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Abstract
Shortest-path games are two-player zero-sum games played on a graph equipped with integer weights.
One player, that we call Min, wants to reach a target set of states while minimising the total weight,
and the other one has an antagonistic objective. This combination of a qualitative reachability
objective and a quantitative total-payoff objective is one of the simplest settings where Min needs
memory (pseudo-polynomial in the weights) to play optimally. In this article, we aim at studying a
tradeoff allowing Min to play at random, but using no memory. We show that Min can achieve the
same optimal value in both cases. In particular, we compute a randomised memoryless ε-optimal
strategy when it exists, where probabilities are parametrised by ε. We also show that for some
games, no optimal randomised strategies exist. We then characterise, and decide in polynomial time,
the class of games admitting an optimal randomised memoryless strategy.
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1 Introduction

Game theory is now an established model in the computer-aided design of correct-by-
construction programs. Two players, the controller and an environment, are fighting one
against the other in a zero-sum game played on a graph of all possible configurations. A
winning strategy for the controller results in a correct program, while the environment is
a player modelling all uncontrollable events that the program must face. Many possible
objectives have been studied in such two-player zero-sum games played on graphs: reachability,
safety, repeated reachability, and even all possible ω-regular objectives [10].

Apart from such qualitative objectives, more quantitative ones are useful in order to
select a particular strategy among all the ones that are correct with respect to a qualitative
objective. Some metrics of interest, mostly studied in the quantitative game theory literature,
are mean-payoff, discounted-payoff, or total-payoff. All these objectives have in common that
both players have strategies using no memory or randomness to win or play optimally [9].

Combining quantitative and qualitative objectives, enabling to select a good strategy
among the valid ones for the selected metrics, often leads to the need of memory to play
optimally. One of the simplest combinations showing this consists in the shortest-path

© Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier;
licensed under Creative Commons License CC-BY

31st International Conference on Concurrency Theory (CONCUR 2020).
Editors: Igor Konnov and Laura Kovács; Article No. 26; pp. 26:1–26:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4717-9955
mailto:benjamin.monmege@univ-amu.fr
mailto:julie.parreaux@ens-rennes.fr
mailto:pierre-alain.reynier@univ-amu.fr
https://doi.org/10.4230/LIPIcs.CONCUR.2020.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Reaching Your Goal Optimally by Playing at Random with No Memory

vMax vMin

,

0

−1

−10 0

vMax vMin

,

−1

−10

p, 0

1−p, 0

vMax vMin

,

q,−1

1−q,−10

p, 0

1−p, 0

Figure 1 On the left, a shortest-path game, where Min requires memory to play optimally. In the
middle, the Markov Decision Process obtained when letting Min play at random, with a parametric
probability p ∈ (0, 1). On the right, the Markov Chain obtained when Max plays along a memoryless
randomised strategy, with a parametric probability q ∈ [0, 1].

games combining a reachability objective with a total-payoff quantitative objective (studied
in [11, 4] under the name of min-cost reachability games). Another case of interest is the
combination of a parity qualitative objective (modelling every possible ω-regular condition),
with a mean-payoff objective (aiming for a controller of good quality in the average long-run),
where controllers need memory, and even infinite memory, to play optimally [6].

It is often crucial to enable randomisation in the strategies. For instance, Nash equilibria
are only ensured to exist in matrix games (like rock-paper-scissors) when players can play
at random [13]. In the context of games on graphs, a player may choose, depending on the
current history, the probability distribution on the successors. In contrast, strategies that do
not use randomisation are called deterministic (we sometimes say pure).

In this article, we will focus on shortest-path games, as the one depicted on the left of
Figure 1. The objective of Min is to reach vertex ,, while minimising the total weight. Let us
consider the vertex vMin as initial. Player Min could reach directly ,, thus leading to a payoff
of 0. But he can also choose to go to vMax, in which case Max either jumps directly in ,
(leading to a beneficial payoff −10), or comes back to vMin, but having already capitalised
a total payoff −1. We can continue this way ad libitum until Min is satisfied (at least 10
times) and jumps to ,. This guarantees a value at most −10 for Min when starting in vMin.
Reciprocally, Max can guarantee a payoff at least −10 by directly jumping into , when she
must play for the first time. Thus, the optimal value is −10 when starting from vMin or vMax.
However, Min cannot achieve this optimal value by playing without memory (we sometimes
say positionally), since it either results in a total-payoff 0 (directly going to the target) or
Max has the opportunity to keep Min in the negative cycle for ever, thus never reaching the
target. Therefore, Min needs memory to play optimally. He can do so by playing a switching
strategy, turning in the negative cycle long enough so that no matter how he reaches the
target finally, the value he gets as a payoff is lower than the optimal value. This strategy
uses pseudo-polynomial memory with respect to the weights of the game graph.

In this example, such a switching strategy can be mimicked using randomisation only
(and no memory), Min deciding to go to vMax with high probability p < 1 and to go to the
target vertex with the remaining low probability 1− p > 0 (we enforce this probability to
be positive, in order to reach the target with probability 1, no matter how the opponent is
playing). The resulting Markov Decision Process (MDP) is depicted in the middle of Figure 1.
The shortest path problem in such MDPs has been thoroughly studied in [2], where it is
proved that Max does not require memory to play optimally. Denoting by q the probability
that Max jumps in vMin in its memoryless strategy, we obtain the Markov chain (MC) on the
right of Figure 1. We can compute (see Example 4) the expected value in this MC, as well
as the best strategy for both players: in the overall, the optimal value remains −10, even if
Min no longer has an optimal strategy. He rather has an ε-optimal strategy, consisting in
choosing p = 1− ε/10 that ensures a value at most −10 + ε.
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This article thus aims at studying the tradeoff between memory and randomisation in
strategies for shortest-path games. The study is only interesting in the presence of both
positive and negative weights, since both players have optimal memoryless deterministic
strategies when the graph contains only non-negative weights [11]. The tradeoff between
memory and randomisation has already been investigated in many classes of games where
memory is required to win or play optimally. This is for instance the case for qualitative
games like Street or Müller games thoroughly studied (with and without randomness in the
arena) in [5]. The study has been extended to timed games [7] where the goal is to use
as little information as possible about the precise values of real-time clocks. Memory or
randomness is also crucial in multi-dimensional objectives [8]: for instance, in mean-payoff
parity games, if there exists a deterministic finite-memory winning strategy, then there exists
a randomised memoryless almost-sure winning strategy.

In contrast to previous work, we show that deterministic memory and memoryless
randomisation provide the same power to Min. We leave the combination of memory and
randomisation for future work, as explained in the discussion. After a presentation of the
model of shortest-path games in Section 2, we show in Section 3 how the previous simulation
of memory with randomisation can be performed for all shortest-path games. The general
case is much more challenging, in particular in the presence of positive cycles in the graph,
that Min cannot avoid in general. Section 4 shows reciprocally how to mimic randomised
strategies with memory only. Section 5 studies the optimality of randomised strategies.
Indeed, all shortest-path games admit an optimal deterministic strategy for both players,
but Min may require memory to play optimally (even with randomisation allowed). We thus
characterises the shortest-path games in which Min admits an optimal memoryless strategy,
and decide this characterisation in polynomial time.

2 Shortest-path games: deterministic or memoryless strategies

In this section, we formally introduce the shortest-path games we consider throughout the
article, as already thoroughly studied in [4] under the name of min-cost reachability games.
We denote by Z the set of integers, and Z∞ = Z ∪ {−∞,+∞}. For a finite set V , we
denote by ∆(V ) the set of distributions over V , that are all mappings δ : V → [0, 1] such
that

∑
v∈V δ(v) = 1. The support of a distribution δ is the set {v ∈ V | δ(v) > 0}, denoted

by supp(δ). A Dirac distribution is a distribution with a singleton support: the Dirac
distribution of support {v} is denoted by Diracv.

We consider two-player turn-based games played on weighted graphs and denote the
players by Max and Min. Formally, a shortest-path game (SPG) is a tuple 〈VMax, VMin, E, ω, T 〉
where V := VMax ] VMin ] T is a finite set of vertices partitioned into the sets VMax and
VMin of Max and Min respectively, and a set T of target vertices, E ⊆ V \ T × V is a
set of directed edges, and ω : E → Z is the weight function, associating an integer weight
with each edge. In the drawings, Max vertices are depicted by circles; Min vertices by
rectangles. For every vertex v ∈ V , the set of successors of v with respect to E is denoted by
E(v) = {v′ ∈ V | (v, v′) ∈ E}. Without loss of generality, we assume that non-target vertices
are deadlock-free, i.e. for all vertices v ∈ V \ T , E(v) 6= ∅. Finally, throughout this article,
we let W = max(v,v′)∈E |ω(v, v′)| be the greatest edge weight (in absolute value) in the arena.
A finite play is a finite sequence of vertices π = v0v1 · · · vk ∈ V ∗ such that for all 0 6 i < k,
(vi, vi+1) ∈ E. Its total weight is the sum

∑k−1
i=0 ω(vi, vi+1) of its weights. A play is either a

finite play ending in a target vertex, or an infinite sequence of vertices π = v0v1 · · · avoiding
the target such that every finite prefix v0 · · · vk, denoted by π[k], is a finite play.

CONCUR 2020
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The total-payoff of a play π = v0v1 . . . is given by TP(π) = +∞ if the play is infinite
(and therefore avoids T ), or by the total weight TP(π) =

∑k−1
i=0 ω(vi, vi+1) if π = v0v1 · · · vk

is a finite play ending in a vertex vk ∈ T (for the first time).
A strategy for Min over an arena G = 〈VMax, VMin, E, ω, T 〉 is a mapping σ : V ∗VMin → ∆(V )

such that for all sequences π = v0 · · · vk with vk ∈ VMin, the support of the distribution σ(π)
is included in E(vk). A play or finite play π = v0v1 · · · conforms to the strategy σ if for
all k such that vk ∈ VMin, we have that σ(π[k])(vk+1) > 0. A similar definition allows one to
define strategies τ : V ∗VMax → ∆(V ) for Max, and plays conforming to them.

A strategy σ is deterministic (or pure) if for all finite plays π, σ(π) is a Dirac distribution:
in this case, we let σ(π) denote the unique vertex in the support of this Dirac distribution.
We let dΣMin and dΣMax be the deterministic strategies of players Min and Max, respectively.
A strategy σ is memoryless if for all finite plays π, π′, and all vertices v ∈ V , we have that
σ(πv) = σ(π′v) for all v ∈ V . We let mΣMin and mΣMax be the memoryless strategies of
players Min and Max, respectively. To distinguish them easily from deterministic strategies,
we will denote a memoryless strategy of Min using letter ρ (for random).

In this article, we focus on deterministic strategies on the one hand, and memoryless
strategies on the other hand. Even if the notion of values that we will now introduce could
be defined in a more general setting, we prefer to give two simpler definitions in the two
separate cases, for the sake of clarity.

2.1 Deterministic strategies
In case of deterministic strategies, for all vertices v, we let Play(v, σ, τ) be the unique play
conforming to strategies σ and τ of Min and Max, respectively, and starting in v. This unique
play has a payoff TP(Play(v, σ, τ)). Then, we define the value of strategies σ and τ by letting
for all v,

dValσ(v) = sup
τ ′∈dΣMax

TP(Play(v, τ ′, σ)) and dValτ (v) = inf
σ′∈dΣMin

TP(Play(v, τ, σ′))

Finally, the game itself has two possible values, an upper value describing the best Min can
hope for, and a lower value describing the best Max can hope for: for all vertices v,

dVal(v) = inf
σ∈dΣMin

dValσ(v) and dVal(v) = sup
τ∈dΣMax

dValτ (v)

We may easily show that dVal(v) 6 dVal(v) for all initial vertices v. In [3, Theorem 1], shortest-
path games are shown to be determined when both players use deterministic strategies,
i.e. dVal(v) = dVal(v). We thus denote dVal(v) this common value. We say that deterministic
strategies σ? of Min and τ? of Max are optimal (respectively, ε-optimal for a positive real
number ε) if, for all vertices v: dValσ

?

(v) = dVal(v) and dValτ
?

(v) = dVal(v) (respectively,
dValσ

?

(v) 6 dVal(v) + ε and dValτ
?

(v) > dVal(v)− ε).

I Example 1. The deterministic value of the game on the left of Figure 1 is described in the
introduction: dVal(vMin) = dVal(vMax) = −10. An optimal strategy for player Min consists in
going to vMax the first 10 times, and switching to the target vertex afterwards. An optimal
strategy for player Max consists in directly going towards the target vertex.
If we remove the edge from vMax to the target (of weight −10), we obtain another game in
which dVal(vMin) = dVal(vMax) = −∞ since Min can decide to turn as long as he wants in
the negative cycle, before switching to the target. There is no optimal strategy for Min but a
sequence of strategies guaranteeing a value as low as we want.
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Figure 2 On the left, a more complex example of shortest-path game. On the right, the MDP
associated with a randomised strategy of Min with a parametric probability p ∈ (0, 1).

2.2 Memoryless strategies
Definitions above can be adapted for memoryless (randomised) strategies. In order to
keep the explanations simple, we only define the upper value above, without relying on
hypothetical determinacy results in this context. Once we fix a memoryless (randomised)
strategy ρ ∈ mΣMin, we obtain a Markov decision process (MDP) where the other player
must still choose how to react. An MDP is a tuple 〈V,A, P 〉 where V is a set of vertices,
A is a set of actions, and P : V ×A→ ∆(V ) is a partial function mapping to some pair of
vertices and actions a distribution of probabilities over the successor vertices. In our context,
we let Gρ be the MDP with the same set V of vertices as G, actions A = V ∪ {⊥} being
either successor vertices of the game or an additional action ⊥ denoting the random choice
of ρ, and a probability distribution P defined by:

if v ∈ VMax, P (v, v′) is only defined if (v, v′) ∈ E in which case P (v, v′) = Diracv′ , and
P (v,⊥) is also undefined;
if v ∈ VMin, P (v,⊥) = ρ(v), and P (v, v′) is undefined for all v′ ∈ V .

In drawings of MDPs (and also of Markov chains, later), we show weights as trivially
transferred from the game graph.

I Example 2. In Figure 1, a shortest-path game is presented on the left, with the MDP
in the middle obtained by picking as a memoryless strategy for Min the one choosing to
go to vMax with probability p ∈ (0, 1) and to the target vertex with probability 1 − p.
Another more complex example is given in Figure 2 where the memoryless strategy for Min
consists, in vertex v1, to choose successor v0 with probability p ∈ (0, 1) and successor v2 with
probability 1− p, and in vertex v3, to choose successor v1 with the same probability p and
the target vertex with probability 1− p.

In such an MDP, when player Max has chosen her strategy, there will remain no “choices”
to make, and we will thus end up in a Markov chain. A Markov chain (MC ) is a tuple
M = 〈V, P 〉 where V is a set of vertices, and P : V → ∆(V ) associates to each vertex a
distribution of probabilities over the successor vertices. In our context, for all memoryless
strategies χ ∈ mΣMax, we let Gρ,χ the MC obtained from the MDP Gρ by following strategy
χ and action ⊥. Formally, it consists of the same set V of vertices as G, and mapping P
associating to a vertex v ∈ VMin, P (v) = ρ(v) and to a vertex v ∈ VMax, P (v) = χ(v).

I Example 3. On the right of Figure 1 is depicted the MC obtained when Max decides to
go to vMin with probability q ∈ [0, 1] and to the target vertex with probability 1− q.

When starting in a given initial vertex v, we let Pρ,χv denote the induced probability
measure over the sets of paths in the MC Gρ,χ (as before, G is made implicit in the notation).
A property is any measurable subset of finite or infinite paths in the MC with respect to the
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standard cylindrical sigma-algebra. For instance, we denote by Pρ,χv (�T ) the probability of
the set of plays that reach the target set T ⊆ V of vertices. Given a random variable X over
the infinite paths in the MC, we let Eρ,χv (X) be the expectation of X with respect to the
probability measure Pρ,χv . Therefore, Eρ,χv (TP) is the expected weight of a path in the MC,
weights being the ones taken from G.

The objective of Max is to maximise the payoff in the MDP Gρ. We therefore define the
value of strategy ρ of Min as the best case scenario for Max:

mValρ(v) = sup
χ∈mΣMax

Eρ,χv (TP)

By [1, Section 10.5.1], the value mValρ(v) is finite if and only if Pρ,χv (�T ) = 1 for all χ, i.e. if
strategy ρ ensures the reachability of a target vertex with probability 1, no matter how the
opponent plays. In this case, letting P be the probability mapping defining the MC Gρ,χ,
the vector (Eρ,χv (TP))v∈V is the only solution of the system of equations

Eρ,χv (TP) =
{

0 if v ∈ T∑
v′∈E(v) P (v, v′)× (ω(v, v′) + Eρ,χv′ (TP)) if v /∈ T

(1)

Since Min wants to minimise the shortest-path payoff, we finally define the memoryless
upper value as

mVal(v) = inf
ρ∈mΣMin

mValρ(v)

Once again, we say that a memoryless strategy ρ is optimal (respectively, ε-optimal for a
positive real number ε) if mValρ(v) = mVal(v) (respectively, mValρ(v) 6 mVal(v) + ε). With
respect to player Max, we only consider optimality and ε-optimality in the MDP Gρ.

I Example 4. For the game of Figure 1, we let σ and τ the memoryless strategies that
result in the MC on the right. Letting x = Eρ,χvMin

(TP) and y = Eρ,χvMax
(TP), the system (1)

rewrites as x = (1− p)× 0 + p× y and y = q × (−1 + x) + (1− q)× (−10). We thus have
x = p(9q − 10)/(1− pq). Two cases happen, depending on the value of p: if p < 9/10, then
Max maximises x by choosing q = 1, while she chooses q = 0 when p > 9/10. In all cases,
player Max will therefore play deterministically: if p < 9/10, the expected payoff from vMin
will then be mValρ(vMin) = −p/(1 − p); if p > 9/10, it will be mValρ(vMin) = −10p. This
value is always greater than the optimum −10 that Min were able to achieve with memory,
since we must keep 1 − p > 0 to ensure reaching the target with probability 1. We thus
obtain mVal(vMin) = mVal(vMax) = −10 as before. There are no optimal strategies for Min,
but an ε-optimal one consisting in choosing probability p > 1− ε/10.

The fact that Max can play optimally with a deterministic strategy in the MDP Gρ is
not specific to this example. Indeed, in an MDP Gρ such that Pρ,χv (�T ) = 1 for all χ, Max
cannot avoid reaching the target: she must then ensure the most expensive play possible.
Considering the MDP G̃ρ obtained by multiplying all the weights in the graph by −1, the
objective of Max becomes a shortest-path objective. We can then deduce from [2] that she
has an optimal deterministic memoryless strategy: the same applies in the original MDP Gρ.

I Proposition 5. In the MDP Gρ such that Pρ,χv (�T ) = 1 for all χ, Max has an optimal
deterministic memoryless strategy.



B. Monmege, J. Parreaux, and P.-A. Reynier 26:7

2.3 Contribution
Our contribution consists in showing that optimal values are the same when restricting both
players to memoryless or deterministic strategies:

I Theorem 6. For all games G with a shortest-path objective, for all vertices v, we have
dVal(v) = mVal(v).

We show this theorem in the two next sections by a simulation of deterministic strategies
with memoryless ones, and vice versa. We start here by ruling out the case of values +∞.
Indeed, dVal(v) = +∞ signifies that Min is not able to reach a target vertex from v with
deterministic strategies. This also implies that Min has no memoryless randomised strategies
to ensure reaching the target with probability 1, and thus mVal(v) = +∞. Reciprocally,
if mVal(v) = +∞, then Min has no memoryless strategies to reach the target with probability 1
(since this is the only reason for having a value +∞). Since reachability is a purely qualitative
objective, and the game graph does not contain probabilities, Min cannot use memory in
order to guarantee reaching the target: therefore, this also means that dVal(v) = +∞. In the
end, we have shown that dVal(v) = +∞ if and only if mVal(v) = +∞. We thus remove every
such vertex from now on, which does not change the values of other vertices in the game.

I Assumption. From now on, all games G with a shortest-path objective are such that dVal(v)
and mVal(v) are different from +∞, for all vertices v.

3 Simulating deterministic strategies with memoryless strategies

Towards proving Theorem 6, we show in this section that, for all shortest-path games
G = 〈V,E, ω,P〉 (where no values are +∞) and vertices v ∈ V , mVal(v) 6 dVal(v). This
is done by considering the switching strategies originated from [3], which are a particular
kind of deterministic strategies: they are optimal from vertices of finite value, and they
can get a value as low as wanted from vertices of value −∞. A switching strategy σ =
〈σ1, σ2, α〉 is described by two deterministic memoryless strategies σ1 and σ2, as well as
a switching parameter α. The strategy σ consists in playing along σ1, until eventually
switching to σ2 when the length of the current finite play is greater than α. Strategy σ2
is thus any attractor strategy ensuring that plays reach the target set of vertices: it can
be computed via a classical attractor computation. Strategy σ1 is chosen so that every
cyclic finite play v0v1 . . . vkv0 conforming to σ1 has a negative total weight: this is called
an NC-strategy (for negative-cycle-strategy) in [3]. The fake-value of σ1 from a vertex v0 is
defined by fakeσ1(v0) = sup{TP(v0v1 · · · vk) | vk ∈ T, v0v1 · · · vk conforming to σ1}, letting
sup ∅ = −∞: it consists of only considering plays conforming σ1 that reach the target.
Strategy σ1 is said to be fake-optimal if fakeσ1(v) 6 dVal(v) for all vertices v: in this case, if
a play from v conforms to σ1 (or σ before the switch happens) and reaches the target set of
vertices, it has a weight at most dVal(v).

I Proposition 7 ([3]). There exists a fake-optimal NC-strategy σ1. Moreover, for all such
fake-optimal NC-strategies σ1, for all attractor strategies σ2, and for all n ∈ N, the switching
parameter α = (2W (|V | − 1) + n)|V |+ 1 defines a switching strategy σ = 〈σ1, σ2, α〉 with a
value dValσ(v) 6 max(−n, dVal(v)), from all initial vertices v ∈ V .

In particular, if dVal(v) is finite, for n large enough, the switching strategy is optimal. If
dVal(v) = −∞ however, the sequence (σn)n∈N of strategies, each with a different parameter n,
has a value that tends to −∞.
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I Example 8. For all n ∈ N, let σ = (σ1, σ2, α) the switching strategy described above. In
Figure 1, we have σ1(vMin) = vMax, σ2(vMin) = , and α = 3(40 + n) + 1. In Figure 2, σ1
chooses v0 from v1 and v1 from v3, σ2 chooses v2 from v1 and, from v3 and α = 5(60+n)+1,
for all n ∈ N.

Definition of a memoryless (randomised) strategy. Let n ∈ N, we consider the switching
strategy σ = 〈σ1, σ2, α〉 described before, of value dValσ(v) 6 max(−n, dVal(v)), and simulate
it with a memoryless (randomised) strategy for Min, denoted ρp, with a parametrised
probability p ∈ (0, 1). This new strategy is a probabilistic superposition of the two memoryless
deterministic strategies σ1 and σ2.

Formally, we define ρp on each strongly connected components (SCC) of the graph
according to the presence of a negative cycle. In an SCC that does not contain negative
cycles, for each vertex v ∈ VMin of the SCC, we let ρp(v) = Diracσ1(v): player Min chooses to
play the first strategy σ1 of the switching strategy, thus looking for a negative cycle in the
next SCCs (in topological order) if any. In an SCC that contains a negative cycle, for each
vertex v ∈ VMin of the SCC, we let ρp(v) be the distribution of support {σ1(v), σ2(v)} that
chooses σ1(v) with probability p and σ2(v) with probability 1− p, except if σ1(v) = σ2(v) in
which case we choose it with probability 1. Note that MDPs in Figures 1 and 2 are obtained
by applying this strategy ρp.

We fix some vertex v0 ∈ V . In the rest of this section, we prove the following result:

I Proposition 9. For ε small enough and p close enough to 1, mValρp,τ (v0) 6 dValσ(v0) + ε.

This entails the expected result. Indeed, if dVal(v0) ∈ Z, we get (with n = |dVal(v0)|)
that mValρp(v0) 6 dVal(v0) + ε, and thus mVal(v0) 6 dVal(v0) since this holds for all ε > 0.
Otherwise, dVal(v0) = −∞, and letting n tend towards +∞, we also get mVal(v0) = −∞.

We first prove that ρp is one of the strategies of Min that guarantee to reach the target
with probability 1 in the MDP Gρp no matter how Max reacts.

I Proposition 10. For all strategies χ ∈ mΣMax, P
ρp,χ
v0 (� T ) = 1.

Proof. Recall that we designed our graph games so that target vertices are the only deadlocks.
Thus, by using the characterisation of [1, Lemma 10.111], minχ∈mΣMax P

ρp,χ
v0 (� T ) = 1 if and

only if for all χ ∈ mΣMax, all bottom SCCs of the MC Gρp,χ (the ones from which we cannot
exit) consist in a unique target vertex. Suppose in the contrary that Max has a memoryless
strategy χ such that the MC Gρp,χ contains a bottom SCC C with no target vertices.

If all vertices of C belong to Max, then they all have a successor in C and therefore there
also exists a deterministic memoryless strategy τ ′ for which all vertices v ∈ C are such that
dValτ

′
(v) = +∞, and thus dVal(v) = +∞: this contradicts our hypothesis that all vertices

have a deterministic value different from +∞.
Otherwise, for all vertices v ∈ VMin ∩C, since C is a bottom SCC of Gρp,χ, the distribution

ρp(v) has its support included in C. If C is included in a SCC of G with no negative cycles,
supp(ρp(v)) = {σ1(v)}: playing σ1(v) in C will end up in a cycle (since there are no deadlocks)
that must be negative, by the hypothesis on σ1, which is impossible. Thus, C must be included
in an SCC of G with a negative cycle. Then, supp(ρp(v)) = {σ1(v), σ2(v)} ⊆ C, and in
particular the attractor strategy is not able to reach a target vertex: playing the deterministic
switching strategy σ will result in not reaching a target vertex either, so that dVal(v) = +∞
for v ∈ VMin ∩ C, which also contradicts our hypothesis. J

We can therefore apply Proposition 5. This result is very helpful since it allows us to only
consider deterministic memoryless strategies τ to compute mValρp(v0) = supτ mValρp,τ (v0),
for all initial vertices v0. We thus consider such a strategy τ and we now show that



B. Monmege, J. Parreaux, and P.-A. Reynier 26:9

v0 v1 ,
−1

1

0

−1
v0 v1 ,p,−1

1− p, 1

1− p, 0

p,−1

Figure 3 On the left, a game graph with no negative cycles where ρp is optimal. The MC
obtained when playing a different randomised memoryless strategy.

mValρp,τ (v0) 6 dValσ(v) + ε whenever p < 1 is close enough to 1 (in function of ε > 0).
By gathering the finite number of lower bounds about p, for all deterministic memoryless
strategies of Max (there are a finite number of such), we obtain a lower bound for p such
that mValρp(v0) 6 dValσ(v0) + ε, as expected to prove Proposition 9.

The case where the whole game graph does not contain any negative cycles is easy. In
this case, ρp chooses the strategy σ1 with probability 1, by definition since no SCC contain
a negative cycle (this is the only reason why we defined ρp as it is, for such SCCs): a play
from initial vertex v0 conforming to ρp is thus conforming to σ1. Since the graph contains no
negative cycles and all cycles conforming to σ1 must be negative, all plays from v0 conforming
to σ1 reach the target set of vertices, with a total payoff at most dValσ(v0). This single
play has probability 1 in the MC Gρp,τ , thus Eρp,τv0 (TP) 6 dValσ(v0), which proves that
mValρp(v) 6 dValσ(v0) as expected.

I Example 11. If the definition of ρp would not distinguish the SCCs with no negative
cycles from the other SCCs, we would not have the optimality of ρp as shown before. Indeed,
consider the game graph on the left of Figure 3, which has no negative cycles. We have
dVal(v0) = −2 and dVal(v1) = −1. As a switching strategy, we can choose σ1(v0) = v1,
σ1(v1) = ,, σ2(v0) = , and σ2(v1) = v0. Then, ρp is equal to σ1 (and thus independent
of p), and mValρp(v0) = −2 and mValρp(v1) = −1. However, if we would have chosen to still
mix σ1 and σ2, we would obtain a strategy ρ′p, and the MC on the right of Figure 3. Then,
we get mValρ

′
p(v0) = −2p2/(1−p(1−p)) and mValρ

′
p(v1) = (p2−3p+ 1)/(1−p(1−p)) whose

limits are −2 and −1 respectively, when p tends to 1. This strategy ρ′p would then still be
ε-optimal for p close enough to 1.

Now, suppose that the graph game contains negative cycles. We let c > 0 be the maximal
size of an elementary cycle (that visits a vertex at most once) in G, w− > 0 be the opposite
of the maximal weight of an elementary negative cycle in G, and w+ > 0 be the maximal
weight of an elementary non-negative cycle in G (or 0 if such cycle does not exist).

I Example 12. In the graph of Figure 1, we have c = 2, w− = 1, and w+ = 0 (since there is
no non-negative cycles). In the game graph of Figure 2, we have c = 3, w− = 1, and w+ = 3.

The difficulty initiates from the possible presence of non-negative cycles too. Indeed,
when applying the switching strategy σ, all cycles conforming to σ1 have a negative weight.
This is no longer true with the probabilistic superposition ρp, as can be seen in the example
of Figure 2. Finding an adequate lower-bound for p requires to estimate Eρp,τv0 (TP), by
controlling the weight and probability of non-negative cycles, balancing them with the ones
of negative cycles. The crucial argument comes from the definition of the superposition ρp:

I Lemma 13. All cycles in Gρp,τ of non-negative total weight contain at least one edge of
probability 1− p.
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i
I

`

L

Π0,N

Π<I,>L Π>I,N

Π̃

Figure 4 Partition of plays Π.

Proof. Suppose on the contrary that all edges have probability p or 1, then the cycle is
conforming to strategy σ1, and has therefore a negative weight. J

Proof of Proposition 9. The proof that mValρp,τ (v0) 6 dValσ(v0)+ε is done by partitioning
the set Π of plays starting in v0, conforming to ρp and τ , and reaching the target set of
vertices, into subsets Πi,` according to the number i of edges of probability 1− p they go
through, and their length ` (we always have i 6 `). The partition is depicted in Figure 4:

Π0,N, depicted in yellow, contains all plays with no edges of probability 1− p;
Π>I,N, depicted in green, contains all plays having at least

I =
⌈

2w+

γW
+ 8(w+ + |V |W )

ε

⌉
edges1 of probability 1− p where γ = c

(
1 + w+

w−

)
> 1;

Π<I,>L, depicted in blue, contains all plays with at most I edges of probability 1 − p,
and of length at least L = Iγ + 2|dValσ(v0)|+|V |W

w− c+ |V |;
Π̃, depicted in red, is the rest of the plays.

We let γ0,N (respectively, γ<I,>L, γ>I,N, and γ̃) be the expectation Eρp,τv0 (TP) restricted
to plays in Π0,N (respectively, Π<I,>L, Π>I,N, Π̃). By linearity of expectation,

mValρp,τ (v0) = Eρp,τv0
(TP) = γ0,N + γ<I,>L + γ>I,N + γ̃ (2)

Partitioning the plays allows us to carefully control non-negative cycles: plays with a large
number of non-negative cycles contain a large number of edges of probability 1 − p, by
Lemma 13; thus if p is made close enough to 1, the probability of this set of plays will be
small enough. We thus control separately the four terms of (2) to obtain mValρp,τ (v0) 6
dValσ(v0) + ε.

Yellow and blue zones are such that γ0,N + γ<I,>L 6 dValσ(v0) + ε/2

All plays of Π0,N reach the target without edges of probability 1− p, i.e. by conforming to σ1.
By fake-optimality of σ1, their total payoff is upper-bounded by dValσ(v0). Notice that, in
case dVal(v0) = −∞, no plays conforming to σ1 starting in v0 reach the target, since Min has
the opportunity to stay as long as he wants in negative cycles: thus Π0,N = ∅ in this case,
and γ0,N = 0.

1 This intricate definition of I, as well as L in the next item, is justified by the computations that will
follow in the proof.
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All plays of Πi,`, with 1 6 i < I and ` > L, go through i edges of probability 1− p. By
Lemma 13, they contain at most i elementary cycles of non-negative total weight (each of
weight at most w+). The total length of these cycles is at most ic. Once we have removed
these cycles from the play, it remains a play of length at least `− ic. By a repeated pumping
argument, it still contains at least

⌊
`−ic−|V |

c

⌋
elementary cycles, that have all a negative

total weight (each has a weight at most −w−). The remaining part, once removed the last
negative cycles it contains, has length at most |V |, and thus a total payoff at most |V |W . In
summary, the total payoff of a play in Πi,` is at most

iw+ +
⌊
`− ic− |V |

c

⌋
(−w−) + |V |W 6 Iw+ + L− Ic− |V |

c
(−w−) + |V |W

= −2|dValσ(v0)| 6 0 (3)

Let us then consider three cases.
If dValσ(v0) > 0, we note that all plays in Π<I,>L have a non-positive total payoff,
therefore at most dValσ(v0). Thus,

γ0,N + γ<I,>L 6 dValσ(v0)P(Π0,N) + dValσ(v0)P(Π<I,>L)
= dValσ(v0)

(
P(Π0,N) + P(Π<I,>L)

)
6 dValσ(v0)

If dValσ(v0) < 0 and Π<I,>L 6= ∅, we have γ0,N 6 0 (whatever dVal(v0) = −∞ or not).
Moreover, a play in Πi,` goes through i edges of probability 1− p and at most ` edges of
probability p, other edges having probability 1. So, it has probability at least (1− p)ip`.
We can deduce that

γ<I,>L 6
I−1∑
i=1

∞∑
`=L

(1− p)ip`
(
iw+ +

⌊
`− ic− |V |

c

⌋
(−w−) + |V |W

)
︸ ︷︷ ︸

60 by (3)

6 dValσ(v0)

the last inequality being true when p is close enough to 1, as shown in Appendix A.
If dValσ(v0) < 0 and Π<I,>L = ∅, then dVal(v0) 6= −∞, since otherwise a play conforming
to strategy σ1 for L rounds, and then switching to σ2 for at most |V | 6 I rounds,
would be in Π<I,>L. Thus, γ0,N + γ<I,>L = γ0,N 6 dValσ(v0)P(Π0,N). Moreover, by
the same argument, all plays in Π0,N are acyclic and their length is at most |V |: they
go through no edges of probability 1 − p, and thus at most |V | edges of probability
p. Therefore, P(Π0,N) > p|V |, and thus, once again because dValσ(v0) < 0, when
p > (1− ε/2|dValσ(v0)|)1/|V | which is less than 1 for ε small enough,

γ0,N + γ<I,>L 6 dValσ(v0)p|V | 6 dValσ(v0) + ε/2

In all cases, we have γ0,N + γ<I,>L 6 dValσ(v0) + ε/2.

Red and green zones are such that γ>I,N + γ̃ 6 ε/2

First, a play of Π>I,N has a large total payoff, but a low probability to happen, which enables
us to control its expected payoff. Indeed, consider a play of Πi,N, with i > I. By Lemma 13,
it contains at most i elementary cycles of non-negative total weight. The remaining of
the play may contain negative cycles, as well as an acyclic part reaching the target in at
most |V | steps. The total payoff of the whole play is thus at most iw+ + |V |W . Moreover,
P(Πi,N) 6 (1− p)i since all the plays contain i edges of probability 1− p. Overall,

γ>I,N 6
∞∑
i=I

(iw+ + |V |W )(1− p)i = (1− p)I
(
w+

p
I + w+(1− p)

p2 + |V |W
p

)
6
ε

4

where the last inequality holds for p close enough to 1, as shown in Appendix A.
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Finally, all plays of Π̃ have a length less than L (and thus a total payoff at most LW )
and a number i of edges of probability 1− p such that 0 < i < I. By a similar argument as
before, if p > LW/(LW + ε/4), we have

γ̃ 6
I∑
i=1

LW (1− p)i = LW
(1− p)(1− (1− p)I)

p
6 LW

1− p
p

6
ε

4

since p 7→ (1− p)/p is decreasing on (0, 1). J

This ends the proof that for all vertices v, mVal(v) 6 dVal(v). Let us illustrate the
computation of the lower-bound on probability p of the memoryless strategy ρp in the
previously studied examples.

I Example 14. For the game in Figure 1, with initial vertex vMin, we have γ = 2. For ε = 0.1,
we then have I = 2400, and L = 4903. The lower-bound on p is then q = 0.9999995, which
gives a value mValρp(vMin) = −10p = −9.999995. For the game in Figure 2, with initial
vertex v2, we have γ = 12. For ε = 0.1, we then have I = 3121, and L = 37730. The
lower-bound on p is then q = 0.99999998, which gives a value mValρp(v2) ≈ −7.9999996. We
see that the lower-bound are correct, even if they could certainly be made coarser.

4 Simulating memoryless strategies with deterministic strategies

To finish the proof of Theorem 6, we will show that dVal(v) 6 mVal(v), for all vertices v. For
a given memoryless strategy ρ ensuring that Min reaches the target set T with probability 1,
we build a deterministic strategy σ which guarantees a value dValσ(v) 6 mValρ(v) from
vertex v. Then, as in the previous section, if mVal(v) is finite, for an ε-optimal memoryless
strategy ρ, we get a deterministic strategy such that dValσ(v) 6 mVal(v) + ε, and thus
dVal(v) 6 mVal(v)+ε. We can conclude since this holds for all ε > 0. In case mVal(v) = −∞,
if ρ guarantees a value at most −n with n ∈ N, then so does the deterministic strategy σ,
which also ensures that dVal(v) = −∞.

We fix a memoryless strategy ρ, and an initial vertex v0. The first attempt to build a
deterministic strategy σ such that dValσ(v) 6 mVal(v)+ε would be to use classical techniques
of finite-memory strategies, for instance in Street or Müller games: for instance, to ensure
the visit of two vertices v1 and v2 infinitely often during an infinite play (to win a Müller
game with winning objective {v1, v2}), we would try to reach v1 with a first memoryless
strategy, and then reach v2 with another memoryless strategy, before switching again to
reach v1 again, etc.

I Example 15. Let us try this technique on the shortest-path game of Figure 1. We consider
as a starting point the memoryless strategy ρ such that ρ(vMin) = δ with δ(,) = 2/3 and
δ(vMax) = 1/3 (this is the case p = 1/3 in the MDP on the middle of Figure 1). As seen in
Example 4, this strategy has value mValρ(vMin) = −1/2 et mValρ(vMax) = −3/2. Naively, we
could try to mimic the distribution δ by using memory as follows: when in vMin, go to , two
thirds of the time and to vMin one third of the time. Moreover, we would naively try to follow
first the choice with greatest probability. In this case, the strategy σ would first choose to go
to ,, thus stopping immediately the play. We thus get dValσ(vMin) = 0 > −1/2 + ε as soon
as ε < 1/2.

The main reason why this naive approach fails is that the plays are essentially finite in
shortest-path games. We thus cannot delay the choices and must carefully play as soon as
the play starts. Instead, our solution is to define a switching strategy σ = 〈σ1, σ2, α〉, with σ2
any attractor strategy, and α = max(0, |V |W −mValρ(v0))× |V |+ 1.
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I Example 16 (Example 15 continued). In the game of Figure 1, the attractor strategy is
σ2(vMin) = ,. We then choose σ1(vMin) so as to minimise the immediate reward obtained by
playing one turn and then getting the value ensured by ρ:

σ1(vMin) = argmin
v′∈{vMax,,} [w(v, v′) + mValρ(v′)] = vMax

For an appropriate choice of α, we thus recover the optimal switching strategy for this game.

In the rest of this section, we will detail how to define strategy σ1 in general so as to
obtain the following property:

I Proposition 17. The switching strategy σ = 〈σ1, σ2, α〉 built from the memoryless (ran-
domised) strategy ρ satisfies dValσ(v0) 6 mValρ(v0).

The construction of σ1 is split in two parts. First, we restrict the possibilities for σ1(v)
to a subset Ẽ(v) of supp(ρ(v)) in (4): with respect to Example 15, this will forbid the use of
edge (vMin,,) in particular. The definition of σ1(v) is then given later in (7).

We restrict our attention to edges present in the MDP Gρ, and for each vertex v ∈ VMin,
we let

Ẽ(v) = argmin
v′∈supp(ρ(v))

[w(v, v′) + mValρ(v′)] (4)

be the successors of v that minimise the expected value at horizon 1. We let G̃ be the game
obtained from G by removing all edges (v, v′) from a vertex v ∈ VMin such that v′ /∈ Ẽ(v).

I Lemma 18. (i) Each finite play of G̃ from a vertex v has a total payoff at most mValρ(v).
(ii) Each cycle in the game G̃ has a non-positive total weight.

Proof. We prove the property (i) on finite plays π of G̃ by induction on the length of π,
for all initial vertices v. If π has length 0, this means that v ∈ T , in which case TP(π) =
0 = mValρ(v). Consider then a play π = vπ′ of length at least 1, with π′ starting from v′,
so that TP(π) = ω(v, v′) + TP(π′). By induction hypothesis, TP(π′) 6 mValρ(v′), so that
TP(π) 6 ω(v, v′) + mValρ(v′).

Suppose first that v ∈ VMax. By Proposition 5, we know that Max can play optimally in
the MDP Gρ with a deterministic and memoryless strategy. For each possible deterministic
and memoryless strategy τ of Max, we have mValρ(u) > Eρ,τu (TP) for all u ∈ VMax, and by
the system (1) of equations, letting u′ = τ(u), Eρ,τu (TP) = ω(u, u′) + Eρ,τu′ (TP). We thus
know that mValρ(u) > ω(u, u′) + Eρ,τu′ (TP). By taking a maximum over all deterministic
and memoryless strategies τ of Max, Proposition 5 ensures that

∀u ∈ VMax ∀u′ ∈ E(u) mValρ(u) > ω(u, u′) + mValρ(u′) (5)

In particular, mValρ(v) > ω(v, v′) + mValρ(v′) > TP(π).
If v ∈ VMin, then v′ ∈ Ẽ(v) so that ω(v, v′) + mValρ(v′) is minimum over all possible

successors v′ ∈ supp(ρ(v)). The system (1) of equations implies that, for an optimal strategy χ
of Max,

mValρ(v) = Eρ,χv (TP) =
∑

v′′∈E(v)

P (v, v′′)× (ω(v, v′′) + Eρ,χv′′ (TP))

=
∑

v′′∈supp(ρ(v))

P (v, v′′)× (ω(v, v′′) + mValρ(v′′)) > ω(v, v′) + mValρ(v′) (6)

so that we also get mValρ(v) > TP(π).
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We then prove the property (ii) on cycles. Consider thus a cycle v1v2 · · · vkv1 of G̃, and
let ω1 = ω(v1, v2), ω2 = ω(v2, v3), . . . , ωk = ω(vk, v1) be the sequence of weights of edges. We
also let vk+1 = v1. We show that ω1 + ω2 + · · ·+ ωk 6 0. Let i ∈ {1, 2, . . . , k}. If vi ∈ VMax,
by (5), mValρ(vi) > ωi + mValρ(vi+1). If vi ∈ VMin, by the reasoning applied above in (6), we
also know that mValρ(vi) > ωi + mValρ(vi+1). By summing all the inequalities above, we get

k∑
i=1

mValρ(vi) >
k∑
i=1

ωi +
k∑
i=1

mValρ(vi) i.e. ω1 + ω2 + · · ·+ ωk 6 0 J

I Example 19. Consider again the game graph on the left of Figure 3, and the memoryless
strategy ρ′p giving rise to the MDP/MC on the right of Figure 3. Recall that mValρ

′
p(v0) =

−2p2/(1− p(1− p)) and mValρ
′
p(v1) = (p2 − 3p+ 1)/(1− p(1− p)). Consider p close enough

to 1 so that mValρ
′
p(v0) 6 −3/2 and mValρ

′
p(v1) 6 −1/2. Then, we have Ẽ(v0) = {v1} and

Ẽ(v1) = {,}. The corresponding game graph G̃ contains only edges (v0, v1) and (v1,,),
and thus no cycles. The unique finite play from vertex v0 has total-payoff −2 6 mValρ

′
p(v0).

In particular, the only possible memoryless deterministic strategy σ1 in G̃ is optimal in G.

For each vertex v in the game, we let d(v) be the distance (number of steps) of v to
the target given by an attractor computation to the target in Gρ (notice that this may be
different from the distance given in the whole game graph, since some edges are taken with
probability 0 in ρ, but still d(v) < +∞ since ρ ensures to reach T with probability 1). We
then let, for all vertices v ∈ VMin,

σ1(v) = argmin
v′∈Ẽ(v)

d(v′) (7)

I Example 20. Consider once again the game graph of Figure 3, but with a new memoryless
strategy ρ′′p defined by ρ′′p(v0) = Diracv1 and ρ′′p(v1) = δ such that δ(v0) = 1−p and δ(,) = p,
where p ∈ (0, 1). Then, we can check that mValρ

′′
p (v0) = −2 and mValρ

′′
p (v1) = −1. Thus,

Ẽ(v0) = {v1} and Ẽ(v1) = {v0,,}. Not all memoryless deterministic strategies taken in G̃
are NC-strategies, since it contains the cycle v0v1v0 of total weight 0. We thus apply the
construction before, using the fact that d(,) = 0, d(v1) = 1 and d(v0) = 2 (since the edge
(v0,,) is not present in G̃). Thus, σ1 is defined by σ1(v0) = v1 and σ1(v1) = ,, and is
indeed an NC-strategy.

I Lemma 21. Strategy σ1 is an NC-strategy, i.e. all cycles of G̃ conforming with σ1 have a
negative total weight.

Proof. Let v1v2 · · · vkv1 be a cycle of G̃ that conforms to σ1, with v1 a vertex of minimal
distance d(v1) among the ones of the cycle. We can choose v1 such that it belongs to Min:
otherwise, this would contradict the attractor computation in G̃. By Lemma 18(ii), its total
weight is non-positive. Suppose that it is 0. Then, in the proof of Lemma 18(ii), all inequalities
mValρ(vi) > ωi+mValρ(vi+1) are indeed equalities. In particular, mValρ(v1) = ω1+mValρ(v2).
Since v2 ∈ Ẽ(v1), (6) ensures that all successors v′ ∈ supp(ρ(v1)), mValρ(v1) = ω(v1, v

′) +
mValρ(v′). Since v1 has minimal distance among all vertices of the cycle, it exists v′ ∈ Ẽ(v1)
such that d(v′) = d(v1)− 1. But d(v2) > d(v1) > d(v′), which contradicts the choice of v2
for σ1(v1) in (7). J

Proof of Proposition 17. Let π be a play conforming to σ, from vertex v0. Since σ is a
switching strategy, it necessarily reaches T . If σ conforms with σ1, by Lemma 18(i), it has a
total-payoff TP(π) 6 mValρ(v0). Otherwise, it is obtained by a switch, and is thus longer than



B. Monmege, J. Parreaux, and P.-A. Reynier 26:15

α = max(0, |V |W −mValρ(v0))×|V |+1. Then, it contains at least max(0, |V |W −mValρ(v0))
elementary cycles, before it switches to the attractor strategy σ2. Once we remove the cycles,
it remains a play of length at most |V |, and thus of total payoff at most |V |W . Since all
cycles conforming to σ1 have a total weight at most −1, by Lemma 21, TP(π) is at most
(−1)×max(0, |V |W −mValρ(v0)) + |V |W 6 mValρ(v0). J

This concludes the proof of Theorem 6.

5 Characterisation of optimality

All shortest-path games admit an optimal deterministic strategy for both players: however,
as we have seen in Example 1, Min may require memory to play optimally. In this case, we
also have seen in Example 4 that Min does not have an optimal memoryless (randomised)
strategy: he only has ε-optimal ones, for all ε > 0. But some shortest-path games indeed
admit optimal memoryless strategies for Min: the strategy ρp described in Section 3 is
indeed optimal in graph games not containing negative cycles, for instance. In this final
section, we characterise the shortest-path games in which Min admits an optimal memoryless
strategy. For sure, Min does not have an optimal strategy if there is some vertex v of value
dVal(v) = −∞.

I Assumption. In this last section, we therefore suppose that all shortest-path games are
such that dVal(v) 6= −∞ for all vertices v.

We first recall the computations performed in [3] to compute values dVal(v). It consists
of an iterated computation, called value iteration based on the operator F : (Z∪ {+∞})V →
(Z ∪ {+∞})V defined for all x = (xv)v∈V ∈ (Z ∪ {+∞})V and all vertices v ∈ V by

F(x)v =


0 if v ∈ T
minv′∈E(v)(ω(v, v′) + xv′) if v ∈ VMin

maxv′∈E(v)(ω(v, v′) + xv′) if v ∈ VMax

We let f (0)
v = 0 if v ∈ T and +∞ otherwise. By monotony of F , the sequence (f (i) =

F i(f (0)))i∈N is non-increasing. It is proved to be stationary, and convergent towards
(dVal(v))v∈V , the smallest fixed-point of F . The pseudo-polynomial complexity of solv-
ing shortest-path games comes from the fact that this sequence may becomes stationary after
a pseudo-polynomial (and not polynomial) number of steps: the game of Figure 1 is one of
the typical examples.

We introduce a new notion, being the most permissive strategy of Min at each step i > 0
of the computation. It maps each vertex v ∈ VMin to the set

Ẽ(i)(v) = {v′ ∈ E(v) | ω(v, v′) + f
(i−1)
v′ = f (i)

v }

of vertices that Min can choose. For each such most permissive strategy Ẽ(i), we let G̃(i)

be the game graph where we remove all edges (v, v′) with v ∈ VMin and v′ /∈ Ẽ(i)(v). This
allows us to state the following result, whose proof is in Appendix B.

I Proposition 22. The following assertions are equivalent:
1. Min has an optimal memoryless deterministic strategy in G (for dVal);
2. Min has an optimal memoryless (randomised) strategy in G (for mVal);
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3. f (|V |−1)
v = f

(|V |)
v = dVal(v) for all vertices v (this means that the sequence (f (i)) is

stationary as soon as step |V | − 1), and Min can guarantee to reach T from all vertices in
the game graph G̃(|V |−1).

This characterisation of the existence of optimal memoryless strategy is testable in
polynomial time since it is enough to compute vectors f (|V |−1) and f (|V |), check their
equality, compute the sets Ẽ(|V |−1)(v) (this can be done while computing f (|V |)) and check
whether Min can guarantee reaching the target in G̃(|V |−1) by an attractor computation.
The proof of implication 3⇒ 1 is constructive and actually allows one to build an optimal
memoryless deterministic strategy when it exists.

6 Discussion

This article studies the tradeoff between memoryless and deterministic strategies, showing
that Min guarantees the same value when restricted to these two kinds of strategies. We
also studied the existence of optimal memoryless strategies, which turns out to be equivalent
to the existence of optimal memoryless deterministic strategies, and testable in polynomial
time.

We could also define a more general lower and upper values Val(v)/Val(v) when we let
Min and Max play unrestricted strategies (randomised and with memory). The Blackwell
determinacy results [12] implies that, for such unrestricted strategies, shortest-path games
are still determined so that Val(v) = Val(v) = Val(v). The reasoning of Section 4 only
used the vector of values (mValρ(v))v∈V to define the deterministic switching strategy σ,
without using anywhere that ρ is memoryless. We thus indeed showed that dVal(v) 6 Val(v).
However, the proof of Section 3 is not directly translatable if we allow Min to use memory
and randomisation. In particular, we know nothing anymore about how Max can react, which
may break the result of Proposition 10. We leave this further study for future work.
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A Computations for proof of Proposition 9

A.1 Computations for γ0,N + γ<I,>L 6 dValσ(v0)

When dValσ(v0) < 0 and Π<I,>L 6= ∅, it remains to show under which conditions over p,

S =
I−1∑
i=1

∞∑
`=L

(1− p)ip`
(
iw+ +

⌊
`− ic− |V |

c

⌋
(−w−) + |V |W

)
6 dValσ(v0)

Upper-bounding
⌊
`−ic−|V |

c

⌋
(−w−) by

(
`−ic−|V |

c − 1
)

(−w−) = `−ic−|V |−c
c (−w−), we can

split the double sum S in three parts:

S = (w+ + w−)
I−1∑
i=1

∞∑
`=L

(1− p)ip`i︸ ︷︷ ︸
S1

− w−

c

I−1∑
i=1

∞∑
`=L

(1− p)ip``︸ ︷︷ ︸
S2

+
(
−|V | − c

c
(−w−) + |V |W

) I−1∑
i=1

∞∑
`=L

(1− p)ip`︸ ︷︷ ︸
S3

Using the fact that L > 2 (L = Iγ + 2|dValσ(v0)|+|V |W
w− c + |V | > |V | > 1 otherwise, for the

unique v ∈ V , dVal(v) = 0 or +∞ regarding v ∈ T or not), we have

S1 6
∞∑
i=1

i(1− p)i
∞∑
`=2

p` = 1− p
p2 × p2

1− p = 1

S3 6
∞∑
i=1

(1− p)i
∞∑
`=1

p` = 1− p
p
× p

1− p = 1
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and

S2 =
I−1∑
i=1

(1− p)i
∞∑
`=L

p``

= (1− p)1− (1− p)I−1

p
× pL(−Lp+ L+ p)

(1− p)2

= (1− (1− p)I−1)pL−1(−Lp+ L+ p)
1− p

>
(1− (1− p)I−1)pL

1− p (since −Lp+ L > 0)

>
1

4(1− p) (since p > 1
21/L > 1

2 and 1− (1− p)I−1 > 1
2 by 0 6 I)

Therefore, we obtain

S 6 (w+ + w−)− w−

c

1
4(1− p) +

(
−|V | − c

c
(−w−) + |V |W

)
The right term goes towards −∞ when p→ 1. In particular, when

p > 1− w−

4(cw+ + 2cw− + |V |w− + c|V |W − dValσ(v0)c)

we obtain

S 6 dValσ(v0)

A.2 Computations for γ>I,N 6 ε/4
It remains to show that

(1− p)I
(
w+

p
I + w+(1− p)

p2 + |V |W
p

)
6
ε

4

We let here δ = 2|dValσ(v0)|+|V |W
w− c+ |V | so that L = Iγ + δ. Since, p > LW/(LW + ε/4) =

(IγW + δW )/(IγW + δW + ε/4),

1− p 6 ε/4
IγW + δW + ε/4 = 1

4IγW/ε+ 4δW/ε+ 1

By also using that p > 1/2 > 1/4, thus 1/p 6 4 and 1/p2 6 4, we obtain

γ>I,N 6

(
1

4IγW/ε+ 4δW/ε+ 1

)I (
4w+I + 4(w+ + |V |W )

)
The value 4IγW/ε+ 4δW/ε+ 1 being greater than 1, we can write

γ>I,N 6

(
1

4IγW/ε+ 4δW/ε+ 1

)I−1(
4w+ I

4IγW/ε+ 4δW/ε+ 1 + 4(w+ + |V |W )
)

Since x/(ax + b) 6 1/a whenever a, x, b > 0, we have I
4IγW/ε+4δW/ε+1 6 ε

4γW . Moreover,
4IγW
ε + 4δW

ε + 1 > IγW
2ε and thus

γ>I,N 6

(
2ε
IγW

)I−1(
εw+

γW
+ 4(w+ + |V |W )

)



B. Monmege, J. Parreaux, and P.-A. Reynier 26:19

But(
2ε
IγW

)I−1(
εw+

γW
+ 4(w+ + |V |W )

)
6
ε

4

if and only if(
IγW

2ε

)I−1
>

4w+

γW
+ 16(w+ + |V |W )

ε
>

2w+

γW
+ 8(w+ + |V |W )

ε

if and only if

(I − 1) ln
(
IγW

2ε

)
> ln

(
2w+

γW
+ 8(w+ + |V |W )

ε

)
= ln

(
ξγW

2ε

)
where ξ = 4εw+

γ2W 2 + 16(w++|V |W )
γW . Consider ε small enough so that γW/2ε > 1 and ξγW/2ε > 2

(the two terms tend to +∞ when ε tends to 0). Then, (I − 1) ln
(
IγW

2ε

)
> (I − 1) ln(I), and

it is sufficient to prove that

(I − 1) ln(I) > ln
(
ξγW

2ε

)
Since the mapping I 7→ (I − 1) ln(I) is increasing, and I > ξγW

2ε (by definition),

(I − 1) ln(I) >
(
ξγW

2ε − 1
)

ln
(
ξγW

2ε

)
> ln

(
ξγW

2ε

)
A.3 Lower bound over p
If we gather all the lower bounds over p that we need in the proof, we get that:

if dValσ(v0) > 0, we must have

p > max
(

LW

LW + ε/4 ,
1
2

)
if dValσ(v0) < 0, we must have

max
(

LW

LW + ε/4 ,
1

21/L ,

(
1− ε

2|dValσ(v0)|

) 1
|V |

,

1− w−

4(cw+ + 2cw− + |V |w− + c|V |W + |dValσ(v0)|c)

)
with ε small enough so that this bound is less than 1.

B Proof of Proposition 22

Implication 1⇒ 2 is trivial by the result of Theorem 6.

For implication 3⇒ 1, consider any memoryless deterministic strategy σ∗ that guarantees
Min to reach T from all vertices in the game graph G̃(|V |−1). Then, for all vertices v, we show
by induction on n, that each play π from v that reaches the target in at most n steps, and
conforming to σ∗, has a total-payoff TP(π) 6 dVal(v). This is trivial for n = 0. If π = vπ′

with π′ starting in v, then

TP(π) = ω(v, v′) + TP(π′) 6 ω(v, v′) + dVal(v′) = ω(v, v′) + f (|V |−1)
v
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If v ∈ VMax, we have

TP(π) 6 ω(v, v′) + f (|V |−1)
v 6 f (|V |)

v = dVal(v)

If v ∈ VMin, since v′ ∈ Ẽ(|V |−1)(v),

TP(π) = f (|V |)
v = dVal(v)

This ends the proof by induction. To conclude that 1 holds, since σ∗ guarantees to reach
the target, all plays conforming to it reach the target in less than |V | steps, which proves
that dValσ

∗
(v) 6 dVal(v), showing that σ∗ is optimal.

For implication 1⇒ 3, consider an optimal deterministic memoryless strategy σ∗, such
that for all v, dValσ

∗
(v) = dVal(v).

First, we show that f (|V |−1)
v = dVal(v) for all vertices v. For that, consider the determin-

istic strategy τ of Max defined for all finite plays π having n 6 |V | vertices, ending in a vertex
v ∈ VMax, by τ(π) = v′ such that ω(v, v′) + f

(|V |−1−n)
v′ = f

(|V |−n)
v . For longer finite plays,

we define τ arbitrarily. Then, let π be the play from v conforming to σ∗ and τ . Since σ∗
ensures reaching the target and is memoryless deterministic, π reaches the target in at most
|V | − 1 steps. Let π = v0v1v2 · · · vk−1vk with k 6 |V |. Let us show that TP(π) > f

(|V |−1)
v .

We prove by induction on 0 6 j 6 k that
k−1∑
i=j

ω(vi, vi+1) > f (|V |−1−j)
vj

When j = k − 1, the result is trivial since the sum is

0 = f (0)
vk

> f (|V |−1−(k−1))
vk

Otherwise, by induction hypothesis
k−1∑
i=j

ω(vi, vi+1) > ω(vj , vj+1) + f (|V |−1−(j+1))
vj+1

If vj ∈ VMax, vj+1 is chosen by τ so that

ω(vj , vj+1) + f (|V |−1−(j+1))
vj+1

= f (|V |−1−j)
vj

If v ∈ VMin, by definition of F ,

ω(vj , vj+1) + f (|V |−1−(j+1))
vj+1

> f (|V |−1−j)
vj

We can conclude in all cases, so that f (|V |−1)
v = dVal(v) for all vertices v.

Then, we show that Min can guarantee to reach T from all vertices in the game
graph G̃(|V |−1). Let us suppose that this is not the case. Then, there exists a set V ′
of vertices in which Max can guarantee to keep Min for ever, in the game G̃(|V |−1): for all
v′ ∈ V ′ ∩ VMin, Ẽ(|V |−1)(v′) ⊆ V ′, and for all v′ ∈ V ′ ∩ VMax, E(v) ∩ V ′ 6= ∅. Since σ∗
guarantees to reach the target, there exists v ∈ V ′ ∩ VMin such that σ∗(v) = v′ /∈ V ′: then
ω(v, v′) + dVal(v′) > dVal(v) (here we use that dVal(v) = f

(|V |−1)
v = f

(|V |)
v ). Consider

an optimal deterministic memoryless strategy τ∗ of Max in G. Then, the play π from v

conforming to σ∗ and τ∗ starts by taking the edge (v, v′) and continues with a play π′. By
optimality, we know that TP(π) = dVal(v) and TP(π′) = dVal(v′). However,

TP(π) = ω(v, v′) + TP(π′) = ω(v, v′) + dVal(v′) > dVal(v)

which raises a contradiction.
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We finish the proof by showing 2 ⇒ 1. For that, consider an optimal memoryless
strategy ρ∗ for mVal. By following the construction of Section 4, we build a memoryless
deterministic strategy σ1. Lemma 21 ensures that σ1 is an NC-strategy so that every cycle
conforming to σ1 has a negative total weight. Let us show that such a negative cycle
cannot exist, which will ensure that all plays conforming to σ1 reach the target, and thus
the optimality of σ1. Suppose that a cycle v1v2 · · · vkv1 conforms to σ1. By following the
notations of the proof of Lemma 18(ii), we suppose that v1 is a vertex of minimal distance
d(v1) to the target, and that it is owned by VMin. Note that such a vertex exists, otherwise
only Max has the minimal distance vertices on the cycle and that contradicts the attractor
computation. By minimality of d(v1) among the vertices of the cycle, d(v2) > dv1 . Moreover,
by the attractor computation, there exists u ∈ E(v1) such that d(u) = d(v1)− 1 < d(v1). By
definition of σ1, we know for sure that u /∈ Ẽ(v1), so that

ω(v1, u) + mValρ
∗
(u) > ω(v1, v2) + mValρ

∗
(v2)

By (6), we know that in this case

mValρ
∗
(v1) > ω(v1, v2) + mValρ

∗
(v2)

By optimality of ρ∗, this rewrites in

mVal(v1) > ω(v1, v2) + mVal(v2)

By Theorem 6, this also rewrites in

dVal(v1) > ω(v1, v2) + dVal(v2) > F
(
(dVal(v))v∈V

)
(v1)

(since v1 ∈ VMin): this contradicts the fact that the vector (dVal(v))v∈V is a fixed-point of F .
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