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—— Abstract

We address the separability problem for straight-line string constraints. The separability problem
for languages of a class C by a class S asks: given two languages A and B in C, does there exist a
language I in S separating A and B (i.e., I is a superset of A and disjoint from B)? The separability
of string constraints is the same as the fundamental problem of interpolation for string constraints.
We first show that regular separability of straight line string constraints is undecidable. Our second
result is the decidability of the separability problem for straight-line string constraints by piece-wise
testable languages, though the precise complexity is open. In our third result, we consider the
positive fragment of piece-wise testable languages as a separator, and obtain an EXPSPACE algorithm
for the separability of a useful class of straight-line string constraints, and a PSPACE-HARDNESS
result.
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1 Introduction

The string data type is widely used in almost all modern programming and scripting
languages. Many of the well-known security vulnerabilities such as SQL injections and cross-
site scripting attacks are often caused by an improper handling of strings. The detection of
such vulnerabilities is usually reduced to the satisfiability of a formula which is then solved
by SMT solvers (e.g., [39, 40, 46, 30]). Therefore, string constraints solving has received
considerable attention in recent years (e.g. [13, 12, 27, 46, 47, 42, 28, 26, 1, 30, 10, 25]) and
this has led to the development of many efficient string solvers such as HAMPI [27], Z3-str3
[9], CVC4 [28, 29, 38|, S3P [42, 43], Trau [1, 2, 5], SLOTH [25] and OSTRICH [14].

In spite of these advances, most of these tools do not provide any completeness guarantees.
The foundational question regarding the decidability of string solving for a large class of
string constraints has several challenges to be overcome. A major difficulty is that any
reasonably expressive class of string constraints is either undecidable, or has its decidability
status open for several years [20, 21, 22]. In fact, the satisfiability problem is undecidable
even for the class of string constraints with concatenation (useful to model assignments in the
? Parosh Aziz Abdul.la, Mohamed Fé.a‘ouzi Atig, Vrunda Dave, and Shankara Narayanan Krishna;
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program) and transduction (useful to model sanitisation and replacement operations) [14].
A direction of research is to find meaningful and expressive subclasses of string constraints
for which the satisfiability problem is decidable (e.g., [3, 5, 21, 30, 25, 12]). An interesting
subclass, that has been studied extensively, is that of straight-line (SL) string constraints
(e.g., [25, 14, 30, 25, 12]). The SL fragment was introduced by Barcelé and Lin in [30].
Roughly, an SL constraint models the feasibility of a path of a string-manipulating program
that can be generated by symbolic execution. The satisfiability of the SL fragment was shown
to be EXPSPACE-complete in [30] and forms the basis of many of the tools above [25, 12].

In this paper, we focus on the fundamental problem of interpolation/separability for
the SL fragment of string constraints. An interpolant for a pair of formulas A, B is a
formula over their common vocabulary that is implied by A and is inconsistent with B. The
Craig-Lyndon interpolation technique is very well-known in mathematical logic. McMillan
[32] in his pioneering work, has also recognized interpolation as an efficient method for
automated construction of abstractions of systems. Interpolation based algorithms have
been developed for a number of problems in program verification [32, 33, 34]. Interpolation
procedures have been implemented by many solvers for the theories most commonly used in
program verification like linear arithmetic, uninterpreted functions with equality and some
combination of such theories. In most of these algorithms, the interpolants were simple. The
interpolation technique can also be used to check the unsatisfiability. In fact, the existence
of an interpolant for formulas A and B implies the unsatisfiability of A A B.

The notion of separators in formal language theory is the counterpart of interpolants
in logic. The separability problem for languages of a class C by a class S asks: given two
languages I, E € C, does there exist a language S € S separating I and E? That is, I C S
and SN E = (. The language S is called the separator of I, E. Separability is a classical
problem of fundamental interest in theoretical computer science, and has recently received a
lot of attention. For instance, regular separability has been studied for one-counter automata
[16], Parikh automata [15], and well-structured transition systems [17]. In the following, we
use the terms interpolant or separator of two SL string constraints to mean the same thing,
since the solutions of a string constraint can be interpreted as a language.

In this paper, we first show that any string constraint ¢ can be written as the conjunction
of two SL string constraints A and B. Therefore, the interpolation problem for the pair A
and B can be used to check the unsatisfiability of the string constraint ¢. (Recall that the
satisfiability problem for general string constraints is undecidable [14].)

Then, we consider the regular separability problem for SL string constraints. We show
that this problem is undecidable (Theorem 2) by a reduction from the halting problem of
Turing Machines. The main technical difficulty here is to ensure that the encoding of a
sequence of configurations of a Turing machine results in SL string constraints.

Due to this undecidability, we focus on the separability problem of SL string constraints by
piece-wise testable languages (PTL). A PTL is a finite Boolean combination of special regular
languages called piece languages of the form ¥*a1X"as ... ¥%a, X", where all a; € X. PTL is
a well-studied class of languages in the context of the separability problem (e.g. [36, 18, 19]).
Furthermore, among the various separator classes considered in the literature, the class
of piecewise testable languages (PTL) seems to be the most tractable: PTL-separability
of regular languages is in PTIME [36, 18]. To decide the PTL-separability of SL string
constraints, we first encode the solutions of an SL string constraint as the language of
an Ordered Multi-Pushdown Automaton (OMPA) (Section 4.1). Then, we show that the
PTL-separability of SL constraints can be reduced to the PTL-separability of OMPAs. To
show the decidability of the latter problem, we first prove that the language of an OMPA: (1)
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str old = real_escape_string(oldIn);
str newl = real_escape_string(newInl);
str new2 = real_escape_string(newIn2);
str pass = database_query("SELECT password FROM users WHERE userID=" userID);
(old == pass newl == new2 newl != old )
(newInl==newIn2 newInl != oldIn)
str query = "UPDATE users SET password=" + newl + "WHERE userID=" + userID;
(query) ;

Figure 1 A pseudo PHP code for changing password.

is a full trio [23] and (2) has a semilinear Parikh image. Using (1), we obtain the equivalence
of the PTL separability problem and the diagonal problem for OMPAs from [19], where the
equivalence has been shown to hold for full trios. Next, the decidability of PTL-separability
problem for OMPAs is obtained from the decidability of the diagonal problem for OMPAs:
the latter is obtained using (2) and [19] where the decidability of the diagonal problem has
been shown for languages having a semilinear Parikh image. As a corollary of these results,
we obtain the decidability of the PTL-separability problem for SL string constraints and
OMPAs; however the exact complexity is still an open question. In fact, it is an open problem
in the case of OMPAs with one stack (i.e., Context-Free Languages (CFLs)) [19].

Given the complexity question, we propose the class of positive piecewise testable languages
(PosPTL) as separators. PosPTL is obtained as a negation-free Boolean combination of piece
languages. As a first result (Theorem 12) we show that deciding PosPTL-separability for
any language class has a very elegant proof: it suffices to check if the upward (downward)
closure of one of the languages is disjoint from the other language. Using this result, we prove
the PSPACE-completeness of the PosPTL-separability for CFLs, thereby progressing on the
complexity front with respect to a problem which is open in the case of PTL-separability for
CFLs. Then, we focus on a class of SL string constraints where the variables used in outputs
of the transducers are independent of each other. This class contains SL string constraints
with functional transducers (computing partial functions, by associating at most one output
with each input). We prove the decidability and EXPSPACE membership for the PosPTL-
separability of this class by first encoding the solutions of string constraints as outputs of two
way transducers (2NFT), and then proving the decidability of PosPTL-separability for 2NFT.

Due to lack of space, missing proofs of all results can be found in the full version [4].

As a practical motivation of PosPTL (and PTL), consider the following pseudo-PHP code
in Figure 1 obtained as a variation of the code at [31]. In this code, a user is prompted
to change his password by entering the new password twice. In this code,
represents the function which executes the query given as its parameter. We use ‘4’ operator
as concatenation of strings and variables (variables are represented using blue color). The
user inputs the old password o1dIn and the new password twice : newIni and newIn2. These
are sanitized and assigned to old, newl and new2 respectively. The old sanitized password is
compared with the value pass from the database to authenticate the user, and also with the
new sanitized password to check that a different password has been chosen, and finally, the
sanitized new passwords entered twice are checked to be the same.

Sanitization ensures that there are no SQL injections. To ensure the absence of SQL
attacks, we require that the query query does not belong to a regular language Bad of bad
patterns over some finite alphabet ¥ (i.e., the program is safe). This safety condition can be
expressed as the unsatisfiability of the following formula ¢ given by
newl = T(newInl) A new2 = T(newIn2) A old = T(01ldIn) A newl = new2 Apass = oldA
old # newl A newInl = newIn2 A query = u-newl - v-userID A query € Bad.
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Note that the check newl = new2 has to be done by the server to ensure the sanitized new
passwords entered twice are same; however, the check newInl = newIn?2 is not redundant,
since it can happen that post sanitization, the passwords may agree, but not before. The
sanitization on lines 1, 2 and 3 is represented by the transducer T and u, v are the constant
strings from line 7. It is easy to see that the program given here is safe iff the formula ¢
is unsatisfiable. Observe that the formula ¢ is not in the straight line fragment [30] since
variable newl has two assignments. Further, it also has a non-benign chain making it fall out
of the fragment of string programs handled in [5]. However the formula ¢ can be rewritten
as a conjunction of the two formula ¢; and 9 in straight-line form where
¢1 : newl = T(newInl) A old = T(01ldIn) A pass = old A query = u-newl - v - userID A query € Bad
¢2 : new2 = T(newIn2) A newl = new2 A old # newl A newInl = newIn2.

It is easy to see that the program is safe if solution sets of 1 and ¢s are separable by
some PosPTL set, in that case, we can say that there is no solution which is common to ¢,
and o and thus ¢ = 1 A o is unsatisfiable.

Related work. The satisfiability problem for string constraints is an active research area
and there is a lot of progress in the last decade (e.g., [37, 27, 30, 12, 14, 5, 21, 22, 3, 45]). An
interpolation based semi-decision procedure for string constraints has been proposed in [3].
As far as we know, this is the first time the separability problem has been studied in the
context of string constraints.

2 Preliminaries

Notations. Let [i, j] denote the set {i,...,7} for ¢,j € N. Let X be a finite alphabet. 3*
denotes the set of all finite words over ¥ and X" denotes ¥*\{e} where € is the empty word.
We denote X U {e} by .. Let u € ¥*. We use u® to denote the reverse of u. The length of
the word u is denoted |u| and the i*® symbol of u by u[i]. Given two words u € ¥* and v € X*,
we say that u is a subword of v (denoted w < v) if there is a mapping h : [1, |u|] — [1, |v]]
such that (1) u[i] = v[h(i)] for all i € [1, |u|], and (2) k(i) < h(j) for all i < j.

(Multi-tape)-Automata. A Finite State Automaton (FSA) over an alphabet ¥ is a tuple
A=(Q,%,9,I,F), where @ is a finite set of states, 6 C Q X X, x @ is a set of transitions,
and I C Q (resp. F C @ ) are the initial (resp. accepting) states. A accepts a word w iff
there is a sequence qpa1qias - - - anqy such that (g;—1,a;,¢;) € 6 forall 1 <i < n, g € I,
gn € F,andw=ay----- an. The language of A, denoted L(A), is the set all accepted words.

Given neN, a n-tape automaton T is an automaton over the alphabet (3.)™. It recognizes
the relation R(7)C(X*)™ that contains the n-tuple of words (wy, ws, . .., ws,) for which there is
a word (a(l,l), a2,1); - - - ,a(nyl)) cee (a(lvm), (2,m)s - - - ,a(n’m))EE(T) with w; = Qi 1)  Q(i,m)
for all i € {1,...,n}. A transducer is a 2-tape automaton.

Well-quasi orders. Given a (possibly infinite set) C, a quasi-order on C is a reflexive and
transitive relation CC C' x C'. An infinite sequence ¢y, ca,... in C' is said to be saturating
if there exists indices ¢ < j s.t. ¢; C ¢;. A quasi-order C is said to be a well-quasi order
(wqo) on C if every infinite sequence in C is saturating. Observe that the subword ordering
= between words u, v over a finite alphabet ¥ is well-known to be a wqo on X* [24].

Upward and Downward Closure: Given a wqo T on a set C, a set U C C' is said to be
upward closed if for every @ € U and b € C, with a C b, we have b € U. The upward
closure of a set U C C' is defined as Ut = {b € C | Ja € U,a C b}. It is known that every
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upward closed set U can be characterized by a finite minor. A minor M C U is s.t. (i)
for each a € U, thereisa b € M s.t. b C a, and (ii) for all a,b € M s.t. a < b, we have

a = b. For an upward closed set U, let min be the function that returns the minor of U.

Downward closures are defined analogously. The downward closure of a set D C C is defined
as D] ={b € C|3Ja € D,bC a}. The notion of subword relation and thus upward and
downward closures naturally extends to n-tuples of words. The subword relation here is
component wise i.e. (u1,...,un) Sp (V1,...,0,) iff u; < v; for all ¢ € [1,n].

String Constraints. An atomic string constraint ¢ over an alphabet ¥ and a set of string
variables X is either: (1) a membership constraint of the form z € L(A) where z € X and A
is a FSA (i.e., the evaluation of z is in the language of a FSA A over ), or (2) a relational
constraint of the form (¢',t) € R(T) where t and ¢’ are string terms (i.e., concatenation of
variables in X) and T is a transducer over X, and ¢t and ¢’ are related by a relation recognised
by the transducer 7. (¢',t) € R(T) can also be written as ¢’ = T (¢), that is, 7 produces ¢’ as

the output on input ¢. For a given term ¢, |t| denotes the number of variables appearing in t.

A string constraint W is a conjunction of atomic string constraints. We define the semantics
of string constraints using a mapping 7, called evaluation, that assigns for each variable a
word over . The evaluation 7 can be extended in the straightforward manner to string
terms as follows n(ty - t2) = n(t1) - n(t2). We extend also 7 to atomic constraints as follows:

(1) n(z € L(A)) = T iff n(z) € L{A), and (2) n((t,') € R(T)) = T iff (n(t),n(t")) € R(T).

The truth value of ¥ for an evaluation 7 is defined in the standard manner. If n(¥) = T
then 7 is a solution of ¥, written n = ¥. The formula VU is satisfiable iff it has a solution.

k
A string constraint is said to be Straight Line' (SL) if it can be rewritten as U/ A A\ ¢;

i=1
where U’ is a conjunction of membership constraints, and 1, ..., ¢y are relational constraints
such that (1) there is a sequence of different string variables z1, 3, ..., 2z, with n > k, and

(2) ¢; is of the form (z;,t;) € R(7;) such that if a variable z; is appearing in ¢; then j > i.

A string constraint in the SL form is called an SL formula. Observe that any string formula
can be rewritten as a conjunction of two SL formulas (by using extra-variables).

» Lemma 1. Given a string constraint U, it is possible to construct two SL string constraints
Uy and Uy such that ¥ is satisfiable iff U1 N Uy is satisfiable.

Let ¥ be a string constraint and z1, ..., z, be the set of variables appearing in ¥. We use
L(P) to denote the language of ¥ which consists of the set of n-tuple of words (uy, ..., u,)
such that there is an evaluation n with n(¥) = T and n(z;) = u; for all ¢ € [1,n].

The Separability Problem. Given two classes of languages C and S, the separability problem
for C by the separator class S is defined as follows: Given two languages I and E from the
class C, does there exist a separator S € S such that I C .S and EN S = (.

3 Regular Separability of String Constraints.

Let ¥ be an alphabet and k,n be two natural numbers. A set R of n-tuples of words over X
is said to be regular (REG) iff there is a sequence of finite-state automata A 1y, . .., Agn)
for every i € [1,k] such that R= Ule[E(A(i’l)) X -oo X L(Ain))]. The REG separability

! Tn [30], the authors consider Boolean combinations of membership constraints. Our results can be
extended to handle such formulas. In [30], they also consider constraints of the form =z = ¢t. Such
constraints can be encoded using our relational constraints.
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problem for string constraints consists in checking for two given string constraints ¥ and
U’ over the string variables z1, ..., z, whether there is a regular set R C (X*)" such that
L(¥) C Rand RNL(YV) = 0.

The regular separability problem is undecidable in general. This can be seen as an imme-
diate corollary of the fact that the satisfiability problem of string constraints is undecidable
[35, 14] even for a simple formula of the form (x,x) € R(T) where T is a transducer and x is
a string variable. To see why, consider ¥ to be (z,z) € R(T) and ¥’ such that £(T') = T*.
It is easy to see that ¥/ and ¥ are separable by a regular set iff ¥ is unsatisfiable. In the
following, we show a stronger result, namely that this undecidability still holds even for REG
separability between two SL formulas.

» Theorem 2. The REG separability problem is undecidable even for SL string constraints.

4 PTL-Separability of String Constraints

Given the undecidability of REG separability, we focus on the separability problem using
piece-wise testable languages (PTL). We show that the problem is in general undecidable
and then we show its decidability in the case of SL formulas. The undecidability proof
is exactly the same as in the case of the REG separability (since ¥* is a PTL) while the
decidability proof is done by reduction to its corresponding problem for the class of Ordered
Multi Pushdown Automata (OMPA) [7, 11] (which we show its decidability). In the rest of
this section, we first recall the definition of PTL and extend it to n-tuples of words. Then,
we define the class of OMPAs and show the decidability of its separability problem by PTL.
Finally, we show the decidability of the separability problem for SL formulas by PTL.

Piece-wise testable languages. Let X be an alphabet. A piece-language is a regular
language of the form X*a1 X% as¥* ... ¥*aipX* where a1, a9, ..., ar € X. The class of piecewise
testable languages (PTL) is defined as a finite Boolean combination of piece languages [41].
We can define PTL for an n-tuple alphabet with n € N, as follows: The class of PTL over
n-tuple words (denoted n-PTL) is defined as the finite Boolean combination of languages of
the form (X*)"v(32*)™ - - (2*)"v (X*)"™ where v; € (X.)" for all i € [1,k].

Ordered Multi Pushdown Automata. Let X be a finite alphabet and n > 1 a natural
number. Ordered multi-pushdown automata extend the model of pushdown automata
with multiple stacks. An n-Ordered Multi Pushdown Automaton (OMPA or n-OMPA)
is a tuple A = (@, %,T,6,Qo, F) where (1) Q,Qp and F are finite sets of states, initial
states and final states, respectively, (2) T is the stack alphabet and it contains the special
symbol L, and (3) J is the transition relation. OMPA are restricted in a sense that pop
operations are only allowed from the first non-empty stack. A transition in ¢ is of the form
(¢,L,....L, A;e,....€) = (¢',71,--.,7n) where A; € T'. represents the symbol that will
be popped from the stack j on reading the input symbol a € ., and ~; € I'* represents
the sequence of symbols which is going to be pushed on the stack i. The condition that
Ay =...=A,_1 =1 (resp. Aj41 =...= A, =€) corresponds to the fact that the stacks
1,...,7—1 (resp. j+1,...,n) are required to be empty (resp. inaccessible).

A configuration of A is of the form (q,w,ai,...,a,) where ¢ € Q, w € X* and
a1, an € (T\{L})*-{L}. The transition relation — between the set of configurations of
A is defined as follows: Given two configurations (¢, w, a1,...,a,) and (¢, w’,af,...,al),

n

we have (¢, w,aq,...,an) — (¢ w',af,...,al) iff there is a transition (¢, 41,...,4,) —=°

(¢',71,---,7n) € 6 such that w = aw’ and o} = ~;u; where a; = A;u; for all ¢ € [1,n]. We
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use —* to denote the transitive and reflexive closure of —. A word w € ¥* is accepted
by A if there exists a sequence of configurations ¢y, ..., ¢, such that: (1) ¢; is of the form
(go,w,L,..., L), with gy € Qo, (2) ¢, is of the form (gf,€, L,..., L), with g € F, and (3)
¢; = ¢ for all ¢ € [1,m — 1]. The language of A (denoted by L(A)) is defined as the set of
words accepted by A. The languages accepted by OMPA are referred to as OMPL.

In the following, we show that the separability problem for OMPL by PTL is decidable.

As a first step, we show that the class of OMPL forms a full trio [23, 19]. We first recall
the definition of a full-trio. Let L be a language over an alphabet A, and let B C A. The
B-projection of a word w € A* is the longest scattered subword containing only symbols

from B. For example, if A = {a,b,c}, B ={b,c}, then the B-projection of w = ababac is bbe.

The B-upward closure of L is the set of all words that can be obtained by taking a word
in L and padding it with symbols from B. For example, if L = {w} for w as above, then
the B-upward closure of L is the set B*aB*bB*aB*bB*aB*cB*. A class of languages C is
a full trio if it is effectively closed under (1) B-projection for every finite alphabet B, (2)
B-upward closure for every finite alphabet B, and (3) intersection with regular languages.

» Lemma 3. The class of OMPLs forms a full trio.

To connect the PTL separability problem of SL string constraints to that of OMPL,
we first use lemma 4. Lemma 4 states that the PTL separability problem for OMPL is
equivalent to the diagonal problem for OMPL. We recall the diagonal problem [19]. Fix a
class of languages C as above and a language L € C over alphabet ¥ = {ay,...,a,}. Assume
an ordering a1 < --- < a, on X. For a € ¥ and w € L, let #,(w) denote the number of
occurrences of a in w. The Parikh image of w is the n-tuple (#q,(w),...,#4,(w)). The
Parikh image of L is the set of all Parikh images of words in L. An n-tuple (mq,...,m,) € N
is dominated by another n-tuple (dy,...,d,) iff m; < d; for all 1 < i < n. The diagonal
problem for C is the decision problem, which, given as input, a language L from C asks
whether each n-tuple (m,...,m) € N is dominated by some Parikh image of L.

» Lemma 4. The PTL-separability and diagonal problems are equivalent for OMPLs.

Proof. This equivalence has been shown for full trios in [19] and by Lemma 3, OMPLSs form
a full trio. <

» Lemma 5. Fach language L in OMPL has a semilinear Parikh image and its representation
can be effectively computable.

» Theorem 6. Given two OMPAs Ay and As, checking whether there is a PTL L such that
L(A1) CL and LN L(A2) =0 is decidable.

Proof. The proof follows from Lemmas 5, 4 and [19], from where we know that the diagonal
problem is decidable for classes of languages having effectively semilinear Parikh images. <«

» Remark 7. For the case of 1—OMPA, the PTL separability problem is already known to be
decidable [19] but its complexity is still an open problem.

4.1 From SL formula to OMPA

In the following, we show that the n-PTL separability problem for SL formulas can be reduced
to the PTL separability problem for OMPLs. To that aim, we proceed as follows: First, we
show how to encode an n-tuple of words (€ (X*)™) as a word over (X U {#})*. Then, we
show how to encode the set of solutions of an atomic relational constraint (x,t) € R(7) using
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the stacks of an OMPA. Finally, we construct an OMPA that accepts exactly the language
of a given SL formula ¥. This construction will make use of the constructed OMPAs that
encode the set of atomic relational constraints appearing in ¥. Let ¥ be an alphabet.

Encoding an n-tuple of words. Let n be a natural number. We assume w.l.o.g. that the
special symbol # does not belong to . We define the function Encode that maps any n-tuple
word w = (w1, ..., w,) € (%)™ to the word wy#Hwa# - - - #wy,.

From SL atomic relational constraints to OMPAs. Let z1,z9,...,z, be a sequence of
string variables. Let P; be a relational constraint of the form (z;,t;) € R(7;) such that if a
variable z; is appearing in the term ¢;, then j > 4. In the following, we show that we can
construct an OMPA A; with (3n+|t;|+2—3i) stacks such that if A; starts with a configuration
where the first (n — ¢) stacks contain, respectively, the evaluations n(z;41),...,n(z,) (and
all the other stacks are empty), then it can compute an evaluation n(x;) of the variable x;
such that: (1) (n(z;),n(t;)) € R(T;) and the evaluations n(z;),...,n(z,) are stored in the
last n — 4 + 1 stacks of A;. Such an OMPA A; will be used as a gadget when constructing
the OMPA A that accepts exactly the language of a given SL formula W.

» Lemma 8. We can construct an OMPA Ai:(Qi,E,{J_}UE,(Si,{qf"“},{qumal}) with
(3n + |t;] + 2 — 3i)-stacks such that for every u;,...,u, € %*, we have (¢ e u;11Ll,
e UL L L) (qumal, 6L, Loug Luiq Lo un L) iff (n(xs),n(t;)) € R(T;)
with n(z;) = u; for all j € [i,n].

Proof. In the proof, we omit the input € from the OMPA configurations, and only write the
state, and stack contents. Let us assume that the string term ¢; is of the form y1y2 -y},
Observe that y; € {x;41,...,2,}. The OMPA A, proceeds in phases starting from the con-
figuration (¢ w; 1L, ..., u, L, L,..., 1). To begin, stacks 1 to n — 4 contain u;y1, ..., un,
the evaluations of z;y1,...,2,, and all other stacks are empty. The computation proceeds
in 4 phases. The stacks indexed 1,...,n —¢and n —i+ 1,...,2n — 2¢ will be used in
the first phase below. The second phase uses stacks indexed n —i + 1,...,2n — 2i and
2n—2i+1,...,2n — 2i + |t;| along with the last n — i stacks indexed 2n — 2i + |t;| + 3 to
3n—3i+|t;|+2. In the third phase, stacks indexed 2n—2i+1,...,2n—2i+¢;],2n—2i+|t;]+1
are used. In the last phase, stacks indexed 2n — 2i + |¢t;| + 1 and 2n — 2i + |¢;| + 2 are used.
At the end of the 4 phases, stacks indexed 2n — 2i + |t;| + 2,...,3n — 3i + |t;| + 2 hold the

evaluations of z;, x;11,...,2,, and all other stacks are empty.
“0 00 OO0 0O O O
1...... nN—1% p—itl...... 9n—2i 2n—2i+1...... 20=2i + [ti] o _gitt41 2n—2ik|t[42 20—2HEH3 .. 30— B[t +2
®Before phase L

Phase 1. The OMPA A; pops the symbols, one by one, from the first (n—i)-stacks 1,...,n—i
and pushes them into the stacks from index (n—i+1) to (2n — 2i), respectively. At the end of
this phase, the new configuration of the OMPA A; is (g™, L,..., L, uﬁ_li, R 77 I I
1). That is, stacks n —i +1,...,2n — 2¢ have uﬁ_l, ...,ul’ while all other stacks are empty.

T~ T
Ok @0 OO0 00 O

1o..... n—1% n_itl...... -2 2n—2i+1...... 2020+ 6] g i [g)41 2n—2it]e] 42 202t 30— B [t +2
end of phase L
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Phase 2. We do two things. (1) the contents of the n — i stacks n —i+1,...,2n — 2 are
moved (in reverse) into the n — i stacks 2n — 2i + |t;| +3,...,3n — 3i+ |¢;| + 2. This results in
the stacks 2n —2i+[t;|+3,...,3n—3i+|t;|+2 containing u; 11, ..., u,. (2) If y; appearing in
t; is the variable 2, ¢, then the content of stack n —i+ £ (withn—i+1 <n—i+£ < 2n — 2i)
is also moved (in reverse) to stack 2n — 2i + j, 1 < j < |¢;|. This results in stack 2n — 2i + j
containing ;4. Thus, at the end of (1), (2), the stacks n — i+ 1,...,2n — 2i are empty,
the stack 2n — 2i + |t;| + £ + 2 contains u,1¢, the evaluation of x;, for £ > 1, while stack
2n —2i+k for 1 < k < |t;| contains w4y, if yx = Ziym. The two stacks 2n — 2i + |¢t;| + 1 and
2n — 2i + |t;| + 2 are empty at the end of this phase. Stack contents of 2n — 2i + k, 1<k<|t,|
are referred to as vy in the figure.

0 00 0O W 0 O b9

...... N =4 on—itl......20—20 =201 =2 ] o 0ip01 2n— 20kt 42 20— 20|t 43 B0 — B0k |ti] + 2

end of phase 2

Phase 3. The OMPA A; mimics the transducer 7;. The current state of A; is the same as
the current state of the simulated transducer. Each transition of 7; of the form (g, (a,b),q’)
is simulated by (1) moving the state of A; from ¢ to ¢/, (2) pushing the symbol a into the
stack (2n — 2i + |t;| + 1), and (3) popping the symbol b from the first non-empty stack
having an index between 2n — 2i + 1 to 2n — 2i + |¢;|. Recall that the stacks 2n — 2i + 1 to
2n — 2i + |t;| contain the evaluations of y1,...,yp,|, for (n(z:), n(y)n(y2). ... n(Ye,)) ER(T:).
When the current state of A; is in a final state of 7; and the stacks from index 2n — 27 +1 to
2n — 2i + |t;| are empty, then we know that n(y1)...n(yp,)) is indeed related by 7; on n(z;).

flnal

Then A; changes its state to ¢; Observe that, in case n(y1) ...7(yj,|) does not belong

to the domain of 7;, then the outgoing transition is not defined.

0 00 00

...... N—1% nitl......2n—2i 2n—2i+1......2n— 22+\t|2n QZH”H on— zmt [+2 QQL it[t;|+3......3n — xz+\f\+2
end of phase =

The Last Phase. At the end of the third phase, the current configuration of A; is (g f"ml, 1,

y L ult Lo L n-L) such that (u;,vy---vp,|) € R(T;): that is, the last n —i stacks
2n 2i+ |tz| +3,..., 3n SH— [t:| + 2 contain w;41, . . ., Uy, and stack 2n —2i+ |¢;| + 1 contains
the reverse of u;. Then, A; pops, one-by-one, the symbols from the (2n — 2i + |t;| + 1)-th
stack and pushes them, in the reverse order, into the stack (2n — 2i + |t;| + 2). Thus,
the new configuration of A; is of the form (qual, Ly, Lui L uiq L, .o up L) such that
(wi,v1---vp,)) € R(Ti) where v; = wy if y; = 2, for 1 < j < |ty].

o 00 00 DD@

------ N8 n—itl......2n—2 2n=2i41.....2n=2+t| 5, oirppin1 2n—2it|t;|+2 2n-2itltl3. . 30— 3i+ [t 42

end of phase 4

<

From SL formula to OMPAs. In the following, we first construct an OMPA that accepts
the encoding of the set of solutions of an SL formula.

» Lemma 9. Given an SL formula ¥, with x1,...,x, as its set of variables, it is possible to
construct an OMPA A such that L(A) = Encode(L(T)).

16:9
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Proof. Let us assume that W is of the form /n\ x; € L(A;) A /k\ p; where ¢1,...,¢ are
relational constraints such that ¢; is of the folrrrll (x4, t:) € 72(’75)1 The OMPA A will have
(n—k+ Zle(Qn — 20+ 2 + |t;])) stacks. A first guesses an evaluation for the variables
Zk+41,---,Ty in the first n — k stacks and then starts simulating the OMPA A, (see Lemma
8 for the definition of Ay) in order to compute a possible evaluation of the variable xj such
that the relational constraint (xy,t;) € R(7x) holds for that evaluation. After this step, the
stacks from index (2n —2k+ |t;|+2) to (3n — 3k + [tx| +2) contain the evaluation of the string
variables x, ..., z,, and all remaining stacks are empty. Now A can start the simulation
of the OMPA Aj;,_; (Lemma 8) in order to compute a possible evaluation of the variable
xk—1 such that (zg,tr) € R(Ti) A (¥g—1,tk—1) € R(Tk—1) holds for that evaluation. At the
start of the simulation of Ag_; by A, the n — k + 1 stacks (indexed (2n — 2k + |tx| + 2) to
(3n—3k+|tr|+2)) contain the evaluations of xy, ..., x,, and the next 2n—2(k—1)+|t_1|+2
stacks are used to simulate phases 2-4 of Aj,_1. At the end of this, the n — k + 2 stacks
backwards from the stack indexed (3n — 3k + |tg| +2) + 2n — 2(k — 1) + |¢tx—1| + 2 contain the
evaluations of xy_1,...,x,. Now, A simulates Ag_o,..., A, in the same way. At the end of

this simulation phase, the last n-stacks of A contain an evaluation of the string variables
k
Z1,...,T, that satisfies A ;. Let us assume that the current configuration of A at the

i=1

end of this is of the form (¢f™ 1,... L usl,usl,... ,u, ). Then, A starts popping,

one-by-one, from the n-th stack from the last and outputs the read stack symbol € 3 while

ensuring that the evaluation uy of 21 belongs to £(.A;). When the n-th stack from the last is

empty, A outputs the special symbol #. Then, A does the same for the i-th stack from last,

with 4 € [1,n — 1], which contains the evaluation of x;11. If A succeeds to empty all stacks,

then this means that the evaluation 1 which associates to the variable x;, the word u,; for all
n

i € [1,n] satisfies A x; € L(A;). Hence, uy#us# - - - #u, is accepted by A iff n = 0. <
i=1

The following lemma shows that the PTL-separability problem for SL formulas can be

reduced to the PTL-separability problem for OMPLs.

» Lemma 10. Let Uy and Wy be two SL formulae with x1, ..., x, as their set of variables.
Let Ay and Ay be two OMPAs such that L(A;)=Encode(L(V1)) and L(Az)=Encode(L(V3)).
Wy, Uy are n-PTL separable iff Ay, Ay are PTL-separable.

As an immediate corollary of Theorem 6, Lemma 10, we obtain our main result:

» Theorem 11. The n-PTL separability problem of SL formulae is decidable.

5 PosPTL-Separability of String Constraints

In this section, we address the separability problem for string constraints by a sub-class of
PTL, called positive piece-wise testable languages (PosPTL). A language is in PosPTL iff
it is defined as a finite positive Boolean combination (i.e., union and intersection but no
complementation) of piece-languages. Given a natural number n € N, this definition can
naturally be extended to n-tuples of words in the straightforward manner (as in the case
of PTL) to obtain the class of n-PosPTL. In the following, we first provide a necessary and
sufficient condition for the n-PosPTL separability problem of any two languages. Following
result follows easily from PosPTL being upward closed.

» Theorem 12. Two languages I and E are n-PosPTL separable iff ITNE = 0 iff INE] = ().
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The rest of this section is structured as follows: First, we show that the PosPTL separability
is decidable for OMPLs; in the particular case of CFLs, this problem is PSPACE-complete.
Then, we use the encoding of SL formulas to OMPAs (as defined in Section 4), and show that
n-PosPTL separability of SL formulas reduces to the PosPTL-separability of corresponding
OMPLs. Finally, we consider the PosPTL-separability problem for a subclass of SL formulas,
called right sided SL formulas. We show that the PosPTL separability problem for this
subclass is PSPACE-HARD and is in EXPSPACE.

5.1 PosPTL-Separability of SL formulas
First, we show that the PosPTL separability for OMPLs is decidable.
» Theorem 13. PosPTL separability of OMPLs is decidable.

Proof. Consider C to be the class of OMPLs in Theorem 12. Let I and E be two languages
belonging to C as stated in Theorem 12. Then, the set min(I1) is effectively computable as
an immediate consequence of the Generalized Valk-Jantzen construction [6]. The main idea
behind this construction is to start with an empty minor set M (so to begin, M C I) and
keep adding new words w € I to M if w is not already in M1. Before adding a new word,
we need to test that 7 N M7 # () (the complement of M7 intersects with I). This test is
decidable since (i) OMPLs are closed under intersection with regular languages and (ii) the
emptiness problem for OMPA is decidable [7]. At each step, we remove all the non-minimal
words from M (since M is finite). The algorithm terminates due to the Higman’s Lemma
[24] (the minor of an upward closed set is finite). When the algorithm terminates, I C M1
and thus 11 C M?. By construction, M C I and M1 C IT. Thus, M1 = IT. Since M is a
minor set, we have min(I1) = M. Using (i) and (ii), we obtain the decidability of checking
the emptiness of I1 N E, and thus PosPTL separability of OMPL is decidable. |

As mentioned in section 4, the complexity of PTL-separability for 1-OMPL is open;
however, we show that the PosPTL separability problem for 1-OMPL is PSPACE-COMPLETE.

» Theorem 14. The PosPTL-separability for CFLs is PSPACE-COMPLETE.

For the decidability of the n-PosPTL separability of SL formulas, we use the encoding of
SL formulas to OMPAs (as defined in section 4), and show that the n-PosPTL separability
of SL formulas reduces to the PosPTL separability of their corresponding OMPLs. The
decidability of the n-PosPTL separability of SL formulas follows from Theorem 13.

» Lemma 15. Given two SL formulas ¥ and V', with x1,...,x, as their set of variables.
Let A and A’ be two OMPAs such that L(A) = Encode(L(V)) and L(A’) = Encode(L(T’)).
Then, ¥ and V' are separable by an n-PosPTL iff A and A’ are separable by a PosPTL.

As an immediate corollary of Lemma 13 and 15, we obtain the following theorem:

» Theorem 16. The n-PosPTL separability problem of SL formulae is decidable.

5.2 PosPTL-Separability of Right-sided SL formula

Unfortunately, the proof of Theorem 16 does not allow us to extract any complexity result.

Therefore, we consider in this subsection a useful fragment of SL formulas, called right-sided
SL formulas. Roughly speaking, an SL formula ¥ is right-sided iff any variable appearing
on the right-side of a relational constraint can not appear on the left-side of any relational
constraint. Let us formalize the notion of right-sided SL formulas. Let us assume an SL
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n k
formula ¥ of the form A z; € L(A;) A A (24, t;) € R(T;) with z1,...,x, as set of variables.

Then, ¥ is said to be m%ghlt-sz'ded if none Loflthe variables x1, ..., x) appear in any of ¢1, ..., tg.
We call zpi1,...,2, (resp. x1,...,2x) independent (resp. dependent) variables. Observe
that the class of SL formulas with functional transducers can be rewritten as right-sided SL
formulas (detailed proof can be found at [4]). A transducer T is functional if for every word
w, there is at most one word w’ such that (w’,w) € R(T) (T computes a function). An
example of a functional transducer is the one implementing the identity relational constraint
(allowing to express the equality « = t).

In the following, we show that the PosPTL-separability problem for right-sided SL formulas
is in EXPSPACE. To show this result, we will reduce the PosPTL-separability problem for
right-sided SL formulas to its corresponding problem for two-way transducers.

Two way transducers. Let X be a finite input alphabet and let -, 4 be two special symbols
not in . We assume that every input string w € ¥* is presented as Fw-, where -, - serve
as left and right delimiters that appear nowhere else in w. We write X4 =X U {F,4}. A
two-way automaton A = (Q, X, d, I, F') has a finite set of states @, subsets I, F' C @ of initial
and final states and a transition relation § C @ x X4 x @ x {—1,1}. The -1 represents that
the reading head moves to left after taking the transition while a 1 represents that it moves
to right. The reading head cannot move left when it is on -, and cannot move right when
it is on . A configuration of A on reading w’ = Fw is represented by (g, i) where ¢ € Q
and 7 is a position in the input, 1 < i < |w| 4+ 2, which will be read in state ¢. An initial
configuration is of the form (go,1) with go € I and the reading head on . If w’ = wjaws
and the current configuration is (g, |wi| + 1), and (¢, a,q’,—1) € §, then there is a transition
from the configuration (g, |wi|+ 1) to (¢, Jw1]) (hence a # F). Likewise, if (¢,a,q’,1) € 6,
we obtain a transition from (g, |wi]| + 1) to (¢/,|wi| 4+ 2). A run of A on reading Fw- is a
sequence of transitions; it is accepting if it starts in an initial configuration and ends in a
configuration of the form (g, |w| 4+ 2) with ¢ € F' and the reading head on . The language
of A (denoted L(A)) is the set of all words w € ¥* s.t. A has an accepting run on Fw-.

We extend the definition of a two-way automaton A = (Q,%,4,1, F) into a two-way
transducer (2NFT) A = (Q,%,T, 4, I, F) where T is a finite output alphabet. The transition
relation is defined as a finite subset § C Q x Xy 4 X Q@ X I'* x {—1,1}. The output produced on
each transition is appended to the right of the output produced so far. A defines a relation
R(A) = {(w,u) | w is the output produced on an accepting run of u}. The acceptance
condition is the same as in two-way automata. Sometimes, we use the macro-notation
(p,a,q,a,0) to denote a sequence of consecutive transitions (p,a, s, a,d) and (s,b,q,€,d’)
in § with d+d =0, b € ¥4 and s is an extra intermediary state of A that is not used
anywhere else (and that we omit from the set of states of A).

PosPTL separability of 2NFT. In the following, we study the PosPTL separability of 2NFT.
We define here the notion of wisiting sequences (similar to crossing sequences of 2NFT [8]),
which will be used in the proof of Lemma 17. Let w=F ay...a, - be an input word and let
p be a run of the 2NFT on w. A visiting sequence at a position x of a word w, in a run p of
w captures the states visited in order in the run, each time the reading head is on position =,
along with the information pertaining to the direction of the outgoing transition from that
state. For example, in run p, if position x is visited for the first time in state ¢, and the
outgoing transition chosen in p from ¢ during that visit had direction +1, then ¢+ will be
the first entry in the visiting sequence. For a run p, the visiting sequence at a position z is

defined as the tuple p|lx = (q‘f1 , qu, ... ,q,‘f") of states that have, in order, visited position x
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1 2 3 4

in p, and whose outgoing transitions had direction di,...,d,. In the example, the visiting
sequence at position 2 is (qf, gs q; ), while those at 1 and 3 respectively are (qo+ , qi) and

(45 ,q8)-

» Lemma 17. Given a 2NFT T, if (v,u) is in min(R(T)1T) then |u| and |v| are of at most
exponential length in the size of T.

Proof. In the following, we show that, if (v,u) € min(R(T)1), then |u|] < inpax = Zg‘l

((21Q))* - |£]) and |v] < outiax = Eg‘l((ﬂQ\)l 2] - 1Q] - Ymax) Where max represents the
maximum length of an output on any transition in 7. To show this result, we need to define
normalized runs as follows: A run is normalized if it visits each state at most once on each

position z. In the following, we show that (v,u) can be generated by a normalized run p.

Assume that (v,u) is accepted by a run p’ which is not normalized. Then, we will have,
in p/, two visits to some position x of the word in the same state gq. After the first visit
to position x in state g, the transducer has explored some positions till its second visit to

position z in state ¢. This part does not produce any output since (v,u) is a minimal word.

We can delete this explored part of the run in between, obtaining again, an accepting run,
which reads u while producing v. For example, in the figure if we have gg = g2, then we have
another run without visiting positions 1, 2 for a second time. Observe that repeating this
procedure will lead to a normalized run p accepting (v,u). The length of visiting sequences in
a normalized run is < |@] and hence the number of visiting sequences is at most exponential
in |Q)|, precisely it is < Z‘fj‘l 21Q)".

Suppose |u] > inpax. Then there exists a visiting sequence which is repeated on reading
the same input symbol in the accepting run of u, at positions i # j. By deleting the part
between the ith and (j — 1)th position, we again obtain an accepting run over a word u’,
which is a strict subword of u, and whose output v’ is also a subword (may not be strict)

of v, a contradiction to (v,u) € min(R(T)7T). Now suppose |u| < inpax but |v] > outmax.

We saw that in the normalized run, each visiting sequence has length at most |@Q|. Then,

since |u| < inpax, on reading each position of u, at most (|Q|)¥max symbols can be produced.

Hence, we have |[v| < (|Q]) - Ymax - |ul- <
From Theorem 12 and Lemma 17, the following result holds:
» Lemma 18. The 2-PosPTL separability problem for 2NFT is in EXPSPACE.

Proof. Using Theorem 12, we know that R(71)t NR(72) = @ iff 71 and T3 are 2-PosPTL
separable. Here is an NEXPSPACE algorithm.
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(1) Guess some (v,u) s.t. the lengths of v, u are at most as given by the proof of Lemma 17.
(2) Check if (v,u) € R(T1). If yes, then do (3). Else exit.

(3) Check if (v,u) T NR(T2) # 0.

The guessed word (v, u) has exponential length in the size of T;. To check if (v,u) € R(Ty),
we construct another transducer 77 that first checks that its input word is u, then it comes
back to - and starts simulating 77, while also keeping track, longer and longer prefixes of
v. We then compare those prefixes with the output produced by 7;. This gives rise to
exponentially many states (maintaining prefixes of u and v) and we finish when 77 enters an
accepting state, and at the same time, the produced word is v. Since R(7) = {(v, u)}NR(T7)
by construction, checking if (v,u) € R(71) can be reduced to the emptiness problem of 77.
After this, we check the emptiness of (v, u) T N"R(7Tz). This is done as follows. First, construct
automata A,, A, accepting languages {u}1 and {v}1 respectively. The number of states
of A,, A, are exponential in the number of states of 77, since the lengths of u,v have this
bound. Then, we construct a transducer 75 such that R(735) = {(v,w)} 1+ N"R(72) in a similar
manner as 7{. T reads the input word while simulating A,,. On entering an accepting state
of A,, it comes back to . Then it simulates 73, and, on the outputs produced, simulates
A,. If A, enters an accepting state at the same time 7 accepts, then we are done. The
state space of T is exponential in the states of 77 and linear in the states of 7. Since
R(TY) = {(v,u)} T+ NR(T2), checking the emptiness of (v,u) T NR(7z) can be reduced to
checking the emptiness problem of 7;. The emptiness problem for 2NFT is known to be
PSPACE-COMPLETE [44]. Thus, in our case, the emptiness of 7{ and 75 can be achieved
in space exponential in 77. Since we can handle the second and third steps in exponential
space, we obtain an NEXPSPACE algorithm. By Savitch’s Theorem, we obtain the EXPSPACE
complexity. |

From Right-sided SL formulas to 2NFT. Hereafter, we show how to encode the set of
solutions of a right-sided SL formula using 2NFT. Let 3 be an alphabet and # ¢ X.

» Lemma 19. Let ¥ be a right-sided SL formula over %, with x1,xq,...,x, as its set
of variables. Then, it is possible to construct, in polynomial time, a 2NFT Ay such that
R(Ag)={(ur#us# - - - #up, w1 FwaF# . .. #wy,)|us#us - - - #u,EEncode(L(V)) and w;=u;

if x; is an independent variable }.

n k
Proof. Let us assume that ¥ is of the form A y; € L(A)A A (yi, i) € R(T:) with y1, ..., yn
j i=1

1=1 1=

is a permutation of x1,...,x,. Let 7 : [1,n] — [1,n] be the mapping that associates to each
index 4 € [1,n], the index j € [1,n] s.t. 2; = y; (or 2; = yr(;)). We construct Ay as follows:
Ay reads n words over X separated by # as input. We explain hereafter the working of Ay
when it produces the assignment for z; ( the other variables are handled in similar manner).
e Assume that z; is a dependent variable. Let ¢ 1)=(yr1), tr1)) ER(Tr(1)), With try=x4,
Tiy ..., and 2, €{Yki1, Yrt2, - - -, Yn ) for all j. First, Ay reads x;, i.e. the first variable in
tr(1). To read x;,, it skips (i; — 1) many blocks separated by #s of the input, and comes
to w;,. On the first symbol of w;,, Ag starts mimicking transitions of 7y from its initial
state, while producing the same output as 7r(;). On the same output, Ay mimics the
transitions of A ;) starting from the initial state to check the membership constraint of g (q).
This can be done by a product construction between A,y and 7). For instance, A will
have a transition ((p, q),a, (p’,4¢'),b,1) (resp. ((p,q),a, (p’,q’),b,0)), if there are transitions
(p, (b,a),p") (resp. (p,(b,€),p")) in Tr1y and (q,b,q") in Ay If it reaches # or + in the
input, it remembers the current states of 71y and A1), say (p1,q1) in its control state.
Next, Ay reads x;, in the input. To read z;,, Ay moves to - and then changes direction.
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As before it reaches z;, by skipping (ia — 1) many #s, and starts reading the input (the first
symbol of w;,) from the state (p1,q1) stored in the finite control. Transitions are similar to
explained above. This procedure is repeated to read z;, ...x;, . After reading x;_, if the next
state contains the pair (pc, qc), where p. (resp. g.) is a final state of Tr(1) (resp. A1), we
can say that the output produced till now satisfies @1y and yr(1) € L(Ax(1)). Observe that
this procedure requires |t77(1)| reversals, and thus we need at most |tﬁ(1)\ copies of transducer
Tr(1)- Thus the number of states required are at most polynomial.
e Assume now that x; is an independent variable, then Ay needs to read z;. We need
a single pass of the input which verifies if the first block corresponding to value of 7 in
input indeed satisfies its corresponding membership constraint. During this pass Ag mimics
transitions of A, (1 starting from its initial states, and outputs the same letter as input.
The above procedure is repeated for all variables from x5 to x,. After each pass, Ay
moves to F and then changes direction. Irrespective of whether z; is dependent or not, while
going from z; to x;41, @ € [1,n — 1], Ay outputs a # as separator. From the description
above, it can be seen that if x; is independent, then its evaluation u; given as the ith block
of the input is equal to the output w;, and if x; is a dependent variable, then the output
block w; is the output of 7, (;). It is clear from the construction that Ay requires at most
polynomial states in input. More details can be found at [4]. <

Notice that the above construction of 2NFT relies on the right-sidedness: if a variable z;
appears in the output of 7; and also in the input of 7, for some k, then we will have to store
the produced evaluation of x; in order to use it later on when processing 7. However, there

is no way to store the produced evaluation of x; or compare it with its input evaluation.

Next, we show that the PosPTL separability problem for right-sided formulas can be reduced
to its corresponding problem for 2NFT.

» Lemma 20. Let ¥y and V4 be two right-sided SL formula, with x1,...,x, as their set of
variables. Let Ay, and Ag, be the two 2NFTs encoding, respectively, the set of solutions of
Uy and ¥y (as described in Lemma 19). Then, the two formulae U1 and Uo are separable by
n-PosPTL iff R(Agw,) and R(Ay,) are separable by a 2-PosPTL.

Proof. Let R(Ay,) and R(Ag,) be separable by a 2-PosPTL L. By definition, L is a
Boolean combination (except complementation) of piece languages of words over the two

tuple alphabet (X U {#})2. We can assume w.l.o.g. that L is the union of piece languages.

This is possible since the intersection of two piece languages can be rewritten as a union
of piece languages. Consider L' = L N (R x R), where R is a regular language consisting
of words having exactly (n — 1) #s. We claim that L’ can be rewritten as the union of
languages of the form [Li#Lo# ... #Ly) X [R1#Ra# ... #R,] where the L;s and R;s are
piece languages over X, and that L' is also a separator of R(Ay,) and R(Ag,).

We prove this claim inductively. As a base case consider L to be a piece language
(CU{#D") (a1, b)) (CU{#D 2. (am, b)) (U {#})*)2. Let S be a finite set containing
only the minimal words of the form (w,w’) such that ajas...an, <X w, biby...by < W,
and the symbol # appears exactly (n — 1)-times in w and w’. Thus LN (R x R) =

U [S*a)E*dh ... a,S*] x [S*0) S0y ... b,E*]. So LN (R x R) is the union of
(af...a} ,by...b))ES
piece klangul:ages of the form [Li#Lo# ... #L,]| X [Ri#Ro# ... #R,] where the L;s and R;s
are piece languages over X. Now assume that L is of the form L; U Ly. It is easy to
see that L N (R x R) is equivalent to (L; N (R x R)) U (La N (R x R)). Thus we can use
our induction hypothesis to show that L N (R x R) is the union of languages of the form
[Li#Lo# ... #Ly] X [R1#Ra# ... #R,] where L; and R;s are piece languages over 3.
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Next we prove that L' is a separator of R(Ag, ) and R(Ag,). Indeed if (v,u) € R(Ag, ),
then (v,u) € R X R, by definition of R(Ay,). Since L is a separator, we have (v,u) € L and
hence (v,u) € L'. Suppose (v,u) € R(Ay,) N L', then (v,u) € LNR(Ay,) since (v,u) € L/,
and L' C L, which is a contradiction with the assumption that L is a separator.

Now we are in a condition to provide n-PosPTL separator for £(¥;) and £(¥3), using
L'. Given a language of the form [Li#Lo# ... #L,] X [Ri#Ra# ... #R,] where L; and
R;s are piece languages, we associate to it an n-PosPTL equivalent to ((L; N Ry) X (La N
Ry) x ... x (L, N Ry)): the idea is to generate the n dimensions in the n-PosPTL from
the n #-separated blocks in two dimensions. This definition is extended in the straight-
forward manner to union of piece languages. Let K be the n-PosPTL associated to L’.
K is indeed a separator of £(V¥;) and £(¥3): Suppose v = (wy,...,w,) € L(¥;), then
(w1t ... #wnp, w1 # ... #wy,) € R(Ay,) (from the definition of Ag,). Since L’ is a separator,
(wr# ... #wp, w1 ... #w,) € L'. By construction of K, (wy,...,w,) € K. Assume by
contradiction v = (wy,...,w,) € L(Vs) N K, then (wi# ... #wy, w1 ... #w,) € L'. Since
L' " R(Ag,) = 0, then (w1# ... #wnp, wi# ... #w,) ¢ R(Ag,). By definition of Ayg,, if
(w1, ..., wy) € L(Vsg), then (w1# ... #wy, w1# ... wy,) € R(Ay,). Hence contradiction.

For the other direction of the proof, assume the n-PosPTL S is a separator of £(¥;)
and L£(¥3). Then S can be rewritten as the union of (Ly X Ls X ... X L,) where L;s are
piece languages. Replace each n-piece language (L1 X Lo X ... X L,) of S with the 2-piece
language (L4 #L4# ... #11) x (SU{#))# ... #(EU{#))"), where L = (SU{#})*a1 (£U
{#D* . can(BU{#D)* if Ly = X*a1X* ... a,2*. Denote the union of such languages by S’.
It is a 2-PosPTL over (X U {#}). We show that S’ is a 2-PosPTL separator of R(Ayg, ) and
R(Ag,). Let (v, u) = (v1# ... #vp, ur# ... #uy) € R(Ag, ), then (v1,...,v,) € L(¥1), and
thus (v1,...,v,) € S (since S is a separator). This implies that (v, u) € S’ by its construction.
Suppose (v, u) = (v1# ... #o,, w1 # ... #uy,) € R(Ag,) NS, then (v, va,...,v,) € L(Vs).
Also (v1,v2,...,v,) € S by construction of S’. This leads to a contradiction that S is
separator of £(¥) and £L(¥5). So S’ is a 2-PosPTL separator of R(Ay,) and R(Ayg,). <«

» Theorem 21. The n-PosPTL separability of right-sided SL formulas is in EXPSPACE and
ts PSPACE-HARD.

Proof. Given two right-sided SL formulas ¥; and W5, one can construct corresponding
two way transducers Ay, and Ay, with polynomial states, as mentioned in Lemma 19.
Thanks to Lemma 20, the n-PosPTL separability reduces to 2-PosPTL separability of R(Agy, )
and R(Ag,). The 2-PosPTL separability of 2NFTs is in EXPSPACE (Lemma 18). Hence
n-PosPTL separability of SL formulae is also in EXPSPACE. For the PSPACE-HARD lower
bound, we reduce the emptiness of k-NFA intersection to PosPTL separability of right sided
SL. Let Ay, ..., Ay be k-NFA. We want to decide if N/_, A; = 0. Let ¥; be A z; =
T A /\le(xieAi), and Uy be z€X* A /\le(x,EE*). U, and Uy are PosPTL separable iff
ﬂ§:1 A = 0. <
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