
Decidability and Synthesis of Abstract Inductive
Invariants
Francesco Ranzato
Dipartimento di Matematica, University of Padova, Italy
https://www.math.unipd.it/~ranzato
francesco.ranzato@unipd.it

Abstract
Decidability and synthesis of inductive invariants ranging in a given domain play an important role
in software verification. We consider here inductive invariants belonging to an abstract domain A as
defined in abstract interpretation, namely, ensuring the existence of the best approximation in A of
any system property. In this setting, we study the decidability of the existence of abstract inductive
invariants in A of transition systems and their corresponding algorithmic synthesis. Our model
relies on some general results which relate the existence of abstract inductive invariants with least
fixed points of best correct approximations in A of the transfer functions of transition systems and
their completeness properties. This approach allows us to derive decidability and synthesis results
for abstract inductive invariants which are applied to the well-known Karr’s numerical abstract
domain of affine equalities. Moreover, we show that a recent general algorithm for synthesizing
inductive invariants in domains of logical formulae can be systematically derived from our results
and generalized to a range of algorithms for computing abstract inductive invariants.

2012 ACM Subject Classification Theory of computation → Invariants; Theory of computation →
Abstraction

Keywords and phrases Inductive invariant, program verification, abstract interpretation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2020.30

Funding Francesco Ranzato: Partially funded by University of Padova, under the SID2018 project
“Analysis of STatic Analyses (ASTA)”; Italian Ministry of University and Research, under the
PRIN2017 project no. 201784YSZ5 “AnalysiS of PRogram Analyses (ASPRA)”; Facebook Research,
under a “Probability and Programming Research Award”.

Acknowledgements I thank Patrick Cousot for comments and suggestions on an earlier version of
this paper.

1 Introduction

Proof and inference methods based on inductive invariants are widespread in automatic (or
semi-automatic) program and system verification (see, e.g., [2,5,8,9,10,11,18,19,22,25,28,32]).
The inductive invariant proof method roots at the works of Floyd [13], Park [29,30], Naur [27]
and Manna et al. [20]. Given a transition system T = 〈Σ, τ,Σ0〉, where τ is a transition
relation on states ranging in Σ and Σ0 ⊆ Σ is a subset of initial states, together with a safety
property P ⊆ Σ to check, let us recall that a property I ∈ ℘(Σ) is an inductive invariant for
〈T , P 〉 when: Σ0 ⊆ I, i.e. the initial states satisfy I; I ⊆ P , i.e. I entails P ; τ(I) ⊆ I, i.e.
I is inductive. The inductive invariant principle states that P holds for all the reachable
states of T iff there exists an inductive invariant I for 〈T , P 〉. In such an explicit form this
principle has been probably first formulated in 1982 by Cousot and Cousot [5, Section 5] and
called “induction principle for invariance proofs”. In most cases, verification and inference
methods rely on inductive invariants I that range in some restricted domain A ⊆ ℘(Σ),
such as a domain of logical formulae (e.g., some separation logic or a fragment of first-order
logic [28]) or a domain of abstract interpretation [3, 4] (e.g., numerical abstract domains of
affine relations or convex polyhedra). In this context, if an inductive invariant I belongs to
A then I is called an abstract inductive invariant (inductive A-invariant in [32, Section 1]).

© Francesco Ranzato;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 30; pp. 30:1–30:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0159-0068
https://www.math.unipd.it/~ranzato
mailto:francesco.ranzato@unipd.it
https://doi.org/10.4230/LIPIcs.CONCUR.2020.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Decidability and Synthesis of Abstract Inductive Invariants

Main Contributions. Our primary goal was to investigate whether and how the inductive
invariant principle can be adapted when inductive invariants are restricted to range in an
abstract domain A. We make the following working assumption: A ⊆ ℘(Σ) is an abstract
domain as defined in abstract interpretation [3, 4]. This means that each state property
X ∈ ℘(Σ) has a best over-approximation (w.r.t. ⊆) αA(X) in A and each state transition
relation τ has a best correct approximation τA on the abstract domain A. Under these
hypotheses, we prove an abstract inductive invariant principle stating that there exists an
abstract inductive invariant in A proving a property P of a transition system T iff the best
abstraction T A in A of the system T allows us to prove P . The decidability/undecidability
question of the existence of abstract inductive invariants in some abstract domain A for
some class of transition systems has been recently investigated in a few significant cases
[12, 16, 24, 31, 32]. We show how the abstract inductive invariant principle allows us to derive
a general decidability result on the existence of inductive invariants in some abstract domain
A and to design a general algorithm for synthesizing the least (w.r.t. the order of A) abstract
inductive invariant in A, when this exists, by a least fixpoint computation in A.

We also show a related result which is of independent interest in abstract interpretation:
the (concrete) inductive invariant principle for a system T is equivalent to the abstract
inductive invariant principle for T on an abstract domain A iff fixpoint completeness of T
on A holds, i.e., the best abstraction in A of the reachable states of T coincides with the
reachable states of the best abstraction T A of T on A.

The decidability/synthesis of abstract inductive invariants in a domain A for some class
C of systems essentially boils down to prove that the best correct approximation τA in A of
the transition relation τ of systems in C is algorithmically computable. As case study, we
provide one such result for Karr’s affine relationships [17], which is a well-known and widely
used abstract domain in numerical program analysis [21]. As a second application, we design
an inductive invariant synthesis algorithm which, by generalizing an algorithm by Padon
et al. [28] tailored for logical invariants, outputs the most abstract (i.e., weakest/greatest)
inductive invariant in a domain A which satisfies some suitable hypotheses. In particular,
we show that this synthesis algorithm is obtained by instantiating a concrete co-inductive
greatest fixpoint checking algorithm by Cousot [1] to a domain A of abstract invariants which
is disjunctive, i.e., abstract least upper bounds of A do not lose precision. This generalization
allows us to design further related co-inductive algorithms for synthesizing abstract inductive
invariants.

Due to lack of space in the main body of the paper, the proofs are moved to Section A.2
in Appendix A.

2 Background

2.1 Order Theory
If X is a subset of some universe set U then ¬X denotes the complement of X with respect
to U when U is implicitly given by the context. If f : X → Y is a function between sets and
S ∈ ℘(X) then f(S) , {f(x) ∈ Y | x ∈ S} denotes the image of f on S. If ~x ∈ Xn is a vector
in a product domain, j ∈ [1, n] and y ∈ X then ~x[xj/y] denotes the vector obtained from ~x

by replacing its j-th component xj with y. To keep the notation simple and compact, we use
the same symbol for a function/relation and its componentwise (i.e. pointwise) extension on
product domains, e.g., if ~S, ~T ∈ ℘(X)n then ~S ⊆ ~T denotes that for all i ∈ [1, n], ~Si ⊆ ~Ti.
Sometimes, to emphasize a pointwise definition, a dotted notation can be used such as in
f ≤̇ g for the pointwise ordering between functions.

F. Ranzato 30:3

A quasiordered set (or poset) D≤ satisfies the ascending (resp. descending) chain condition
(ACC, resp. DCC) if D contains no countably infinite sequence of distinct elements {xi}i∈N
such that, for all i ∈ N, xi ≤ xi+1 (resp. xi+1 ≤ xi). A poset is a directed-complete partial
order (CPO) if it has the least upper bound (lub) of all its directed subsets. A complete
lattice is a poset having the lub of all its arbitrary (possibly empty) subsets (and therefore
having arbitrary glbs). In a complete lattice (or CPO), ∨ (or t) and ∧ (or u) denote, resp.,
lub and glb, and ⊥ and > denote, resp., least and greatest element.

Let P≤ be a poset and f : P → P . Then, Fix(f) , {x ∈ P | f(x) = x}, Fix≤(f) , {x ∈
P | f(x) ≤ x}, Fix≥(f) , {x ∈ P | f(x) ≥ x}, and lfp(f), gfp(f) denote, resp., the least and
greatest fixpoint in Fix(f), when they exist. Let us recall Knaster-Tarski fixpoint theorem: if
〈C,≤,∨,∧〉 is a complete lattice and f : C → C is monotonic then 〈Fix(f),≤〉 is a complete
lattice, lfp(f) = ∧Fix≤(f) and gfp(f) = ∨Fix≥(f). Also, Knaster-Tarski-Kleene fixpoint
theorem states that if 〈C,≤,∨,⊥〉 is a CPO with least element and f : C → C is Scott-
continuous (i.e., f preserves lubs of directed subsets) then lfp(f) = ∨i∈Nf i(⊥), where, for all
x ∈ C and i ∈ N, f0(x) , x and f i+1(x) , f(f i(x)); dually, if 〈C,≤,∧,>〉 is a dual-CPO
with greatest element and f : C → C is Scott-co-continuous then gfp(f) = ∧i∈Nf i(>). A
function f : C → C on a complete lattice is additive when f preserves arbitrary lubs.

2.2 Abstract Domains

Let us recall some basic notions on closures and Galois connections which are commonly used
in abstract interpretation [3, 4] to define abstract domains (see, e.g., [21]). Closure operators
and Galois connections are equivalent notions and are both used for defining the notion of
approximation in abstract interpretation, where closure operators bring the advantage of
defining abstract domains independently of a specific representation for abstract objects
which is required by Galois connections.

An upper closure operator (uco), or simply upper closure, on a poset C≤ is a function
µ : C → C which is monotonic, idempotent and extensive (i.e., x ≤ µ(x) for all x ∈ C).
Dually, a lower closure operator (lco) η : C → C is monotonic, idempotent and reductive
(i.e., η(x) ≤ x for all x ∈ C). The set of all upper/lower closures on C≤ is denoted by
uco(C≤)/lco(C≤). We write c ∈ µ(C), or simply c ∈ µ, to denote that there exists c′ ∈ C
such that c = µ(c′), and we recall that this happens iff µ(c) = c. In what follows, assume
that C≤ is a complete lattice. Let us recall that 〈µ(C),≤〉 is closed under glb of arbitrary
subsets and, conversely, X ⊆ C is the image of some µ ∈ uco(C) iff X is closed under glb
of all its subsets, and in this case µ(c) = ∧{c′ ∈ X | c ≤ c′} holds. Dually, X ⊆ C is closed
under arbitrary lub of its subsets iff X is the image a lower closure η ∈ lco(C), and in
this case η(c) = ∨{c′ ∈ X | c′ ≤ c}. In abstract interpretation, a closure µ ∈ uco(C) on a
concrete domain C≤ plays the role of an abstract domain having best approximations: c ∈ C
is (upper-)approximated by any µ(c′) such that c ≤ µ(c′) and µ(c) is the best approximation
of c in µ because µ(c) = ∧{µ(c′) | c′ ∈ C, c ≤ µ(c′)}.

A Galois Connection (GC, also called adjunction) between two posets 〈C,≤C〉, called
concrete domain, and 〈A,≤A〉, called abstract domain, consists of two maps α : C → A

and γ : A → C such that α(c) ≤A a ⇔ c ≤C γ(a) holds. A GC is called Galois insertion
(GI) when α is surjective or, equivalently, γ is injective. Any GC can be transformed into
a GI simply by removing useless elements in A r α(C) from the abstract domain A. A
GC/GI is denoted by (C≤C

, α, γ,A≤A
). GCs and ucos are equivalent notions because any

GC G = (C,α, γ,A) induces a closure µG , γ ◦ α ∈ uco(C), any µ ∈ uco(C) induces a GI
Gµ , (C, µ, λx.x, µ(C)), and these two transforms are inverse of each other.

CONCUR 2020

30:4 Decidability and Synthesis of Abstract Inductive Invariants

2.3 Transition Systems
Let T = 〈Σ, τ〉 be a transition system where Σ is a set of states and τ ⊆ Σ×Σ is a transition
relation inducing the following transformers of type ℘(Σ)→ ℘(Σ):

pre(X) , {s ∈ Σ | ∃s′ ∈ X.(s, s′) ∈ τ} p̃re(X) , {s ∈ Σ | ∀s′.(s, s′) ∈ τ ⇒ s′ ∈ X}
post(X) , {s′ ∈ Σ | ∃s ∈ X.(s, s′) ∈ τ} p̃ost(X) , {s′ ∈ Σ | ∀s.(s, s′) ∈ τ ⇒ s ∈ X}

We will equivalently specify a transition system by one of the above transformers (typ-
ically post) in place of the transition relation τ . Let us also recall (see e.g. [6]) that
(℘(Σ)⊆, pre, p̃ost, ℘(Σ)⊆) and (℘(Σ)⊆, post, p̃re, ℘(Σ)⊆) are GCs. The set of reachable states
of T from a set of initial states Σ0 ⊆ Σ is Reach[T ,Σ0] , lfp(λX ∈ ℘(Σ).Σ0 ∪ post(X)), and
T satisfies a safety property P ⊆ Σ when Reach[T ,Σ0] ⊆ P holds.

2.4 Inductive Invariant Principle
Given a transition system T = 〈Σ, τ〉, a set of states I ∈ ℘(Σ) is an inductive invariant for T
w.r.t. 〈Σ0, P 〉 ∈ ℘(Σ)2 when: (i) Σ0 ⊆ I; (ii) post(I) ⊆ I; (iii) I ⊆ P . An inductive invariant
I allows us to prove that T is safe, i.e. Reach[T ,Σ0] ⊆ P , by the inductive invariant principle
(a.k.a. fixpoint induction principle), a consequence of Knaster-Tarski fixpoint theorem: If C≤
is a complete lattice, c′ ∈ C and f : C → C is monotonic then

lfp(f) ≤ c′ ⇔ ∃i ∈ C. f(i) ≤ i ∧ i ≤ c′ (1)

In particular, given c, c′ ∈ C, since c ∨C f(i) ≤ i iff c ≤ i ∧ f(i) ≤ i, it turns out that:

lfp(λx.c ∨C f(x)) ≤ c′ ⇔ ∃i ∈ C. c ≤ i ∧ f(i) ≤ i ∧ i ≤ c′ (2)

One such i ∈ C such that c ≤ i ∧ f(i) ≤ i ∧ i ≤ c is called an inductive invariant of f
for 〈c, c′〉. Hence, (2) is applied to the function λX.Σ0 ∪ post(X) : ℘(Σ)→ ℘(Σ), which is
monotonic on ℘(Σ)⊆, so that lfp(λX.Σ0 ∪ post(X)) ⊆ P holds iff there exists an inductive
invariant I for T w.r.t. 〈Σ0, P 〉. In most contexts for defining transition systems, the decision
problem of the existence of a (concrete) inductive invariant for a class of transition systems
w.r.t. a set of initial states and some safety property turns out to be undecidable.

3 Abstract Inductive Invariants

An array of recent works, [12,16,24,28,31,32] among the others, consider a notion of abstract
inductive invariant and study the corresponding decidability/undecidability and synthesis
problems. The common approach of these works consists in restricting the range of inductive
invariants from a concrete domain C to some abstraction AC of C, which, in a general setting,
is simply a subset of C. Let us formalize abstract inductive invariants in order-theoretic terms.
Given a class C of complete lattices and, for all C ∈ C, a class of functions FC ⊆ C → C,
a set of initial properties InitC ⊆ C, a set of safety properties SafeC ⊆ C, and an abstract
domain AC ⊆ C, a first problem is the decidability of the following decision question:

∀C ∈ C.∀f ∈ FC .∀c ∈ InitC .∀c′ ∈ SafeC .∃i ∈?AC . c ≤ i ∧ f(i) ≤ i ∧ i ≤ c′ (3)

where one such i ∈ AC is called an abstract inductive invariant for f and 〈c, c′〉 ∈ C2. Thakur
et al. [32, Section 1] use the terminology “inductive AC-invariant” when for some transition
system 〈Σ, τ〉, f = postτ , AC ⊆ ℘(Σ) and c′ = Σ.

F. Ranzato 30:5

The corresponding synthesis problem consists in designing algorithms which output
abstract inductive invariants in AC or notify that no inductive invariant in AC exists.

Given T = 〈Σ, τ〉 whose successor transformer is post, the problem (3) is instantiated
to C≤ = ℘(Σ)⊆, f = post(X), c = Σ0 ∈ ℘(Σ) set of initial states and c′ = P ∈ ℘(Σ) safety
property. When T is the control flow graph generated by some program, Σ0 are the states of
some initial control node and P is a safety property given by the states which are not in
some bad control node, abstract inductive invariants are called separating invariants and
the decision problem (3) is called Monniaux problem by Fijalkow et al. [12], because this
problem was first formulated by Monniaux [23,24].

3.1 Abstract Inductive Invariant Principle
Our working assumption is that in problem (3) the invariants i range in an abstract domain
A as dictated by abstract interpretation [3, 4].

I Assumption 3.1. 〈A,≤A〉 is an abstract domain of the complete lattice 〈C,≤C〉 which
has best approximations, i.e., one of these two equivalent assumptions is satisfied:
(i) (C≤C

, α, γ,A≤A
) is a Galois insertion;

(ii) 〈A,≤A〉 = 〈µ(C),≤C〉 for some upper closure µ ∈ uco(C≤C
). y

Under Assumption 3.1, let us recall that if f : C → C is a concrete monotonic function
then the mappings αfγ : A → A, for the case of GIs, and µf : µ(C) → µ(C), for the
case of ucos, are called best correct approximation (bca) in A of f . This is justified by the
observation that an abstract function f] : A→ A (or f] : µ(C)→ µ(C) for ucos) is a correct
(or sound) approximation of f when αfγ ≤̇A f] (or µf ≤̇C f] for ucos) holds. Our first
result is an abstract inductive invariant principle which restricts the invariants of f in (1) to
those ranging in an abstract domain A: when the abstract domain A is specified by a GI,
this means that a ∈ A is an abstract invariant of f when fγ(a) ≤C γ(a) holds; when the
abstract domain is a closure µ ∈ uco(C), this means that a ∈ µ ⊆ C is an abstract invariant
of f when fa ≤C a holds.

I Lemma 3.2 (Abstract Inductive Invariant Principle). Let (C≤C
, α, γ,A≤A

) be a GI.
For all c′ ∈ C and a′ ∈ A:
(a) γ(lfp(αfγ)) ≤C c′ ⇔ ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C c′;
(b) lfp(αfγ) ≤A a′ ⇔ ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C γ(a′).

It is worth stating Lemma 3.2 (a) in an equivalent form for an abstract domain represented
by a closure µ ∈ uco(C): lfp(µf) ≤C c′ ⇔ ∃a ∈ µ. fa ≤C a ∧ a ≤C c′.

Let us observe that point (b) is an easy consequence of point (a), because, by surjectivity
of α in GIs, for all a′ ∈ A, there exists some c′ ∈ C such that a′ = α(c′), and γ(lfp(αfγ)) ≤C
γ(α(c′))⇔ lfp(αfγ) ≤A α(c′) holds. Moreover, point (b) easily follows from the inductive
invariant principle (1) for the bca αfγ : A→ A. On the other hand, it is worth remarking
that point (a) cannot be obtained from (b), i.e. (a) is strictly stronger than (b), because (a)
allows us to prove concrete properties c′ ∈ C which are not exactly represented by A (i.e.,
c′ 6∈ γ(A)) by abstract inductive invariants in A, as shown by the following tiny example.

I Example 3.3. Consider a 4-points chain C = {1 < 2 < 3 < 4}, the function f : C → C

defined by {1 7→ 1; 2 7→ 2; 3 7→ 4; 4 7→ 4}, and the abstraction A = {2, 4} with γ = id
and α = {1 7→ 2; 2 7→ 2; 3 7→ 4; 4 7→ 4}. Here, we have that αfγ = {2 7→ 2; 4 7→ 4} and
lfp(αfγ) = 2. In this case, Lemma 3.2 (b) allows us to prove all the abstract properties
a′ ∈ A by abstract inductive invariants, while Lemma 3.2 (a) allows us to prove an additional

CONCUR 2020

30:6 Decidability and Synthesis of Abstract Inductive Invariants

concrete property 3 ∈ C r γ(A), which is not exactly represented by A, by an abstract
inductive invariant, and this would not be possible by resorting to Lemma 3.2 (b). Also,
γ(lfp(αfγ)) 6≤ 1 holds, thus, by Lemma 3.2 (a), the concrete property 1 ∈ C r γ(A) cannot
be proved by an abstract inductive invariant in A, whereas Lemma 3.2 (b) does not allow us
to infer this. y

Lemma 3.2 (b) tells us that the existence of an abstract inductive invariant of f proving an
abstract property a′ ∈ A is equivalent to the fact that the least fixpoint of the bca αfγ entails
a′. This formalizes for an abstract domain satisfying Assumption 3.1 an observation in [12,
Section 1] stating (in our terminology) that “the existence of some abstract inductive invariant
for αfγ proving a′ is equivalent to whether the strongest abstract invariant lfp(αfγ) entails a′”,
i.e. is inductive, and generalizes [32, Observation 1] stating (in our terminology) that “lfp(αfγ)
is the strongest abstract inductive invariant”. If, instead, we aim at proving any concrete
property c′ ∈ C, possibly not in γ(A), by an abstract inductive invariant then Lemma 3.2 (a)
states that this is equivalent to the strictly stronger condition γ(lfp(αfγ)) ≤C c′.

As a consequence of Lemma 3.2 (a) we derive the following characterization of the
problem (3).

I Corollary 3.4. Let F ⊆ C → C and Init,Safe ⊆ C. The Monniaux decision problem
∀f ∈ F .∀c ∈ Init .∀c′ ∈ Safe .∃a ∈?A. c ≤C γ(a) ∧ fγ(a) ≤C γ(a) ∧ γ(a) ≤C c′ is decidable
iff the decision problem ∀f ∈ F .∀c ∈ Init .∀c′ ∈ Safe .γ(lfp(λx ∈ A.α(c) ∨A αfγ(x))) ≤?

C c′ is
decidable.

Moreover, as a consequence of Lemma 3.2 (b) we obtain the following abstract invariant
synthesis algorithm.

I Corollary 3.5. Assume that the lub ∨A : A×A→ A and the bca αfγ : A→ A are finitely
computable, the partial order ≤A is decidable and A is an ACC CPO with least element. For
all c ∈ C such that α(c) is finitely computable and a′ ∈ A, the following procedure:

AInv(f,A, c, a′) , i := α(c);
while i ≤A a′ do {if αfγ(i) ≤A i return i; else i := αfγ(i); }
return no abstract inductive invariant for f and 〈c, γ(a′)〉;

is a terminating algorithm which outputs the least abstract inductive invariant for f and
〈c, γ(a′)〉, when one such abstract inductive invariant exists, otherwise outputs “no abstract
inductive invariant”.

Under the same hypotheses for the abstract domain A, Thakur et al. [32, Observation 2]
state (in our terminology) that the problem of computing the least abstract inductive invariant
in A for some successor transformer postτ reduces to the problem of computing the best
correct approximation α postτ γ.

4 Fixpoint Completeness and Abstract Inductive Invariants

4.1 Completeness in Abstract Interpretation
Soundness in abstract interpretation (or, more in general, in static analysis) is a mandatory
requirement stating that no false negative can occur: if f : C → C and f] : A → A

are the concrete and abstract monotonic transformers then fixpoint soundness means that
α(lfp(f)) ≤A lfp(f]) holds, so that a positive abstract proof lfp(f]) ≤A a′ entails that γ(a′)
concretely holds, i.e., lfp(f) ≤C γ(a′). Fixpoint soundness is usually proved as a consequence

F. Ranzato 30:7

of pointwise soundness: if f] is a pointwise correct approximation of f , i.e. αf ≤̇A f]α,
then α(lfp(f)) ≤A lfp(f]) holds. While soundness is indispensable, completeness in abstract
interpretation encodes an ideal situation where no false positives (also called false alarms)
arise: fixpoint completeness means that α(lfp(f)) = lfp(f]) holds, so that lfp(f]) 6≤A a′

entails lfp(f) 6≤C γ(a′). One can also consider a strong fixpoint completeness requiring that
lfp(f) = γ(lfp(f])), so that lfp(f]) 6≤A α(c′) entails lfp(f) 6≤C c′. However, it should be
remarked that lfp(f) = γ(lfp(f])) is much stronger than α(lfp(f)) = lfp(f]) since it means
that the concrete lfp is precisely represented by the abstract lfp.

It is important to remark that if f] is a pointwise correct approximation of f and fixpoint
completeness for f] holds then since α(lfp(f)) ≤A lfp(αfγ) ≤A lfp(f]) always holds, one
obtains that α(lfp(f)) = lfp(αfγ) = lfp(f]) holds, namely, the bca αfγ is fixpoint complete as
well. This means that the possibility (and therefore impossibility) of defining an approximate
transformer f] : A → A on A which is fixpoint complete does not depend on the specific
definition of f] but is instead an intrisic property of the abstract domain A w.r.t. the concrete
transformer f , as formalized by the equation α(lfp(f)) = lfp(αfγ). Moreover, fixpoint
completeness is typically proved as a by-product of pointwise completeness αf = f]α, and
if f] is pointwise complete then it turns out that f] = αfγ, that is, f] actually is the bca
of f . This justifies why, without loss of generality, we can consider fixpoint and pointwise
completeness of bca’s αfγ only, i.e., as properties of abstract domains [14,15].

4.2 Characterizing Fixpoint Completeness by Abstract Inductive
Invariants

We show that the abstract inductive invariant principle is closely related to fixpoint com-
pleteness. More precisely, we provide an answer to the following question: in the abstract
inductive invariant principle as stated by Lemma 3.2, can we replace lfp(αfγ) with α(lfp(f))?
This question is settled by the following result.

I Theorem 4.1. Let (C≤C
, α, γ,A≤A

) be a GI.
(a) lfp(f) = γ(lfp(αfγ)) iff ∀c′ ∈ C.

(
lfp(f) ≤C c′ ⇔ ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C c′

)
;

(b) α(lfp(f)) = lfp(αfγ) iff ∀a′ ∈ A.
(
lfp(f) ≤C γ(a′) ⇔ ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C

γ(a′)
)
.

Theorem 4.1 (b) can be stated by means of ucos as follows: if µ ∈ uco(C) then µ(lfp(f)) =
lfp(µf) iff ∀a′ ∈ µ.(lfp(f) ≤C a′ ⇔ ∃a ∈ µ. fa ≤C a ∧ a ≤C a′).

The above result can be read as follows. Since, by the inductive invariant principle (1),
lfp(f) ≤C c′ iff there exists a concrete inductive invariant proving c′, it turns out that
Theorem 4.1 (a) states that the existence of an abstract inductive invariant proving c′ is
equivalent to the existence of any inductive invariant proving c′ iff fixpoint completeness
holds. In other terms, the (concrete) inductive invariant principle is equivalent to the abstract
inductive invariant principle iff fixpoint completeness holds. This result is of independent
interest in abstract interpretation, since it provides a new characterization of the key property
of fixpoint completeness of abstract domains.

A further interesting characterization of fixpoint completeness is as follows.

I Lemma 4.2. α(lfp(f)) = lfp(αfγ)⇔ ∃a ∈ A.fγ(a) ≤C γ(a) ∧ γ(a) ≤C γα(lfp(f)).

As a consequence, fixpoint completeness for f does not hold in A iff the abstract property
α(lfp(f)) ∈ A cannot be proved by an abstract inductive invariant in A

I Example 4.3. Consider a 3-points chain C = {1 < 2 < 3} and the monotonic concrete
function f : C → C defined by f = {1 7→ 1; 2 7→ 3; 3 7→ 3}.

CONCUR 2020

30:8 Decidability and Synthesis of Abstract Inductive Invariants

Consider the uco µ = {2, 3}, i.e., µ = {1 7→ 2; 2 7→ 2; 3 7→ 3}, so that µf = {1 7→ 2; 2 7→
3; 3 7→ 3}. Fixpoint completeness does not hold because µ(lfp(f)) = µ(1) = 2 < 3 = lfp(µf).
Thus, in accordance with Lemma 4.2, it turns out that µ(lfp(f)) = 2 cannot be inductively
proved in the abstraction µ. In fact, f(2) 6≤ 2, while f(3) ≤ 3 but 3 6≤ µ(lfp(f)).
Consider now the uco η = {1, 3}, i.e., η = {1 7→ 1; 2 7→ 3; 3 7→ 3}, so that ηf = {1 7→ 1; 2 7→
3; 3 7→ 3}. Here, η(lfp(f)) = η(1) = 1 = lfp(ηf), therefore fixpoint completeness holds. Thus,
by the uco version of Theorem 4.1 (b), any valid abstract invariant of f can be inductively
proved: in fact, 1, 3 ∈ η are valid abstract invariants of f and are both inductive. y

Due to lack of space, we moved to Appendix A.1 an application of Theorem 4.1 which
provides a model showing how the “Safety =? Abstract Invariance” problem is related to
fixpoint completeness in abstract interpretation, as informally hinted by Padon et al. [28].

5 Abstract Inductive Invariants of Nondeterministic Programs

We consider transition systems as represented by a control flow graph (CFG) of a possibly
nondeterministic imperative program. A program is a tuple P = 〈Q,n,V,T,�〉 where Q is a
finite set of control nodes (or program points), n ∈ N is the number of program variables of
type V (e.g., V = Z,Q,R), T is a finite set of (possibly nondeterministic) transfer functions
of type Vn → ℘(Vn), � ⊆ Q× T×Q is a (possibly nondeterministic) control flow relation,
where q t→ q′ denotes a flow transition with transfer function t ∈ T. A program P therefore
defines a transition system TP = 〈Σ, τ〉 where Σ , Q × Vn is the set of states and the
transition relation τ ⊆ Σ× Σ is defined by 〈(q,~v), (q′, ~v′)〉 ∈ τ 4⇔ ∃t ∈ T. q t→ q′ ∧ ~v′ ∈ t(~v).
The transfer functions in T include assignments and Boolean guards, where if b ∈ ℘(Vn)
is a deterministic Boolean predicate (such as x1 + 2x2 − 1 = 0) then the corresponding
transfer function tb : Vn → ℘(Vn) is tb(~v) , if ~v ∈ b then {~v} else ∅. Examples of transfer
functions include: affine, polynomial, nondeterministic assignments and affine equalities
guards. The next value transformer post〈q,q′〉 : ℘(Vn) → ℘(Vn) for a pair 〈q, q′〉 ∈ Q × Q
of control nodes is post〈q,q′〉(X) , ∪{t(X) ∈ ℘(Vn) | ∃t ∈ T.q t→ q′}. The complete lattice
〈℘(Σ),⊆〉 of sets of states can be equivalently represented by the Q-indexed product lattice
〈℘(Vn)|Q|, ⊆̇〉. Hence, the successor transformer postP : ℘(Vn)|Q| → ℘(Vn)|Q| and the set of
reachable states from Σ0 ∈ ℘(Vn)|Q| are defined as follows:

postP(〈Xq〉q∈Q) , 〈∪q∈Q post〈q,q′〉(Xq)〉q′∈Q Reach[P,Σ0] , lfp(λ ~X.Σ0 ∪ postP(~X))

For all control nodes q ∈ Q and vectors ~X ∈ ℘(Vn)|Q|, we will also use πq(~X) and ~Xq

to denote the q-indexed component of ~X, e.g., Reach[P,Σ0]q ∈ ℘(Vn) will be the set of
reachable values at control node q.

We are interested in decidability and synthesis of abstract inductive invariants ranging
in an abstract domain A as specified by a GI (℘(Vn)⊆, α, γ,A≤A

) parametric on n ∈ N.
By Corollary 3.4, for a given class C of programs, a class Init of sets of initial states and
a class Safe of sets of safety properties, the Monniaux problem (3) is decidable iff for all
P = 〈Q,n,V,T,�〉 ∈ C, Σ0 ∈ Init and P ∈ Safe,

γ̇(lfp(λ~a ∈ A|Q|. α̇(Σ0) ∨̇A α̇(postP(γ̇(~a))))) ⊆̇?
P (4)

is decidable. Moreover, Corollary 3.5 provides an abstract inductive invariant synthesis
algorithm AInv for safety properties represented by A (i.e., P ∈ γ(A)) when A, C, Init and
Safe satisfy the hypotheses of Corollary 3.5.

F. Ranzato 30:9

5.1 Karr’s Affine Equalities Domain
Program analysis on the domain of affine equalities has been introduced in 1976 by Karr [17]
who designed some algorithms computing for each program point some correct affine equalities
between numerical variables. This abstract domain, here denoted by Aff, is relatively simple
and widely used in numerical program analysis (see, e.g., [21]). Müller-Olm and Seidl [26]
put forward simpler and more efficient algorithms for Aff based on a different representation
of affine sets and proved that Aff is fixpoint complete for unguarded nondeterministic
affine programs, while for linearly guarded nondeterministic affine programs it is undecidable
whether a given affine equality holds at a given program point or not.

Let us briefly recall the definition of the abstract domain Affn for n program variables
ranging in Varn , {x1, ..., xn} and assuming rational values1, that is, V = Q. The logical
abstract invariants represented by Affn are finite (possibly empty) conjunctions of affine
equalities between variables, namely,

∧k
j=1(

∑n
i=1mi,jxi + bj = 0), with mi,j , bj ∈ Q. Any

conjunction of affine equalities defines an affine subset of Qn, and each subset X ∈ ℘(Qn) is
approximated by the least (w.r.t. ⊆) affine subset containing X, which is:

aff(X) , {
∑m
j=0λj~vj ∈ Qn | m ∈ N, λj ∈ Q, ~vj ∈ X,

∑m
j=0λj = 1}.

This map aff : ℘(Qn) → ℘(Qn) is an upper closure on 〈℘(Qn),⊆〉 whose fixpoints are
precisely the affine subsets of Qn and therefore may be used to define the affine equalities
domain Affn , 〈aff(℘(Qn)),⊆〉 independently of a specific representation for its elements.
Karr [17] represents affine sets by kernels of affine transformations stored as matrix-vector
pairs, while Müller-Olm and Seidl [26] employ an affine basis of indepedent vectors called
generators. One can switch from one representation to the other by solving equations and
using Gaussian elimination. Here, we do not need to choose a specific representation of affine
sets so that the upper closure aff is meant to act as abstraction map αAff : ℘(Qn)→ Affn
and correspondingly the concretization γAff : Affn → ℘(Qn) is the identity. For the sake
of clarity, in our examples we will use logical affine equalities for representing affine sets.
Affn is a complete lattice of finite height n + 1, because if a, a′ ∈ Affn and a (a′ then
dim(a) < dim(a′), where dim(∅) = −1 and dim(Qn) = n. The domain Affn is not closed
under arbitrary unions, i.e., aff is not an additive uco, so that the lub of X ⊆ Affn is given
by tAffnX , aff(∪X∈XX). A matrix-based algorithm for computing a binary lub a tAff a

′

of two affine sets represented by affine transformations is given by Karr [17, Section 5.2] (a
simpler and more efficient version is in [21, Section 5.2.2]), while a binary lub can be easily
computed for the generators-based representation in [26, Section 3].

By Corollary 3.4, the existence of abstract inductive invariants in Aff for a given class C
of programs, Init of sets of initial states and Safe of sets of safety properties, is a decidable
problem iff for all P ∈ C with n variables and control nodes in Q, for all Σ0 ∈ InitP ⊆ ℘(Vn)|Q|
and for all P ∈ SafeP ⊆ ℘(Vn)|Q|,

γ̇Const(lfp(λ~a ∈ Aff|Q|n . α̇Aff(Σ0) ṫAffn
α̇Aff(postP(γ̇Aff(~a))))) ⊆̇?

P (5)

is decidable. Therefore, when Σ0, P ∈ Affn and since Aff|Q|n has finite height |Q|(n+ 1), a
sufficient condition for the decidability of the problem (5) is that the bca α̇Aff ◦ postP ◦γ̇Aff :
Aff|Q|n → Aff|Q|n is computable, where for all ~a ∈ Aff|Q|n :

1 Values range in Q because the representation of affine subspaces and the transfer functions rely on
algorithms working on fields rather than rings such as Z.

CONCUR 2020

30:10 Decidability and Synthesis of Abstract Inductive Invariants

˙αAff(postP(γ̇Aff(~a))) = 〈tAffn
{αAff(t(πq(γ̇Aff(~a)))) | ∃q ∈ Q,∃t ∈TP . q

t→ q′}〉q′∈Q (6)

Because in (6) we have a finite lub, it is enough that for all the transfer functions t ∈ TP of
P, the bca αAff ◦ t ◦ γAff : Affn → Affn is algorithmically computable.

We consider single affine assignments tja
4≡ xj :=

∑n
i=1mixi+b and linear Boolean guards

tb
4≡
∑n
i=1mixi + b ./ 0, where mi, b ∈ Q and ./∈ {=, 6=, <, ≤, >, ≥}, whose corresponding

transfer functions are as follows: for all Y ∈ ℘(Qn),

tja(Y) , {~v[~vj/v′] ∈ Qn | ~v ∈ Y, v′ =
∑n
i=1mi~vi+b}, tb(Y) , {~v ∈ Y |

∑n
i=1mi~vi+b ./ 0}.

These transfer functions can be extended to include parallel affine assignments ~x := M~x+~b,
where M ∈ Qn×n is a n × n matrix and ~b ∈ Qn, which performs n parallel single affine
assignments, and conjunctive (disjunctive) linear Boolean guards M~x+~b ./ 0, which holds
iff, for all (there exists) j ∈ [1, n],

∑n
i=1Mjixi + bj ./ 0 holds.

Karr gave already in [17, Section 4.2] an algorithm for computing the bca of an affine
assignment tja for affine sets represented by kernels of affine transformations. Müller-Olm and
Seidl [26] put forward a more efficient algorithm for their representation based on generators.
It is also worth remarking that Müller-Olm and Seidl [26, Lemma 2] observe that the bca of
tja turns out to be pointwise complete, namely aff ◦ tja ◦ aff = aff ◦ tja holds. Hence, in turn,
computability of parallel affine assignments ~x := M~x+~b easily follows. [26, Section 4] also
shows that the bca of a nondeterministic assignment tja?

4≡ xj :=? is computable, where the
corresponding transfer function is defined by: txj :=?(Y) , {~v[~vj/v′] ∈ Qn | ~v ∈ Y, v′ ∈ Q}.
In fact, one can observe [26, Lemma 4] that aff(txj :=?(aff(Y))) = aff(txj :=0(aff(Y))) tAff
aff(txj :=1(aff(Y))), so that computing the bca aff(txj :=?(aff(Y))) is reduced to the lub of the
bca’s of the transfer functions of the affine assignments xj := 0 and xj := 1.

As observed by Karr [17, Section 4.1] (see also [21, Section 5.2.3] for a modern approach),
bca’s of affine equalities Boolean guards of the shape tb=

4≡
∑n
i=1mixi + b = 0 are algorith-

mically computable through the glb of Affn, i.e., for all a ∈ Affn, αAff(tb=(γAff(a))) =
a uAffn

ab= , where ab= ∈ Affn denotes the affine set representing the affine equality∑n
i=1mixi+b = 0. For affine inequalities Boolean guards tb 6=

4≡
∑n
i=1mixi + b 6= 0, Karr [17,

Section 4.1] defines the following abstract function: t]
b6=

(a) , if a ⊆ ab= then ⊥Affn
else a,

and states that “we must be content with a on the “otherwise” case...a general study of how
best to handle decision nodes which are not of the simple form tb= is in preparation”, but this
document never appeared. Nevertheless, we notice that the above definition of t]

b 6=
actually

is the bca αAff ◦ tb 6= ◦ γAff = λa. aff(a∩¬ab=). In fact, let us observe the following fact (∗):
if a, a′ ∈ Affn then a′ (a ⇒ aff(a ∩ ¬a′) = a. In fact, we have that dim(a′) < dim(a)
and, in turn, dim(aff(a ∩ ¬a′)) = dim(aff(a r a′)) = dim(a) hold, therefore entailing that
aff(a ∩ ¬a′) = a. Thus: (a) if ab= (a then, by (∗), aff(a ∩ ¬ab=) = a; (b) if ab= and a are
incomparable then a ∩ ab= (a, so that, by (∗), aff(a ∩ ¬ab=) = aff(a ∩ ¬(a ∩ ab=)) = a.

Summing up, as a consequence of Corollary 3.4, the above analysis of bca’s in the abstract
domain Aff gives us the following result for the class CAff of nondeterministic programs
with (possibly parallel) affine assignments, (possibly parallel) nondeterministic assignments
and (conjunctive or disjunctive) affine equalities/inequalities guards.

I Theorem 5.1 (Decidability and Synthesis of Inductive Invariants in Aff). The Monniaux
problem (4) on Aff for programs in CAff, affine sets of initial states and affine sets of state
properties is decidable. Moreover, the algorithm AInv of Corollary 3.5 instantiated to postP
for P ∈ CAff, synthesizes the least inductive invariant of P in Aff, when this exists.

F. Ranzato 30:11

To the best of our knowledge, the literature provides no algorithm for computing the bca
of further linear Boolean guards

∑n
i=1mixi + b ./ 0, with ./ ∈ {<, ≤, }. We conjecture that

at least some of these bca’s are algorithmically computable.

I Example 5.2. Consider the following nondeterministic program R with Σ0 = {q1}×Q3 ∈
Aff|Q| and the property P] =

〈
〈q1,>〉, 〈q2,>〉, 〈q3,>〉, 〈q4, x1 + x2 + 1 = 0〉

〉
∈ Aff|Q|.

q1

q2

q3

q4

x1 := −2;
x2 := 1;
x3 := 1;

x1 := −2x2 − 2;
x2 := x2 + x3;

x1 := 2x1 + 4;
x2 := −x1 − 2x3;

x1 + 2x3 = 0

The algorithm AInv of Corollary 3.5 yields the following sequence of Ij ∈ Aff|Q|:

I0 = α̇Aff(Σ0) =
〈
〈q1,>〉, 〈q2,⊥〉, 〈q3,⊥〉, 〈q4,⊥〉

〉
I1 =

〈
〈q1,>〉, 〈q2, x1 + 2 = 0 ∧ x2 − 1 = 0 ∧ x3 − 1 = 0〉, 〈q3,⊥〉, 〈q4,⊥〉

〉
I2 =

〈
〈q1,>〉, 〈q2, x1 + 2 = 0 ∧ x2 − 1 = 0 ∧ x3 − 1 = 0〉,

〈q3, x1 + 2x2 = 0 ∧ x3 = 1〉, 〈q4,⊥〉
〉

I3 =
〈
〈q1,>〉, 〈q2, x1 + 2x2 = 0 ∧ x3 = 1〉, 〈q3, x1 + 2x2 = 0 ∧ x3 = 1〉,

〈q4, x1 + x2 + 1 = 0 ∧ x3 = 1,⊥〉
〉

= α̇Aff(postR(γ̇Aff(I3))) ≤̇Aff P
]

The output I3 is the analysis of R with the bca’s of its transfer functions in Aff, i.e., it is
the least inductive invariant in Aff which allows us to prove that P] holds. y

5.1.1 Relationship with Müller-Olm and Seidl [26]
Müller-Olm and Seidl [26] implicitly show that the transfer functions of affine assignments ta
and of nondeterministic assignments txj :=? are pointwise complete. In fact, [26, Lemma 2]
shows that for all X ∈ ℘(Qn), ta(aff(X)) = aff(ta(X)), from which we easily obtain:
aff(ta(X)) = aff(ta(aff(X))) and

aff(txj :=?(X)) = aff(∪z∈Qtxj :=z(X)) = aff(∪z∈Q aff(txj :=z(X))) =
= aff(∪z∈Q aff(txj :=z(aff(X))) = aff(∪z∈Qtxj :=z(aff(X)) = aff(txj :=?(aff(X)))

Thus, since pointwise completeness entails fixpoint completeness (cf. Section 4.1), for all
unguarded programs P with affine and nondeterministic assignments, α̇Aff(lfp(λ ~X.Σ0 ∪
postP(~X))) = lfp(λ~a.α̇Aff(Σ0) ṫAff α̇Aff(postP(γ̇Aff(~a)))) holds, which is the reason why
“Karr’s algorithm is precise for affine programs, i.e., computes not just some but all valid affine
relations” [26, Section 1]. However, fixpoint completeness is lost as soon as affine equality or
inequality guards are included, although these programs still belong to CAff, because these
guards are not pointwise complete: for example, we have that aff(tx1=0({(1, 0), (−1, 0)})) =
aff(∅) = ∅, whereas aff(tx1=0(aff({(1, 0), (−1, 0)}))) = aff(tx1=0(x2 = 0)) = aff({(0, 0)}) =
{(0, 0)}. Müller-Olm and Seidl [26, Section 7] also prove that as soon as affine equality
guards are added to nondeterministic affine programs it becomes undecidable whether a

CONCUR 2020

30:12 Decidability and Synthesis of Abstract Inductive Invariants

given affine equality holds in some program point or not. It is therefore worth remarking
that this undecidability does not prevent the decidability result of Theorem 5.1 on the
existence (and synthesis) of inductive affine equalities proving a given affine equality, since
these two decision problems are different. In fact, Müller-Olm and Seidl [26, Section 7]
prove that ∀f ∈ CAff.∀a ∈ Aff . αAff(lfp(f)) ≤?

Aff a is an undecidable problem, while
Theorem 5.1 shows that ∀f ∈ CAff.∀a ∈ Aff . lfp(αAfffγAff) ≤?

Aff a is decidable, and, by
Theorem 4.1 (b), these are equivalent problems iff (where “if” is obvious) fixpoint completeness
∀f ∈ CAff.αAff(lfp(f)) = lfp(αAfffγAff) holds.

I Example 5.3. Consider the following deterministic program P ∈ CAff:

P ≡ x1 := 0; x2 := 3; while (x1 6= 3) do {x1 := x1 + 2; x2 := x2 − 2}

where qi and qo denote, resp., its entry and exit program points and Σ0 = {qi} ×Q2 is the
set of initial states. Then, we have that the affine abstraction of the reachable states at the
exit point q0 is

αAff(πqo
(lfp(λ ~X.Σ0 ∪ postP(~X)))) = αAff({(0 + 2n, 3− 2n) | n ∈ N} ∩ 〈x1 = 3〉)

= αAff(∅) = ⊥Aff

while the algorithm AInv of Corollary 3.5 using the best correct approximations of the
transfer functions of b= ≡ (x1 = 3) and b6= ≡ (x1 6= 3) gives:

πqo(lfp(λ~a ∈ Aff|Q|. ˙αAff(Σ0) ṫAff ˙αAff(postP(˙γAff(~a))))) = 〈x1 + x2 = 3〉 uAff 〈x1 = 3〉
= 〈x1 = 3 ∧ x2 = 0〉 6≤Aff ⊥Aff

The least inductive invariant 〈x1 = 3 ∧ x2 = 0〉 in Aff does not entail ⊥Aff, namely, it
cannot prove that qo is unreachable, therefore showing that the two aforementioned decision
problems are not equivalent for programs ranging in CAff. y

6 Co-Inductive Synthesis of Abstract Inductive Invariants

In this section we design a synthesis algorithm which, by generalizing an algorithm by Padon
et al. [28], outputs the greatest abstract inductive invariant ranging in some abstract domain,
when this exists. This algorithm is obtained by dualizing the procedure AInv in Corollary 3.5
to a co-inductive greatest fixpoint computation and requires that the abstract domain is
equipped with a suitable well-quasiorder relation. Let us recall that a quasiordered set D≤
is a well-quasiordered set (wqoset), and ≤ is called well-quasiorder (wqo), when for every
countably infinite sequence of elements {xi}i∈N in D there exist i, j ∈ N such that i < j and
xi ≤ xj . Equivalently, D is a wqoset iff D is DCC (also called well-founded) and D has no
infinite antichain (i.e., a subset whose distinct elements are pairwise incomparable).

In the following, we will leverage on the closure operator approach for defining abstract
domains, which, as recalled in Section 2.2, is completely equivalent to Galois connections
and particularly suitable for reasoning on abstract domains independently from their repres-
entation. Let T = 〈Σ, τ〉 be a transition system whose successor transformer is denoted by
post. Padon et al. [28] consider abstract invariants ranging in a set (of semantics of logical
formulae) L ⊆ ℘(Σ) and assume (in [28, Theorem 4.2]) that 〈L,⊆〉 is closed under finite
intersections (i.e., logical conjunctions). Accordingly to Assumption 3.1, we ask that 〈L,⊆〉
satisfies the requirement of being an abstract domain of 〈℘(Σ),⊆〉, which corresponds to ask
that 〈L,⊆〉 is closed under arbitrary, rather than finite, intersections. Thus, L is the image of

F. Ranzato 30:13

an upper closure µ̌L ∈ uco(℘(Σ)⊆) defined by: µ̌L(X) , ∩{φ ∈ L | X ⊆ φ}. The three key
definitions and related assumptions of the synthesis algorithm defined in [28, Theorem 4.2]
concern a quasiorder vL ⊆ Σ× Σ between states, a function AvL : Σ→ ℘(Σ) called Avoid,
and an abstract transition relation τL ⊆ Σ× Σ, and are as follows:

(1) s vL s′
4⇔ ∀φ ∈ L. s′ ∈ φ⇒ s ∈ φ Assumption (A1): 〈Σ,vL〉 is a wqoset

(2) AvL(s) , ∪{φ ∈ L | φ ⊆ ¬{s}} Assumption (A2): ∀s ∈ Σ. AvL(s) ∈ L

(3) (s, s′) ∈ τL 4⇔ (s, s′) ∈ τ ∨ s′ vL s Abstract Transition System T L , 〈Σ, τL〉

Correspondingly, we define the down-closure δL : ℘(Σ) → ℘(Σ) of the quasiorder vL,
we lift AvL : ℘(Σ) → ℘(Σ) to sets of states and we define the successor transformer
postL : ℘(Σ)→ ℘(Σ) of T L as follows:

(1) δL(X) , {s ∈ Σ | ∃s′ ∈ X. s vL s′} Down-closure of vL
(2) AvL(X) , ∪{φ ∈ L | φ ⊆ ¬X} AvL acts on any set X of states
(3) postL(X) , post(X) ∪ δL(X) Successor transformer of T L

I Lemma 6.1. The following properties hold:
(a) s vL s′ iff µ̌L({s}) ⊆ µ̌L({s′}).
(b) (A1) holds iff 〈L,⊆〉 is a well-quasi order.
(c) (A2) holds iff L is closed under arbitrary unions.
(d) If (A2) holds then δL = µ̌L and both are additive ucos (and δL(φ) = φ⇔ φ ∈ L).
(e) For all Σ0 ∈ ℘(Σ), lfp(λX.Σ0 ∪ postL(X)) = lfp(λX.µ̌L(Σ0 ∪ post(X))).

In particular, Lemma 6.1 (e) states that the reachable states in T L coincide with
the reachable states of the abstract transition system T µ̌L , 〈Σ, µ̌L ◦ post〉 obtained by
considering the best correct approximation of post in the abstract domain µ̌L. As a direct
consequence of the abstract inductive invariant principle Lemma 3.2 (a), we obtain the
following characterization of the abstract inductive invariants ranging in L of the transition
system T which relies on the reachable states of its best abstraction T µ̌L in the domain µ̌L.

I Corollary 6.2. Let Σ0, P ∈ ℘(Σ). Then, ∃φ ∈ L. Σ0 ⊆ φ ∧ post(φ) ⊆ φ ∧ φ ⊆ P iff
Reach[T µ̌L ,Σ0] ⊆ P .

6.1 Co-Inductive Invariants
Following [28], in the following we make assumption (A2), that is, by Lemma 6.1 (c), we
assume that L ⊆ ℘(Σ) is closed under arbitrary unions. This means that µ̌L is an additive
uco on ℘(Σ)⊆, i.e., in abstract interpretation terminology, µ̌L is a disjunctive abstract domain
whose abstract lub does not lose precision (see, e.g., [21, Section 6.3]). Furthermore, we
also have that L is the image of a co-additive (i.e., preserving arbitrary intersections) lower
closure µ̂L : ℘(Σ)→ ℘(Σ) defined by µ̂L(X) , ∪{φ ∈ L | φ ⊆ X}. It turns out that the uco
µ̌L is adjoint to the lco µ̂L namely, µ̌L(X) ⊆ Y ⇔ X ⊆ µ̂L(Y) holds. In fact, if µ̌L(X) ⊆ Y
then, by applying µ̂L, X ⊆ µ̌L(X) = µ̂L(µ̌L(X)) ⊆ µ̂L(Y); the converse is dual.

As observed by Cousot [1, Theorem 4], the inductive invariant principle (2) can be
dualized when f admits right-adjoint f̃ : C → C (this happens iff f is additive): in this case,

lfp(λx.c ∨ f(x)) ≤ c′ ⇔ c ≤ gfp(λx.c′ ∧ f̃(x)) (7)

holds and one obtains a co-inductive invariant principle:

c ≤ gfp(λx.f̃(x) ∧ c′)⇔ ∃j ∈ C. c ≤ j ∧ j ≤ f̃(j) ∧ j ≤ c′ (8)

CONCUR 2020

30:14 Decidability and Synthesis of Abstract Inductive Invariants

One such j ∈ C is therefore called a co-inductive invariant of f for 〈c, c′〉. The co-inductive
invariant proof method (8) can be applied to safety verification of any transition system T
because post is additive and therefore it always admits right adjoint p̃re (cf. Section 2.3).
Hence, we obtain that lfp(λX.Σ0 ∪post(X)) ⊆ P iff Σ0 ⊆ gfp(λX. p̃re(X)∩P) iff there exists
a co-inductive invariant for p̃re for 〈Σ0, P 〉. By (2) and (8), it turns out that I is an inductive
invariant of post for 〈Σ0, P 〉 iff I is a co-inductive invariant of p̃re for 〈Σ0, P 〉. Also, while
lfp(λX.Σ0 ∪ post(X)) is the least, i.e. logically strongest, inductive invariant, we have that
gfp(λX. p̃re(X) ∩ P) is the greatest, i.e. logically weakest, inductive invariant [1, Theorem 6].

We show how the co-inductive invariant principle (8) applied to the best abstract transition
system T µ̌L = (Σ, µ̌L ◦ postT) provides exactly the synthesis algorithm by Padon et al. [28,
Algorithm 1]. In order to do this, we first give the following alternative characterization of
the reachable states of T µ̌L .

I Lemma 6.3. lfp(λX.Σ0 ∪ µ̌L(post(X))) = lfp(λX.Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X)).

Consequently, lfp(λX.Σ0 ∪ µ̌L(post(X))) ⊆ P ⇔ lfp(λX.Σ0 ∪ post(µ̌L(X))∪ µ̌L(X)) ⊆ P
holds. Since λX. post(µ̌L(X)) ∪ µ̌L(X) is additive, we can apply the co-inductive invariant
principle (8) by considering its adjoint function, which is as follows:

post(µ̌L(X)) ∪ µ̌L(X) ⊆ Y ⇔ post(µ̌L(X)) ⊆ Y ∧ µ̌L(X) ⊆ Y ⇔
X ⊆ µ̂L(p̃re(Y)) ∧X ⊆ µ̂L(Y)⇔ X ⊆ µ̂L(p̃re(Y)) ∩ µ̂L(Y).

Thus, by Lemma 6.3 and (7), we obtain: lfp(λX.µ̌L(Σ0) ∪ µ̌L(post(X))) ⊆ P iff µ̌L(Σ0) ⊆
gfp(λX.µ̂L(p̃re(X)∩X∩P)) iff Σ0 ⊆ gfp(λX.µ̂L(p̃re(X)∩X∩P)), and, in turn, by the abstract
inductive invariant principle (Lemma 3.2 (a) for ucos) applied to µ̌L ◦ (λX.Σ0 ∪ post(X)) =
λX.µ̌L(Σ0) ∪ µ̌L(post(X)) we get:

∃φ ∈ L.Σ0 ⊆ φ ∧ post(φ) ⊆ φ ∧ φ ⊆ P ⇔ Σ0 ⊆ gfp(λX.µ̂L(p̃re(X) ∩X ∩ P)).

This leads us to use the algorithm introduced by Cousot [1, Algorithm 2] which synthesizes
an inductive invariant by applying Knaster-Tarski theorem to compute the iterates of the
greatest fixpoint of λX.µ̂L(p̃re(X) ∩X ∩ P) as long as the current iterate I1 contains Σ0:

Algorithm 1 Co-inductive backward synthesis of abstract inductive invariants.

I1 := Σ;
while Σ0 ⊆ I1 do // Loop invariant: I1 ∈ L

if (I1 = µ̂L(p̃re(I1) ∩ I1 ∩ P)) then return I1 is an inductive invariant in L;
I1 := I1 ∩ µ̂L(p̃re(I1) ∩ I1 ∩ P);

return no inductive invariant in L;

Since, p̃re is computable and, by Lemma 6.1 (b), 〈µ̂L,⊆〉 = 〈L,⊆〉 is a wqo, we immediately
obtain that Algorithm 1 is correct and terminating. Furthermore, if Algorithm 1 outputs an
inductive invariant I1 proving the property P then I1 is the greatest inductive invariant in L
proving P . It turns out that Algorithm 1 exactly coincides with the synthesis algorithm by
Padon et al. [28], which is replicated here as Algorithm 2.

I Theorem 6.4. Algorithm 1 = Algorithm 2.

This shows that Algorithm 2 in [28] for a disjunctive GC-based abstract domain A amounts
to a backward (i.e., propagating p̃re) static analysis using the best correct approximations
in A of the transfer functions, as long as the ordering of A guarantees its termination, e.g.,
because A is well-founded.

F. Ranzato 30:15

Algorithm 2 Inductive invariant algorithm by [28].

I2 := Σ;
while I2 is not an inductive invariant do // Loop invariant: I2 ∈ L

if Σ0 6⊆ I2 then return no inductive invariant in L;
choose s ∈ Σ as a counterexample to inductiveness of I2;
I2 := I2 ∩AvL(s);

return I2 is an inductive invariant in L;

6.2 Backward and Forward Algorithms
Algorithm 1 is backward because it applies p̃re, for termination it requires that the abstract
domain 〈µ̌L,⊆〉 is DCC and it turns out to be the dual of the forward algorithm AInv provided
by Corollary 3.5 for post and requiring that 〈µ̌L,⊆〉 is ACC. A different gfp-based forward
algorithm can be designed by observing (as in [6, Section 3]) that lfp(λX.Σ0 ∪ post(X)) ⊆ P
iff lfp(λX.¬P ∪ pre(X)) ⊆ ¬Σ0. Here, the dualization provided by the equivalence (7) yields:

lfp(λX.¬P ∪ µ̌L(pre(X))) ⊆ ¬Σ0 ⇔ ¬P ⊆ gfp(λX.µ̂L(p̃ost(X) ∩X ∩ ¬Σ0))

and induces the following co-inductive forward algorithm which relies on the state transformer
p̃ost and is terminating when 〈µ̌L,⊆〉 is assumed to be DCC:

Algorithm 3 Co-inductive forward synthesis of abstract inductive invariants.

I := Σ;
while ¬P ⊆ I do // Loop invariant: I ∈ L

if (I = µ̂L(p̃ost(I) ∩ I ∩ ¬Σ0)) then return I is an inductive invariant in L;
I := I ∩ µ̂L(p̃ost(I) ∩ I ∩ ¬Σ0);

return no inductive invariant in L;

Furthermore, by dualizing the technique described by Cousot and Cousot [6, Section 4.3]
for post and pre, one could also design a more efficient combined forward/backward synthesis
algorithm which simultaneously make backward, by p̃re, and forward, by p̃ost, steps.

7 Future Work

As hinted by Monniaux [24], results of undecidability to the question (3) for some abstract
domain A display a foundational trait since they “vindicate” (often years of intense) research
on precise and efficient algorithms for approximate static program analysis on A. To the
best of our knowledge, few undecidability results are available: an undecidability result by
Monniaux [24, Theorem 1] for convex polyhedra [7] and by Fijalkow et al. [12, Theorem 1]
for semilinear sets, i.e. finite unions of convex polyhedra. However, convex polyhedra and
semilinear sets cannot be defined by a Galois connection and therefore do not satisfy our
Assumption 3.1. As future work we plan to investigate whether the abstract inductive invariant
principle could be exploited to provide a reduction of the undecidability of the question (3)
for abstract domains which satisfy Assumption 3.1 and, in view of the characterization of
fixpoint completeness in Section 4.2, for transfer functions which are not fixpoint complete.

We also plan to study whether complete abstractions can play a role in the decidability
result by Hrushovski et al. [16] on the computation of the strongest polynomial invariant
of an affine program. This hard result relies on the Zariski closure, which is continuous
for affine functions and is pointwise complete for the transfer functions of affine programs.

CONCUR 2020

30:16 Decidability and Synthesis of Abstract Inductive Invariants

Thus, fixpoint completeness for affine programs holds, and one could investigate whether
the algorithm in [16] may be viewed as a least fixpoint computation of a best correct
approximation on the Zariski abstraction.

References
1 Patrick Cousot. Partial completeness of abstract fixpoint checking. In Proceedings of the

4th International Symposium on Abstraction, Reformulation, and Approximation (SARA’02),
volume 1864 of Lecture Notes in Computer Science, pages 1–25. Springer-Verlag, 2000. doi:
10.1007/3-540-44914-0_1.

2 Patrick Cousot. On fixpoint/iteration/variant induction principles for proving total correctness
of programs with denotational semantics. In Proc. 29th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2019), volume 12042 of LNCS, pages
3–18. Springer, 2019. doi:10.1007/978-3-030-45260-5_1.

3 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’77),
pages 238–252. ACM Press, 1977. doi:10.1145/512950.512973.

4 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’79), pages 269–282, New York, NY, USA, 1979. ACM. doi:10.1145/
567752.567778.

5 Patrick Cousot and Radhia Cousot. Induction principles for proving invariance properties
of programs. In D. Néel, editor, Tools & Notions for Program Construction: an Advanced
Course, pages 75–119. Cambridge University Press, Cambridge, UK, August 1982.

6 Patrick Cousot and Radhia Cousot. Refining model checking by abstract interpretation.
Automated Software Engineering, 6(1):69–95, 1999. doi:10.1023/A:1008649901864.

7 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL’78), pages 84–96. ACM, 1978. doi:10.1145/512760.512770.

8 Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Inductive invariant generation
via abductive inference. In Proceedings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages & Applications, (OOPSLA’13), pages
443–456. ACM, 2013. doi:10.1145/2509136.2509511.

9 Yotam M. Y. Feldman, Neil Immerman, Mooly Sagiv, and Sharon Shoham. Complexity
and information in invariant inference. Proc. ACM Program. Lang., 4(POPL), 2019. doi:
10.1145/3371073.

10 Yotam M. Y. Feldman, Oded Padon, Neil Immerman, Mooly Sagiv, and Sharon Shoham.
Bounded Quantifier Instantiation for Checking Inductive Invariants. Logical Methods in
Computer Science, Volume 15, Issue 3, 2019. doi:10.23638/LMCS-15(3:18)2019.

11 Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv. Inferring inductive
invariants from phase structures. In Proc. 31st International Conference on Computer Aided
Verification (CAV’19), volume 11562 of Lecture Notes in Computer Science, pages 405–425.
Springer, 2019. doi:10.1007/978-3-030-25543-5_23.

12 Nathanaël Fijalkow, Engel Lefaucheux, Pierre Ohlmann, Joël Ouaknine, Amaury Pouly,
and James Worrell. On the Monniaux problem in abstract interpretation. In Proc. 26th
International Static Analysis Symposium (SAS’19), volume 11822 of Lecture Notes in Computer
Science, pages 162–180. Springer, 2019. doi:10.1007/978-3-030-32304-2_9.

13 Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967.

14 Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Complete abstract interpreta-
tions made constructive. In Proceedings of the 23rd International Symposium on Mathematical
Foundations of Computer Science (MFCS’98), volume 1450 of Lecture Notes in Computer
Science, pages 366–377. Springer, 1998. doi:10.1007/BFb0055786.

https://doi.org/10.1007/3-540-44914-0_1
https://doi.org/10.1007/3-540-44914-0_1
https://doi.org/10.1007/978-3-030-45260-5_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1023/A:1008649901864
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/2509136.2509511
https://doi.org/10.1145/3371073
https://doi.org/10.1145/3371073
https://doi.org/10.23638/LMCS-15(3:18)2019
https://doi.org/10.1007/978-3-030-25543-5_23
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.1007/BFb0055786

F. Ranzato 30:17

15 Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. Making abstract interpreta-
tions complete. J. ACM, 47(2):361–416, 2000. doi:10.1145/333979.333989.

16 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants
for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, (LICS’18), pages 530–539. ACM, 2018. doi:10.1145/3209108.3209142.

17 Michael Karr. Affine relationships among variables of a program. Acta Inf., 6:133–151, 1976.
18 Zachary Kincaid, John Cyphert, Jason Breck, and Thomas Reps. Non-linear reasoning for

invariant synthesis. Proc. ACM Program. Lang., 2(POPL), 2018. doi:10.1145/3158142.
19 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Proc.

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR-16), Revised Selected Papers, volume 6355 of Lecture Notes in Computer Science, pages
348–370. Springer, 2010. doi:10.1007/978-3-642-17511-4_20.

20 Zohar Manna, Stephen Nes, and Jean Vuillemin. Inductive methods for proving properties of
programs. Commun. ACM, 16(8):491–502, 1973. doi:10.1145/355609.362336.

21 Antoine Miné. Tutorial on static inference of numeric invariants by abstract interpretation.
Foundations and Trends in Programming Languages, 4(3-4):120–372, 2017. doi:10.1561/
2500000034.

22 Antoine Miné, Jason Breck, and Thomas W. Reps. An algorithm inspired by constraint solvers
to infer inductive invariants in numeric programs. In Proc. 25th European Symposium on
Programming (ESOP’16), volume 9632 of Lecture Notes in Computer Science, pages 560–588.
Springer, 2016. doi:10.1007/978-3-662-49498-1_22.

23 David Monniaux. On the decidability of the existence of polyhedral invariants in transition
systems. arXiv CoRR, abs/1709.04382, 2017. arXiv:1709.04382.

24 David Monniaux. On the decidability of the existence of polyhedral invariants in transition
systems. Acta Inf., 56(4):385–389, 2019. doi:10.1007/s00236-018-0324-y.

25 Christian Müller, Helmut Seidl, and Eugen Zalinescu. Inductive invariants for noninterference
in multi-agent workflows. In Proc. 31st IEEE Computer Security Foundations Symposium
(CSF’18), pages 247–261. IEEE Computer Society, 2018. doi:10.1109/CSF.2018.00025.

26 Markus Müller-Olm and Helmut Seidl. A note on Karr’s algorithm. In Proceedings 31st
International Colloquium on Automata, Languages and Programming (ICALP’04), volume
3142 of Lecture Notes in Computer Science, pages 1016–1028. Springer, 2004. doi:10.1007/
978-3-540-27836-8_85.

27 Peter Naur. Proof of algorithms by general snapshots. BIT Numerical Mathematics, 6(4):310–
316, 1966. doi:10.1007/BF01966091.

28 Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Karbyshev, and Mooly Sagiv. De-
cidability of inferring inductive invariants. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’16), pages 217–231.
ACM, 2016. doi:10.1145/2837614.2837640.

29 David Park. Fixpoint induction and proofs of program properties. Machine Intelligence, 5,
1969.

30 David Park. On the semantics of fair parallelism. In Dines Bjøorner, editor, Abstract Software
Specifications, pages 504–526. Springer Berlin Heidelberg, 1980.

31 Sharon Shoham. Undecidability of inferring linear integer invariants. arXiv CoRR,
abs/1812.01069, 2018. arXiv:1812.01069.

32 A. Thakur, A. Lal, J. Lim, and T. Reps. PostHat and all that: Automating abstract
interpretation. Electronic Notes in Theoretical Computer Science, 311:15–32, 2015. Fourth
Workshop on Tools for Automatic Program Analysis (TAPAS 2013). doi:10.1016/j.entcs.
2015.02.003.

CONCUR 2020

https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3158142
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/355609.362336
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1007/978-3-662-49498-1_22
http://arxiv.org/abs/1709.04382
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1109/CSF.2018.00025
https://doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/978-3-540-27836-8_85
https://doi.org/10.1007/BF01966091
https://doi.org/10.1145/2837614.2837640
http://arxiv.org/abs/1812.01069
https://doi.org/10.1016/j.entcs.2015.02.003
https://doi.org/10.1016/j.entcs.2015.02.003

30:18 Decidability and Synthesis of Abstract Inductive Invariants

A Appendix

A.1 When Safety = Abstract Invariance?
Padon et al. [28, Section 9] in their investigation on the decidability of inferring inductive
invariants state that “Usually completeness for abstract interpretation means that the abstract
domain is precise enough to prove all interesting safety properties, e.g., [15]. In our terms,
this means that safe = inv, that is, that all safe programs have an inductive invariant
expressible in the abstract domain.” As a by-product of the results in Section 4.2, we are able
to give a formal justification and statement of this informal characterization of completeness.

Let F ⊆ C → C be a class of monotonic functions, S ⊆ C be some set of safety properties
and A ⊆ C be an abstract domain of program properties. Let us define:

safe[F ,S] , {〈f, s〉 ∈ F × S | lfp(f) ≤C s}
inv[F ,S,A] , {〈f, s〉 ∈ F × S | ∃a ∈ A. fa ≤C a ∧ a ≤C s}

so that in our model safe[F ,S] and inv[F ,S,A] play the role of, resp., “safe programs” and
“programs having an inductive invariant expressible in A”. As a consequence of Theorem 4.1,
we derive the following characterization.

I Corollary A.1. Assume that A satisfies Assumption 3.1 for some GI 〈C,α, γ,A〉.
(a) Assume that S ⊆ A. Then, safe[F ,S] = inv[F ,S,A] iff ∀f ∈ F .α(lfp(f)) = lfp(αfγ).
(b) safe[F ,S] = inv[F ,S,A] iff ∀f ∈ F . lfp(f) = γ(lfp(αfγ)).

Proof. Point (a) follows by Theorem 4.1 (a), since S ⊆ A is assumed to hold. Point (b)
follows by Theorem 4.1 (b). J

Corollary A.1 therefore provides a precise equivalence of the safe =? inv problem, as
stated by Padon et al. [28], with fixpoint completeness (strong fixpoint completeness, in case
(b)) in abstract interpretation.

A.2 Proofs
Proof of Lemma 3.2. Let us first recall that in a GI, for all a, a′ ∈ A, a ≤A a′ ⇔ γ(a) ≤C
γ(a′) holds.
(a) (⇐) We have that:

∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C c′ ⇔ [by GC]
∃a ∈ A. αfγ(a) ≤A a ∧ γ(a) ≤C c′ ⇒ [by Fx ≤ x⇒ lfp(F) ≤ x]
∃a ∈ A. lfp(αfγ) ≤A a ∧ γ(a) ≤C c′ ⇔ [by GI]

∃a ∈ A. γ(lfp(αfγ)) ≤C γ(a) ∧ γ(a) ≤C c′ ⇒ [by transitivity]
γ(lfp(αfγ)) ≤C c′

(⇒) Define a , lfp(αfγ) ∈ A. It turns out that αfγ(a) ≤A a so that, by GC, fγ(a) ≤C
γ(a), and, by hypothesis, γ(a) ≤C c′.

(b) It turns out that:

∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C γ(a′)⇔ [By Lemma 3.2 (a)]
γ(lfp(αfγ)) ≤C γ(a′)⇔ [by GI]

lfp(αfγ) ≤A a′ J

F. Ranzato 30:19

Proof of Corollary 3.4. By Lemma 3.2 (a), because λx ∈ A.α(c)∨Aαfγ(x) = λx ∈ A.α(c∨C
fγ(x)) is the best correct approximation of λx ∈ C.c ∨C f(x). J

Proof of Corollary 3.5. The hypotheses guarantee that the procedure AInv is a terminating
algorithm, in particular because the sequence of computed iterates i is an ascending chain
in A. If the algorithm AInv outputs i then i = lfp(λa.α(c) ∨A αfγ(a)) ≤A a′, so that
i = ∧{a ∈ A | α(c) ≤A i, αfγ(i) ≤A i, i ≤A a′}, that is, i is the least inductive invariant
in A for f and 〈c, γ(a′)〉. If the algorithm AInv outputs “no abstract inductive invariant
for f and 〈c, γ(a′)〉” then there exists j ∈ N such that (λa.α(c) ∨A αfγ(a))j(⊥A) 6≤A a′, so
that lfp(λa.α(c)∨A αfγ(a)) 6≤A a′, that is, there exists no inductive invariant in A for f and
〈c, γ(a′)〉. J

Proof of Theorem 4.1.
(a) (⇒): By Lemma 3.2 (a).

(⇐): Since lfp(f) ≤C lfp(f) holds, we have that ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C
lfp(f). Thus, by Lemma 3.2 (a), γ(lfp(αfγ)) ≤C lfp(f) follows. On the other hand,
lfp(f) ≤ γ(lfp(αfγ)) always holds because the pointwise correctness of αfγ implies
α(lfp(f)) ≤A lfp(αfγ), hence, by GC, lfp(f) ≤ γ(lfp(αfγ)) follows.

(b) (⇒): By Lemma 3.2 (b) because lfp(αfγ) ≤A a′ ⇔ α(lfp(f)) ≤ a′ ⇔ lfp(f) ≤C γ(a′).
(⇐): We consider a′ , α(lfp(f)), so that, lfp(f) ≤C γ(a′) holds and by the equivalence
of the hypothesis, ∃a ∈ A. fγ(a) ≤C γ(a) ∧ γ(a) ≤C γα(lfp(f)) holds. This implies, by
GI, that ∃a ∈ A. αfγ(a) ≤C a ∧ a ≤A α(lfp(f)). By the inductive invariant principle
(1), this implies that (actually, is equivalent to) lfp(αfγ) ≤ α(lfp(f)). Furthermore,
α(lfp(f)) ≤A lfp(αfγ) always holds, therefore proving that α(lfp(f)) = lfp(αfγ). J

Proof of Lemma 4.2. We have that:

∃a ∈ A.fγ(a) ≤C γ(a) ∧ γ(a) ≤C γα(lfp(f))⇔ [by GI]
∃a ∈ A.αfγ(a) ≤A a ∧ a ≤A α(lfp(f))⇔ [by (1) for αfγ]

lfp(αfγ) ≤A α(lfp(f))⇔ [as α(lfp(f)) ≤A lfp(αfγ)]
α(lfp(f)) = lfp(αfγ) J

Proof of Lemma 6.1.
(a) If s vL s′ and t ∈ µ̌L({s}) then t ∈ µ̌L({s′}) = ∩{φ ∈ L | s′ ∈ φ}: if φ ∈ L and s′ ∈ φ

then s ∈ φ, so that, since t ∈ µ̌L({s}), t ∈ φ. Conversely, if µ̌L({s}) ⊆ µ̌L({s′}), φ ∈ L
and s′ ∈ φ, then, since s ∈ µ̌L({s′}), s ∈ φ.

(b) By (a), we equivalently prove that 〈{µ̌L({s}) | s ∈ Σ},⊆〉 is a wqo iff 〈L,⊆〉 is a wqo.
(⇒): [28, Lemma 4.6] proves 〈L,⊆〉 is well-founded, we additionally show that it does not

contain infinite antichains. By contradiction, assume that {φi}i∈N is an infinite antichain
in 〈L,⊆〉. Thus, for all i 6= j, φi 6⊆ φj and φj 6⊆ φi, so that there exist si,j ∈ φi r φj and
sj,i ∈ φjrφi. From sj,i ∈ φj we obtain that µ̌L({sj,i}) ⊆ µ̌L(φj) = φj . From si,j 6∈ φj , we
obtain that si,j ∈ µ̌L({si,j}) 6⊆ φj,i. It turns out that µ̌L({si,j}) 6⊆ µ̌L({sj,i}), otherwise
from si,j ∈ µ̌L({si,j}) ⊆ µ̌L({sj,i}) ⊆ φj we would obtain the contradiction si,j ∈ φj .
Dually, µ̌L({sj,i}) 6⊆ µ̌L({si,j}) holds. Thus, for any i ∈ N, {µ̌L({si,j}) | j ∈ N, j 6= i} is
an infinite antichain in 〈{µ̌L({s}) | s ∈ Σ},⊆〉, which is a contradiction.

(⇐): 〈{µ̌L({s}) | s ∈ Σ},⊆〉 is trivially a wqo because {µ̌L({s}) | s ∈ Σ} ⊆ L and L is a
wqo.

(c) Assume that for all s ∈ Σ, AvL(s) ∈ L. Let us show that for all S ∈ ℘(Σ), ∩s∈S AvL(s) =
AvL(S).

CONCUR 2020

30:20 Decidability and Synthesis of Abstract Inductive Invariants

(⊇): Let t ∈ φ for some φ ∈ L such that φ ⊆ ¬S. Then, for all s ∈ S, φ ⊆ AvL(s), so that
t ∈ ∩s∈S AvL(s).

(⊆): Let t ∈ ∩s∈S AvL(s). For all s ∈ S, there exists φs ∈ L such that φs ⊆ ¬{s} and
t ∈ φs. Thus, ∩s∈Sφs ∈ L and t ∈ ∩s∈Sφs ⊆ ¬S, meaning that t ∈ AvL(S).
Thus, since L is assumed to be closed under arbitrary intersections we obtain that
AvL(S) = ∩s∈S AvL(s) ∈ L. Consider now Φ ⊆ L. Then, AvL(¬(∪Φ)) = ∪{φ ∈ L | φ ⊆
¬¬(∪Φ)} = ∪{φ ∈ L | φ ⊆ ∪Φ} = ∪Φ, so that ∪Φ ∈ L.
Conversely, if L is closed under arbitrary unions then AvL(s) = ∪{φ ∈ L | φ ⊆ ¬{s}} ∈ L.

(d) Since vL is a quasi-order relation, its down-closure δL is an upper closure on 〈℘(Σ),⊆〉.
By (a), δL(X) = {s ∈ Σ | ∃s′ ∈ X.s vL s′} = {s ∈ Σ | ∃s′ ∈ X.µ̌L({s}) ⊆ µ̌L({s′})} =
{s ∈ Σ | ∃s′ ∈ X.s ∈ µ̌L({s′})} = ∪s∈X µ̌L({s}). By (c), since L is closed under arbitrary
unions, the upper closure µ̌L is additive, so that ∪s∈X µ̌L({s}) = µ̌L(∪s∈X{s}) = µ̌L(X),
consequently δL(X) = µ̌L(X). In particular, δL(φ) = φ⇔ µ̌L(φ) = φ⇔ φ ∈ L.

(e) By Lemma 6.1 (d), lfp(λX. post(X) ∪ δL(X) ∪ Σ0) = lfp(λX. post(X) ∪ µ̌L(X) ∪ Σ0). It
turns out that

Σ0 ∪ post(X) ∪ δL(X) ⊆ X ⇔ [by Lemma 6.1 (d)]
Σ0 ∪ post(X) ∪ µ̌L(X) ⊆ X ⇔ [by set theory]

Σ0 ⊆ X ∧ post(X) ⊆ X ∧ µ̌L(X) ⊆ X ⇔ [as µ̌L is a uco]
Σ0 ⊆ X ∧ post(X) ⊆ X ∧ µ̌L(X) = X ⇔ [as µ̌L(X) = X]

Σ0 ⊆ X ∧ post(µ̌L(X)) ⊆ X ∧ µ̌L(X) = X ⇔ [by set theory]
Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X) ⊆ X

Thus, by Knaster-Tarski theorem, lfp(λX.Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X)) = lfp(λX.Σ0 ∪
post(X) ∪ δL(X)). We also have that:

Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X) ⊆ X ⇔ [by the equivalences above]
Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X) ⊆ X = µ̌L(X)⇔ [by set theory]

Σ0 ∪ post(µ̌L(X)) ⊆ X = µ̌L(X)⇔ [as µ̌L(X) = X]
Σ0 ∪ post(X) ⊆ X = µ̌L(X)⇔ [as µ̌L is a uco]

µ̌L(Σ0 ∪ post(X)) ⊆ X = µ̌L(X)⇔ [by set theory]
µ̌L(Σ0 ∪ post(X)) ⊆ X

Thus, by applying Knaster-Tarski theorem, lfp(µ̌L(Σ0 ∪ post(X))) ⊆
lfp(λX.Σ0∪post(µ̌L(X))∪µ̌L(X)) follows. Moreover, if F , lfp(µ̌L(Σ0∪post(X))), so that
F = µ̌L(F) = Σ0 ∪ post(F), then Σ0 ∪ post(µ̌L(F))∪ µ̌L(F) = Σ0 ∪ post(F)∪ µ̌L(F) = F ,
and this implies that lfp(λX.Σ0 ∪ post(µ̌L(X))∪ µ̌L(X)) ⊆ lfp(µ̌L(Σ0 ∪ post(X))). There-
fore, lfp(λX.Σ0 ∪ post(µ̌L(X)) ∪ µ̌L(X)) = lfp(µ̌L(Σ0 ∪ post(X))). J

Proof of Corollary 6.2. It turns out that

lfp(λX.µ̌L(Σ0 ∪ post(X))) ⊆ P ⇔ [by Lemma 3.2 (a) for ucos]
∃φ ∈ µ̌L(℘(Σ)).Σ0 ∪ post(φ) ⊆ φ ∧ φ ⊆ P ⇔ [as µ̌L(℘(Σ)) = L]
∃φ ∈ L.Σ0 ⊆ φ ∧ post(φ) ⊆ φ ∧ φ ⊆ P J

Proof of Lemma 6.3. The proof of Lemma 6.1 (e) shows that lfp(λX.Σ0 ∪ post(µ̌L(X)) ∪
µ̌L(X)) = lfp(µ̌L(Σ0 ∪ post(X))). Moreover, since µ̌L is additive and µ̌L(Σ0) = Σ0, we also
have that µ̌L(Σ0 ∪ post(X)) = µ̌L(Σ0) ∪ µ̌L(post(X)) = Σ0 ∪ µ̌L(post(X)), and this allows
us to conclude. J

F. Ranzato 30:21

I Lemma A.2. Let I ∈ L and Σ0 ⊆ I.
(a) there exists a counterexample to inductiveness of I iff I 6⊆ p̃re(I) ∩ P iff I 6= µ̂L(p̃re(I) ∩

I ∩ P).
(b) If s ∈ Σ is a counterexample to inductiveness of I then µ̂L(p̃re(I) ∩ I ∩ P) ⊆ AvL(s).

Proof.
(a) Under the assumption that Σ0 ⊆ I, s is a counterexample to inductiveness of I iff

(s ∈ I ∧ post(s) 6⊆ I) ∨ s ∈ I ∩ ¬P . Observe that post(s) 6⊆ I iff s 6∈ p̃re(I), so that
∃s ∈ Σ.s ∈ I∧post(s) 6⊆ I iff I 6⊆ p̃re(I). Hence, ∃s ∈ Σ.(s ∈ I∧post(s) 6⊆ I)∨s ∈ I∩¬P
iff I 6⊆ p̃re(I) ∩ P . Also:

I = µ̂L(p̃re(I) ∩ I ∩ P)⇔ [as I ∈ L]
I = µ̂L(I) = µ̂L(p̃re(I) ∩ I ∩ P)⇔ [as p̃re(I) ∩ I ∩ P ⊆ I]
I = µ̂L(I) ⊆ µ̂L(p̃re(I) ∩ I ∩ P)⇔ [as µ̂L is a lco]

I = µ̂L(I) ⊆ p̃re(I) ∩ I ∩ P ⇔
I ⊆ p̃re(I) ∩ P

(b) The proof of point (a) shows that if s ∈ Σ is a counterexample to inductiveness of I
then s ∈ I and s 6∈ p̃re(I)∩ P . Then, p̃re(I)∩ P ⊆ ¬{s}, so that, by monotonicity of µ̂L,
µ̂L(p̃re(I) ∩ P) ⊆ µ̂L(¬{s}) and, in turn, µ̂L(p̃re(I) ∩ I ∩ P) ⊆ µ̂L(¬{s}) = AvL(s). J

Proof of Theorem 6.4. Consider the following variation of Algorithm 1:

Algorithm 4 A modification of Algorithm 1.

I4 := Σ;
while Σ0 ⊆ I4 do // Invariant: I4 ∈ L

if (I4 r (p̃re(I4) ∩ P) = ∅) then return I4 is an inductive invariant in L;
choose s ∈ I4 r (p̃re(I4) ∩ P);
I4 := I4 ∩ µ̂L({s});

return no inductive invariant in L;

Algorithm 1 returns I1 ∈ L iff I1 = gfp(λX.µ̂L(p̃re(X) ∩ X ∩ P)). In this case, by
Lemma A.2 (a), since Σ0 ⊆ I1 holds, I1 is an (actually, the greatest) inductive invari-
ant in L. Otherwise, Algorithm 1 returns “no inductive invariant in L”. By Lemma A.2 (a),
Algorithm 4 returns I4 ∈ L iff I4 ⊆ p̃re(I4) ∩ P iff I4 = µ̂L(p̃re(I4) ∩ I4 ∩ P), otherwise it
returns “no inductive invariant in L”. Algorithm 2 returns I2 ∈ L iff I2 is an inductive
invariant, otherwise it returns “no inductive invariant in L”. Let Ink be the current candidate
invariant of Algorithm k ∈ {1, 2, 4} at its n-th iteration and Ik be the output invariant of
Algorithm k. By Lemma A.2 (b), In1 ⊆ In4 = In2 , so that I1 ⊆ I4 = I2. Since Ik are fixpoints
of λX.µ̂L(p̃re(X)∩X ∩P) and I1 is the greatest fixpoint, it turns out that I1 = I4 = I2. J

CONCUR 2020

	Introduction
	Background
	Order Theory
	Abstract Domains
	Transition Systems
	Inductive Invariant Principle

	Abstract Inductive Invariants
	Abstract Inductive Invariant Principle

	Fixpoint Completeness and Abstract Inductive Invariants
	Completeness in Abstract Interpretation
	Characterizing Fixpoint Completeness by Abstract Inductive Invariants

	Abstract Inductive Invariants of Nondeterministic Programs
	Karr's Affine Equalities Domain
	Relationship with Müller-Olm and Seidl [Müller-Olm and Seidl, 2004]

	Co-Inductive Synthesis of Abstract Inductive Invariants
	Co-Inductive Invariants
	Backward and Forward Algorithms

	Future Work
	Appendix
	When Safety = Abstract Invariance?
	Proofs

