly handcrafted search and sampling strategies. We show in this paper
how to use techniques from formal verification to offer a flexible and rigorous framework to
bias the search performed by MCTS using symbolic advice. A symbolic advice is a formal
specification, that can be expressed for example in your favorite linear temporal logic, and
which constrain the search and the sampling phases of the MCTS algorithm using QBF and
SAT solvers. Our framework offers in principle the ability to easily experiment with precisely
formulated bias expressed declaratively using logic.

Contributions. On the theoretical side, we study the impact of using symbolic advice on
the guarantees offered by MCTS. We identify sufficient conditions for the symbolic advice to
preserve the convergence guarantees of the MCTS algorithm (Theorem 21). Those results are
partly based on an analysis of the incidence of sampling on those guarantees (Theorem 11)
which can be of independent interest.

On a more practical side, we show how symbolic advice can be implemented using SAT
and QBF techniques. More precisely, we use QBF [22] to force that all the prefixes explored
by the MCTS algorithm in the partial tree unfolding have the property suggested by the
selection advice (whenever possible) and we use SAT-based sampling techniques [9] to achieve
uniform sampling among paths of the MDP that satisfy the sampling advice. The use of this
symbolic exploration techniques is important as the underlying state space that we need to
analyze is usually huge (e.g. exponential in the receding horizon H).

To demonstrate the practical interest of our techniques, we have applied our new MCTS
with symbolic advice algorithm to play Pac-Man. Figure 1 shows a grid of the Pac-Man
game. In this version of the classical game, the agent Pac-Man has to eat food pills as fast
as possible while avoiding being pinched by ghosts. We have chosen this benchmark to
evaluate our algorithm for several reasons. First, the state space of the underlying MDP is

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:3

Figure 1 We used two grids of size 9 × 21 and 27 × 28 for our experiments. Pac-Man loses if
he makes contact with a ghost, and wins if he eats all food pills (in white). The agents can travel
in four directions unless they are blocked by the walls in the grid, and ghosts cannot reverse their
direction. The score decreases by 1 at each step, and increases by 10 whenever Pac-Man eats a food
pill. A win (resp. loss), increases (resp. decreases) the score by 500. The game can be seen as an
infinite duration game by saying that whenever Pac-Man wins or loses, the positions of the agents
and of the food pills are reset.

way too large for the state-of-the-art implementations of complete algorithms. Indeed, the
reachable state space of the small grid shown here has approximately 1016 states, while the
classical grid has approximately 1023 states. Our algorithm can handle both grids. Second,
this application not only allows for comparison between performances obtained from several
versions of the MCTS algorithm but also with the performances that humans can attain in
this game. In the Pac-Man benchmark, we show that advice that instructs Pac-Man on
the one hand to avoid ghosts at all costs during the selection phase of the MCTS algorithm
(enforced whenever possible by QBF) and on the other hand to bias the search to paths in
which ghosts are avoided (using uniform sampling based on SAT) allow to attain or surpass
human level performances while the standard MCTS algorithm performs much worse.

Related works. Our analysis of the convergence of the MCTS algorithm with appropriate
symbolic advice is based on extensions of analysis results based on bias defined using UCT
(bandit algorithms) [18, 3]. Those results are also related to sampling techniques for finite
horizon objectives in MDP [17].

Our concept of selection phase advice is related to the MCTS-minimax hybrid algorithm
proposed in [4]. There the selection phase advice is not specified declaratively using logic but
encoded directly in the code of the search strategy. No use of QBF nor SAT is advocated
there and no use of sampling advice either. In [1], the authors provide a general framework
to add safety properties to reinforcement learning algorithms via shielding. These techniques
analyse statically the full state space of the game in order to compute a set of unsafe actions
to avoid. This fits our advice framework, so that such a shield could be used as an online
selection advice in order to combine their safety guarantees with our formal results for MCTS.
More recently, a variation of shielding called safe padding has been studied in [14]. Both
works are concerned with reinforcement learning and not with MCTS. Note that in general
multiple ghosts may prevent the existence of a strategy to enforce safety, i.e. always avoid
pincer moves.

Our practical handling of symbolic sampling advice relies on symbolic sampling techniques
introduced in [8], while our handling of symbolic selection advice relies on natural encodings
via QBF that are similar to those defined in [22].

CONCUR 2020

40:4 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

2 Preliminaries

A probability distribution on a finite set S is a function d : S → [0, 1] such that
∑
s∈S d(s) = 1.

We denote the set of all probability distributions on set S by D(S). The support of a
distribution d ∈ D(S) is Supp(d) = {s ∈ S | d(s) > 0}.

2.1 Markov decision process

I Definition 1 (MDP). A Markov decision process is a tuple M = (S,A, P,R,RT), where S
is a finite set of states, A is a finite set of actions, P is a mapping from S ×A to D(S) such
that P (s, a)(s′) denotes the probability that action a in state s leads to state s′, R : S×A→ R
defines the reward obtained for taking a given action at a given state, and RT : S → R assigns
a terminal reward to each state in S.1

For a Markov decision process M , a path of length i > 0 is a sequence of i consecutive
states and actions followed by a last state. We say that p = s0a0s1 . . . si is an i-length path
in the MDP M if for all t ∈ [0, i − 1], at ∈ A and st+1 ∈ Supp(P (st, at)), and we denote
last(p) = si and first(p) = s0. We also consider states to be paths of length 0. An infinite
path is an infinite sequence p = s0a0s1 . . . of states and actions such that for all t ∈ N,
at ∈ A and st+1 ∈ Supp(P (st, at)). We denote the finite prefix of length t of a finite or
infinite path p = s0a0s1 . . . by p|t = s0a0 . . . st. Let p = s0a0s1 . . . si and p′ = s′0a

′
0s
′
1 . . . s

′
j

be two paths such that si = s′0, let a be an action and s be state of M . Then, p · p′ denotes
s0a0s1 . . . sia

′
0s
′
1 . . . s

′
j and p · as denotes s0a0s1 . . . sias.

For an MDPM , the set of all finite paths of length i is denoted by PathsiM . Let PathsiM (s)
denote the set of paths p in PathsiM such that first(p) = s. Similarly, if p ∈ PathsiM and i ≤ j,
then let PathsjM (p) denote the set of paths p′ in PathsjM such that there exists p′′ ∈ Pathsj−iM

with p′ = p · p′′. We denote the set of all finite paths in M by PathsM and the set of finite
paths of length at most H by Paths≤HM .

I Definition 2. The total reward of a finite path p = s0a0 . . . sn in M is defined as

RewardM (p) =
n−1∑
t=0

R(st, at) +RT (sn) .

A (probabilistic) strategy is a function σ : PathsM → D(A) that maps a path p to a
probability distribution in D(A). A strategy σ is deterministic if the support of the probability
distributions σ(p) has size 1, it is memoryless if σ(p) depends only on last(p), i.e. if σ satisfies
that for all p, p′ ∈ PathsM , last(p) = last(p′) ⇒ σ(p) = σ(p′). For a probabilistic strategy
σ and i ∈ N, let PathsiM (σ) denote the paths p = s0a0 . . . si in PathsiM such that for all
t ∈ [0, i − 1], at ∈ Supp(σ(p|t)). For a finite path p of length i ∈ N and some j ≥ i, let
PathsjM (p, σ) denote PathsjM (σ) ∩ PathsjM (p).

For a strategy σ and a path p ∈ PathsiM (σ), let the probability of p = s0a0 . . . si in M
according to σ be defined as PiM,σ(p) =

∏i−1
t=0 σ(p|t)(at)P (st, at)(st+1). The mapping PiM,σ

defines a probability distribution over PathsiM (σ).

1 We assume for convenience that every action in A can be taken from every state. One may need to limit
this choice to a subset of legal actions that depends on the current state. This concept can be encoded
in our formalism by adding a sink state reached with probability 1 when taking an illegal action.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:5

I Definition 3. The expected average reward of a probabilistic strategy σ in an MDP M ,
starting from state s, is defined as

ValM (s, σ) = lim inf
n→∞

1
n
E [RewardM (p)] ,

where p is a random variable over PathsnM (σ) following the distribution PnM,σ.

I Definition 4. The optimal expected average reward starting from a state s in an MDP
M is defined over all strategies σ in M as ValM (s) = supσ ValM (s, σ).

One can restrict the supremum to deterministic memoryless strategies [23, Proposi-
tion 6.2.1]. A strategy σ is called ε-optimal for the expected average reward if ValM (s, σ) ≥
ValM (s)− ε for all s.

I Definition 5. The expected total reward of a probabilistic strategy σ in an MDP M , starting
from state s and for a finite horizon i, is defined as ValiM (s, σ) = E [RewardM (p)], where p is
a random variable over PathsiM (σ) following the distribution PiM,σ.

I Definition 6. The optimal expected total reward starting from a state s in an MDP M ,
with horizon i ∈ N, is defined over all strategies σ in M as ValiM (s) = supσ ValiM (s, σ).

One can restrict the supremum to deterministic strategies [23, Theorem 4.4.1.b].
Let σi,∗M,s denote a deterministic strategy that maximises ValiM (s, σ), and refer to it as

an optimal strategy for the expected total reward of horizon i at state s. For i ∈ N, let
σiM refer to a deterministic memoryless strategy that maps every state s in M to the first
action of a corresponding optimal strategy for the expected total reward of horizon i, so
that σiM (s) = σi,∗M,s(s). As there may exist several deterministic strategies σ that maximise
ValiM (s, σ), we denote by optiM (s) the set of actions a such that there exists an optimal
strategy σi,∗M,s that selects a from s. A strategy σiM can be obtained by the value iteration
algorithm:

I Proposition 7 (Value iteration [23, Section 5.4]). For a state s in MDP M , for all i ∈ N,
Vali+1

M (s) = maxa∈A
[
R(s, a) +

∑
s′ P (s, a)(s′)ValiM (s′)

]
opti+1

M (s) = arg maxa∈A
[
R(s, a) +

∑
s′ P (s, a)(s′)ValiM (s′)

]
Moreover, for a large class of MDPs and a large enough n, the strategy σnM is ε-optimal

for the expected average reward:

I Proposition 8 ([23, Theorem 9.4.5]). For a strongly aperiodic2 Markov decision process
M , it holds that ValM (s) = limn→∞[Valn+1

M (s) − ValnM (s)]. Moreover, for any ε > 0 there
exists N ∈ N such that for all n ≥ N , V alM (s, σnM) ≥ V alM (s)− ε for all s.

A simple transformation can be used to make an MDP strongly aperiodic without changing
the optimal expected average reward and the associated optimal strategies. Therefore, one
can use an algorithm computing the strategy σHM in order to optimise for the expected
average reward, and obtain theoretical guarantees for a horizon H big enough. This is known
as the receding horizon approach.

Finally, we will use the notation T (M, s0, H) to refer to an MDP obtained as a tree-shaped
unfolding of M from state s0 and for a depth of H. In particular, the states of T (M, s0, H)
correspond to paths in Paths≤HM (s0). Then, it holds that:

I Lemma 9. ValHM (s0) is equal to ValHT (M,s0,H)(s0), and optHM (s0) is equal to optHT (M,s0,H)(s0).

The aperiodicity and unfolding transformations are detailed in Appendix A.

2 A Markov decision process is strongly aperiodic if P (s, a)(s) > 0 for all s ∈ S and a ∈ A.

CONCUR 2020

40:6 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

2.2 Bandit problems and UCB
In this section, we present bandit problems, whose study forms the basis of a theoretical
analysis of Monte Carlo tree search algorithms.

Let A denote a finite set of actions. For each a ∈ A, let (xa,t)t≥1 be a sequence of
random payoffs associated to a. They correspond to successive plays of action a, and for
every action a and every t ≥ 1, let xa,t be drawn with respect to a probability distribution
Da,t over [0, 1]. We denote by Xa,t the random variable associated to this drawing. In a
fixed distributions setting (the classical bandit problem), every action is associated to a fixed
probability distribution Da, so that Da,t = Da for all t ≥ 1.

The bandit problem consists of a succession of steps where the player selects an action
and observes the associated payoff, while trying to maximise the cumulative gains. For
example, selecting action a, then b and then a again would yield the respective payoffs
xa,1, xb,1 and xa,2 for the first three steps, drawn from their respective distributions. Let
the regret Rn denote the difference, after n steps, between the optimal expected payoff
maxa∈A E[

∑n
t=1 Xa,t] and the expected payoff associated to our action selection. The goal is

to minimise the long-term regret when the number of steps n increases.
The algorithm UCB1 of [3] offers a practical solution to this problem, and offers theoretical

guarantees. For an action a and n ≥ 1, let xa,n = 1
n

∑n
t=1 xa,t denote the average payoff

obtained from the first n plays of a. Moreover, for a given step number t let ta denote how
many times action a was selected in the first t steps. The algorithm UCB1 chooses, at step
t+1, the action a that maximises xa,ta +ct,ta , where ct,ta is defined as

√
2 ln t
ta

. This procedure
enjoys optimality guarantees detailed in [3], as it keeps the regret Rn below O(logn).

We will make use of an extension of these results to the general setting of non-stationary
bandit problems, where the distributions Da,t are no longer fixed with respect to t. This
problem has been studied in [18], and results were obtained for a class of distributions Da,t
that respect assumptions referred to as drift conditions.

For a fixed n ≥ 1, let Xa,n denote the random variable obtained as the average of the
random variables associated with the first n plays of a. Let µa,n = E[Xa,n]. We assume that
these expected means eventually converge, and let µa = limn→∞ µa,n.

I Definition 10 (Drift conditions). For all a ∈ A, the sequence (µa,n)n≥1 converges to some
value µa. Moreover, there exists a constant Cp > 0 and an integer Np such that for n ≥ Np and
any δ > 0, if ∆n(δ) = Cp

√
n ln(1/δ) then the tail inequalities P[nXa,n ≥ nµa,n + ∆n(δ)] ≤ δ

and P[nXa,n ≤ nµa,n −∆n(δ)] ≤ δ hold.

We recall in Appendix B the results of [18], and provide an informal description of
those results here. Consider using the algorithm UCB1 on a non-stationary bandit problem
satisfying the drift conditions, with ct,ta = 2Cp

√
ln t
ta

. First, one can bound logarithmically
the number of times a suboptimal action is played. This is used to bound the difference
between µa and E[Xn] by O(lnn/n), where a is an optimal action and where Xn denotes
the global average of payoffs received over the first n steps. This is the main theoretical
guarantee obtained for the optimality of UCB1. Also for any action a, the authors state
a lower bound for the number of times the action is played. The authors also prove a tail
inequality similar to the one described in the drift conditions, but on the random variable
Xn instead of Xa,n. This will be useful for inductive proofs later on, when the usage of
UCB1 is nested so that the global sequence Xn corresponds to a sequence Xb,n of an action
b played from the next state of the MDP. Finally, it is shown that the probability of making
the wrong decision (choosing a suboptimal action) converges to 0 as the number of plays n
grows large enough.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:7

3 Monte Carlo tree search with simulation

In a receding horizon approach, the objective is to compute ValHM (s0) and σHM for some state
s0 and some horizon H. Exact procedures such as the recursive computation of Proposition 7
can not be used on large MDPs, resulting in heuristic approaches. We focus on the Monte
Carlo Tree Search (MCTS) algorithm [7], that can be seen as computing approximations
of ValHM and σHM (s0) on the unfolding T (M, s0, H). Note that rewards in the MDP M are
bounded.3 For the sake of simplicity we assume without loss of generality that for all paths
p of length at most H the total reward RewardM (p) belongs to [0, 1].

Given an initial state s0, MCTS is an iterative process that incrementally constructs a
search tree rooted at s0 describing paths of M and their associated values. This process
goes on until a specified budget (of number of iterations or time) is exhausted. An iteration
constructs a path in M by following a decision strategy to select a sequence of nodes in the
search tree. When a node that is not part of the current search tree is reached, the tree is
expanded with this new node, whose expected reward is approximated by simulation. This
value is then used to update the knowledge of all selected nodes in backpropagation.

In the search tree, each node represents a path. For a node p and an action a ∈
A, let children(p, a) be a list of nodes representing paths of the form p · as′ where s′ ∈
Supp(P (last(p), a)). For each node (resp. node-action pair) we store a value value(p) (resp.
value(p, a)) computed for node p (resp. for playing a from node p), meant to approximate
ValH−|p|M (last(p)) (resp. R(last(p), a) +

∑
s′ P (last(p), a)(s′)ValH−|p|−1

M (s′)), and a counter
count(p) (resp. count(p, a)), that keeps track of the number of iterations that selected node p
(resp. that selected the action a from p). We add subscripts i ≥ 1 to these notations to
denote the number of previous iterations, so that valuei(p) is the value of p obtained after i
iterations of MCTS, among which p was selected counti(p) times. We also define totali(p) and
totali(p, a) as shorthand for respectively valuei(p)× counti(p) and valuei(p, a)× counti(p, a).
Each iteration consists of three phases. Let us describe these phases at iteration number i.

Selection phase. Starting from the root node, MCTS descends through the existing search
tree by choosing actions based on the current values and counters and by selecting next
states stochastically according to the MDP. This continues until reaching a node q, either
outside of the search tree or at depth H. In the former case, the simulation phase is called
to obtain a value valuei(q) that will be backpropagated along the path q. In the latter case,
we use the exact value valuei(q) = RT (last(q)) instead.

The action selection process needs to balance between the exploration of new paths and
the exploitation of known, promising paths. A popular way to balance both is the upper
confidence bound for trees (UCT) algorithm [18], that interprets the action selection problem
of each node of the MCTS tree as a bandit problem, and selects an action a∗ in the set
arg maxa∈A

[
valuei−1(p, a) + C

√
ln(counti−1(p))
counti−1(p,a)

]
, for some constant C.

Simulation phase. In the simulation phase, the goal is to get an initial approximation
for the value of a node p, that will be refined in future iterations of MCTS. Classically, a
sampling-based approach can be used, where one computes a fixed number c ∈ N of paths
p · p′ in PathsHM (p). Then, one can compute valuei(p) = 1

c

∑
p′ RewardM (p′), and fix counti(p)

to 1. Usually, the samples are derived by selecting actions uniformly at random in the MDP.

3 There are finitely many paths of length at most H, with rewards in R.

CONCUR 2020

40:8 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

In our theoretical analysis of MCTS, we take a more general approach to the simulation
phase, defined by a finite domain I ⊆ [0, 1] and a function f : Paths≤HM → D(I) that maps
every path p to a probability distribution on I. In this approach, the simulation phase simply
draws a value valuei(p) at random according to the distribution f(p), and sets counti(p) = 1.

Backpropagation phase. From the value valuei(p) obtained at a leaf node p = s0a0s1 . . . sh
at depth h in the search tree, let rewardi(p|k) =

∑h−1
l=k R(sl, al) + valuei(p) denote the reward

associated with the path from node p|k to p in the search tree. For k from 0 to h − 1 we
update the values according to valuei(p|k) = totali−1(p|k)+rewardi(p|k)

counti(p|k) . The value valuei(p|k, ak)
is updated based on totali−1(p|k, ak), rewardi(p|k) and counti(p|k, ak) with the same formula.

Theoretical analysis. In the remainder of this section, we prove Theorem 11, that provides
theoretical properties of the MCTS algorithm with a general simulation phase (defined
by some fixed I and f). This theorem was proven in [18, Theorem 6] for a version of
the algorithm that called MCTS recursively until leaves were reached, as opposed to the
sampling-based approach that has become standard in practice. Note that sampling-based
approaches are captured by our general description of the simulation phase. Indeed, if
the number of samples c is set to 1, let I be the set of rewards associated with paths
of Paths≤HM , and let f(p) be a probability distribution over I, such that for every reward
RewardM (p′) ∈ I, f(p)(RewardM (p′)) is the probability of path p′ being selected with a
uniform action selections in T (M, s0, H), starting from the node p. Then, the value valuei(p)
drawn at random according to the distribution f(p) corresponds to the reward of a random
sample p · p′ drawn in PathsHM . If the number of samples c is greater than 1, one simply needs
to extend I to be the set of average rewards over c paths, while f(p) becomes a distribution
over average rewards.

I Theorem 11. Consider an MDP M , a horizon H and a state s0. Let Vn(s0) be a random
variable that represents the value valuen(s0) at the root of the search tree after n iterations
of the MCTS algorithm on M . Then, |E[Vn(s0)] − ValHM (s0)| is bounded by O((lnn)/n).
Moreover, the failure probability P[arg maxa valuen(s0, a) 6⊆ optHM (s0)] converges to zero.

Following the proof scheme of [18, Theorem 6], this theorem is obtained from the results
mentioned in Section 2.2. To this end, every node p of the search tree is considered to be
an instance of a bandit problem with non-stationary distributions. Every time a node is
selected, a step is processed in the corresponding bandit problem.

Let (Ii(p))i≥1 be a sequence of iteration numbers for the MCTS algorithm that describes
when the node p is selected, so that the simulation phase was used on p at iteration number
I1(p), and so that the i-th selection of node p happened on the iteration number Ii(p). We
define sequences (Ii(p, a))i∈N similarly for node-action pairs.

For all paths p and actions a, a payoff sequence (xa,t)t≥1 of associated random variables
(Xa,t)t≥1 is defined by xa,t = rewardIt(p,a)(p). Note that in the selection phase at iteration
number It(p, a), p must have been selected and must be a prefix of length k of the leaf node
p′ reached in this iteration, so that rewardIt(p,a)(p) is computed as rewardIt(p,a)(p′|k) in the
backpropagation phase. According to the notations of Section 2.2, for all t ≥ 1 we have
countIt(p)(p) = t, countIt(p)(p, a) = ta and valueIt(p)(p, a) = xa,ta .

Then, one can obtain Theorem 11 by applying inductively the UCB1 results recalled in
Appendix B on the search tree in a bottom-up fashion. Indeed, as the root s0 is selected at
every iteration, In(s0) = n and valuen(s0) = xn, while ValHM (s0) corresponds to recursively
selecting optimal actions by Proposition 7.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:9

The main difficulty, and the difference our simulation phase brings compared with the
proof of [18, Theorem 6], lies in showing that our payoff sequences (xa,t)t≥1, defined with an
initial simulation step, still satisfy the drift conditions of Definition 10. We argue that this is
true for all simulation phases defined by any I and f :

I Lemma 12. For any MDP M , horizon H and state s0, the sequences (Xa,t)t≥1 satisfy
the drift conditions.

Although the long-term guarantees of Theorem 11 hold for any simulation phase inde-
pendently of the MDP, in practice one would expect better results from a good simulation,
that gives a value close to the real value of the current node. Domain-specific knowledge can
be used to obtain such simulations, and also to guide the selection phase based on heuristics.
Our goal will be to preserve the theoretical guarantees of MCTS in the process.

4 Symbolic advice for MCTS

In this section, we introduce a notion of advice meant to guide the construction of the Monte
Carlo search tree. We argue that a symbolic approach is needed in order to handle large
MDPs in practice. Let a symbolic advice A be a logical formula over finite paths whose truth
value can be tested with an operator |=.

I Example 13. A number of standard notions can fit this framework. For example, reachab-
ility and safety properties, LTL formulæ over finite traces or regular expressions could be
used. We will use a safety property for Pac-Man as a example (see Figure 1), by assuming
that the losing states of the MDP should be avoided. This advice is thus satisfied by every
path such that Pac-Man does not make contact with a ghost.

We denote by PathsHM (A) the set of paths p ∈ PathsHM such that p |= A. For a path
p ∈ Paths≤HM , we denote by PathsHM (p,A) the set of paths p′ ∈ PathsHM (p) such that p′ |= A.4

A nondeterministic strategy is a function σ : PathsM → 2A that maps a finite path
p to a subset of A. For a strategy σ′ and a nondeterministic strategy σ, σ′ ⊆ σ if for
all p, Supp(σ′(p)) ⊆ σ(p). Similarly, a nondeterministic strategy for the environment
is a function τ : PathsM × A → 2S that maps a finite path p and an action a to a
subset of Supp(P (last(p), a)). We extend the notations used for probabilistic strategies to
nondeterministic strategies in a natural way, so that PathsHM (σ) and PathsHM (τ) denote the
paths of length H compatible with the strategy σ or τ , respectively.

For a symbolic advice A and a horizon H, we define a nondeterministic strategy σHA and
a nondeterministic strategy τHA for the environment such that for all paths p with |p| < H,

σHA (p) = {a ∈ A | ∃s ∈ S, ∃p′ ∈ PathsH−|p|−1
M (s), p · as · p′ |= A} ,

τHA (p, a) = {s ∈ S | ∃p′ ∈ PathsH−|p|−1
M (s), p · as · p′ |= A} .

The strategies σHA and τHA can be defined arbitrarily on paths p of length at least H, for
example with σHA (p) = A and τHA (p, a) = Supp(P (last(p), a)) for all actions a. Note that by
definition, PathsHM (s,A) = PathsHM (s, σHA) ∩ PathsHM (s, τHA) for all states s.

4 In particular, for all s ∈ S, PathsH
M (s,A) refers to the paths of length H that start from s and that

satisfy A.

CONCUR 2020

40:10 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

Let > (resp. ⊥) denote the universal advice (resp. the empty advice) satisfied by every
finite path (resp. never satisfied), and let σ> and τ> (resp. σ⊥ and τ⊥) be the associated
nondeterministic strategies. We define a class of advice that can be enforced against an
adversarial environment by following a nondeterministic strategy, and that are minimal in
the sense that paths that are not compatible with this strategy are not allowed.

I Definition 14 (Strongly enforceable advice). A symbolic advice A is called a strongly
enforceable advice from a state s0 and for a horizon H if there exists a nondeterministic
strategy σ such that PathsHM (s0, σ) = PathsHM (s0,A), and such that σ(p) 6= ∅ for all paths
p ∈ Paths≤H−1

M (s0, σ).

Note that Definition 14 ensures that paths that follow σ can always be extended into
longer paths that follow σ. This is a reasonable assumption to make for a nondeterministic
strategy meant to enforce a property. In particular, s0 is a path of length 0 in Paths0

M (s0, σ),
so that σ(s0) 6= ∅ and so that by induction PathsiM (s0, σ) 6= ∅ for all i ∈ [0, H].

I Lemma 15. Let A be a strongly enforceable advice from s0 with horizon H. It holds
that PathsHM (s0, σ

H
A) = PathsHM (s0,A). Moreover, for all paths p ∈ Paths≤H−1

M (s0) and all
actions a, either τHA (p, a) = τ>(p, a) or τHA (p, a) = τ⊥(p, a). Finally, for all paths p in
Paths≤H−1

M (s0, σ
H
A), σHA (p) 6= ∅ and a ∈ σHA (p) if and only if τHA (p, a) = τ>(p, a).

Proof. We have PathsHM (s0,A) = PathsHM (s0, σ
H
A)∩PathsHM (s0, τ

H
A) for any advice A. Let us

prove that PathsHM (s0, σ
H
A) ⊆ PathsHM (s0,A) for a strongly enforceable advice A of associated

strategy σ. Let p = p′ · as be a path in PathsHM (s0, σ
H
A). By definition of σHA , there exists

s′ ∈ S such that p′ · as′ |= A, so that p′ · as′ ∈ PathsHM (s0,A) = PathsHM (s0, σ). Since
s ∈ Supp(P (last(p′), a)), p = p′ · as must also belong to PathsHM (s0, σ) = PathsHM (s0,A).

Consider a path p and an action a such that |p| < H. We want to prove that either
all stochastic transitions starting from (p, a) are allowed by A, or none of them are. By
contradiction, let us assume that there exists s1 and s2 in Supp(P (last(p), a)) such that for
all p′1 ∈ PathsH−|p|−1

M (s1), p · as1 · p′1 6|= A, and such that there exists p′2 ∈ PathsH−|p|−1
M (s2)

with p · as2 · p′2 |= A. From p · as2 · p′2 |= A, we obtain p · as2 · p′2 ∈ PathsHM (σ), so that
p · as2 is a path that follows σ. Then, p · as1 is a path that follows σ as well. It follows that
σ(p · as1) 6= ∅, and p · as1 can be extended in to a path p · as1p

′
3 ∈ PathsHM (σ). This implies

the contradiction p · as1p
′
3 |= A.

Finally, consider a path p in Paths≤H−1
M (s0, σ

H
A). By the definitions of σHA and τHA ,

a ∈ σHA (p) if and only if τHA (p, a) 6= ∅, so that τHA (p, a) = τ>(p, a). Then, let us write
p = p′ · as. From p ∈ Paths≤H−1

M (s0, σ
H
A) we get a ∈ σHA (p′), so that s ∈ τHA (p′, a), and

therefore σHA (p) 6= ∅. J

A strongly enforceable advice is encoding a notion of guarantee, as σHA is a winning
strategy for the reachability objective on T (M, s0, H) defined by the set PathsHM (A).

We say that the strongly enforceable advice A′ is extracted from a symbolic advice A for
a horizon H and a state s0 if A′ is the greatest part of A that can be guaranteed for the
horizon H starting from s0, i.e. if PathsHM (s0,A

′) is the greatest subset of PathsHM (s0,A) such
that σHA′ is a winning strategy for the reachability objective PathsHM (s0,A) on T (M, s0, H).
This greatest subset always exists because if A′1 and A′2 are strongly enforceable advice in A,
then A′1 ∪A′2 is strongly enforceable by union of the nondeterministic strategies associated
with A′1 and A′2. However, this greatest subset may be empty, and as ⊥ is not a strongly
enforceable advice we say that in this case A cannot be enforced from s0 with horizon H.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:11

I Example 16. Consider a symbolic advice A described by the safety property for Pac-Man
of Example 13. For a fixed horizon H, the associated nondeterministic strategies σHA and τHA
describe action choices and stochastic transitions compatible with this property. Notably,
A may not be a strongly enforceable advice, as there may be situations (p, a) where some
stochastic transitions lead to bad states and some do not. In the small grid of Figure 1,
the path of length 1 that corresponds to Pac-Man going left and the red ghost going up is
allowed by the advice A, but not by any safe strategy for Pac-Man as there is a possibility of
losing by playing left. If a strongly enforceable advice A′ can be extracted from A, it is a
more restrictive safety property, where the set of bad states is obtained as the attractor [20,
Section 2.3] for the environment towards the bad states defined in A. In this setting, A′
corresponds to playing according to a strategy for Pac-Man that ensures not being eaten by
adversarial ghosts for the next H steps.

I Definition 17 (Pruned MDP). For an MDP M = (S,A, P,R,RT) a horizon H ∈ N, a
state s0 and an advice A, let the pruned unfolding T (M, s0, H,A) be defined as a sub-MDP of
T (M, s0, H) that contains exactly all paths in PathsHM (s0) satisfying A. It can be obtained by
removing all action transitions that are not compatible with σHA , and all stochastic transitions
that are not compatible with τHA . The distributions P (p, a) are then normalised over the
stochastic transitions that are left.

Note that by Lemma 15, if A is a strongly enforceable advice then τHA (p, a) = τ>(p, a)
for all paths p in Paths≤H−1

M (s0, σ
H
A), so that the normalisation step for the distributions

P (p, a) is not needed. It follows that for all nodes p in T (M, s0, H,A) and all actions a, the
distributions P (p, a) in T (M, s0, H,A) are the same as in T (M, s0, H). Thus, for all strategies
σ in T (M, s0, H,A), ValHT (M,s0,H,A)(s0, σ) = ValHT (M,s0,H)(s0, σ), so that ValHT (M,s0,H,A)(s0) ≤
ValHT (M,s0,H)(s0) = ValHM (s0) by Lemma 9.

I Definition 18 (Optimality assumption). An advice A satisfies the optimality assumption
for horizon H if σH,∗M,s ⊆ σHA for all s ∈ S, where σH,∗M,s is an optimal strategy for the expected
total reward of horizon H at state s.

I Lemma 19. Let A be a strongly enforceable advice that satisfies the optimality assumption.
Then, ValHM (s0) equals ValHT (M,s0,H,A)(s0). Moreover, optHT (M,s0,H,A)(s0) ⊆ optHM (s0).

Proof. By the optimality assumption σH,∗M,s is a strategy that can be followed in T (M, s0, H,A).
Indeed, from a path p in Paths≤H−1

M (s0, σ
H
A) any action a in the support of σH,∗M,s(last(p))

satisfies a ∈ σHA (p). Thus, by Lemma 9 ValHM (s0) = ValHT (M,s0,H)(s0, σ
H,∗
M,s) = ValHT (M,s0,H,A)

(s0, σ
H,∗
M,s). By definition of the optimal expected total reward, ValHT (M,s0,H,A)(s0, σ

H,∗
M,s) ≤

ValHT (M,s0,H,A)(s0), so that ValHM (s0) = ValHT (M,s0,H,A)(s0). Let a be an action in
optHT (M,s0,H,A)(s0). There exists an optimal strategy σ that maximises ValHT (M,s0,H,A)(s0, σ)
so that σ(s0) = a. It follows from ValHT (M,s0,H)(s0) = ValHT (M,s0,H,A)(s0) that σ is also an
optimal strategy in T (M, s0, H), so that a ∈ optHT (M,s0,H)(s0) = optHM (s0) by Lemma 9. J

I Example 20. Let A′ be a strongly enforceable safety advice for Pac-Man as described in
Example 16. Assume that visiting a bad state leads to an irrecoverably bad reward, so that
taking an unsafe action (i.e. an action such that there is a non-zero probability of losing
associated with all Pac-Man strategies) is always worse (on expectation) than taking a safe
action. Then, the optimality assumption holds for the advice A′. This can be achieved by
giving a penalty score for losing that is low enough.

CONCUR 2020

40:12 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

4.1 MCTS under symbolic advice
We will augment the MCTS algorithm using two advice: a selection advice ϕ to guide the
MCTS tree construction, and a simulation advice ψ to prune the sampling domain. We
assume that the selection advice is a strongly enforceable advice that satisfies the optimality
assumption. Notably, we make no such assumption for the simulation advice, so that any
symbolic advice can be used.

Selection phase under advice. We use the advice ϕ to prune the tree according to σHϕ .
Therefore, from any node p our version of UCT selects an action a∗ in the set

arg max
a∈σHϕ (p)

[
value(p, a) + C

√
ln (count(p))
count(p, a)

]
.

Simulation phase under advice. For the simulation phase, we use a sampling-based ap-
proach biased by the simulation advice: paths are sampled by picking actions uniformly at
random in the pruned MDP T (M, s0, H, ψ), with a fixed prefix p defined by the current node
in the search tree. This can be interpreted as a probability distribution over PathsHM (p, ψ). If
p /∈ T (M, s0, H, ψ), the simulation phase outputs a value of 0 as it is not possible to satisfy
ψ from p. Another approach that does not require computing the pruned MDP repeats the
following steps for a bounded number of time before returning 0 if no valid sample is found:
1. Pick a path p · p′ ∈ PathsHM (p) using a uniform sampling method;
2. If p · p′ 6|= ψ, reject and try again, otherwise output p′ as a sample.
We compute valuei(p) by averaging the rewards of these samples.

Theoretical analysis. We show that the theoretical guarantees of the MCTS algorithm
developed in Section 3 are maintained by the MCTS algorithm under symbolic advice.

I Theorem 21. Consider an MDP M , a horizon H and a state s0. Let Vn(s0) be a random
variable that represents the value valuen(s0) at the root of the search tree after n iterations of
the MCTS algorithm under a strongly enforceable advice ϕ satisfying the optimality assumption
and a simulation advice ψ. Then, |E[Vn(s0)]−ValHM (s0)| = O((lnn)/n). Moreover, the failure
probability P[arg maxa valuen(s0, a) 6⊆ optHM (s0)] converges to zero.

In order to prove Theorem 21, we argue that running MCTS under a selection advice ϕ
and a simulation advice ψ is equivalent to running the MCTS algorithm of Section 3 on the
pruned MDP T (M, s0, H, ϕ), with a simulation phase defined using the advice ψ.

The simulation phase biased by ψ can be described in the formalism of Section 3,
with a domain I = { 1

c

∑c
i=1 RewardM (pi) | p1, . . . , pc ∈ Paths≤HT (M,s0,H,ϕ)}, and a map-

ping fψ from paths p in Paths≤HT (M,s0,H,ϕ) to a probability distribution on I describing
the outcome of a sampling phase launched from the node p. Formally, the weight of
1
c

∑c
i=1 RewardM (pi) ∈ I in f(p) is the probability of sampling the sequence of paths p1, . . . , pc

in the simulation phase under advice launched from p. Then, from Theorem 11 we obtain
convergence properties of MCTS under symbolic advice towards the value and optimal
strategy in the pruned MDP, and Lemma 19 lets us conclude the proof of Theorem 21 as
those values and strategies are maintained in M by the optimality assumption. In par-
ticular, the failure probability P[arg maxa valuen(s0, a) 6⊆ optHM (s0)] is upper bounded by
P[arg maxa valuen(s0, a) 6⊆ optHT (M,s0,H,ϕ)(s0)] since optHT (M,s0,H,ϕ) ⊆ optHM (s0).

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:13

4.2 Using satisfiability solvers
We will now discuss the use of general-purpose solvers to implement symbolic advice according
to the needs of MCTS.

A symbolic advice A describes a finite set of paths in PathsHM , and as such can be
encoded as a Boolean formula over a set of variables V , such that satisfying assignments
v : V → {true, false} are in bijection with paths in PathsHM (A).

If a symbolic advice is described in Linear Temporal Logic, and a symbolic model of the
MDP M is available, one can encode A as a Boolean formula of size linear in the size of the
LTL formula and H [5].

I Example 22. In practice, one can use Boolean variables to encode the positions of Pac-Man
and ghosts in the next H steps of the game, then construct a CNF formula with clauses
that encode the game rules and clauses that enforce the advice. The former clauses are
implications such as “if Pac-Man is in position (x, y) and plays the action a, then it must be
in position (x′, y′) at the next game step”, while the latter clauses state that the position of
Pac-Man should never be equal to the position of one of the Ghosts.

On-the-fly computation of a strongly enforceable advice. A direct encoding of a strongly
enforceable advice may prove impractically large. We argue for an on-the-fly computation of
σHA instead, in the particular case where the strongly enforceable advice is extracted from a
symbolic advice A with respect to the initial state s0 and with horizon H.

I Lemma 23. Let A′ be a strongly enforceable advice extracted from A for horizon H.
Consider a node p at depth i in T (M, s0, H,A

′), for all a0 ∈ A, a0 ∈ σHA′(p) if and only if

∀s1∃a1∀s2 . . . ∀sH−i+1, p · a0s1a1s2 . . . sH−i+1 |= A ,

where actions are quantified over A and every sk is quantified over Supp(P (sk−1, ak−1)).

Proof. The proof is a reverse induction on the depth i of p. For the initialisation step
with i = H, let us prove that ∀s1, p · a0s1 |= A if and only if a0 ∈ σHA′(p). On the one
hand, if A is guaranteed by playing a0 from p, then a0 must be allowed by the greatest
strongly enforceable subset of A. On the other hand, a0 ∈ σHA′(p) implies ∀s1, p · a0s1 |= A′

as A′ is strongly enforceable, and finally A′ ⇒ A. We now assume the property holds for
1 ≤ i ≤ H, and prove it for i − 1. If a0 ∈ σHA′(p), then for all s1 we have s1 ∈ τHA′(p, a0),
so that there exists a1 with a1 ∈ σHA′(p · a0s1). As p · a0s1 is at depth i we can conclude
that ∀s1∃a1∀s2 . . . ∀sH−i+1, p · a0s1a1s2 . . . sH−i+1 |= A by assumption. For the converse
direction, the alternation of quantifiers states that A can be guaranteed from p by some
deterministic strategy that starts by playing a0, and therefore a0 must be allowed by the
strongly enforceable advice extracted from A. J

Therefore, given a Boolean formula encoding A, one can use a Quantified Boolean
Formula (QBF) solver to compute σHA′ , the strongly enforceable advice extracted from A:
this computation can be used whenever MCTS performs an action selection step under the
advice A′, as described in Section 4.1.

The performance of this approach will crucially depend on the number of alternating
quantifiers, and in practice one may limit themselves to a smaller depth h < H − i in this
step, so that safety is only guaranteed for the next h steps.

CONCUR 2020

40:14 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

Some properties can be inductively guaranteed, so that satisfying the QBF formula of
Lemma 23 with a depth H− i = 1 is enough to guarantee the property globally. For example,
if there always exists an action leading to states that are not bad, it is enough to check for
safety locally with a depth of 1. This is the case in Pac-Man for a deadlock-free layout
when there is only one ghost.

Weighted sampling under a symbolic advice. Given a symbolic advice A as a Boolean
formula, and a probability distribution w ∈ D(PathsHM), our goal is to sample paths of M
that satisfy A with respect to w.5 Let ω denote a weight function over Boolean assignments
that matches w. This reduces our problem to the weighted sampling of satisfying assignments
in a Boolean formula. An exact solver for this problem may not be efficient, but one can use
the techniques of [8] to perform approximate sampling in polynomial time:

I Proposition 24 ([8]). Given a CNF formula A, a tolerance ε > 0 and a weight function ω,
we can construct a probabilistic algorithm which outputs a satisfying assignment z such that
for all y that satisfies A:

ω(y)
(1 + ε)

∑
x|=ψ ω(x) ≤ Pr[z = y] ≤ (1 + ε)ω(y)∑

x|=ψ ω(x) .

The above algorithm occasionally “fails” (outputs no assignment even though there are
satisfying assignments) but its failure probability can be bounded by any given δ. Given an
oracle for SAT , the above algorithm runs in time polynomial in ln

(1
δ

)
, |ψ|, 1

ε and r where r
is the ratio between highest and lowest weight according to ω.

In particular, this algorithm uses ω as a black-box, and thus does not require precomputing
the probabilities of all paths satisfying A. In our particular application of Proposition 24, the
value r can be bounded by

(
pmax|A|
pmin

)H
where pmin and pmax are the smallest and greatest

probabilities for stochastic transitions in M .
Note that if we wish to sample from a given node p of the search tree, we can force p as a

mandatory prefix of satisfying assignments by fixing the truth value of relevant variables in
the Boolean formula.

5 A Pac-Man case study

We performed our experiments on the multi-agent game Pac-Man, using the code of [13].
The ghosts can have different strategies where they take actions based on their own position
as well as position of Pac-Man. In our experiments, we used two different types of ghosts,
the random ghosts (in green) always choose an action uniformly at random from the legal
actions available, while the directional ghosts (in red) take the legal action that minimises
the Manhattan distance to Pac-Man with probability 0.9, and move randomly otherwise.

The game can be seen as a Markov decision process, where states encode a position for
each agent6 and for the food pills in the grid, where actions encode individual Pac-Man moves,
and where stochastic transitions encode the moves of ghosts according to their probabilistic
models. For each state and action pair, we define a reward based on the score gained or lost
by this move, as explained in the caption of Figure 1. We also assign a terminal reward to
each state, so as to allow MCTS to compare paths of length H which would otherwise obtain

5 The probability of a path p being sampled should be equal to w(p)/
∑

p′|p′|=A
w(p′).

6 The last action played by ghosts should be stored as well, as they are not able to reverse their direction.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:15

the same score. Intuitively, better terminal rewards are given to states where Pac-Man is
closer to the food pills and further away from the ghosts, so that terminal rewards play the
role of a static evaluation of positions.

Experiments. We used a receding horizon H = 10. The baseline is given by a standard
implementation of the algorithm described in Section 3. A search tree is constructed with
a maximum depth H, for 100 iterations, so that the search tree constructed by the MCTS
algorithm contains up to 100 nodes. At the first selection of every node, 100 samples are
obtained by using a uniform policy. Overall, this represents a tiny portion of the tree
unfolding of depth 10, which underlines the importance of properly guiding the search to the
most interesting neighborhoods. As a point of reference, we also had human players take
control of Pac-Man, and computed the same statistics. The players had the ability to slow
down the game as they saw fit, as we aimed for a comparison between the quality of the
strategical decisions made by these approaches, and not of their reaction speeds.

We compare these baselines with the algorithm of Section 4.1, using the following advice.
The simulation advice ψ that we consider is defined as a safety property satisfied by every
path such that Pac-Man does not make contact with a ghost, as in Example 13. We provide a
Boolean formula encoding ψ, so that one can use a SAT solver to obtain samples, or sampling
tools as described in Proposition 24, such as WeightGen [8]. We use UniGen [9] to sample
almost uniformly over the satisfying assignments of ψ.7

From this simulation advice, we extract whenever possible a strongly enforceable selection
advice ϕ that guarantees that Pac-Man will not make contact with a ghost, as described
in Example 16. If safety cannot be enforced, > is used as a selection advice, so that no
pruning is performed. This is implemented by using the Boolean formula ψ in a QBF solver
according to Lemma 23. For performance reasons, we guarantee safety for a smaller horizon
h < 10, that we fixed at 3 in our experiments.

Several techniques were used to reduce the state-space of the MDP in order to obtain
smaller formulæ. For example, a ghost that is too far away with respect to H or h can be
safely ignored, and the current positions of the food pills is not relevant for safety.

Results. For each experiment, we ran 100 games in a high-end cluster using AMD Opteron
Processors 6272 at 2.1 GHz. A summary of our results is displayed in Table 1. We mainly
use the number of games won out of 100 to evaluate the performance of our algorithms.8 In
the small grid with four random ghosts, the baseline MCTS algorithm wins 17% of games.
Adding the selection advice results in a slight increase of the win rate to 25%. The average
score is improved as expected, but even if one ignores the ±500 score associated with a win
or a loss, we observe that more food pills were eaten on average as well. The simulation
advice provides in turn a sizeable increase in both win rate (achieving 71%) and average
score. Using both advice at the same time gave the best results overall, with a win rate of
85%. The same observations can be made in other settings as well, either with a directional
ghost model or on a large grid. Moreover, the simulation advice significantly reduces the
number of game turns Pac-Man needs to win, resulting in fewer game draws, most notably
on the large grid.

7 The distribution over path is slightly different than when sampling uniformly over actions in the pruned
MDP T (M, s0, H, ψ), but UniGen enjoys better performances than WeightGen.

8 We do not evaluate the accuracy in terms of making optimal choices because those cannot be computed
due to the size of the MDPs (about 1016 states).

CONCUR 2020

40:16 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

Table 1 Summary of experiments with different ghost models, algorithms and grid size. The
win, loss and draw columns denote win/loss/draw rates in percents (the game ends in a draw after
300 game steps). The food eaten column refers to the number of food pills eaten on average, out of
25 food pills in total. Score refers to the average score obtained over all runs.

Grid Ghosts Algorithm win loss draw food score
MCTS 17 59 24 16.65 -215.32

MCTS+Selection advice 25 54 21 17.84 -146.44
4 x Random MCTS+Simulation advice 71 29 0 22.11 291.80

MCTS+both advice 85 15 0 23.42 468.74
9 x 21 Human 44 56 0 18.87 57.76

MCTS 11 85 4 14.86 -339.99
1 x Directional MCTS+Selection advice 16 82 2 15.25 -290.6

+ MCTS+Simulation advice 27 70 3 17.14 -146.79
3 x Random MCTS+both advice 33 66 1 17.84 -92.47

Human 24 76 0 15.10 -166.28
27 x 28 4 x Random MCTS 1 10 89 14.85 -182.77

MCTS+both advice 95 5 0 24.10 517.04

In the baseline experiments without any advice, computing the next action played by
Pac-Man from a given state takes 200 seconds of runtime on average.9 Comparatively, the
algorithm with both advice is about three times slower than the baseline. If we make use of
the same time budget in the standard MCTS algorithm (roughly increasing the number of
nodes in the MCTS tree threefold), the win rate climbs to 26%, which is still significantly
below the 85% win rate achieved with advice. Moreover, while this experiment was not
designed to optimise the performance of these approaches in terms of computing time, we
were able to achieve a performance of 5s per move on a standard laptop by reducing the
number of iterations and samples in MCTS. This came at the cost of a decreased win-rate of
76% with both advice. Further code improvements e.g. using parallelism as in [10] could
reasonably lead to real-time performances.

Supplementary material is available at http://di.ulb.ac.be/verif/debraj/pacman/.

6 Conclusion and future works

In this paper, we have introduced the notion of symbolic advice to guide the selection and
the simulation phases of the MCTS algorithm. We have identified sufficient conditions to
preserve the convergence guarantees offered by the MCTS algorithm while using symbolic
advice. We have also explained how to implement them using SAT and QBF solvers in
order to apply symbolic advice to large MDP defined symbolically rather than explicitly. We
believe that the generality, flexibility and precision offered by logical formalism to express
symbolic advice in MCTS can be used as the basis of a methodology to systematically inject
domain knowledge into MCTS. We have shown that domain knowledge expressed as simple
symbolic advice (safety properties) improves greatly the efficiency of the MCTS algorithm
in the Pac-Man application. This application is challenging as the underlying MDPs have
huge state spaces, i.e. up to 1023 states. In this application, symbolic advice allow the MCTS
algorithm to reach or even surpass human level in playing.

9 This holds for both the small and large grids, as in both cases we consider the next 10 game steps only,
resulting in MCTS trees of similar size.

http://di.ulb.ac.be/verif/debraj/pacman/

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:17

As further work, we plan to offer a compiler from LTL to symbolic advice, in order to
automate their integration in the MCTS algorithm for diverse application domains. We also
plan to work on the efficiency of the implementation. So far, we have developed a prototype
implementation written in Python (an interpreted language). This implementation cannot
be used to evaluate performances in absolute terms but it was useful to show that if the same
amount of resources is allocated to the two algorithms the one with advice performs much
better. We believe that by using a well-optimised code base and by exploiting parallelism, we
should be able to apply our algorithm in real-time and preserve the level of quality reported
in the experimental section. Finally, we plan to study how learning can be incorporated in
our framework. One natural option is to replace the static reward function used after H
steps by a function learned from previous runs of the algorithm and implemented using a
neural network (as it is done in AlphaGo [25] for example).

We thank Gilles Geeraerts for fruitful discussions in the early phases of this work.

References
1 Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum,

and Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, (AAAI 2018), pages 2669–2678. AAAI Press, 2018.

2 Pranav Ashok, Tomás Brázdil, Jan Kretínský, and Ondrej Slámecka. Monte Carlo tree search
for verifying reachability in Markov decision processes. In Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2018), volume 11245 of Lecture Notes in Computer Science, pages 322–335. Springer, 2018.
doi:10.1007/978-3-030-03421-4_21.

3 Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002. doi:10.1023/A:1013689704352.

4 Hendrik Baier and Mark H. M. Winands. MCTS-minimax hybrids. IEEE Transactions on
Computational Intelligence and AI in Games, 7(2):167–179, 2015. doi:10.1109/TCIAIG.2014.
2366555.

5 Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schuppan. Linear
encodings of bounded LTL model checking. Logical Methods in Computer Science, Volume 2,
Issue 5, November 2006. doi:10.2168/LMCS-2(5:5)2006.

6 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,
Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In Proceedings of the 12th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2014), volume 8837 of Lecture Notes
in Computer Science, pages 98–114. Springer, 2014. doi:10.1007/978-3-319-11936-6_8.

7 Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon
Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012. doi:10.1109/TCIAIG.2012.2186810.

8 Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. Distribution-aware sampling and weighted model counting for SAT. In Proceedings of the
28th AAAI Conference on Artificial Intelligence, 2014 (AAAI 2014), pages 1722–1730. AAAI
Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364.

9 Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. On parallel scalable uniform SAT witness generation. In Proceedings of the 21st
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2015), Held as Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS 2015), volume 9035 of Lecture Notes in Computer Science, pages
304–319. Springer, 2015. doi:10.1007/978-3-662-46681-0_25.

CONCUR 2020

https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1109/TCIAIG.2014.2366555
https://doi.org/10.1109/TCIAIG.2014.2366555
https://doi.org/10.2168/LMCS-2(5:5)2006
https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1109/TCIAIG.2012.2186810
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
https://doi.org/10.1007/978-3-662-46681-0_25

40:18 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

10 Guillaume M. J. B. Chaslot, Mark H. M. Winands, and H. Jaap van den Herik. Parallel
Monte-Carlo tree search. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M.
Winands, editors, Proceedings of the 6th International Conference on Computers and Games
(CG 2008), volume 5131 of Lecture Notes in Computer Science, pages 60–71. Springer, 2008.
doi:10.1007/978-3-540-87608-3_6.

11 Krishnendu Chatterjee, Petr Novotný, Guillermo A. Pérez, Jean-François Raskin, and Dorde
Zikelic. Optimizing expectation with guarantees in POMDPs. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI 2017), pages 3725–3732. AAAI Press, 2017.

12 Przemyslaw Daca, Thomas A. Henzinger, Jan Kretínský, and Tatjana Petrov. Faster statistical
model checking for unbounded temporal properties. In Proceedings of the 22nd International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2016), Held as Part of the European Joint Conferences on Theory and Practice of Software
(ETAPS 2016), volume 9636 of Lecture Notes in Computer Science, pages 112–129. Springer,
2016. doi:10.1007/978-3-662-49674-9_7.

13 John DeNero and Dan Klein. CS 188 : Introduction to artificial intelligence. URL: https:
//inst.eecs.berkeley.edu/~cs188.

14 Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Cautious reinforcement
learning with logical constraints. In Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An, and
Neil Yorke-Smith, editors, Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, (AAMAS 2020), pages 483–491. International Foundation for
Autonomous Agents and Multiagent Systems, 2020. URL: https://dl.acm.org/doi/abs/10.
5555/3398761.3398821.

15 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. doi:10.1080/01621459.1963.
10500830.

16 Jing Huang, Zhiqing Liu, Benjie Lu, and Feng Xiao. Pruning in UCT algorithm. In Proceedings
of the International Conference on Technologies and Applications of Artificial Intelligence
(TAAI 2010), pages 177–181, 2010. doi:10.1109/TAAI.2010.38.

17 Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm for
near-optimal planning in large Markov decision processes. Machine Learning, 49(2-3):193–208,
2002. doi:10.1023/A:1017932429737.

18 Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of
the 17th European Conference on Machine Learning (ECML 2006), volume 4212 of Lecture
Notes in Computer Science, pages 282–293. Springer, 2006. doi:10.1007/11871842_29.

19 Jan Kretínský, Guillermo A. Pérez, and Jean-François Raskin. Learning-based mean-payoff
optimization in an unknown MDP under omega-regular constraints. In Proceedings of the 29th
International Conference on Concurrency Theory (CONCUR 2018), volume 118 of Leibniz
International Proceedings in Informatics, pages 8:1–8:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

20 Christof Löding. Infinite games and automata theory. In Krzysztof R. Apt and Erich Grädel,
editors, Lectures in Game Theory for Computer Scientists, pages 38–73. Cambridge University
Press, 2011.

21 João Marques-Silva and Sharad Malik. Propositional SAT solving. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 247–275. Springer, 2018.

22 Nina Narodytska, Alexander Legg, Fahiem Bacchus, Leonid Ryzhyk, and Adam Walker.
Solving games without controllable predecessor. In Proceedings of the 26th International
Conference on Computer Aided Verification (CAV 2014), volume 8559 of Lecture Notes in
Computer Science, pages 533–540. Springer, 2014. doi:10.1007/978-3-319-08867-9_35.

23 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1007/978-3-662-49674-9_7
https://inst.eecs.berkeley.edu/~cs188
https://inst.eecs.berkeley.edu/~cs188
https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://dl.acm.org/doi/abs/10.5555/3398761.3398821
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1109/TAAI.2010.38
https://doi.org/10.1023/A:1017932429737
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-319-08867-9_35
https://doi.org/10.1002/9780470316887

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:19

24 Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on applications of
quantified Boolean formulas. In Proceedings of the 31st IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2019), pages 78–84. IEEE, 2019. doi:10.1109/ICTAI.
2019.00020.

25 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P.
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
doi:10.1038/nature16961.

26 David Silver and Gerald Tesauro. Monte-Carlo simulation balancing. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 945–952, 2009.

A Markov decision processes

One can make an MDP strongly aperiodic without changing the optimal expected average
reward and its optimal strategies with the following transition:

I Definition 25 (Aperiodic transformation [23, Section 8.5.4]). For an MDP M = (S,A, P,R),
we define a new MDP Mα = (S,A, Pα, Rα) for 0 < α < 1, with Rα(s, a) = R(s, a),
Pα(s, a)(s) = α+ (1− α)P (s, a)(s) and Pα(s, a)(s′) = (1− α)P (s, a)(s′). Notice that Mα is
strongly aperiodic.

Every finite path in M is also in Mα. Thus for a strategy σ̂ in Mα, there is a σ in M
whose domain is restricted to the paths in M .

I Proposition 26 ([23, Section 8.5.4]). Let M be an MDP. Mα is a new MDP generated
by applying the aperiodic transformation mentioned above. Then the set of memoryless
strategies that optimises the expected average reward in Mα is the same as the set of
memoryless strategies the optimises the expected average reward in M . Also from any s,
ValM (s) = ValMα(s).

I Definition 27 (Finite horizon unfolding of an MDP). For an MDP M = (S,A, P,R,RT),
a horizon depth H ∈ N and a state s0, the unfolding of M from s0 and with horizon H is
a tree-shaped MDP defined as T (M, s0, H) = (S′ = S0 ∪ · · · ∪ SH , A, P ′, R′, R′T), where for
all i ∈ [0, H], Si = Pathsi(s0). The mappings P ′, R′ and R′T are inherited from P , R and
R′T in a natural way with additional self-loops at the leaves of the unfolding, so that for all
i ∈ [0, H], p ∈ Si, a ∈ A and p′ ∈ S′,

P ′(p, a)(p′) =

P (last(p), a)(last(p′)) if i < H and ∃s′ ∈ S, p′ = p · as′

1 if i = H and p′ = p

0 otherwise,

R′(p, a) =
{
R(last(p), a) if i < H

0 otherwise.

R′T (p) =RT (last(p))

Proof of Lemma 9. Let us prove that for all i ∈ [0, H] and all p ∈ Si,
ValH−iM (last(p)) = ValH−iT (M,s0,H)(p), and
optH−iM (last(p)) = optH−iT (M,s0,H)(p).

CONCUR 2020

https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1038/nature16961

40:20 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

We prove the first statement by induction on H − i. For H − i = 0, for all p ∈ Si,
ValH−iM (last(p)) = ValH−iT (M,s0,H)(p) = RT (last(p)). Assume the statement is true for H− i = k,
so that for all p ∈ SH−k, ValkM (last(p)) = ValkT (M,s0,H)(p). Then for all p ∈ SH−k−1, we have
for all a ∈ A and s ∈ Supp(P (last(p), a)), ValkM (s) = ValkT (M,s0,H)(p · as). It follows that

Valk+1
M (last(p)) = max

a∈A
(R(last(p), a) +

∑
s

P (last(p), a)ValkM (s))

= max
a∈A

(R(last(p), a) +
∑
s

P (last(p), a)ValkT (M,s0,H)(p · as))

= Valk+1
T (M,s0,H)(p) .

From ValH−iM (last(p)) = ValH−iT (M,s0,H)(p) and optHM (last(p)) = arg maxa∈A(R(last(p), a) +∑
s P (last(p), a)ValH−1

M (s)) we derive optH−iM (last(p)) = optH−iT (M,s0,H)(p). J

B UCB

LetXa,n = 1
n

∑n
t=1 Xa,t denote the average of the first n plays of action a. Let µa,n = E[Xa,n].

We assume that these expected means eventually converge, and let µa = limn→∞ µa,n.

I Definition 28 (Drift conditions).
For all a ∈ A, the sequence (µa,n)n≥1 converges to some value µa.
There exists a constant Cp > 0 and an integer Np such that for n ≥ Np and any δ > 0,
∆n(δ) = Cp

√
n ln(1/δ), the following bounds hold:

P
[
nXa,n ≥ nµa,n + ∆n(δ)

]
≤ δ ,

P
[
nXa,n ≤ nµa,n −∆n(δ)

]
≤ δ .

We define δa,n = µa,n − µa. Then, µ∗, µ∗n, δ∗n are defined as µj , µj,n, δj,n where j is the
optimal action.10 Moreover, let ∆a = µ∗ − µa.

As δa,n converges to 0 by assumption, for all ε > 0 there exists N0(ε) ∈ N, such that for
t > N0(ε), then 2|δa,t| ≤ ε∆a and 2|δ∗t | ≤ ε∆a for all all suboptimal actions a ∈ A.

The authors start by bounding the number of time a suboptimal action is played:

I Theorem 29 ([18, Theorem 1]). Consider UCB1 applied to a non-stationary bandit problem
with ct,s = 2Cp

√
ln t
s . Fix ε > 0. Let Ta(n) denote number of times action a has been played

at time n. Then under the drift conditions, there exists Np such that for all suboptimal
actions a ∈ A,

E[Ta(n)] ≤
16C2

p lnn
(1− ε)2∆2

a

+N0(ε) +Np + 1 + π2

3 .

Let Xn =
∑
a∈A

Ta(n)
n X̄a,Ta(n) denote the global average of payoffs received up to time n

Then, one can bound the difference between µ∗ and Xn:

I Theorem 30 ([18, Theorem 2]). Under the drift conditions of Definition 28, it holds that

|E[Xn]− µ∗| ≤ |δ∗n|+O

(
|A|(C2

p lnn+N0(1/2))
n

)
.

10 It is assumed for simplicity that a single action a is optimal, i.e. maximises E[Xa,n] for n large enough.

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:21

The following theorem shows that the number of times an action is played can be lower
bounded:

I Theorem 31 ([18, Theorem 3]). Under the drift conditions of Definition 28, there exists
some positive constant ρ such that after n iterations for all action a, Ta(n) ≥ dρ ln(n)e.

Then, the authors also prove a tail inequality similar to the one described in the drift
conditions, but on the random variable Xn instead of Xa,n.

I Theorem 32 ([18, Theorem 4]). Fix an arbitrary δ > 0 and let ∆n = 9
√

2n ln(2/δ). Let
n0 be such that √n0 ≥ O(|A|(C2

p lnn0 +N0(1/2)). Then under the drift conditions, for any
n ≥ n0, the following holds true:

P[nXn ≥ nE[Xn] + ∆n(δ)] ≤ δ

P[nXn ≤ nE[Xn]−∆n(δ)] ≤ δ

Finally, the authors argue that the probability of making the wrong decision (choosing a
suboptimal action) converges to 0 as the number of plays grows:

I Theorem 33 ([18, Theorem 5]). Let It be the action chosen at time t, and let a∗ be the
optimal action. Then limt→∞ Pr(It 6= a∗) = 0.

C MCTS with Simulation

After n iterations of MCTS, we have totaln(p) =
∑
i|Ii(p)≤n rewardIi(p)(p) and total(p, a) =∑

i|Ii(p,a)≤n rewardIi(p,a)(p, a).
We use the following observations, derived from the structure of the MCTS algorithm.

For all nodes p in the search tree, after n iterations, we have:

totaln(p) = rewardI1(p)(p) +
∑
a∈A

totaln(p, a)

totaln(p, a) =
∑

s∈Supp(P (last(p),a)

totaln(p · as) +R(last(p), a) · countn(p, a)

valuen(p) = totaln(p)
countn(p)

countn(p) = 1 +
∑
a

countn(p, a)

countn(p, a) =
∑
s

countn(p · as)

In the following proof we will abuse notations slightly and conflate the variables and
counters used in MCTS with their associated random variables, e.g. we write E[valuen(s0)]
instead of E[Vn(s0)] with Vn(s0) a random variable that represents the value valuen(s0).

Proof of Lemma 12. We use the following inequality (Chernoff-Hoeffding inequality)[15,
Theorem 2] throughout the proof:

Let X1, X2, . . . Xn be independent random variables in [0, 1]. Let Sn =
∑
nXi. Then for

all a > 0, P
[
Sn ≥ E[Sn] + t

]
≤ exp

(
− 2t2

n

)
and P

[
Sn ≤ E[Sn]− t

]
≤ exp

(
− 2t2

n

)
.

CONCUR 2020

40:22 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

We need to show that the following conditions hold:
1. limcountn(p)→∞ E[valuen(p, a)] exists for all a.
2. There exists a constant Cp > 0 such that for countn(p, a) big enough and any δ > 0,

∆countn(p,a)(δ) = Cp
√

countn(p, a) ln(1/δ), the following bounds hold:

P
[
totaln(p, a) ≥ E[totaln(p, a)] + ∆countn(p,a)(δ)

]
≤ δ

P
[
totaln(p, a) ≤ E[totaln(p, a)]−∆countn(p,a)(δ)

]
≤ δ

We show it by induction on H − |p|.
For |P | = H − 1: rewardi(p, a) follows a stationary distribution: rewardi(p, a) =

R(last(p), a) +RT (s) with probability P (last(p), a)(s). Thus

E[totaln(p, a)] = E

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

= countn(p, a)

(∑
s

RT (s)P (last(p), a)(s) +R(last(p), a)
)
.

Thus E[valuen(p, a)] =
∑
sRT (s)P (last(p), a)(s) +R(last(p), a).

From the Chernoff-Hoeffding inequality,

P

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a) ≥ E

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

+

√
countn(p, a)

2 ln 1
δ

 ≤ δ ,
P

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a) ≤ E

 ∑
i|Ii(p,a)≤n

rewardIi(p,a)(p, a)

−√countn(p, a)
2 ln 1

δ

 ≤ δ .
Therefore, condition 2 also holds with Cp = 1√

2 .
Assume that the conditions are true for all p · as. Then, from Theorem 30 we get:∣∣∣∣E[∑a′ totaln(pas, a′)∑

a′ countn(pas, a′)

]
− lim

countn(p·as)→∞
E [valuen(p · as, a∗)]

∣∣∣∣
≤
∣∣∣∣E [valuen(p · as, a∗)]− lim

countn(p·as)→∞
E [valuen(p · as, a∗)]

∣∣∣∣+O
(

ln(countn(p · as)− 1)
countn(p · as)− 1

)
,

where a∗ is the optimal action from p · as. Now,

lim
countn(p)→∞

E[valuen(p · as)] = lim
countn(p)→∞

E
[

totaln(p · as)
countn(p · as)

]
= lim

countn(p)→∞
E
[totaln(p · as)− rewardI1(p)(p · as)

countn(p · as)− 1

]
= lim

countn(p)→∞
E
[∑

a′ totaln(p · as, a′)∑
a′ countn(p · as, a′)

]
.

Let limcountn(p·as)→∞ E[valuen(p · as, a∗)] be denoted by µp·as (we know that this limit exists
by the induction hypothesis). From Theorem 31, we know that countn(p, a)→∞ for all a
when countn(p) → ∞. And as for all states s, state s is chosen according to distribution
P (p, a)(s), countn(p · as)→∞ with probability 1. Then,

D. Busatto-Gaston, D. Chakraborty, and J.-F. Raskin 40:23

lim
countn(p)→∞

E[valuen(p · a)] = lim
countn(p)→∞

E

[∑
s

valuen(p · as)countn(p · as)
countn(p, a) +R(last(p), a)

]
= R(last(p), a) +

∑
s

µp·as · P (last(p), a)(s) .

So limcountn(p)→∞ E[valuen(p · a)] exists.
From Theorem 32, when countn(p·as) is big enough, for all δ > 0, P

[∑
a′ totaln(pas, a′) ≥

E[
∑
a′ totaln(pas, a′)] + ∆s

1(δ)
]
≤ δ

2|S| where ∆s
1(δ) = 9

(√
countn(p · as) ln

(
4|S|
δ

))
.

Therefore P
[
totaln(p · as) − rewardI1(p·as)(p · as) ≥ E[totaln(p · as) − rewardI1(p·as)(p ·

as)] + ∆s
1(δ)

]
≤ δ

2|S| . Also the random variable associated to rewardI1(p·as)(p · as) fol-
lowing a fixed stationary distribution f(p) in [0, 1]. So from the Chernoff-Hoeffding in-
equality, P

[
rewardI1(p·as)(p · as) ≥ E[rewardI1(p·as)(p · as)] + ∆2(δ)

]
≤ δ

2|S| where ∆2(δ) =

1√
2

(√
ln
(

2|S|
δ

))
.

Now using the fact that for n random variables {Ai}i≤n and n random variables {Bi}i≤n,
P[
∑
iAi ≥

∑
iBi] ≤

∑
i P[Ai ≥ Bi], we get:

P
[
totaln(p · as) ≥ E[totaln(p · as)] + ∆s

1(δ) + ∆2(δ)
]

≤ P
[
totaln(p · as)− rewardI1(p·as)(p · as) ≥ E[totaln(p · as)− rewardI1(p·as)(p · as)] + ∆s

1(δ)
]

+ P
[
rewardI1(p·as)(p · as) ≥ E[rewardI1(p·as)(p · as)] + ∆2(δ)

]
≤ δ

|S| .

As countn(p, a)E[R(last(p), a)] = E[countn(p, a) ·R(last(p), a)],

P

[
totaln(p, a) ≥ E[totaln(p, a)] +

∑
s

(∆s
1(δ) + ∆2(δ))

]
≤
∑
s

P
[
totaln(p · as) ≥ E[totaln(p · as)] + (∆s

1(δ) + ∆2(δ))
]
≤ δ .

Similarly, when countn(p · as) is big enough, for all δ > 0 it holds that P
[
totaln(p ·

as) − rewardI1(p·as)(p · as) ≤ E[totaln(p · as) − rewardI1(p·as)(p · as)] − ∆s
1(δ)

]
≤ δ

2|S| and

P
[
rewardI1(p·as)(p · as) ≤ E[rewardI1(p·as)(p · as)]−∆2(δ)

]
≤ δ

2|S| .

Thus P
[
totaln(p, a) ≤ E[totaln(p, a)]−

∑
s (∆s

1(δ) + ∆2(δ))
]
≤ δ.

As countn(p ·as) ≤ countn(p, a), there exists C ∈ N such that for countn(p ·as) big enough
and for all δ > 0:∑

s

(∆s
1(δ) + ∆2(δ)) ≤ C

∑
s

√
countn(p · as) ln

(1
δ

)
≤ C

∑
s

√
countn(p, a) ln

(1
δ

)
≤ C|S|

√
countn(p, a) ln

(1
δ

)
.

CONCUR 2020

40:24 Monte Carlo Tree Search Guided by Symbolic Advice for MDPs

So, there is a constant Cp such that for countn(p, a) big enough and any δ > 0, it holds
that ∆countn(p,a)(δ) = Cp

√
countn(p, a) ln(1/δ) ≥

∑
s(∆s

1(δ) + ∆2(δ)). Therefore, the fol-
lowing bound hold: P

[
totaln(p, a) ≥ E[totaln(p, a)] + ∆countn(p,a)(δ)

]
is upper bounded

by P
[
totaln(p, a) ≥ E[totaln(p, a)] +

∑
s(∆s

1(δ) + ∆2(δ))
]
. It follows that P

[
totaln(p, a) ≥

E[totaln(p, a)]+∆countn(p,a)(δ)
]
≤δ. Similarly, P

[
totaln(p, a)≤E[totaln(p, a)]−∆countn(p,a)(δ)

]
is upper bounded by P

[
totaln(p, a) ≤ E[totaln(p, a)]−

∑
s(∆s

1(δ) + ∆2(δ))
]
. It follows that

P
[
totaln(p, a) ≤ E[totaln(p, a)]−∆countn(p,a)(δ)

]
≤ δ.

This proves that for any p, the sequences (xa,t)t≥1 associated with rewardIt(p,a)(p) satisfy
the drift conditions. J

	Introduction
	Preliminaries
	Markov decision process
	Bandit problems and UCB

	Monte Carlo tree search with simulation
	Symbolic advice for MCTS
	MCTS under symbolic advice
	Using satisfiability solvers

	A Pac-Man case study
	Conclusion and future works
	Markov decision processes
	UCB
	MCTS with Simulation

