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Abstract
Automata theory provides us with fundamental notions such as languages, membership, emptiness
and inclusion that in turn allow us to specify and verify properties of reactive systems in a useful
manner. However, these notions all yield “yes”/“no” answers that sometimes fall short of being
satisfactory answers when the models being analyzed are imperfect, and the observations made are
prone to errors. To address this issue, a common engineering approach is not just to verify that a
system satisfies a property, but whether it does so robustly. We present notions of robustness that
place a metric on words, thus providing a natural notion of distance between words. Such a metric
naturally leads to a topological neighborhood of words and languages, leading to quantitative and
robust versions of the membership, emptiness and inclusion problems. More generally, we consider
weighted transducers to model the cost of errors. Such a transducer models neighborhoods of words
by providing the cost of rewriting a word into another. The main contribution of this work is to
study robustness verification problems in the context of weighted transducers. We provide algorithms
for solving the robust and quantitative versions of the membership and inclusion problems while
providing useful motivating case studies including approximate pattern matching problems to detect
clinically relevant events in a large type-1 diabetes dataset.
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1 Introduction

Automata theoretic verification commonly uses an automaton S to specify the behaviors of a
system being analyzed and another automaton P to specify the property of interest. These
automata are assumed to be finite state machines accepting finite or infinite words. The key
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17:2 Weighted Transducers for Robustness Verification

step is to verify whether the language inclusion L(S) ⊆ L(P ) holds. Failing this inclusion, a
counterexample σ is generated such that σ ∈ L(S) whereas σ 6∈ L(P ). Another important
area lies in runtime verification, wherein given a sequence of observations represented by
σ ∈ Σ∗, we wish to check whether these observations satisfy the specification: σ ∈ L(P ).
The verification community has considered numerous extensions to these basic ideas such
as richer models of the system S that allow for succinct specifications (e.g., hierarchical
state machines, state-charts), or go beyond finite state machines and include features such
as real-time (timed automata) [4], physical quantities (hybrid automata) [3], and matching
calls/returns [8, 23, 6]. The complexity of the language inclusion and membership problems
in these settings are also well understood [11].

However, inclusion and membership problems lead to yes/no Boolean answers. The no
answer for an inclusion problem is witnessed by a counterexample trace. However, the yes
answer provides nothing further. A quantitative approach to these questions was proposed
independently by Fainekos et al. [16], Donze et al. [14] and Rizk et al. [21] for the satisfaction
of metric/signal temporal logic formula ϕ for a trace σ generated by continuous and hybrid
systems. Therein, the authors use the euclidean metric over real-valued traces that defines a
metric distance d(σ, σ′) between traces σ, σ′ in order to check whether traces that are in the
epsilon neighborhood of a given trace σ also satisfy the formula: (∀σ′) d(σ, σ′) < ε ⇒ σ′ |= ϕ.
Recent work, notably by Hasuo et al [24, 1] and Deshmukh et al [12] generalizes these notions
to time domain as well as the signal data domain. Efficient algorithms for computing the
robustness of a trace with respect to metric (signal) temporal formulas are known, and
furthermore, the theory led to numerous approaches to finding falsifications of complex
Simulink/Stateflow models, mining robust requirements and other monitoring problems [7].

Robustness Using Weighted Transducers. In this paper, we specify distances between
finite words over Σ∗, using the notion of cost functions. A cost function assigns a non-negative
rational cost to each pair of words (w1, w2) ∈ Σ∗×Σ∗, modelling the cost of rewriting w1 into
w2. By bounding the costs of rewritings, it models how words can be transformed. As a result,
a neighborhood can be defined for each word, assuming that the cost of “rewriting” a word
w back to itself is 0. This, in turn, allows to reason about robustness of languages. In order
to model cost functions, we use weighted transducers with non-negative weights [15] along
with an aggregator that combines the cost of each individual rewriting of the transducer into
an overall cost between the input and output words. We now provide motivating examples
for the cost functions that can be specified by such a model. A formal definition is provided
in Section 2.

T

q0 q1 q2

a1 | a1, 0
a2 | a2, 0 a1 | a1, 0

a2 | b, 1

a1 | a1, 0
a2 | b, 1

a1 | a1, 0
a2 | a2, 0

a1 | a1, 0
a2 | a2, 0

Figure 1 A weighted-transducer over Σ = {a1, a2, b}.

Motivating Example. Consider the transducer T of Figure 1. This transducer is over
alphabet Σ : {a1, a2, b}. It allows to rewrite the letter a1 into a1 (at cost 0), and the letter
a2 into either a2 (at cost 0) or b (at cost 1). Additionally, these rewritings are possible only
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at state q1. This allows us to have a model wherein errors appear in bursts rather than
individually: I.e, an error at a location increases the likelihood of one at the subsequent
location. Thus, the transducer models all possible words w′ that a given input word w can
be rewritten into. As an example, the word w : a1a2a2a2 into w′ : a1bba2 through transitions
that rewrite the first two occurrences of a2 into b. At the same time, the transducer forbids
certain rewritings. For instance, the word w above cannot be rewritten into the word
w′′ : bba2a1 since the rewrite from an a1 into a b or an a2 into an a1 is clearly disallowed by
the transducer T in Figure 1.

While the transducer T specifies the cost for individual rewritings through its transitions,
we define the cost of rewriting the entire word w into another w′ by additionally specifying an
aggregator function. For simplicity, we assume that there is exactly one run of the transducer
that rewrites w into w′. The case of nondeterministic transducers is defined in Section 2.

1. Discounted Sum (DSum): Given a discount factor λ ∈ Q ∩ (0, 1), the cost of rewriting a
word w into another word w′ is defined as

∑n
i=1 λ

(i−1)τi, wherein n is the size of a run
through the transducer and τi is the cost associated with the ith transition.

2. Average (Mean): This aggregator computes the mean cost: 1
n

∑n
i=1 τi for n > 0.

3. Sum (Sum): This aggregator computes the sum:
∑n
i=1 τi for n > 0.

Returning to our example, the Sum-cost of rewriting a1a2a2a2 into a1bba2 is 2, for the
DSum-cost with discount factor 1/2, it is 3/4, and for Mean-cost it is 1/2.

Our approach handles a more general nondeterministic transducer model that can allow
for insertions of new letters, deletion of letters, transpositions and arbitrary substitutions of
one letter by a finite word. Cost functions defined by such transducers may not satisfy the
axioms of a metric, however many commonly encountered type of metrics between words
such as the Cantor distance and the Levenstein (or edit) distance can be modeled as weighted
transducers [13]. For example, edit distance is naturally modelled by a sum-transducer.
Cantor distance maps any pair of word (w1, w2) of same length to 2−i where i the first
position where w1 and w2 differ, and to 0 if w1 = w2. This metric can be modelled by a
discounted-sum transducer with discount factor 1/2.

Robustness problems. Given a cost function c : (Σ∗ × Σ∗)→ Q≥0 defined by a weighted-
transducer with an aggregator function, we can define “neighborhoods” of languages for a
given distance ν ≥ 0. For a regular language N ⊆ Σ∗ and a threshold ν ∈ Q≥0, let us define
its ν-neighborhood Nν : {w′ ∈ Σ∗ | (∃w ∈ N) c(w,w′) ≤ ν}. Given a property L ⊆ Σ∗, we
consider the following robustness problems:

Robust inclusion: Given N, ν and L, check whether Nν ⊆ L.
Threshold synthesis: Given N,L, find the largest threshold ν such that Nν ⊆ L.
Robust kernel synthesis: given N, ν, L, find the largest M ⊆ N s.t. Mν ⊆ L.

I Example 1. Consider the transducer of Figure 1 using the the Sum aggregator. We take
L as the set of words which does not have bbb as a subword. Now, any word of the form
(a1a2)∗ are ν-robust for any threshold ν since the letter a1 is not rewritten by the transducer
T . Such questions are tackled using the robust inclusion problem. On the other hand, let us
choose a word w ∈ a2a2a2(a∗1). It is ν-robust for all the thresholds ν ≤ 2 but not for ν ≥ 3.
This is determined using the threshold synthesis problem. For all ν ≥ 3, the set of ν-robust
words in N = Σ∗ is (a1 + a1a2 + a1a2a2)∗, and for ν ≤ 2, any word in Σ∗ is ν-robust. Such
questions are solved using the robust kernel synthesis problem.
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17:4 Weighted Transducers for Robustness Verification

Contributions. We show that the robust inclusion problem is solvable in PTime when N
and L are regular languages (given as NFA and DFA respectively) and the weighted-transducer
defining the cost function is also given as input (Corollary 12). To obtain this result, we
show that we can effectively compute in PTime the largest threshold ν as defined before,
thus solving the threshold synthesis problem (Theorem 11). This result holds for the three
measures Sum, DSum and Mean. For Sum, we show that the robust kernel is effectively regular
(Lemma 14) and testing its non-emptiness is PSpace-complete (Theorem 15). For Mean, we
show that the robust kernel is not regular in general (Lemma 16), and its non-emptiness is
undecidable (Theorem 17). For DSum, we leave those questions partially open. We conjecture
that the robust kernel is non-regular in general and provide a sufficient condition under
which it is regular (Theorem 22).

Next, we present an implementation of the algorithms to synthesize robustness thresholds
and report some experiments with our implementation, illustrating its application to analyzing
manual control strategies under the presence of human error and approximate pattern analysis
in type-1 diabetes data. Here we analyze a publicly available dataset of blood glucose values
for people with type-1 diabetes. In both cases, we use a weighted transducer to model
some of the specifics of human error and glucose sensor noise patterns. For the type-1
diabetes application, we use a robust pattern matching to detect behaviors that are clinically
significant while accounting for the peculiarities of the glucose sensor.

Our work bears some similarities with earlier work by Henzinger et al [17, 22]. In these
papers, notions of robustness for string to string transformations are studied and the notion
of continuity of these transformations is defined. This is different from our setting, in which
we use weighted transducers to define notions of distances, and these transducers are not
necessarily continuous. Our notion of robustness is with respect to the rewriting of the words
of one language and not about the transducers. The transducers themselves serve to define
neighborhoods of strings.

2 Preliminaries and Problem Statements

Let Σ be an alphabet. We denote the empty word by the symbol ε 6∈ Σ and we write Σ∗ for
the set of finite words over Σ. Let Σε = Σ∪{ε}. As usual, we write Q for the set of rationals,
N = {0, 1, . . . } for naturals, and N∗ for the words over the infinite alphabet N.

A finite automaton over Σ is a tuple A = (Q,QI , QF ,∆) where Q is the finite set of
states, QI ⊆ Q is the set of initial states, QF ⊆ Q is the set of final states and ∆ ⊆ Q×Σ×Q
is the set of transitions. A run r of A over a word u = a1 . . . an ∈ Σ∗ of length n > 0 is a
sequence of transitions t1 . . . tn ∈ ∆∗ such that there exist q0, q1, . . . , qn and for all 1 ≤ i ≤ n,
ti = (qi−1, ai, qi). The run r is simple if no state repeats along r, i.e. i 6= j implies that
qi 6= qj and, it is a cycle if q0 = qn. We say that r is a simple cycle if its a cycle and t2 . . . tn
is simple. Also, r is accepting if it starts from an initial state q0 ∈ QI and ends into a final
state qn ∈ QF . We denote by AccRunA(u) the set of accepting runs of A on the word u. The
language defined by A is the set of words L(A) = {u | AccRunA(u) 6= ∅}. The automaton A
is called deterministic (DFA for short) if QI is a singleton and ∆ is a function from Q×Σ to
Q. We define the representation size of an automaton A = (Q,QI , QF ,∆) as |A| = |Q|+ |∆|.

Weighted transducers extend finite automata with string outputs and weights on trans-
itions [15]. Any accepting run over some input word rewrites each input symbol into a
(possibly empty) word, with some cost in N. Transducers can also have ε-input transitions
with non-empty outputs, such that output symbols can be produced even though nothing
is read on the input (e.g. allowing for symbol insertions). The output of a run is the
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concatenation of all output words occurring on its transitions. Its cost is defined by an
aggregator function C : N∗ → Q≥0, which associates a rational number to a sequence of
non-negative integers.

We consider three different aggregator functions, given later. Since there are possibly
several accepting runs over the same input, and generating the same output, we take the
minimal cost of them to compute the value of a pair of input and output words.

I Definition 2 (C-transducers). Let C : N∗ → Q≥0 be an aggregator function. A C-transducer
T is a tuple (A, W) where A = (Q,QI , QF ,∆) is an NFA over (Σε × Σ∗) \ {(ε, ε)} and the
function W : ∆→ N associates weights to each transition.

Given a transition t = (q, a, v, q′) ∈ Q× Σε × Σ∗ ×Q, we write Orig(t) = q, In(t) = a,
Out(t) = v, and Dest(t) = q′. We say that a transition t ∈ ∆ can be triggered by T if it is in
state Orig(t) and reads In(t) on its input (note that it is always possible to read In(t) = ε).
It, then, moves to Dest(t) and rewrites its input into Out(t). A run r = t1 . . . tn of T is a run
of A. We write In(r) = In(t1) . . . In(tn) and Out(r) = Out(t1) . . . Out(tn) and say that r is a
run of T on the pair of words (In(r), Out(r)). Let (u1, u2) = (In(r), Out(r)). If moreover r
is accepting, we say that (u1, u2) is accepted by T , and denote by AccRunT (u1, u2) the set
of accepting runs over (u1, u2). We also say that u1 is accepted by T if (u1, u2) is accepted
by T for some u2 ∈ Σ∗. We denote the weight sequence of r by W(r) = W(t1) . . . W(tn) and its
corresponding (aggregated) cost is C(r) = C(W(r)).

A transducer T defines a relation from Σ∗ to itself, called a translation, denoted RT and
defined by: RT = {(u1, u2) | AccRunT (u1, u2) 6= ∅}. The domain of T , denoted dom(T ) is
the set of words u1 for which there exists u2 such that (u1, u2) ∈ RT . The cost of a pair of
words (u1, u2) is given by:

CT (u1, u2) =
{

+∞ if (u1, u2) 6∈ RT
min{C(r) | r ∈ AccRunT (u1, u2)} otherwise.

Note that since runs consume at least one symbol of the input or one of the output, there
are finitely many runs on a pair (u1, u2), hence the min is well-defined. Finally, given ν ∈ Q
and an input word u1 ∈ dom(T ), we define the threshold output language T≤ν(u1) of u1 as:
T≤ν(u1) = {u2 | CT (u1, u2) ≤ ν}. This notation extends naturally to languages N ⊆ Σ∗ by
setting: T≤ν(N) =

⋃
u1∈N∩dom(T ) T≤ν(u1).

I Assumption 3. We restrict our attention to C-transducers T that satisfy the condition that
for all u ∈ dom(T ), CT (u, u) = 0 (in particular (u, u) ∈ RT ). In other words, it is always
possible to rewrite u into itself at zero cost.

This assumption requires that each point must belong to any of its neighborhoods, which
naturally comes from the indiscernibility axiom of distance. However, we do not require the
triangle inequality axiom, that the edit distance does not satisfy.

Cost functions. We consider three aggregator functions, namely the sum, the mean and
the discounted-sum. Let λ ∈ Q ∩ (0, 1) be a discount factor. Given a sequence of weights
τ = τ1 . . . τn, those three functions are defined by:

Sum(τ) =
n∑
i=1

τi Mean(τ) =
{

0 if τ = ε
Sum(τ)
n otherwise

DSum(τ) =
n∑
i=1

λ(i−1)τi
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17:6 Weighted Transducers for Robustness Verification

Weighted-automata. When a C-transducer outputs only empty words, then its output
component can be removed and we get what is called a C-automaton, which defines a function
from words to costs. For C = Sum, this definition of Sum-automaton coincides with the
classical notion weighted automata over the semiring (N ∪ {+∞},min,+) from [15].

Robustness problems. We study the following three fundamental problems related to
robustness for three different aggregator functions C ∈ {Sum, Mean, DSum}. Given a threshold
ν ∈ Q, a C-transducer T and a regular language L, a word u ∈ dom(T ) is said to be ν-robust
(or just robust if ν is clear from the context) if T≤ν(u) ⊆ L. In other words, all its rewritings
of cost ν at most are in L. A language N ⊆ Σ∗ is said to be ν-robust if N ∩ dom(T ) contains
only ν-robust words. Finally, the ν-robust kernel of T is the set RobT (ν, L) of ν-robust words:
RobT (ν, L) = {u ∈ dom(T ) | T≤ν(u) ⊆ L}. We prove that as the error threshold grows, so
does the robust kernel.

I Proposition 4. Given ν, ν′ ∈ Q>0, a C-transducer T and a regular language L, we have
that ν′ ≤ ν =⇒ RobT (ν′, L) ⊆ RobT (ν, L).

Proof. By definition T≤ν(u1) = {u2 | CT (u1, u2) ≤ ν}. For all u1 ∈ dom(T ) we have that
u1 ∈ RobT (ν, L) iff for all u2 both u2 ∈ L and CT (u1, u2) ≤ ν hold. Clearly u1 ∈ RobT (ν, L)
implies u1 ∈ RobT (ν′, L) for any ν′ ≤ ν. J

We are in a position to formally define the three key problems studied in this paper. For
these definitions, we let C ∈ {Sum, Mean, DSum}.

I Problem 5 (Robust Inclusion). Given a C-transducer T , a regular language N ⊆ Σ∗ as an
NFA, a threshold ν ∈ Q≥0 and a language L ⊆ Σ∗ as a DFA, the robust inclusion problem is
to decide whether N ⊆ RobT (ν, L), i.e. whether T≤ν(N) ⊆ L.

Note that we consider our specification language L deterministically presented, for tractability.

I Problem 6 (Threshold Synthesis). Given a C-transducer T , a regular language N ⊆ Σ∗
as an NFA, and a regular language L ⊆ Σ∗ as a DFA, the threshold synthesis problem is to
output a partition of the set of thresholds Q≥0 = G ]B into sets G and B of good and bad
thresholds, i.e.

G = {ν ∈ Q≥0 | N ⊆ RobT (ν, L)} and B = {ν ∈ Q≥0 | N 6⊆ RobT (ν, L)}.

As direct consequence of Proposition 4, the sets G and B are intervals of values, that is
for all ν1, ν2 ∈ Q≥0, if ν1 < ν2 and ν2 ∈ G, then ν1 ∈ G, and if ν1 ∈ B then ν2 ∈ B.

I Problem 7 (Robust Kernel Non-emptiness). Given a C-transducer T , a regular language
L ⊆ Σ∗ as a DFA, a threshold ν ∈ Q≥0, the robust kernel non-emptiness problem is to decide
if there exists u ∈ RobT (ν, L).

For the cases where we provide algorithms for solving the non-emptiness of the robust
kernel, we also succeed in synthesizing the robust kernel as an automaton.

3 Robust Verification

Given an instance of the threshold synthesis problem, we show how to compute the interval of
good thresholds G and the interval of bad thresholds B in PTime for all the three measures
we consider. As a corollary, we show that the robust inclusion problem for Sum, Mean, DSum
measures is in PTime.
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T

id ok ko

a | a, 0 a | b, 1

a | b, 0 a | c, 2 a | c, 0

a | c, 1

Figure 2 Transducer T for which the infimums νMean
T,L = 1 and νDSum

T,L = 2 are bad thresholds for T
interpreted as Mean- and DSum-transducer with discount factor 1

2 respectively, and for L = a∗ + b∗.

In the following, we assume that N = dom(T ). This is w.l.o.g. as transducers are closed
(in polynomial time) under regular domain restriction (using a product construction of T
with the automaton for N). With this assumption, the set of good thresholds G becomes
G = {ν ∈ Q≥0 | dom(T ) ⊆ RobT (ν, L)} and dually for the set of bad thresholds B. We let
νT,L be the infimum of the set of bad thresholds, i.e. νT,L = inf B = inf{ν ∈ Q≥0 | dom(T ) 6⊆
RobT (ν, L)}. As illustrated by the following example, computing νT,L allows us to compute
G = [0, vT,L] and B = [vT,L,+∞).

I Example 8. Let Σ = {a, b, c} and C ∈ {Mean, DSum}. Consider the best threshold problem
for T the C-transducer of Figure 2, N = dom(T ) = a∗ and L = a∗ + b∗. Note that the
translations accepted by ok and id belong to L. On the contrary, translations accepted
by ko do not belong to L and so they are not robust w.r.t. L for any threshold. For Mean
measure, the cost of a translation into c∗ is exactly 1 while the one into b∗ range over [0, 1).
Hence νMean

T,L = 1 and the set partition of good and bad thresholds is GMean = [0, 1) and
BMean = [1,+∞). In the case of DSum with discount factor 0.5, the cost of a translation into
c∗ range over [2, 2.5) while the one into b∗ range over [0, 2). So νDSum

T,L = 2 and the thresholds
are partitioned by GDSum = [0, 2) and BDSum = [2,+∞).

Then, we associate with every transducer T and property L given by some DFA A

(assumed to be complete), a graph called the weighted-graph associated with T and A, and
denoted by GT,A. Intuitively, GT,A is obtained by first taking the synchronised product of T
and A (where A is simulated on the outputs of T ) and then by projecting this product on
the inputs.

Formally, given T = (Q,QI , QF ,∆, W) and A = (P, pI , PF , δ), the synchronised product
GT,A = (V,E, W′ : E → N) is such that:

V = Q× P
E is the set of edges e = (q, p)→ (q′, p′) such that there exists a ∈ Σε and a transition
t = (q, a, u, q′) ∈ ∆ such that p′ = δ(p, u) where δ has been extended to words in the
expected way. We say that e is compatible with t.
For all e ∈ E, W′(e) = min{W(t) | e is compatible with some t ∈ ∆}.

Additionally, we note VI = QI × {pI} the set of initial vertices and VF = QF × (P \ PF )
the set of final vertices of this graph. Given a path π in this graph as a sequence of edges
e1 . . . en, we let C(π) = C(W′(e1) . . . W′(en)).

The following lemma establishes some connection between νT,L and the paths of GT,A.

I Lemma 9. The infimum cost of paths from a vertex in VI to a vertex in VF is equal to
νT,L, i.e. νT,L = inf{C(π) | ∃s0 ∈ VI ∃sf ∈ VF s0

π−→GT,A sf}.

Proof. We first show that any path π from VI to VF satisfies C(π) ≥ νT,L. Take such a path.
By construction of GT,A, there exists an input word u1 ∈ dom(T ), some output word u2 /∈ L
and an accepting run r of T on (u1, u2) of value C(r) = C(π). Since the value CT (u1, u2) is
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17:8 Weighted Transducers for Robustness Verification

the minimal value of all accepting runs of T over (u1, u2), we have C(r) ≥ CT (u1, u2) and
u1 is not robust for threshold CT (u1, u2), a fortiori for threshold C(r), from which we get
C(r) = C(π) ≥ νT,L. This shows that νT,L ≤ inf{C(π) | ∃s0 ∈ VI∃sf ∈ VF s0

π−→ GT,Asf}.
Suppose that νT,L is strictly smaller than this infinimum (that we denote m) and take

some rational number ν such that νT,L < ν < m. Since νT,L < ν, it is a bad threshold which
means that there exists u1 ∈ dom(T ) such that u1 6∈ RobT (ν, L). Hence there exists u2 6∈ L
such that CT (u1, u2) ≤ ν, and by definition of GT,A, there exists a path π from VI to VF of
value C(π) ≤ ν. This contradicts the fact that ν < m by definition of m. Hence, νT,L = m,
concluding the proof. J

The next lemma establishes that the infimum of values of paths between two sets of states
in a weighted graph can be computed in PTime and it is also decidable in PTime if the
infimum is realized by a path, for all the three measures considered in this paper. As a direct
corollary of this lemma we obtain the main theorem of the section. The full proof can be
found in Appendix.

I Lemma 10. For a weighted graph G = (V,E, W : E → Q≥0), a set of sources VI ⊆ V and
a set of targets VF ⊆ V , the infimum of the weights of paths from VI to VF can be computed
in PTime for all C ∈ {Sum, DSum, Mean}. Moreover, we can decide in PTime if this infimum
is realizable by a path.

Sketch of proof. First, if no state of VF are reachable from some state of VI , we have
νT,L = +∞. Otherwise we use different procedures, depending on the aggregator C.

For Sum, the infimum can be computed in Ptime using Dijkstra algorithm and it is always
feasible. For Mean, we first note that the infimum is the Mean value of either a simple path or
the value of a reachable cycle that can be iterated before moving to some target. In the latter
case, the infimum is not feasible but can be approximated as close as possible by iterating
the cycle. So, the infimum is feasible iff it is the Mean value of a simple path. The minimal
Mean values amongst simple paths and cycles can be computed in Ptime with dynamic
programming thanks to [18]. For DSum, Theorem 1 of [5] provides a PTime algorithm that
computes for all v ∈ V , the infimum of DSum values xv of paths reaching the target VF
from v. J

I Theorem 11. For a given C-transducer T , a language N ⊆ Σ∗ given as an NFA and L ⊆ Σ∗
given as a DFA, the set partition of good and bad thresholds (G,B) for C ∈ {Sum, DSum, Mean}
can be computed in PTime.

Proof. First, we restrict the domain of T to N by taking the product of T and the automaton
for N (simulated over the input of T ). Then, according to Lemma 10, we can compute in
PTime the value νT,L. This value is the infimum of B. If this infimum is feasible then the
interval B is left closed and equal to [νT,L,+∞) while G = [0, νT,L), and on the contrary, if
this infimum is not feasible, then B is left open and equal to (νT,L,+∞), while G = [0, νT,L].
Note that when νT,L = 0 and is feasible, then G = [0, 0) = ∅. J

As a direct consequence, the robust inclusion problem for a threshold ν can be solved by
checking if ν ∈ G, and so we have the following corollary.

I Corollary 12. Let C ∈ {Sum, DSum, Mean}. Given T a C-transducer, N ⊆ Σ∗ given as an
NFA, L ⊆ Σ∗ given as a DFA and ν ∈ Q. The language inclusion N ⊆ RobT (ν, L) can be
decided in PTime.
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4 Robust Kernel Synthesis

In this section, we show that the robust kernel is regular for Sum-transducers, and checking
its emptiness is PSpace-complete. For Mean, we show that it is not necessarily regular, and
checking its emptiness is undecidable. For DSum, we conjecture that the robust kernel is
non-regular and give sufficient condition under which it is regular and computable, implying
decidability of its emptiness.

4.1 Sum measure

To show robust kernel regularity, we rely on the construction of Theorem 2 of [2] in the
context of weighted automata over the semiring (N ∪ {+∞},min,+). The following lemma,
use the same automata construction and provides an upper bound on the number of states
required to denote a threshold language with a DFA.

I Lemma 13. Let U be an n state Sum-automaton and ν ∈ N. The threshold language
Lν(U) = {w | U(w) ≥ ν}, where U(w) is defined as +∞ if there is no accepting run on w,
otherwise as the minimal sum of the weights along accepting runs on w, is regular. Moreover
Lν(U) is recognized by a DFA with O

(
(ν + 2)n

)
states.

Proof. First, let assume that U has universal domain (i.e. any word has some accepting
run), otherwise we complete it by assigning value ν to each word of its complement.

Then, U(w) ≥ ν iff all the accepting runs on w have value at least ν. We design a
DFA D that accepts exactly those words. Since the weights of U are non-negative, D just
has to monitor the sum of all runs up to ν, by counting in its states. If Q is the set of
states of U , the set of states of D is 2Q×{0,...,ν−1,ν+}, where ν+ intuitively means any value
≥ ν. We extend natural addition to X = {0, . . . , ν − 1, ν+} by letting a + b = ν+ iff
a = ν+, or b = ν+, or a + b ≥ ν. Then, D is obtained by subset construction: there is a
transition P σ−→ P ′ in D iff P ′ = {(q′, i+ j) | (q, i) ∈ P ∧ q σ|j−−→ Uq

′}. A state P is accepting
if P ∩

(
(Q \ F )× {0, . . . , ν − 1}

)
= ∅, where F are the accepting states of U .

Though simple, the latter construction does not give the claimed complexity, as the
number of states of D is 2nν . But the following simple observation allows us to get a better
state complexity. Consider an input word of the form uv. If after reading u, D reaches
some state P such that for some state q, there exists (q, i), (q, j) ∈ P such that i < j, then
if there is an accepting run of U from q on v, with sum s, there is an accepting run on uv
with sum i+ s and one with sum j + s. Therefore if i+ s ≥ ν, then j + s ≥ ν and the pair
(q, j) is useless in P . So, we can keep only the minimal elements in the states of D, where
minimality is defined with respect to the partial order (q, i) � (p, j) if q = p and i ≤ j. Let
us call Dopt the resulting “optimised” DFA. Its states can be therefore seen as functions from
Q to {0, . . . , ν − 1, ν+}, so that we get the claimed state-complexity. J

I Lemma 14 (Robust language regularity). Let T be a Sum-transducer, ν ∈ N and L be regular
language. The language of robust words RobT (ν, L) is a regular language. Moreover, if L
is given by a DFA with nL states and T has nT states, then RobT (ν, L) is recognisable by a
DFA with O

(
(ν + 2)nT×nL

)
states.

Proof of this lemma is provided in the appendix.
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17:10 Weighted Transducers for Robustness Verification

I Theorem 15. Let T be a Sum-transducer, ν ∈ N given in binary and L a regular language
given as a DFA. Then, it is PSpace-complete to decide whether there exists a robust word
w ∈ RobT (ν, L). The hardness holds even if ν is a fixed constant, T is letter-to-letter1 and
io-unambiguous2, and its weights are fixed constants in {0, 1}.

Proof. From Lemma 14, RobT (ν, L) is recognisable by a DFA with O
(
(ν + 2)nT×nL

)
states,

where nT is the number of states of T and nA the number of states of the DFA defining
L. Checking emptiness of this automaton can be done in PSpace (apply the standard
NLogSpace emptiness checking algorithm on an exponential automaton that needs not be
constructed explicitly, but whose transitions can be computed on-demand).

To show PSpace-hardness, we reduce the problem from [19] of checking the non-emptiness
of the intersection of n regular languages given by n DFA A1, . . . , An, over some alphabet
Γ. In particular, we construct T , ν and a DFA A such that

⋂
i L(Ai) 6= ∅ iff there exists a

robust word with respect to T ,ν and L.
We define the alphabet as Σ = Γ ∪ {#1, . . . ,#n,a} where we assume that #1, . . . ,#n,a

/∈ Γ, and construct a transducer T which reads a word wa of length k = |w|+ 1 with w ∈ Γ∗,
and rewrites it into either itself, or (#i)k for all i ∈ {1, . . . , n}. The identity rewriting has
total weight 0 while the rewriting into #k

i has total weight 1 if w ∈ L(Ai), and 0 otherwise.
The transducer T is constructed as the disjoint union of n + 1 transducers T1, . . . , Tn, Ta.
For all i ∈ {1, . . . , n}, Ti simulates Ai on the input and outputs #i whenever it reads an
input letter different from a, with weight 0. When reading a from an accepting state of
Ai, it outputs a with weight 1, and if it reads a from a non-accepting state, it outputs a
with weight 0. Finally, Ta just realizes the identify function with weight 0. Note that T has
polynomial size in A1, . . . , An and it is letter-to-letter and (input,output)-deterministic.

Now we prove that a word w a is robust iff w ∈
⋂
i L(Ai). Assume that there exists a

robust word w a for the property L = (Γ ∪ {a})∗ and threshold ν = 0. Equivalently, it means
that for all rewritings α ∈ Σ∗, if SumT (wa, α) ≤ 0 then α ∈ L. It is equivalent to say that all
its rewritings α satisfies either SumT (wa, α) ≥ 1 or α ∈ L. By definition of T , it is equivalent
to say that all rewritings α are such that either α ∈ (#i)∗ · a for some i and w ∈ L(Ai), or
α = w a. Since T necessarily rewrites wa into wa, as well as into (#1)k, . . . , (#n)k, where
k = |w|+1, the latter assumption is equivalent to saying that w ∈ L(Ai) for all i ∈ {1, . . . , n},
concluding the proof. J

4.2 Mean measure
Let us first establish non-regularity of the robust kernel.

I Lemma 16. Given a regular language L, a Mean-transducer T and ν ∈ Q≥0, the language
RobT (ν, L) is not necessarily regular, but recursive.

Proof. Consider the language L = {w | ∃i ∈ N : w(i) = a} on the alphabet Σ = {a, b}, i.e.
the set of words on Σ that contain at least one a. Now, consider a (one state) transducer T
that can non-deterministically copy letters or change the current letter from a to b with weight
one. Now, if we fix ν to be equal to 1

2 , then all the translations of w by T of cost less than 1
2

are included in L, i.e. each translation of w will contain at least one letter a, if and only if, the
number of a’s in w is larger than the number of b’s in w, i.e. RobT ( 1

2 , L) = {w | w]a > w]b},
which is not regular. Note that in general RobT (ν, L) is recursive because the membership
problem to it, is decidable by Corollary 12 (applied on a singleton language). J

1 A transducer is letter-to-letter if ∆ ⊆ Q× Σ× Σ×Q.
2 For all word pairs (w1, w2), there exists at most one run of T on w1 outputting w2.
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We now show that testing the non-emptiness of the robust kernel is undecidable.

I Theorem 17. Let L be a regular language, T be a Mean-transducer and ν ∈ Q≥0. Determine
whether RobT (ν, L) 6= ∅ is undecidable. It holds even if T is io-unambiguous.

Proof. Let A be a Sum-automaton weight by integers. The proof goes by reduction from
determining whether all words admits a run of non-positive cost in A which is known to be
undecidable [10, 2]. From A, we construct L as the set of non accepting runs of A union Σ∗,
the threshold ν as the maximal absolute weight of A and T such that:

MeanT =
⋃ {(w,w) 7→ 0 | w ∈ Σ∗}
{(w, rw) 7→ Xrw + ν|w| | rw run of A over w ∈ Σ∗ with value Xrw}

We can construct T as the disjoint union between a single-state transducer with weights zero
realising the identity, and a transducer that outputs all the possible runs of A on its input,
such that each T -transition simulating an A-transition t of value x (in A) has value ν + x,
which is positive by definition of ν. Hence T is indeed weighted over non-negative numbers.
Note that T is io-unambiguous: if the input and output are fixed, there is at most one run of
T . Now, we show that RobT (ν, L) = ∅ iff ∀w ·A(w) ≤ 0, i.e.

∀w1∃w2 ∈ L MeanT (w1, w2) ≤ ν iff ∀w A(w) ≤ 0.

We have the following equivalences: ∀w1∃w2 ∈ L · MeanT (w1, w2) ≤ ν iff for all w1, there
exists an accepting run r of A on w1 such that MeanT (w1, r) ≤ ν, i.e. SumT (w1, r) ≤ ν|w1| and
by definition of T , it is equivalent to asking that SumA(r) + ν|w1| ≤ ν|w1|, i.e. SumA(r) ≤ 0.
Hence, the latter statement is equivalent to the fact that for all words w1, there exists an
accepting run of A of value ≤ 0. Since A takes the minimal value of all accepting runs to
compute the value of a word, it is equivalent to saying that for all w1, A(w1) ≤ 0, i.e., A is
universal, concluding the proof. J

4.3 Discounted sum measure
For DSum-transducer, we conjecture that RobT (ν, L) is in general non-regular. This claim is
substantiated by the fact that DSum-automata over Q and ω-words have in general non-regular
cut-point languages, i.e. the set of words of DSum value below a given threshold is in general
non-regular [9]. With a proof similar to that of Theorem 17 for Mean-transducers, it is possible
to show that the universality problem for DSum-automata, which is open to the best of our
knowledge, reduces to checking the emptiness of the robust language of a DSum-transducer.

Following an approach that originates from the theory of probabilistic automata, it is
has been shown that cut-point languages are regular when the threshold is ε-isolated [9].
Formally, a threshold ν ∈ Q is ε-isolated, for ε > 0 and for some DSum-transducer T if,
for all accepting runs r of T , DSumT (r) ∈ [0, ν − ε] ∪ [ν + ε,+∞). It is isolated if it is
ε-isolated for some ε. Our objective now is to show that when ν is isolated, then RobT (ν, L)
is regular and one can effectively construct an automaton recognizing it. We will also give
a (possibly non-terminating) algorithm which, when it terminates, returns an automaton
recognising RobT (ν, L), and which is guaranteed to terminate whenever ν is ε-isolated for
some ε. Towards these results, we first give intermediate useful results. For a state q of T ,
we call continuation of q any run from q leading to some accepting state of T . By extension,
we also call continuation of a run r any continuation of the last state of r. A transducer T
is said to be trim if all its states admits some continuation. Note that any transducer can
be transformed into an equivalent trim one in PTime, just by removing states that do not
admit any continuation (this can be tested in PTime).
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I Lemma 18. Let T be a trim DSum-transducer and ν ∈ Q. If ν is ε-isolated for some ε, then
there exists n∗ ∈ N such that any run r of length at least n∗ satisfies one of the following
properties:
1. DSum(r) ≤ ν − ε and any continuation r′ of r satisfies DSum(rr′) ≤ ν − ε
2. DSum(r) ≥ ν + ε/2 and any continuation r′ of r satisfies DSum(rr′) ≥ ν + ε.
Proof of this lemma is provided in the appendix.

We now show how to construct better and better regular under-approximations of the set
of non-robust words, show that they “finitely” converge to the set of non-robust words when
ν is isolated.

I Lemma 19. Let T be a DSum-transducer, ν ∈ Q and L a regular language (given as a DFA).
For all n, we can construct an NFA An such that:
1. L(An) ⊆ L(An+1)
2. L(An) ⊆ RobT (ν, L) ∩ dom(T )
Moreover, if ν is isolated, there exists n∗ such that L(An∗) = RobT (ν, L) ∩ dom(T ).

Proof of this lemma is provided in the appendix.
We also show that one can test whether given n, we have RobT (ν, L) ∩ dom(T ) ⊆ L(An),

as stated by the following lemma:

I Lemma 20. Given a regular language N (given as some NFA), it is decidable to check
whether RobT (ν, L) ∩ dom(T ) ⊆ N holds.

Proof. We take the synchronised product of T , L (on the output) and N (on the input),
project the output, and check whether a path from an initial to a final vertex exists with
discounted sum ≤ ν. J

Those results allow us to define the following semi-algorithm:
1. Compute-Rob(T, ν, L)
2. for n from 1 to +∞
3. compute An // as in Lemma 19
4. if RobT (ν, L) ∩ dom(T ) ⊆ L(An) return An // using Lemma 20

I Lemma 21. The algorithm Compute-Rob(T, ν, L) satisfies the following properties:
1. if it terminates, then it returns an automaton recognising RobT (ν, L) ∩ dom(T ),
2. if ν is isolated, it terminates.

Proof. If it terminates at steps n, then by Lemma 19 and the test at line 4 we know that
L(An) = RobT (ν, L) ∩ dom(T ), and if ν is isolated, the test will eventually succeed. J

Note that the algorithm may terminate even if ν is not isolated. It is the case for instance
when the threshold is ε-isolated for “long” runs only, but not necessarily for small runs, in
the sense that it is only required that for some n, any accepting runs of length at least n
satisfies either DSum(r) ≤ ν − ε or DSum(r) ≥ ν + ε. As a corollary of Lemma 21, RobT (ν, L)
is regular when ν is isolated: it suffices to run Algorithm Compute-Rob, complement the
automaton and restrict its language to dom(T ).

I Theorem 22. Let T be a DSum-transducer and ν ∈ Q and L a regular language. If ν is
isolated, then RobT (ν, L) is regular.
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r1 r2 r3 r4 r5

s s0 t1 t2 t3 t4 t5

s1 s2 s3 s4 s5

fault

g3

g3 g3 g3

g4

g3

g5
Σ \ fault

Figure 3 Finite state automaton P showing a desired property for the automatic transmission
system. All incoming edges to s1, . . . , s5 have label g3, incoming edges to t1, . . . , t5 have label g4

and r1, . . . , r5 have incoming edges labelled g5. All edges not shown lead to a rejecting sink state.

5 Implementation and Case Study

We describe an evaluation of the ideas presented thus far and their application to two case
studies: one involving robustness of control strategies to human mistakes and the other
involving glucose values for patients with type-1 diabetes. We have implemented in Python
the threshold synthesis problem (Problem 6) for the discounted and average costs. Our
implementation supports the specification of a language L specified as an NFA, a weighted
transducer T and a property P specified as some DFA. The implementation is available upon
request.

5.1 Robustness of Human Control Strategies
An industrial motor operates under many gears g1, . . . , g5. Under fault, the human operator
must take control of the machine and achieve the following: If the system goes into a fault
the operator must ensure that (a) the system is immediately set in gears 3− 5. Subsequently,
for the next 5 cycles: (b) it must never go to gear g1 or g2; and (c) must shift and stay at a
higher gear g4 or g5 after the 5th cycle until the fault is resolved.

Figure 3 shows a finite state machine P that accepts all words satisfying this property:
fault is not in the operator’s control but g1, . . . , g5 are operator actions. Consider that
the operator can perform this task in two different ways: σ1 : fault g4 g4 g4 g5 g5 versus
σ2 : fault g3 g3 g3 g3 g4. The input σ1 induces the run s, s0, t1, t2, t3, r4, r5 whereas the
input σ2 induces the run s, s0, s1, s2, s3, s4, t5. Both σ1, σ2 satisfy the property of interest
and as such there is nothing to choose one over the other. Suppose the human operator can
make mistakes, especially since they are under stress. We will consider that the operator
can substitute a command for gear gi with gi−1 (for i > 1) or gi+1 (for i < 5). We use a
weighted transducer T0 shown in Figure 4 to model these substitutions. The transducer
defines possible ways in which a string σ can be converted to σ′ with a notion of cost for
the conversion. In this example we consider two notions of cost: the DSum-cost, and the
Mean-cost. These costs now allow us to compare σ1 versus σ2. For instance, under both
notions we will discover that σ1 is much more robust than σ2. The robustness of σ1 under
both cost models is ∞ since any change to σ1 under the transducer continues to satisfy the
desired property. On the other hand σ2 has a finite robustness, since operator mistakes can
cause violations.

The use of a transducer allows for a richer specification of errors. For instance, transducer
T2 in Fig. 4 shows a model of “bounded” number of mistakes that assume that the operator
makes at most 2 mistakes whereas T3 in Fig. 4 shows a model with “bursty” mistakes that
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T0

s0

id, 0 gi | gi+1, 1
∀i ∈ {1, . . . , 4}

gi | gi−1, 1
∀i ∈ {2, . . . , 5}

T1

t0 t1 t2

id, 0

gj | gj−1, 1

gk | gk+1, 1

id, 0

gj | gj−1, 1

gk | gk+1, 1

id, 0

T2

t0 t1 t2 t3

id, 0

gj | gj−1, 1

gk | gk+1, 1

gj | gj−1, 1

gk | gk+1, 1

gj | gj−1, 1

gk | gk+1, 1

ε id, 0

Figure 4 Transducers modeling potential human operator mistakes along with their costs: T0

allows arbitrarily many mistakes whereas T1 restricts the number of mistakes to at most 2, whereas
T2 models a “bursty” set of mistakes. The edge a | b, w denotes a replacement of the letter a by b
with a cost w. For convenience T2 uses an ε transition that can be removed.

Table 1 Running times and robustness values computed for various input strings (the first letter
fault is common to all the strings and is omitted). All timings are measured in seconds, ε denotes
time < 0.01 seconds.

String T0 T1 T2

Disc. Avg. Time Disc. Avg. Time Disc. Avg. Time
g4g4g4g4g5g5 ∞ ∞ ε ∞ ∞ ε ∞ ∞ ε

g3g3g3g4g4g4 2−5 1
6 0.03 2−5 1

6 0.03 7
32

1
2 0.03

g3g4g4g4g5g4g4g4g3g4 0 0 0.04 0 0 0.06 0 0 0.06
g10

3 g10
4 0 0 0.07 0 0 0.09 0 0 0.1

g5
3g

15
4 g5

5g
3
4g5 7.45e− 9 0.035 0.12 7.45e− 9 0.035 0.2 2.6e− 8 0.103 0.2

g4
3g

25
4 g25

5 3.7e-9 0.019 0.15 3.73e-9 0.019 0.4 6.52e-9 0.056 0.3

assume that mistakes occur in bursts of at least 2 but at most 3 mistakes at a time. These
models are useful in capturing fine grained assumptions about errors that are often the case
in the study of human error or errors in physical systems.

Using the prototype implementation, we report on the robustness of various inputs for
this motivating example under the three transducer error models. The property P is as
shown in Figure 3 and the transducers T0 − T2 are as shown in Fig. 4. Table 1 reports
the robustness values for various input strings and the running time. We note that while
our approach takes about 0.3 seconds for a string of length 50, the prototype can be made
much more efficient to reduce the time to compute robustness. Also we note that discounted
sum becomes smaller as the strings grow larger while the average robustness value does not.
We conclude that average robustness is a more useful measure due to this property in this
particular example.

5.2 Robust Pattern Matching in Type-1 Diabetes Data
We will now apply our ideas to the robust pattern matching problem for analyzing clinical
data for patients with type-1 diabetes. People with type-1 diabetes are required to monitor
their blood glucose levels periodically using devices such as continuous glucose monitors
(CGMs). Data from CGMs is uploaded online and available for review by clinicians during
periodic doctor visits. Many applications such as Medtronic Carelink(tm) support the
automatic upload and visualization of this data by clinicians. Physicians are commonly
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Not Calib CalibDropoutNC DropoutC

alb,ub | a40,50, cost(dropout)
calibrate | calibrate, 0

ε

ε

alb,ub | alb′,ub′ , cost([lb, ub], [lb′, ub′])

calibrate | calibrate, 0

alb,ub | alb′,ub′ , 2× cost([lb, ub], [lb′, ub′])
calibrate | calibrate, 0

ε

ε

alb,ub | a40,50, cost(dropout)
calibrate | calibrate, 0

Figure 5 Transducer model for capturing the errors made by continuous glucose monitors.

interested in analyzing the data to reveal potentially dangerous patterns of blood glucose
levels: (a) Prolonged Hypoglycemia (P1): Do the blood glucose levels stay below 70 mg/dl
(hypoglycemia) for more than 3 hours continuously? 3 (b) Prolonged Hyperglycemia (P2):
Do the blood glucose levels remain above 300 mg/dl (hyperglycemia) for more than 3 hours
continuously? 4; and (c) Rebound Hyperglycemia (P3): Do the blood glucose levels go below
70 mg/dl and then rise rapidly up to 300 mg/dl or higher within 2 hours? 5

Note that these patterns specify “bad” events that should not happen. A straightforward
and strict pattern matching approach based on specifying the properties above will “hide”
potentially bad scenarios that “nearly” match the desired pattern for two main reasons. First,
the CGM can be noisy and inaccurate in a way that depends on the actual blood glucose
value measured and when it was last calibrated. (see Figure 5 and more detailed description
below). Secondly, the cutoffs involved such as 70 mg/dl and 3 hours are not “set in stone”.
For instance, a clinician will consider a scenario wherein the patient’s blood glucose levels
stays at 71 mg/dl for 2.75 hours as a serious case of prolonged hypoglycemia even though
such a scenario would not satisfy the property P1.

We propose to solve the approximate “pattern matching” problem. I.e, given a string
w, a transducer T and a language L, we are looking for a word w′ such that w′ ∈ L and
CT (w′, w) is as small as possible. In other words, we solve the threshold synthesis problem
(Problem 6) for a language L that is the complement of P1 (P2 or P3).

We partition the range of CGM outputs [40, 400] mg/dl into intervals of size 10 mg/dl
over the range [40, 80] mg/dl and 20 mg/dl intervals over the remaining range [80, 400] mg/dl.
This yields a finite alphabet Σ where |Σ| = 20. For instance a60,70 ∈ Σ represents a range
[60, 70]mg/dl. CGMs provide a reading periodically at 5 minute intervals. This yields a
string where each letter describes the interval that contains the glucose value.

Transducer. The CGM error model is given by a transducer that considers possible errors
that a CGM can make (see Fig. 5). The transducer has four states: (a) Not Calib denoting
that no calibration has happened, (b) Calib: denoting a calibration event in the past, (c)
DropoutNC: a sensor drops out under the non calibrated mode and (d) DropoutC: a
calibration event has happened and sensor drops out. The cost of changing a reading in the
range [lb, ub] to one in the range [lb′, ub′] is denoted by a function cost(lb, ub, lb′, ub′) These

3 Such an event can lead to dangerous (and silent) nighttime seizures.
4 Such an event can lead to a potentially dangerous condition called diabetic ketacidosis.
5 Rebound hyperglycemia can lead to large future swings in the blood glucose level, raising the burden
on the patient for managing their blood glucose levels.
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costs are set to be higher for ranges [lb, ub] that are close to hypoglycemia. Also note that
we can model calibration events and the doubling of costs if the sensor is in the calibrated
mode.

Property Specifications. We specify the three different properties described above formally
using finite state machines over the alphabet Σ as defined above. The prolonged hypoglycemia
property can be written as a regular expression: Σ∗(a40,50 + a50,60 + a60,70)36Σ∗ which can
be easily translated into an NFA with roughly 38 states. The number 36 represents a period
of 180 minutes since CGM values are sampled at 5 minute intervals. Similarly, the other two
properties are also easily expressed as NFAs.

Finally, we compose the transducer model with the properties P1-P3 individually and
calculate the mean robustness. More precisely, for each sequence of measures w, we compute
the minimal threshold ν such that w can be rewritten by T at mean cost ν into some w′
satisfying P1 (and P2, P3 respectively). The discounted sum robustness is not useful in this
situation since the patterns can match approximately anywhere in the middle of a trace. Also,
in most cases the discounted sum robustness value was very close to zero for any discount
factor < 1 or became forbiddingly large for discount factors slightly larger than 1, due to the
large size of the traces.

Patient Data. We used actual patient data involving nearly 50 patients with type-1 diabetes
undergoing a clinical trial of an artificial pancreas device, and nearly 40 nights of data per
patient, leading to an overall 2032 nights. Each night roughly corresponds to a 12 hour
period when CGM data was recorded [20]. This is converted to a string of size 140 (or
slightly larger, depending on how many calibration events occurred). The threshold synthesis
problem (Problem 6) was solved for each of the input strings, and the results were sorted by
the threshold robustness value for properties P1-P3.

Table 2 Total time taken per property and number of matches for various ranges of the threshold.

Prop. Total Time Threshold Values synthesized
0 (0, 0.1] (0.1, 1.0] > 1.0 ∞

P1 4hr10m31s 0 8 2 95 1927
P2 2hr10m30s 0 28 13 0 1991
P3 2h0m9s 0 11 10 0 2011

Table 2 shows for each property, the total time taken to complete the analysis of the
full patient data, and the number of matches obtained corresponding to various threshold
values. As the table reveals, no single trace matches any of the properties perfectly. However,
our approach is more nuanced, and thus, allows us to find numerous approximate matches
that can be sorted by their robustness threshold values. Note that many of the input traces
yield a threshold value of ∞: this signifies that no possible translation as specified by the
transducer can cause the property to hold.

Figure 6 shows two of the approximate pattern matches obtained with a small robustness
value. Notice that the CGM values on the left do not satisfy the criterion for a “prolonged
hypoglycemia” for 3 hours (P1) in a strict sense due to a single point at the end of the trace
that is slightly above the 70 mg/dl threshold. Nevertheless, our approach assigns this trace a
very low robustness. Likewise, the plot on the right shows a rapid rise from a hypoglycemia
to a hyperglycemia within 120 minutes (P3) towards the beginning, except that the peak
value just falls short of the threshold of 300 mg/dl.
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Figure 6 Examples of patterns with small robustness thresholds for properties P1 (left) with
robustness value of 0.7, and P3 (right) with robustness 0.02. The red triangles show calibration
events.

Note that related work in the area of monitoring cyber-physical systems (CPS) mentioned
earlier [16, 14, 12, 1] can be used to perform approximate pattern matching using robustness
of temporal properties over hybrid traces. However, we note important differences that are
achieved due to the theory developed in this paper. For one, the use of a transducer can
provide a nuanced model of how errors transform a trace, wherein the transformation itself
changes based on the transducer state. A detailed transducer model of CGM errors remains
beyond the scope of this study but will likely be desirable for applications to the analysis of
patterns in type-1 diabetes data.

6 Conclusion

In conclusion, we have shown how notions of robustness can be defined through weighted
transducers along with approaches for solving the threshold and kernel synthesis problems
for various cost aggregators such as Sum, DSum and Mean. In the future, we will investigate
these notions for richer classes of systems including timed and hybrid systems. We also plan
to investigate connections to robust learning of automata from examples.
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Appendix

Proof of Lemma 10

Proof. We first trim the graph G by removing all the vertices that cannot be reached from
VI and that cannot reach VF as those vertices cannot participate to paths from VI to VF .
The set of paths from VI to VF is empty iff the trimmed graph is empty and then the infimum
is equal to +∞. Now, we assume the trimmed graph to be non-empty, i.e. there is at least
one path from VI to VF . In that case, the infimum value is guaranteed to be a non-negative
rational number.

We now consider the three measures in turn. For Sum, computing the infimum amounts
to computing a shortest path in a finite graph with non-negative weights. Any PTime
algorithm that solves this problem can be used, e.g. Dijkstra shortest path algorithm. In the
case of sum, the infimum is always realized by a (simple) shortest path.

For Mean, we first note that the infimum is either realized by a simple path from VI to
VF of minimal Mean value, or it is equal to the minimal Mean value among the simple cycles
in the graph. Indeed, if c is a cycle of Mean m which is smaller than the Mean value of any
path from VI to VF then the family of paths ρk = p · ck · s, where p is simple path from VI to
c and s is a simple path from c to VF (such simple paths exist as the graph is trimmed), is
such that limk 7→ +∞ Mean(ρk) = Mean(c) and Mean(c) is the infimum. Now if all the simple
cycles have a value larger than the infimum, they cannot participate to a path or a family of
paths that realize the infimum as those cycles can be systematically removed and give paths
with smaller values. Now, we note that the minimum value of simple paths from VI to VF
can be computed in PTime by a simple dynamic program that considers the minimal values
of paths of lengths at most equal to the number of states in the trimmed graph. Moreover,
the minimum mean value of simple cycles in the trimmed graph can be computed in PTime
using the Karp algorithm [18]. It is easy to see that the infimum is feasible iff it equals the
minimum Mean value of simple paths.

We now turn to the DSum measure. Remember that the graph is trimmed according to VI
and VF . Theorem 1 of [5] tells us that we can compute for all v ∈ V , the infimum of DSum
values xv of paths reaching the target VF from v, in PTime. According to Lemma 1 of [5],
and similarly to the case of Mean, for all vI ∈ VI , the infimum DSum value xvI of paths from
vI to some vF ∈ VF is either realized by a simple path or by a family of paths of the form
p · ck · s. This is because if it is beneficial to include a cycle c to reduce the cost of a path
from vI to vF then it is beneficial to repeat the cycle arbitrarily many times. In particular,
the infimum value is feasible only when there exists a simple path with this value. In order
to decide the feasibility of the values xvI for all vI ∈ VI , we consider a subgraph where we
keep only those edges e = (v, v′) such that the optimal value xv of v can be realised through
the vertex v′. Formally, we construct G′ = (V,E′) with E′ ⊆ E and such that (v, v′) ∈ E′ if
xv = λxv′ + W(v, v′). We claim that, VF is reachable from v in G′ iff xv is feasible in G from
v, hence testing feasibility boils down to checking the existence of a path in G′.

The left-to-right implication comes by induction on the length of the path π to reach some
vF ∈ VF from v. If v ∈ VF then |π| = 0, xv = 0 and this value is feasible. Assume v 6∈ VF
and π = (v, v′)π′. By induction hypothesis, xv′ is feasible by some path π′′ from v′ to VF .
By construction of G′ we have xv = λxv′ + W(v, v′). Hence xv is feasible by (v, v′)π′′. For the
right-to-left implication, if v ∈ VF it is trivial, so assume that v 6∈ VF and let π = (v, v′)π′ a
path that realises xv. Assume xv > λxv′ + W(v, v′). This contradicts the optimality of xv, as
π witnesses a better discounted value from v to VF . Assume xv < λxv′ + W(v, v′), then since
π realises xv, we have xv = W(v, v′) + λDSum(π′). It implies DSum(π′) < xv′ . This contradicts
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the minimality of xv′ , as then π′ witnesses a better value for paths from v′ to VF . Hence
xv = λxv′ + W(v, v′) and (v, v′) is an edge of G′. By induction on the length of π, we can
also conclude that π′ is a path of G′ and then π is a path of G′ from v to VF . J

Proof of Lemma 14

Proof. First, we show that the complement of RobT (ν, L) , defined as

RobT (ν, L) = {w1 | ∃w2 · SumT (w1, w2) < ν ∧ w2 6∈ L}

is regular. First, let us assume that L is given by some NFA A, let A be a DFA recognizing
the complement of L. We first transform T into T ⊗A, which simulates T and controls that
the output words belong to L. In particular, it rejects whenever the rewriting by T is in L.
It is obtained as a product of T with A run on the output, with set of states QT ×QA. It
accepts whenever the final pair of states (p, q) is a pair of accepting states both for T and A.
Then, we have the following:

RobT (ν, L) = {w1 | ∃w2 · SumT⊗A(w1, w2) < ν}

Now, by definition of SumT⊗A(w1, w2) we have w1 ∈ RobT (ν, L) iff there exists a word w2
and an accepting run r over (w1, w2) such that Sum(r) < ν. Therefore, we can project
T ⊗A on its input dimension (thus, we just ignore the outputs) and obtain a Sum-automaton
that we call U such that RobT (ν, L) = {w1 | U(w1) < ν} , where U(w1) is defined as +∞ if
there is no accepting run of U on w1, and as the minimal sum of the accepting runs on w1
otherwise. Complementing again, we get: RobT (ν, L) = {w1 | U(w1) ≥ ν} . Now, we apply
directly Lemma 13 on U to conclude for regularity. The state-complexity is again given by
Lemma 13 and the fact that U has nT × nL states. J

Proof of Lemma 18

Proof. Let r be a run of length n of T . Since T is trim, there exists a continuation r′ of r,
and moreover we have DSum(rr′) = DSum(r) + λnDSum(r′). We have DSum(r′) ≤

∑+∞
i=0 λ

iµ =
µ(1 − λ)−1 where µ is the largest absolute weight of T . We let Bn = λnµ(1 − λ)−1. Let
n∗ be the smallest non-negative integer such that Bn∗ ≤ ε/2 (it exists since Bn is strictly
decreasing of limit 0). Assume that the length of r is greater than n∗ i.e. n ≥ n∗. As a
consequence Bn ≤ Bn∗ . Since ν is ε-isolated, we have two cases:
i. If DSum(rr′) ≤ ν − ε then DSum(r) ≤ ν − ε since DSum(r) ≤ DSum(rr′) by non-negativity

of the weights of T
ii. If DSum(rr′) ≥ ν + ε then DSum(r) ≥ ν + ε− λnDSum(r′). Moreover λnDSum(r′) ≤ Bn ≤

Bn∗ ≤ ε/2 by construction. So −λnDSum(r′) ≥ −ε/2 which implies DSum(r) ≥ ν + ε/2.
We have just shown that either DSum(r) ≤ ν − ε by (i) or DSum(r) ≥ ν + ε/2 by (ii). We
prove now that, for all continuation r′ of r we have (i) implies DSum(rr′) ≤ ν − ε and (ii)
implies DSum(rr′) ≥ ν + ε. In the first case, assume by contradiction that (i) holds and some
continuation r′ of r satisfies DSum(rr′) ≥ ν + ε. As a consequence λnDSum(r′) ≥ 2ε, which
is impossible since λnDSum(r′) ≤ Bn ≤ Bn∗ ≤ ε/2. In the second case, if DSum(r) ≥ ν + ε/2
then any continuation r′ of r satisfies DSum(rr′) ≥ DSum(r) > ν + ε/2. Since ν is ε-isolated,
we get DSum(rr′) ≥ ν + ε. J

Proof of Lemma 19

Proof. For all n, we let Bn = λnW (1− λ)−1, as in the proof of Lemma 18. A run r on a
pair (w1, w2) is called bad if DSum(r) ≤ ν, w2 6∈ L and r is accepting. Not that necessarily,
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w1 6∈ RobT (ν, L). The run r is called dangerous if |r| ≥ n and DSum(r) ≤ ν−Bn. A dangerous
run r can possibly be extended to a bad run rr′. It is possible iff there exists a continuation
r′ of r such that the output of rr′ is not in L. Note that the cost of rr′ does not matter
because the largest value r′ can achieve is Bn, keeping DSum(rr′) smaller than ν. Hence,
when a dangerous run is met, only a regular property has to be tested to extend it to a bad
run. We exploit this idea in the automata construction. Namely, An will accept words for
which there exists a bad run of length n at most, or a dangerous run of length n which can
be extended to a bad run.

• Automata construction. Let Runs≤nT be the runs of T of length at most n, and Q its
set of states. We assume that for all (w1, w2) ∈ RT , w2 6∈ L holds. This can be ensured
by taking the synchronised product of T (on its outputs) with an automaton recognizing
the complement of L. Let us now build the NFA An. Its set of states is Runs≤nT ∪ Q. Its
transitions are defined as follows: for all T -runs r of length n− 1 at most ending in some
state q, for all σ ∈ Σε, if there exists a transition t of T from state q on reading σ, then we
create the transition r σ−→ rt in An. From any run r of length n, we consider two cases: if r
is not dangerous, then r has no outgoing transitions in An. If r is a dangerous run, then we
add some ε-transition to its last state: r ε−→ p where p is the last state of r. Finally, we add a
transition from any state q to any state q′ on σ in An whenever there is a transition from q

to q′ on input σ in T . Accepting states are bad runs of Runs≤nT and accepting states of T .
• Correctness. Let us show that the family An satisfies the requirements of the lemma.

First, we show that L(An) ⊆ L(An+1). Let w ∈ L(An) and ρ some accepting run of An on
w. To simplify the notations, we assume here in this proof that runs of An, An+1 and T are
just sequences of states rather than sequences of transitions. By definition of An, ρ can be
decomposed into two parts ρ1ρ2 such that ρ1 ∈ (Runs≤nT )∗ and ρ2 ∈ Q∗ with an ε-transition
from the last state of ρ1 to the first of ρ2. We consider two cases. If |ρ2| = 0, then ρ = ρ1
and by definition of An+1, ρ is still an accepting run of An+1. In the other case, there is
a dangerous run r of T such that ρ1 can be written ρ1 = r[: 1]r[: 2] . . . r[: n] where r[: i] is
the prefix of r up to position i, and ρ2 = q1q2 . . . qk is a proper run of T . Note that q1 is
the last state of r by construction of An. Moreover, rρ2 is bad. Since r was dangerous at
step n, we also get that rq2 is dangerous at step n+ 1, in the sense that |rq2| = n+ 1 and
DSum(rq2) ≤ ν −Bn+1, by definition of Bn+1 and the fact that DSum(r) ≤ ν −Bn. So, we get
that the sequence of states ρ1.(rq2).q2 . . . qk is a run of An+1 on w is accepting in An+1 (note
that rq2 here is a state of An+1 and there is an ε-transition from (rq2) to q2), concluding the
first part of the proof.

Now, suppose that ν is ε-isolated for some ε. Then, take n∗ as given by Lemma 18 and
let us show that RobT (ν, L) ∩ dom(T ) ⊆ L(An∗) (the other inclusion has just been proved
for all n). Let w ∈ dom(T ) such that w 6∈ RobT (ν, L). There exists (w1, w2) ∈ RT and an
accepting run r of T on it such that DSum(r) ≤ ν and w2 6∈ L. In other words, r is bad. If
|r| ≤ n∗, then r[: 1]r[: 2] . . . r[: |r|] is an accepting run of An∗ on w, and we are done. Now
suppose that |r| > n∗. Since ν is ε-isolated, we have DSum(r) ≤ ν − ε. By Lemma 18, we
also get that DSum(r[: n∗]) ≤ ν − ε. By definition of n∗ being the smallest integer such that
Bn∗ < ε/2, we get DSum(r[: n∗]) ≤ ν − Bn∗ , hence r[: n∗] is dangerous. We can conclude
since then r[: 1]r[: 2] . . . r[: n∗]r[n∗]r[n∗ + 1] . . . r[|r|] is an accepting run of An∗ on w. J
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