
Canonical Solutions to Recursive Equations and
Completeness of Equational Axiomatisations
Xinxin Liu
State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, China
University of Chinese Academy of Sciences, China
xinxin@ios.ac.cn

TingTing Yu
Beijing Sunwise Information Technology Ltd, China
Beijing Institute of Control Engneering, China
yutingting@sunwiseinfo.com

Abstract
In this paper we prove completeness of four axiomatisations for finite-state behaviours with respect
to behavioural equivalences at various τ -abstract levels: branching congruence, delay congruence,
η-congruence, and weak congruence. Instead of merging guarded recursive equations, which was the
approach originally used by Robin Milner and has since become the standard strategy for proving
completeness results of this kind, in this work we take a new approach by solving guarded recursive
equations with canonical solutions which are those with the fewest reachable states. The new strategy
allows uniform treatment of the axiomatisations with respect to different behavioural equivalences.
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1 Introduction

The notion of bisimulation which originated from the early ideas of Park and van Benthem and
coined by Milner is the foundation of many popular equivalence and congruence relations in
concurrency theory. Weak bisimilarity introduced by Milner [6] (originally called observational
equivalence) and branching bisimilarity introduced by van Glabbeek and Weijland [9] are
two widely studied equivalence relations for processes, with the former identifying more
processes than the latter because of the difference in treating internal actions (τ -moves)
to achieve observational abstractness. Delay bisimilarity and η-bisimilarity [9] are two
other interesting equivalence relations with abstractness in between weak and branching
bisimilarities. Although these relations are not congruences on process constructs, all can be
made into congruences, called weak congruence and branching congruence etc., which are very
close to the respective bisimilarities. For finite processes where every process will eventually
become inactive, complete inference systems for all four congruences mentioned above can be
found in the literature. For example, a complete axiomatisation of finite processes with respect
to weak congruence was devised by Hennessy and Milner [3], and complete axiomatisations
of finite processes with respect to branching, delay, and η-congruences were devised by van
Glabbeek and Weijland [9]. For finite-state processes where recursion is allowed in the process
constructs to introduce infinite behaviours, complete inference systems for weak congruence
and branching congruence were devised by Milner [7] and van Glabbeek [8] respectively,
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35:2 Canonical Solutions to Recursive Equations

while such inference systems for the other two congruences are not found in the literature.
In this paper we present a hierarchy of complete inference systems for finite-state processes
with respect to the four congruences. For proving completeness, we use a new approach by
constructing canonical solutions to guarded recursive equations which is different from the
common strategy of merging guarded recursive equations, a strategy originally proposed
by Milner [5] and later followed in many other completeness proofs [7][10][8][4]. Our new
strategy allows more uniform treatment of the axiomatisations with respect to different
behavioural equivalences. In the following we roughly explain the ideas of the old and new
approaches.

Both the old and new approaches rely on the following two fundamental facts:

Fact 1. Each expression provably solves a set of guarded recursive equations.
Fact 2. A set of guarded recursive equations has unique solution in the following

sense: if two expressions both provably solve the same set of guarded recursive
equations, then the two expressions are provably equal.

In [5], after setting up the foundation by proving the two facts above, Milner then devised the
following strategy to establish the provable equality of two semantically equivalent expressions
E1 and E2:

Step 1. By Fact 1. above, let S1, S2 be two sets of guarded recursive equations such
that E1 and E2 provably solve S1 and S2 respectively.

Step 2. Then, with the help of the semantic equality of E1 and E2, by merging S1
and S2 in a systematic way to form a single set of guarded recursive equations S
which is provably solved by both E1 and E2.

Step 3. Then by Fact 2. above, it follows that E1 and E2 are provably equal.

For Step 2. Milner provided a procedure which guarantees that the wanted guarded recursive
equation set S can be constructed. To see a tiny but nevertheless illustrative example,
consider the expressions µX.(a.a.X) and µY.(a.a.a.Y ), they both perform the visible action
a forever. If we write ` E = F to mean that the expressions E and F are provably equal,
then following Milner’s strategy, first note that by unfolding recursion we obtain

` µX.(a.a.X) = a.a.µX.(a.a.X), ` µY.(a.a.a.Y ) = a.a.a.µY.(a.a.a.Y ).

That is, µX.(a.a.X) and µY.(a.a.a.Y ) provably solve {X = a.a.X} and {Y = a.a.a.Y }
respectively. Now by equational reasoning, if ` E = a.a.E, then ` a.a.E = a.a.a.a.E,
and ` a.a.a.a.E = a.a.a.a.a.a.E, thus ` E = a.a.a.a.a.a.E. That is to say, a solution to
X = a.a.X also provably solves Z = a.a.a.a.a.a.Z. And for the same reason a solution to
Y = a.a.a.Y also provably solves Z = a.a.a.a.a.a.Z. Thus both µX.(a.a.X) and µY.(a.a.a.Y )
provably solve {Z = a.a.a.a.a.a.Z}, hence by Fact 2. ` µX.(a.a.X) = µY.(a.a.a.Y ). Note
that here we have simplified Milner’s procedure by allowing sets of guarded equations which
may not be in the standard form required in his procedure. That is sufficient to make our
points. (The sets of guarded equations in standard form which provably solved by µX.(a.a.X)
and µY.(a.a.a.Y ) are {X0 = a.X1, X1 = a.X0} and {Y0 = a.Y1, Y1 = a.Y2, Y2 = a.Y0}
respectively, which can be merged to obtain the following set of standard equations, provably
solved by both µX.(a.a.X) and µY.(a.a.a.Y ) in Z00: {Z00 = a.Z11, Z11 = a.Z02, Z02 = a.Z10,

Z10 = a.Z01, Z01 = a.Z12, Z12 = a.Z00}.)
Now by examining Milner’s approach, we can find an interesting alternative which has

never been explored. The idea, which is very simple, is as follows. After Step 1., instead of
merging S1 and S2 to obtain S in Step 2. (which is the most involving and complex step in
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this approach), is it possible to find an expression E which provably solves both S1 and S2? If
the answer is yes, then by Fact 2. E is provably equal to both E1 and E2, thus by transitivity
E1 is provably equal to E2. Let us apply this alternative approach to the above example, and
consider the expression µZ.(a.Z). By unfolding we obtain ` µZ.(a.Z) = a.µZ.(a.Z), and
then by equational reasoning we obtain ` a.µZ.(a.Z) = a.a.µZ.(a.Z) and ` a.a.µZ.(a.Z) =
a.a.a.µZ.(a.Z), thus ` µZ.(a.Z) = a.µZ.(a.Z) = a.a.µZ.(a.Z) = a.a.a.µZ.(a.Z). This
shows that, µZ.(a.Z) provably solves both {X = a.a.X} (which is also probably solved by
µX.(a.a.X)) and {Y = a.a.a.Y } (which is also provably solved by µY.(a.a.a.Y )). Then we
can use Fact 2. to obtain ` µZ.(a.Z) = µX.(a.a.X) and ` µZ.(a.Z) = µY.(a.a.a.Y ), hence
` µX.(a.a.X) = µY.(a.a.a.Y ).

The work of this paper is to show that the alternative approach works in general case.
We show that the common provable solution E to S1 and S2 can always be constructed out
of canonical solutions to some set of guarded recursive equations, where canonical solutions
are those with the smallest number of reachable states amongst the solutions.

The paper is organized as follows. In the next section we settle the preliminaries. In section
3 we present a hierarchy of axiomatisations for branching congruence, delay congruence,
η-congruence, and weak congruence, and state some basic properties. In section 4 we carry
out in detail the construction of canonical solutions to recursive equations to prove the
completeness result for branching congruence. In section 5 we prove some saturation results,
and with which to obtain the completeness with respect to other three congruences. Then,
after discussing related work in section 6, we conclude in section 7.

2 Expressions, Equivalences, and Congruences

Let V be an infinite set of variables, A be an infinite set of visible actions, τ be the invisible
action or silent move (τ 6∈ A). We write Aτ for A ∪ {τ}. The set E of regular process
expressions is given by the following BNF grammar:

E ::= 0 X a.E E + E µX.E

where a ∈ Aτ , X ∈ V. Here 0 is the null expression which is not capable of any action; a.E
is a prefix expression which first performs the action a and then proceeds as E; E + F is a
summation which will behave as either E or F ; µX.E stands for recursion, with µ binding the
variable X in E. We assume the usual notion of free and bound occurrences of variables with
respect to the variable binder µ, and write E{F/X} for the (capture free) substitution of F
for (free occurrences of) X in E. More generally, for a finite set of variables {X1, . . . , Xn},
we write E{E1, . . . , En/X1, . . . , Xn} or E{Ei/Xi | i = 1, . . . , n} for the expression obtained
by simultaneous (capture free) substitution of F1 for X1, . . ., Fn for Xn in E. We write
E ≡ F when E,F are syntactically identical.

For an expression E ∈ E , the set of free variables of E, written fv(E), is defined on the
structure of E such that

fv(0) = ∅, fv(X) = {X}, fv(a.E) = fv(E),
fv(E + F ) = fv(E) ∪ fv(F ), fv(µX.E) = fv(E)− {X}.

Then it is easy to prove that fv(E) is a finite set for all expression E ∈ E .
The operational semantics of expressions is given by a transition relation and two binary

relations between expressions and variables defined as follows.
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35:4 Canonical Solutions to Recursive Equations

I Definition 1. The transition relation −→⊆ E ×Aτ × E is the smallest relation such that
(as usual we write E a−→ E′ for (E, a,E′) ∈−→):
1. a.E a−→ E;
2. If E1

a−→ E′ then E1 + E2
a−→ E′;

3. If E2
a−→ E′ then E1 + E2

a−→ E′;
4. If E{µX.E/X} a−→ E′ then µX.E a−→ E′.

Define . ⊆ E × V as the smallest relation such that
5. X .X;
6. If E1 . X then E1 + E2 . X;
7. If E2 . X then E1 + E2 . X;
8. If E{µY.E/Y } . X then µY.E . X.
Intuitively, E . X means that X has an occurrence in E which is not proceeded by any
action, not even a τ .

We follow the CCS (Milner’s Calculus of Communicating Systems [6]) tradition to write
=⇒ for ( τ−→)∗, i.e. the reflexive and transitive closure of τ−→. We also freely write =⇒ a−→
and =⇒ a−→=⇒ etc. for various composition of transition relations. We write E .̃X if
E =⇒ E′ for some E′ with E′ . X.

I Definition 2. A free occurrence of a variable X in an expression E ∈ E is guarded if
it occurs in a subexpression of the form a.F where a 6= τ . X is (un)guarded in E if (not)
every free occurrence of X in E is guarded. An expression E ∈ E is guarded if for every
subexpression µX.F , X is guarded in F .

I Lemma 3. Let E ∈ E , X ∈ V. X is unguarded in E iff E .̃X.

Proof. Straightforward. J

I Theorem 4. For E ∈ E, let EE be the set of expressions which are reachable from E, i.e.
EE is the smallest subset of E such that E ∈ EE and EE is closed for transitions (if F a−→ G

with F ∈ EE and a ∈ Aτ then G ∈ EE). Then EE is a finite set.

Proof. It was proved in [8] (Proposition 1). J

I Definition 5. Let R ⊆ E × E be a symmetric binary relation between expressions. If for
all (E,F ) ∈ R the following hold:
1. whenever E a−→ E′, then

a. either a = τ and (E′, F ) ∈ R,
b. or there exist F1, F2, F

′ such that F =⇒ F1, F1
a−→ F2, F2 =⇒ F ′, and

(E,F1), (E′, F2), (E′, F ′) ∈ R;
2. whenever E . X, then there exists F ′ such that F =⇒ F ′, F ′ . X, and (E,F ′) ∈ R;
then R is called a branching bisimulation.

If for all (E,F ) ∈ R the above hold except that without requiring (E′, F2) ∈ R in 1. then
R is called an η-bisimulation.

If for all (E,F ) ∈ R the above hold except that without requiring (E,F1) ∈ R in 1. and
(E,F ′) ∈ R in 2., then R is called a delay bisimulation.

If for all (E,F ) ∈ R the above hold except that without requiring (E,F1), (E′, F2) ∈ R
in 1. and (E,F ′) ∈ R in 2., then R is called a weak bisimulation.

Define branching bisimilarity, delay bisimilarity, η-bisimilarity, weak bisimilarity, written
≈b,≈d,≈η,≈w respectively as follows

≈b=
⋃
{R |R is a branching bisimulation}, ≈d=

⋃
{R |R is a delay bisimulation},

≈η=
⋃
{R |R is an η-bisimulation}, ≈w=

⋃
{R |R is a weak bisimulation}.



X. Liu and T. Yu 35:5

I Remark. Normally the definition of branching bisimulation does not require the existence
of F ′ in 1., that is because with the existence of F2 the requirement of F ′ is trivially satisfied
by taking F2 as F ′. For this reason the variations of definition result in the same relation.

With the above definition, it is well-known that≈b,≈d,≈η,≈w are all equivalence relations.
Moreover, it is standard to prove that each of the equivalences is the largest one amongst
the corresponding bisimulation relations. Also, about the distinguishing power of these
equivalences we have ≈b⊆≈d⊆≈w, and ≈b⊆≈η⊆≈w.

None of the four equivalences is a congruence on E . As a classical counterexample, note
that a.0 ≈w τ.a.0 while a.0 + b.0 6≈w τ.a.0 + b.0, where a, b are different non-τ actions. A
standard way to get around this problem, as noted in [9], is to introduced a rootedness
condition on top of these equivalences to obtain congruence relations for expressions.

I Definition 6. Two expressions E and F are rooted branching bisimilar, notation E =b F ,
if the following hold:
1. whenever E a−→ E′ then F a−→ F ′ such that E′ ≈b F ′;
2. whenever F a−→ F ′ then E a−→ E′ such that E′ ≈b F ′;
3. E . X if and only if F . X.

Two expressions E and F are rooted delay bisimilar, notation E =d F , if the following
hold:
1. whenever E a−→ E′ then F =⇒ a−→ F ′ such that E′ ≈d F ′;
2. whenever F a−→ F ′ then E =⇒ a−→ E′ such that E′ ≈d F ′;
3. if E . X then F .̃X;
4. if F . X then E .̃X.

Two expressions E and F are rooted η-bisimilar, notation E =η F , if the following hold:
1. whenever E a−→ E′ then F a−→=⇒ F ′ such that E′ ≈η F ′;
2. whenever F a−→ F ′ then E a−→=⇒ E′ such that E′ ≈η F ′;
3. E . X if and only if F . X.

Two expressions E and F are rooted weak bisimilar, notation E =w F , if the following
hold:
1. whenever E a−→ E′ then F =⇒ a−→=⇒ F ′ such that E′ ≈w F ′;
2. whenever F a−→ F ′ then E =⇒ a−→=⇒ E′ such that E′ ≈w F ′;
3. if E . X then F .̃X;
4. if F . X then E .̃X.

Thus defined, it is easy to prove that the four rooted relations are all congruence relations
on the constructions of expressions, and that they are in fact the weakest congruences
included in the respective equivalences. From now on we will call =b branching congruence,
=d delay congruence, =η η-congruence, and =w weak congruence.

3 Axiomatisation Hierarchy

In [8] van Glabbeek presented an inference system for branching congruence =b. The following
is the set of axioms and rules of the inference system (with slight simplification), besides the
rules for equational reasoning ( reflexivity, symmetry, transitivity, and substituting equal for
equal):

CONCUR 2020



35:6 Canonical Solutions to Recursive Equations

S1 E + F = F + E

S2 E + (F +G) = (E + F ) +G

S3 E + E = E

S4 E + 0 = E

B a.(τ.(E + F ) + F ) = a.(E + F )
R1 µX.E = E{µX.E/X}
R2 if F = E{F/X} then F = µX.E provided X is guarded in E
R3 µX.(X + E) = µX.E

R4 µX.(τ.(τ.E + F ) +G) = µX.(τ.(E + F ) +G) provided X is unguarded in E
R5 µX.(τ.(X + E) + F ) = µX.(τ.(E + F ) + F )
We write SBR ` E = F if E = F can be inferred using the above axioms and rules

through equational reasoning, where SBR stands for the axioms S1-S4 plus axiom B plus
rule and axioms R1-R5. Often we will omit SBR and just write ` E = F .

To obtain a complete axiomatisation for =d, one only needs to add the following axiom
T2 into the inference system SBR:
T2 τ.E + E = τ.E.

We call the resulting system SBRT2, and write T2 ` E = F if E = F can be inferred in
SBRT2.

To obtain a complete axiomatisation for =η, one only needs to add the following axiom
T3 into the inference system SBR:
T3 a.(E + τ.F ) + a.F = a.(E + τ.F ).

We call the resulting system SBRT3, and write T3 ` E = F if E = F can be inferred in
SBRT3.

Now to obtain a complete axiomatisation for =w, we can add both T2 and T3 into SBR.
We call the resulting inference system SBRT2T3, and write T2T3 ` E = F if E = F can
be inferred in SBRT2T3.

The name T2 and T3 are from the famous three τ -laws by Hennessy and Milner [3], where
they proposed T2 and T3 together with T1: a.τ.E = a.E, to make a complete axiomatisation
with respect to =w for the set of CCS expressions without recursion. In SBR, T1 can be
easily inferred from B and S4 ( ` a.τ.E = a.(τ.(E + 0) + 0) = a.(E + 0) = a.E). Thus T1 is
relegated to a theorem in SBR as stated in the following lemma, and can be spared from
the axioms.

I Lemma 7. Let E ∈ E, then ` a.τ.E = a.E.

The following theorem states the soundness of the inference systems with respect to
corresponding congruences.

I Theorem 8. Let E,F ∈ E.
1. if ` E = F then E =b F ;
2. if T2 ` E = F then E =d F ;
3. if T3 ` E = F then E =η F ;
4. if T2T3 ` E = F then E =w F .

A standard strategy of proving soundness of an axiomatisation with respect to some
congruence is first to prove that all the axioms are sound and then to prove that all the
inference rules preserve soundness. In this paper, since we concentrate on completeness, we
will skip the proof of this theorem. A detailed proof of soundness of SBR with respect to
=b can be found in [8] (Corollary 1).
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Because the axioms and rules of SBR are also axioms and rules of SBRT2 and of
SBRT3 and of SBRT2T3, the following are relationships about these axiomatisations
obviously hold.

I Theorem 9. Let E,F ∈ E. If ` E = F then T2 ` E = F and T3 ` E = F and
T2T3 ` E = F .

The original axioms of the inference system for =b in [8] also include the equation
µX.(τ.(X +E) + τ.(X +F ) +G) = µX.(τ.(X +E +F ) +G). However it turns out that this
equation can be inferred from S1-S3 and R4-R5, thus it is a derived rule and can be omitted
from the set of axioms.

I Definition 10. A guarded recursion is an expression of the form µX.E where X is guarded
in E. An expression is said guarded if every recursive subexpression in it is a guarded
recursion.

I Theorem 11. Let E ∈ E. Then there is a guarded expression E′ such that ` E = E′.

Proof. Has been proved by van Glabbeek in [8]. J

I Lemma 12. Let E ∈ E, E guarded.
1. If E′ ∈ EE (the transition closure of E), then E′ is also guarded.
2. There is no infinite τ -transition sequence starting from E ( τ−→ is well-founded).

Proof. See the proof of Lemma 2 in [8]. J

I Lemma 13. Let E ∈ E. Then {a.E′ | E =⇒ a−→=⇒ E′} and {W | E .̃W} are finite sets.

Proof. It is easy to prove by induction on the rules which defines . and −→, that if E .W

then W ∈ fv(E), and if E a−→ E′ then fv(E′) ⊆ fv(E). Thus if E .̃X i.e. there is E′ such
that E =⇒ E′, E′ . X, then X ∈ fv(E′) ⊆ fv(E). So {W |E .̃W} ⊆ fv(E). Since fv(E) is
a finite set, so is {W | E .̃W}.

For E ∈ E , define sort(E) inductively on the structure of E such that:

sort(0) = sort(X) = ∅, sort(E + F ) = sort(E) ∪ sort(F ),
sort(a.E) = sort(E) ∪ {a}, sort(µX.E) = sort(E).

Then it is easy to prove by induction on the structure of E that sort(E) is a finite set. Next,
we prove by induction on the rules which defines the transition relation that if E a−→ E′

then a ∈ sort(E) and sort(E′) ⊆ sort(E). Thus it follows that if E =⇒ a−→=⇒ E′ then
a ∈ sort(E). Now to prove that {a.E′ | E =⇒ a−→=⇒ E′} is a finite set, we note that
{a.E′ | E =⇒ a=⇒−→ E′} ⊆ {a.E′ | a ∈ sort(E), E′ ∈ EE}. Since sort(E) and EE are finite
sets, so is {a.E′ | a ∈ sort(E), E′ ∈ EE}. Thus {a.E′ | E =⇒ a−→=⇒ E′} is a finite set. J

For a finite set S = {E1, . . . , En} of expressions, let ΣS be an abbreviation for E1+. . .+En.
This notation is justified by the axioms S1-S4. Then with Lemma 13, the Σ notation used in
the following lemma is meaningful.

I Lemma 14. Let E ∈ E. Then ` E = Σ{a.E′ | E a−→ E′}+ Σ{W | E .W}.

Proof. It was proved in [8] (Lemma 6). J
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35:8 Canonical Solutions to Recursive Equations

I Lemma 15. Let E ∈ E. Then
1. if E a−→ E′ then ` E = E + a.E′;
2. if E . X then ` E = E +X;
3. if E =⇒ a−→ E′ then T2 ` E = E + a.E′;
4. if E .̃W , then T2 ` E = E +W ;
5. if E a−→=⇒ E′ then T3 ` E = E + a.E′;
6. if E =⇒ a−→=⇒ E′ then T2T3 ` E = E + a.E′.

Proof. 1. and 2. immediately follows from Lemma 14 and S3.
The rest can be proved by induction on the length of the τ -transition sequence in =⇒.

Here we prove 3. as follows. Suppose E =⇒ a−→ E′. If the length of the τ -transition sequence
in =⇒ is 0, then in this case E a−→ E′, which is 1. If the length of the τ -transition sequence
in =⇒ is greater than 0, then there is E′′ such that E =⇒ τ−→ E′′, E′′

a−→ E′, and by the
induction hypothesis T2 ` E = E + τ.E′′ and T2 ` E′′ = E′′ + a.E′. Now we have the
following reasoning in SBRT2:

T2 ` E = E + τ.E′′ (IH)
= E + τ.(E′′ + a.E′) (IH)
= E + τ.(E′′ + a.E′) + E′′ + a.E′ (T2)
= E + τ.(E′′ + a.E′) + E′′ + a.E′ + a.E′ (S3)
= E + τ.(E′′ + a.E′) + a.E′ (T2)
= E + τ.E′′ + a.E′

= E + a.E′ J

I Lemma 16. Let E ∈ E. Then
1. T2 ` E = Σ{a.E′ | E =⇒ a−→ E′}+ Σ{W | E .̃W};
2. T3 ` E = Σ{a.E′ | E a−→=⇒ E′}+ Σ{W | E .W};
3. T2T3 ` E = Σ{a.E′ | E =⇒ a−→=⇒ E′}+ Σ{W | E .̃W}.

Proof. For 1. we have the following reasoning in SBRT2:
T2 ` E = E + Σ{a.E′ | E =⇒ a−→ E′}+ Σ{W | E .̃W} (3. and 4. of Lemma 15)

= Σ{a.E′ | E a−→ E′}+ Σ{W | E .W}
+ Σ{a.E′ | E =⇒ a−→ E′}+ Σ{W | E .̃W} (Lemma 14)

= Σ{a.E′ | E =⇒ a−→ E′}+ Σ{W | E .̃W} (S3)
2. and 3. can be proved as 1. by using Lemma 15 and Lemma 14. J

4 Recursive Specifications and Provability

We now describe the recursive equations mentioned in the introduction. They are formally
called recursive specifications.

I Definition 17. A recursive specification S is a finite set of equations

{Xi = Fi | i = 0, 1, . . . , n− 1}

where n different variables X0, . . . , Xn−1 are called the formal variables of S, and Fi ∈ E
for i = 0, . . . , n − 1. For E ∈ E, E is said to T -provably solve (or satisfy) the recursive
specification S above in the variable Xk ∈ VS if there are expressions Ei for i = 0, . . . , n− 1
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with E being Ek, such that T ` Ei = Fi{Ej/Xj | j = 0, . . . , n− 1} holds for i = 0, . . . , n− 1.
Define a relation u−→S between the formal variables of S such that Xi

u−→S Xj if Fi .̃Xj.
S is said to be guarded if there is no infinite u−→S transition sequence starting from any
Xi ∈ VS.

I Theorem 18. (Unique solution) If S is a recursive specification with formal variable X0,
then there is an expression E which SBR-provably solves S in X0. Moreover if S is guarded
and there are two such expressions E and F which both SBR-provably solve S in X0, then
` E = F .

Proof. In Milner [7], Theorem 4.2. J

I Definition 19. Let E0 ⊆ E. E0 is called a simple set if
1. E0 is a finite set;
2. E0 is transition closed, i.e. whenever E ∈ E0 and E a−→ E′ then E′ ∈ E0;
3. τ−→ is well-founded in E0, i.e. there does not exist an infinite sequence of τ -transitions

starting from any element in E0.

The key step in our completeness proof is to show that if E,F are two expressions in the
same simple set E0 such that E ≈b F , then ` τ.E = τ.F (in [2] Deng proved this promotion
lemma for finite processes, which plays a key role in his completeness results). With this we
go on to prove the completeness of SBR with respect to =b. Since the detailed construction
is quite technical, before starting we spend a few words to explain the intuition behind it.
For an equivalence relation, let us say ≈b, one can quotient E0 into equivalence classes, and
then construct a minimal labeled transition system such that each equivalence class as a
state of the constructed transition system mimics the behaviour of its members. If we can
write expressions to describe the constructed labeled transition system, then there is a good
chance that we can use the expressions to solve a recursive specification.

In the rest of this section, we will fix a simple set E0 and construct recursive specifications
with respect to it.

Since E0 is a finite set, the equivalence relation ≈b partitions it into a finite number of
equivalence classes. Thus, we can assume that ≈b partitions E0 into n ≈b-equivalence classes,
and we write {C1, . . . , Cn} for the partition. For E ∈ Ci, E is called a bottom element of
Ci if whenever E

τ−→ E′ then E′ /∈ Ci. That is to say, a bottom element of an equivalence
class cannot remain in the same class after performing a τ -transition. Take any E ∈ Ci, if
E is not a bottom element of Ci, then we can find E′ ∈ Ci such that E τ−→ E′, and since
τ−→ is well-founded for elements of E0, this cannot go on for ever, which implies that bottom

elements must exist in Ci. Now let us fix n expressions B1, . . . , Bn such that each Bi is a
bottom element of Ci. For E ∈ E0, if E ∈ Ci we call i the index of E, and we write ι(E)
for the index of E. With this notation, the following are two obvious relations hold for the
expressions in E0: A) for all E ∈ E0, E ≈b Bι(E); B) for all E,F ∈ E0, E ≈b F if and only if
ι(E) = ι(F ).

I Definition 20. Define a recursive specification RE0 = {Zi = Hi | i = 1, . . . , n}, where
Z1, . . . , Zn ∈ V are n different variables which do not occur free in any expressions in E0,
and each Hi is defined as follows:

Hi ≡ Σ{a.Zι(E) |Bi
a−→ E}+ Σ{W |Bi . W}.
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Now with the recursive specification RE0 defined above, according to Theorem 18, there
exist n expressions D1, . . . , Dn, which SBR-provably satisfy RE0 , i.e. the following holds for
i = 1, . . . , n:

` Di = Hi{D1, . . . , Dn/Z1, . . . , Zn}. (1)

In fact these D’s can be constructed so that they form a canonical solution to RE0 in that
the transition space consists of only D1, . . . , Dn, which is minimal in size since Di 6≈b Dj

when i 6= j. However as we only need equality (1) without referring to the actual behaviour
of the D’s, here we will not further argue the canonicity of the D’s (the canonicity and
other properties of D’s will be clear after Theorem 29 in the next section). Next we will
concentrate on using the D’s to solve some useful recursive specifications.

I Lemma 21. Let E ∈ E0. If E is a bottom element, then

` Dι(E) = Σ{a.Dι(F ) | E
a−→ F}+ Σ{W | E .W}.

Proof. Since ` Dι(E) = Hι(E){Di/Zi | i = 1, . . . , n} (equality (1) above), to prove the lemma,
we only need to establish:

` Hι(E){Di/Zi | i = 1, . . . , n} = Σ{a.Dι(F ) | E
a−→ F}+ Σ{W | E .W}.

According to Definition 20, the left hand side of the above equation is
Σ{a.Dι(F ) | Bι(E)

a−→ F} + Σ{W | Bι(E) . W} where Bι(E) is the chosen bottom element
in the equivalence class of E. As both E and Bι(E) are bottom elements of the same
equivalence class, a simple fact is that E . W if and only if Bι(E) . W , and E

a−→ F if
and only if Bι(E)

a−→ F ′ such that ι(F ) = ι(F ′) (this easily follows from Definition 5 and
the condition that bottom elements cannot perform τ -transition without moving state to a
different equivalence class). From this simple fact it follows that

` Σ{a.Dι(F ) |Bι(E)
a−→ F}+ Σ{W |Bι(E) .W} = Σ{a.Dι(F ) |E

a−→ F}+ Σ{W |E .W}

as both sides has the same set of summands. J

I Lemma 22. Let E ∈ E0, then
` τ.Dι(E) +Dι(E) = τ.Dι(E) +Dι(E) + Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}.

Proof. Since ` Dι(E) = Hι(E){Di/Zi | i = 1, . . . , n} (equality (1) above), to prove the lemma
we only need to establish:

` τ.Dι(E) +Hι(E){Di/Zi | i = 1, . . . , n} =
τ.Dι(E) +Hι(E){Di/Zi | i = 1, . . . , n}+ Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}.

For that, with axioms S1, S2, S3, we need to show that the extra summands on the right
hand side of the equality in Σ{a.Dι(F ) | E

a−→ F} + Σ{W | E . W} are also summands
in τ.Dι(E) + Hι(E){Di/Zi | i = 1, . . . , n}, which can be verified with the condition that
E ≈b Bι(E) and Bι(E) is a bottom element of Cι(E). Consider the summand W with E .W .
Since E ≈b Bι(E), there exists E′ ∈ Cι(E) such that Bι(E) =⇒ E′, E′ . W . Because Bι(E)
is a bottom element which cannot perform any τ while staying within Cι(E), E′ must be
Bι(E), thus according to the definition of Hi in Definition 20 W is a summand in Hι(E), and
also in Hι(E){Di/Zi | i = 1, . . . , n}. Consider the summand a.Dι(F ) with E a−→ F . Since
E ≈b Bι(E), then either a = τ and F ∈ Bι(E) and in this case a.Dι(F ) is just τ.Dι(E), or
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there exists E′ ∈ Bι(E) such that Bι(E) =⇒ E′, E′
a−→ F ′ such that F ≈b F ′. Because Bι(E)

is a bottom element, E′ must be Bι(E), according to the definition of Hi in Definition 20,
a.Zι(F ′) is a summand in Hι(E), thus a.Dι(F ′) (which in this case is the same as a.Dι(F )) is
a summand in Hι(E){Di/Zi | i = 1, . . . , n}. J

I Lemma 23. Let E ∈ E0, then ` τ.Dι(E) = τ.(Σ{a.Dι(F ) | E
a−→ F}+ Σ{W | E .W}).

Proof. If E is a bottom element, then the lemma follows from Lemma 21.
If E is not a bottom element, i.e. there is E′ such that E τ−→ E′ and ι(E) = ι(E′), then

` τ.Dι(E) = τ.(τ.Dι(E) +Dι(E)) (B)
= τ.(τ.Dι(E) +Dι(E) + Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}) (Lemma 22)
= τ.(τ.(τ.Dι(E) +Dι(E) + Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W})
+Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}) (B)
= τ.(τ.(τ.Dι(E) +Dι(E)) + Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}) (Lemma 22)
= τ.(τ.Dι(E) + Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}) (B)
= τ.(Σ{a.Dι(F ) | E

a−→ F}+ Σ{W | E .W}). (†)

† is because ι(E) = ι(E′) and τ.Dι(E) is the same as τ.Dι(E′), while τ.Dι(E′) is a summand
in Σ{a.Dι(F ) | E

a−→ F}. J

I Lemma 24 (Promotion). Let E1, E2 ∈ E0. If E1 ≈b E2 then ` τ.E1 = τ.E2.

Proof. First note that for each E ∈ E0 the following holds:

` τ.Dι(E) = τ.(Σ{a.Dι(F ) | E
a−→ F}+ Σ{W | E .W}) (Lemma 23)

= τ.(Σ{a.τ.Dι(F ) | E
a−→ F}+ Σ{W | E .W}). (Lemma 7)

On the other hand

` τ.E = τ.(Σ{a.F | E a−→ F}+ Σ{W | E .W}) (Lemma 14)
= τ.(Σ{a.τ.F | E a−→ F}+ Σ{W | E .W}). (Lemma 7)

Thus, for each E ∈ E0 it holds that ` τ.Dι(E) = τ.E, because both τ.Dι(E) and τ.E

SBR-provably solve the following guarded recursive specification on XE :

S = {XE = τ.(Σ{a.XF | E
a−→ F}) + Σ{W | E .W} | E ∈ E0}.

The well-foundedness of u−→S easily follows from the well-foundedness of τ−→ in E0 which is a
simple set. Thus S is a guarded recursive specification. Now if E1 ≈b E2, then ι(E1) = ι(E2).
Thus ` τ.E1 = τ.Dι(E1) = τ.Dι(E2) = τ.E2. J

I Theorem 25 (Completeness of SBR). Let E,F ∈ E. If E =b F then ` E = F .

Proof. By Lemma 11 there exist guarded expressions E′,F ′ such that ` E=E′,` F =F ′.
By the soundness of SBR, E′ =b E =b F =b F

′. Let E0 = EE′ ∪ EF ′ , where EE′ , EF ′ are the
sets of expressions reachable from E′ and F ′ respectively. E0 is obviously transition closed.
By Theorem 4 E0 is a finite set. By Lemma 12 τ−→ is well-founded in E0. Thus E0 is a simple
set. By Lemma 14 ` F ′ = ΣS1 + ΣS2 where S1 = {a.F ′′ | F ′ a−→ F ′′}, S2 = {W | F ′ . W}.
According to Lemma 13 S1, S2 are finite sets, let S1 = {a1.F1, . . . , ak.Fk}, S2 ={W1, . . . ,Wm}.
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Because E′ =b F
′, for each ai.Fi ∈ S1 there is E′′ such that E′ ai−→ E′′ and E′′ ≈d Fi, then

by Lemma 7 and Lemma 24 (note that E′′, Fi ∈ E0) ` ai.E′′ = ai.τ.E
′′ = ai.τ.Fi = ai.Fi,

and by Lemma 15 ` E′ = E′ + ai.E
′′. It follows that ` E′ = E′ + ai.Fi(A). For each

Wj ∈ S2, since E′ =b F
′, E′ . Wj , then by Lemma 15 ` E′ = E′ + Wj(B). After these

preparation we have the following reasoning in SBR:

` E′ + F ′ = E′ + Σki=1ai.Fi + Σmj=1Wj (Lemma 14)
= E′ + a1.F1 + Σki=2ai.Fi + Σmj=1Wj

= E′ + Σki=2ai.Fi + Σmj=1Wj (A above)
= E′ + Σmj=1Wj (after k steps)
= E′ +W1 + Σmj=2Wj

= E′ + Σmj=2Wj (B above)
= E′ (after m steps)

In the same way we can prove ` E′ + F ′ = F ′. Thus ` E′ = F ′, and ` E = F . J

To summarize, so far we proved the completeness of SBR with respect to =b by proving
promotion lemma (Lemma 24) through constructing solution to the recursive specification RE0 .
This plan of proof can be easily adapted to work for the completeness of SBRT2 w.r.t =d,
that of SBRT3 w.r.t =η, and that of SBRT2T3 w.r.t. =w. Very few adjustment is required,
including to quotient with proper equivalence (of course), to change the transition Bi

a−→ E

in RE0 (Definition 20) accordingly to Bi =⇒ a−→ E and Bi
a−→=⇒ E and Bi =⇒ a−→=⇒ E,

and in establishing the corresponding promotion lemma to use results in Lemma 16 instead
of Lemma 14 to work out proper recursive specifications corresponding to the S in Lemma 24.
Instead of going through the same plan to establish the other three completeness results, here
we shall satisfy ourselves by applying the ideas which are needed in proving the completeness
of SBRT2T3 on deriving equality in SBRT2T3 of two concrete expressions.

I Example 26. Let E and F be b.µX.(a.a.X+τ.µY.a.Y ) and b.µZ.τ.a.Z respectively, in
this example we show SBRT2T3 ` E = F . The two expressions are modified from
an example in [6] (the modification is to prevent F being able to solve the recursive spe-
cification of E easily). By 3. of Lemma 16 the following equalities are provable in SBRT2T3:
T2T3 ` E = b.µX.(a.a.X + τ.µY.a.Y ) + b.µY.a.Y

T2T3 ` µX.(a.a.X+τ.µY.a.Y ) = a.a.µX.(a.a.X+τ.µY.a.Y ) + τ.µY.a.Y +a.µY.a.Y
T2T3 ` a.µX.(a.a.X+τ.µY.a.Y ) = a.µX.(a.a.X + τ.µY.a.Y ) + a.µY.a.Y

T2T3 ` µY.a.Y = a.µY.a.Y

T2T3 ` F = b.µZ.τ.a.Z + b.a.µZ.τ.a.Z

T2T3 ` µZ.τ.a.Z = τ.a.µZ.τ.a.Z + a.µZ.τ.a.Z + a.a.µZ.τ.a.Z

T2T3 ` a.µZ.τ.a.Z = a.µZ.τ.a.Z + a.a.µZ.τ.a.Z

So, E and F are SBRT2T3-provably solve the following guarded recursive specification
S (below on the left) in X1 and Y1 respectively, with E2 ≡ µX.(a.a.X + τ.µY.a.Y ), E3 ≡
a.µX.(a.a.X + τ.µY.a.Y ), E4 ≡ µY.a.Y provably solving S in X2, X3, X4 respectively, and
F2 ≡ µZ.τ.a.Z, F3 ≡ a.µZ.τ.a.Z provably solving S in Y2, Y3 respectively:
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S : X1 = b.X2 + b.X4 T : X1 = b.X2 + b.X4

X2 = a.X3 + τ.X4 + a.X4 X2 = τ.(a.X3 + τ.X4 + a.X4)
X3 = a.X2 + a.X4 X3 = τ.(a.X2 + a.X4)
X4 = a.X4 X4 = τ.a.X4

Y1 = b.Y2 + b.Y3 Y1 = b.Y2 + b.Y3

Y2 = τ.Y3 + a.Y2 + a.Y3 Y2 = τ.(τ.Y3 + a.Y2 + a.Y3)
Y3 = a.Y2 + a.Y3 Y3 = τ.(a.Y2 + a.Y3)

Then by using Lemma 7, we easily obtain that E and F SBRT2T3-provably solve the
guarded recursive specification T (above on the right) in X1 and Y1 respectively, with
τ.E2, τ.E3, τ.E4 provably solving T in X2, X3, X4, and τ.F2, τ.F3 in Y2, Y3 respectively.

On the other hand, the minimal reachable state space containing E and F is {E,E2, E3,

E4, F, F2, F3}, which is divided into two ≈w-equivalence classes C1 = {E,F} with bottom
element F , and C2 = {E2, E3, E4, F2, F3} with bottom element F3. Using the construction of
Definition 20, from C1 and C2 we obtain recursive specification R = {Z1 = b.Z2, Z2 = a.Z2},
which is provably solved by b.µZ.a.Z and µZ.a.Z in Z1 and Z2 respectively in SBRT2T3.
Now it is easy to see that b.µZ.a.Z provably solve T in both X1 and Y1, with τ.µZ.a.Z

provably solving T in all X2, X3, X4, Y2, Y3. Finally with E and b.µZ.a.Z both provably
solving T in X1 and F and b.µZ.a.Z both provably solving T in Y1 where T is guarded, we
obtain T2T3 ` E = b.µZ.a.Z and T2T3 ` F = b.µZ.a.Z, hence T2T3 ` E = F .

5 Saturation Results and Completeness of All Axiomatisations

With the completeness result of SBR with respect to =b, we can also use the method
employed in [1] to obtain the completeness results of the extended axiomatisations, i.e. by
using the notion of saturation to reduce the completeness of the extended axiomatisations to
the established completeness of SBR w.r.t =b. With this approach, besides the completeness
results, the saturation results (Theorem 30) are interesting in their own rights.

I Definition 27. A set of expressions S is called saturated if for each E ∈ S:
1. whenever E a−→ τ−→ F then E a−→ F ;
2. whenever E τ−→ a−→ F then E a−→ F ;
3. whenever E τ−→ E′ and E′ . X then E . X.
S is called η-saturated if 1. is required to hold for each E ∈ S, and S is called d-saturated if
2. and 3. are required to hold for each E ∈ S.

An expression E ∈ E is called saturated (and η-saturated, d-saturated respectively)
if there is some S ⊆ E with E ∈ S such that S is transition closed and saturated (and
η-saturated, d-saturated respectively).

I Theorem 28. Let E,F ∈ E.
1. If E and F are d-saturated, then E =d F implies E =b F ;
2. If E and F are η-saturated, then E =η F implies E =b F ;
3. If E and F are saturated, then E =w F implies E =b F .

Proof. See [1], Theorem 4.6. J
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To prove the main result of this section, Theorem 30, we need the following theorem
which is a strengthened version of the existence part in Theorem 18 (a proof can be found in
the appendix).

I Theorem 29. Let {Xi = Fi | i = 1, . . . , n} be a recursive specification. Then there exist n
expressions E1, . . . , En such that Ei SBR-provably solves {Xi = Fi | i = 1, . . . , n} in variable
Xi. Moreover, the following hold for i = 1, . . . , n:

for a ∈ Aτ , E ∈ E, Ei
a−→ E if and only if Fi{E1, . . . , En/X1, . . . , Xn}

a−→ E and
for W ∈ V, Ei . W if and only if Fi{E1, . . . , En/X1, . . . , Xn} . W .

I Theorem 30 (Saturation). Let E be a guarded expression. Then there exist guarded
expressions Ed, Eη, and Ew, such that Ed is d-saturated and T2 ` E = Ed, Eη is η-saturated
and T3 ` E = Eη, and Ew is saturated and T2T3 ` E = Ew.

Proof. Here we only show the existence of Ew. By the same procedure we can construct Ed
and Eη. As E is a guarded expression, we can show that EE (the transition closure of E) is
a simple set (in the same way to show that E0 is a simple set in the proof of Theorem 25).
By Lemma 16 for each F ∈ EE it holds that

T2T3 ` F = Σ{a.F ′ | F =⇒ a−→=⇒ F ′}+ Σ{W | F .̃W}.

Thus each F ∈ EE provably solves XF in the following recursive specification SEE :

{XF = Σ{a.XF ′ | F =⇒ a−→=⇒ F ′}+ Σ{W | F .̃W} | F ∈ EE}.

According to Theorem 29, there exist a set of expressions {DF |F ∈ EE} such that DF
a−→ H

for some expression H if and only if Σ{a.DF ′ |F =⇒ a−→=⇒ F ′}+ Σ{W |F .̃W} a−→ H and
DF .W for someW ∈ V if and only if Σ{a.DF ′ |F =⇒ a−→=⇒ F ′}+Σ{W |F .̃W}.W . Note
that Σ{a.DF ′ |F =⇒ a−→=⇒ F ′}+ Σ{W |F .̃W} a−→ H if and only if H ≡ DF ′ for some F ′
such that F =⇒ a−→=⇒ F ′, thus DF

a−→ H if and only if H ≡ DF ′ where F =⇒ a−→=⇒ F ′.
Which shows that {DF | F ∈ EE} is transition closed. Next we show that {DF | F ∈ EE} is
saturated. For that, take arbitrary F ∈ EE , and suppose DF

τ−→ H1
a−→ H2. Then there is

F1 such that F =⇒ τ−→=⇒ F1 and H1 ≡ DF1 and also there is F2 such that F1 =⇒ a−→=⇒ F2
and H2 ≡ DF2 , and in this case F =⇒ a−→=⇒ F2, thus DF

a−→ DF2 ≡ H2. In the same way
we can show that if DF

a−→ H1
τ−→ H2 then DF

a−→ H2, and if DF
τ−→ H,H . W then

DF . W . Thus {DF | F ∈ EE} is a saturated set, and DE is a saturated expression. Since
E is guarded, τ−→ is well-founded in EE , from which it easily follows that SEE is a guarded
recursive specification. Now both E and DE provably solve SEE in the variable XE , and
SEE is guarded, thus by Theorem 18 T2T3 ` E = DE , and DE is saturated since it is in
the closed and saturated set {DF | F ∈ EE}. Thus we find DE for the wanted Ew. J

With Theorem 30, the rest of the completeness results follows from the completeness of
SBR w.r.t. =b.

I Theorem 31. Let E,F ∈ E.
1. if E =d F then T2 ` E = F ;
2. if E =η F then T3 ` E = F ;
3. if E =w F then T2T3 ` E = F .

Proof. Here we only prove 1., the rest can be established in the same way. Let E =d F . By
Theorem 11 there exist guarded expressions E1, F1 such that ` E = E1,` F = F1, thus also
T2 ` E = E1,T2 ` F = F1. By Theorem 30 there exist d-saturated and guarded expressions
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E2, F2 such that T2 ` E1 = E2,T2 ` F1 = F2. By the soundness of SBRT2 (Theorem 8),
E =d E1 =d E2 and F =d F1 =d F2, thus E2 =d F2. Since E2, F2 are both d-saturated, by
Theorem 28, E2 =b F2 follows from E2 =d F2. Then ` E2 = F2 follows from the completeness
of SBR, thus also T2 ` E2 = F2, and T2 ` E = E1 = E2 = F2 = F1 = F . J

6 Related Work

In [5], Milner proposed a set of axioms and rules to infer strong congruence (where τ is
treated just as any other action) for regular behaviours and proved the completeness of the
inference system by merging the equation sets. That was the first time when the equation
set merging strategy was introduced. Later in [7], Milner proposed a set of axioms and rules
to infer weak congruence for regular behaviours and used the same strategy to prove the
completeness of the inference system. Although our axiomatisation for =w in this paper is
obtained by expanding van Glabbeek’s axiomatisation for =b and has different axioms than
Milner’s axiomatisation for =w, it can be proved that the two axiomatisations are equivalent
in the sense that all the axioms and rules of one can be derived in the other axiomatisation
and vise versa.

In [8], van Glabbeek proposed a complete axiomatisation of branching congruence for
regular expressions. His axiomatisation is the base for the axiomatisations in the hierarchy
studied in this paper. He used Milner’s strategy of merging recursive equation sets (recursive
specifications) to arrive at the completeness result. In the proof of the main theorem of
completeness for guarded expressions, to bridge the gap between equivalence and congruence
he used a construction which is an implicit form of the promotion lemma. In principle van
Glabbeek’s construction can be adapted to work for the completeness proof of the extended
axiomatisations, however the interplay between such construction and the inevitable process
of saturation could become messy when merging the recursive equation sets.

In [4], Lohrey and the co-authors presented an axiomatisation hierarchy for divergence
sensitive weak congruences. They also used the strategy of merging recursive equation sets to
arrive at the completeness results. It is expected that our approach could work for divergence
sensitive variations of bisimulation based congruences which have not been treated here.

In [2], based on the promotion lemma, Deng presented a uniform completeness proof for
the axiomatisations of five congruences: branching congruence, η-congruence, quasi-branching
congruence, and weak congruence in the basic CCS without recursion. We have not treated
quasi-branching congruence which is sufficiently similar to branching congruence and on
which there shall be no difficulty to apply our method.

In [1], Aceto and the co-authors gave complete axiomatisations of branching, delay, weak,
and η-congruences for expressions which use prefix iteration instead of recursion to generate
infinite behaviours. Prefix iteration is a simpler syntax than recursion in that a normal form
exists for every expression of that kind, as a result the complex strategy of joining equation
sets is not needed in that case. The work about saturation results in section 6 of this paper
follows closely the framework laid out in [1].

7 Conclusion

In this paper we put up a hierarchy of axiomatisations of four well-known congruences with
various τ -abstract level for regular expressions, and proposed a new strategy for proving
completeness which works uniformly on four axiomatisations. Instead of merging recursive
equations as performed in the well-known approach proposed by Milner which usually causes
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multiple increase of the number of recursive equations, in the new approach we construct
canonical solutions, for which one only deals with recursive equations not exceeding the
original number. We hope that this will set up a foundation for more feasible implementation
of automated proof tools, which after inputting two expressions will automatically output a
shorter formal proof of their equality, if any proof exists.
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A Proof of Theorem 29

In the proof we need to use the lemma of substitution, which we state as follows without a
proof. The proof is a routine syntax analysis.

I Lemma 32 (Substitution). Let E,F,E1, . . . , En∈E, X,X1, . . . , Xn be variables which are
pairwise different. Then the following two equalities hold:

E{F/X}{E1/X1, . . . , En/Xn} ≡ E{F{E1/X1, . . . , En/Xn}/X,E1/X1, . . . , En/Xn},
E{E1/X1, . . . , En/Xn}{F/X} ≡ E{E1{F/X}/X1, . . . , En{F/X}/Xn, F/X}.

Proof of Theorem 29. Let us name the recursive specification S. First we prove the following
for each Ei by induction on the size of S (i.e. the number of equations in S):
1. for a ∈ Aτ , E ∈ E , Ei

a−→ E if and only if Fi{E1, . . . , En/X1, . . . , Xn}
a−→ E and for

W ∈ V, Ei . W if and only if Fi{E1, . . . , En/X1, . . . , Xn} . W ;
2. fv(Ei) ⊆

⋃
{fv(Fj) | 1 ≤ j ≤ n} − {X1, . . . , Xn}.

Once this is established, Ei provably solves {Xi = Fi | i = 1, . . . , n} in variable Xi follows
from 1. and Lemma 14.

https://doi.org/10.1006/inco.1996.0047
https://doi.org/10.1145/2455.2460
https://doi.org/10.1016/j.ic.2005.05.007
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1016/0890-5401(89)90070-9
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1007/3-540-57182-5_39
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1016/0890-5401(90)90048-M


X. Liu and T. Yu 35:17

For the base case S has just one equation, let E1 be µX1.F1. Then 1. holds by the fact that
for a ∈ Aτ , E ∈ E , µX1.F1

a−→ E if and only if F1{µX1.F1/X1}
a−→ E, which follows from

the operational semantics in Definition 1., 2. holds because fv(µX1.F1) = fv(F1)− {X1}.
For the induction step, let

S′ = {Xi = Fi{µXn.Fn/Xn} | i = 1, . . . , n− 1}.

Then S′ is a recursive specification of size n − 1. By the induction hypothesis there exist
n− 1 expressions E1, . . . , En−1 such that the following hold for each 1 ≤ i ≤ n− 1:
3. for a ∈ Aτ , E ∈ E , Ei

a−→ E iff Fi{µXn.Fn/Xn}{E1/X1, . . . , En−1/Xn−1}
a−→ E;

4. fv(Ei) ⊆
⋃
{fv(Fj{µXn.Fn/Xn}) | 1 ≤ j ≤ n− 1} − {X1, . . . , Xn−1}.

Now let En ≡ µXn.Fn{E1/X1, . . . , En−1/Xn−1}, then by the operational semantics in
Definition 1 En

a−→ E if and only if Fn{E1/X1, . . . , En−1/Xn−1}{En/Xn}
a−→ E. By the

lemma of substitution, Fn{E1/X1, . . . , En−1/Xn−1}{En/Xn} ≡ Fn{E1/X1, . . . , En/Xn}
(note that Xn is not free in Fj{µXn.Fn/Xn} for 1 ≤ j ≤ n− 1, with condition 4) above Xn

is not a free variable in Ei for i = 1, . . . , n− 1, thus Ei{En/Xn} ≡ Ei). Again by the lemma
of substitution, we also have the following equalities for 1 ≤ i ≤ n− 1:

Fi{µXn.Fn/Xn}{E1/X1, . . . , En−1/Xn−1}
≡ Fi{µXn.Fn{E1/X1, . . . , En−1/Xn−1}/Xn, E1/X1, . . . , En−1/Xn−1}
≡ Fi{E1/X1, . . . , En/Xn}

together with 3), with E1, . . . , En we arrive at the claim 1. for S. Direct calculation gives
fv(Fj{µXn.Fn/Xn}) ⊆ (fv(Fj) ∪ fv(Fn)) − {Xn}, thus from 4) the following hold for
1 ≤ i ≤ n− 1:

fv(Ei) ⊆
⋃
{(fv(Fj) ∪ fv(Fn))− {Xn} | 1 ≤ j ≤ n− 1} − {X1, . . . , Xn−1} ⊆⋃

{fv(Fj) | 1 ≤ j ≤ n} − {X1, . . . , Xn}.

Hence we arrive at the claim 2. for S. J
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