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Abstract
We consider the problem of synthesising polynomial ranking functions for single-path loops over
the reals with continuous semi-algebraic update function and compact semi-algebraic guard set.
We show that a loop of this form has a polynomial ranking function if and only if it terminates.
We further show that termination is decidable for such loops in the special case where the update
function is affine.
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1 Introduction

The method of proving program termination through ranking functions is one of the oldest
and most fundamental ideas in computer science. More recently, the idea of automatically
synthesising ranking functions has emerged as an important topic in automated verification
and program analysis. Particular attention has focussed on linear ranking functions. Indeed
for simple programs, such as linear constraint loops, there are complete methods for synthes-
ising linear ranking functions: such methods find a ranking function whenever one exists,
typically by reduction to linear and integer programming [16]. We refer to survey [2] for a
thorough discussion of the extensive literature on this topic. More expressive generalisations
of linear ranking functions include lexicographic linear ranking functions [3, 9], multiphase
linear ranking functions [4], and piecewise linear ranking functions [18].

The advent of powerful techniques for solving non-linear constraints has led to another
direction generalising linear ranking functions, namely polynomial ranking functions. Semi-
definite programming was used in [10] to synthesise polynomial ranking functions on poly-
nomial loops, while [8] uses cylindrical algebraic decomposition. More recently, polynomial
ranking functions [7] have been used to prove termination of probabilistic programs.

In this paper we consider the problem of synthesising polynomial ranking functions for
semi-algebraic loops: single-path loops over the reals in which the update computed by the
loop body is a continuous semi-algebraic function and the loop guard is a semi-algebraic set.
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15:2 On Ranking Function Synthesis and Termination for Polynomial Programs

Since we allow polynomials of arbitrary degree as ranking functions, the search for a ranking
function cannot immediately be reduced to a constraint satisfaction problem. Our main
result shows that if the guard set is compact then a semi-algebraic loop admits a polynomial
ranking function if and only if it terminates. The assumption of compactness is essential
here: it is straightforward to give examples of terminating loops with non-compact guard
that admit no polynomial ranking function. Nevertheless, the class of programs we consider
is highly non-trivial. Indeed, to the best of our knowledge, the termination problem for
semi-algebraic loops with compact guard set is open (see the discussion below), hence the
equivalent problem of deciding the existence of polynomial ranking functions is likewise open.
Our main result illustrates the utility and generality of polynomial ranking functions, and
offers a potential approach to resolve the decidability of termination for the class of loops in
question.

As a second contribution, we show that in the case of semi-algebraic loops in which the
guard is compact and the update map is affine, non-termination is equivalent to the existence
of a polynomial invariant for the update that is contained in the guard set, and hence
decidable. For comparison, recall that Tiwari [17] has given a method to decide termination
over the reals of loops with convex polyhedral guard sets and linear update functions (i.e.,
the same loop dynamics and an incomparable class of loop guards). The case of termination
of linear loops with general polyhedral guards (i.e., potentially neither compact nor convex)
remains open to the best of our knowledge.

Related Work. It is shown in [1, Lemma 12] and [14, last paragraph in the proof of
Theorem 8] that a linear constraint loop with compact polyhedral guard terminates if and
only if it has a linear ranking function. This is similar in form to our main result, but involves
an incomparable class of transition relations in which non-determinism is allowed but all
constraints must be linear.

A partial decidability result for termination of single-path polynomial loops with compact
connected guard sets is given in [13]. Under certain semantic assumptions on the loop, this
procedure reduces the problem of deciding termination to that of finding fixed points of
polynomial maps. Another partial decidability result is [11], which considers a syntactic
subclass of polynomial loop programs called triangular weakly non-linear and reduces the
termination problem to the decision problem for the existential theory of real-closed fields.

For loops with linear updates and convex linear guard conditions, termination is known
to be decidable when program variables respectively range over R, Q, and Z – see [6, 12, 17].
In [19] decidability is shown for loops whose guard sets can be expressed as conjunctions of
polynomial inequalities and whose updates are linear functions which satisfy an additional
technical condition called the “non-zero minimum property”.

2 The main theorem

Recall that K ⊆ Rn is said to be semi-algebraic if it is definable by a Boolean combination
of inequalities f(x1, . . . , xn) < 0 and f(x1, . . . , xn) ≤ 0 with f ∈ Z[x1, . . . , xn]. A function
g : Rm → Rn is moreover said to be semi-algebraic if its graph is a semi-algebraic set. Our
main result concerns the existence of ranking functions for single-path loops with compact
semi-algebraic guard set and semi-algebraic update map:

I Theorem 1. Let g : Rn → Rn be a continuous semi-algebraic map. Let K ⊆ Rn be a
compact semi-algebraic set. If for all x ∈ K there exists an m ∈ N such that gm(x) /∈ K then
there exists a polynomial ranking function for g on K, i.e., a polynomial f ∈ R[x1, . . . , xn]
satisfying f(x)− f(g(x)) ≥ 1 and f(x) ≥ 0 for all x ∈ K.
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Since the existence of a ranking function clearly implies termination, Theorem 1 shows
that such a semi-algebraic loop terminates precisely when it has a polynomial ranking
function. The theorem clearly fails if we remove the requirement that K be closed: for
loop guard K = (0, 1) and transition function g(x) = 2x there cannot be a polynomial
ranking function since the time to escape K under the action of g is not bounded from
above. Likewise the theorem fails in case K is closed but not bounded. For example, consider
K = {(x, y) ∈ R2 : x ≥ 0, y ≥ 1} and g(x, y) =

(
x− 1

y , y + 1
)
. The loop is terminating since∑∞

y=1
1
y diverges, but from

∑n
y=1

1
y < lnn+ 1 one sees that the time to termination from

(m, 1) is at least em−1, which precludes the existence of a polynomial ranking function.
The proof of Theorem 1 relies on several lemmas. In the rest of this section we give an

informal overview of the proof structure, formulate the key lemmas, and finally show how
they imply the main result.

According to the Stone-Weierstraß theorem, a continuous function on K can be uniformly
approximated arbitrarily closely by polynomials, and hence it suffices to find a continuous
function f : K ∪ g(K)→ R satisfying f(x)−f(g(x)) ≥ 1 for all x ∈ K. We show the stronger
assertion that there exists a continuous function f satisfying f(x) = f(g(x)) + 1 for all x ∈ K.

The first step associates with the loop update function g an injective “covering map” g̃.
Specifically, we construct a space T and continuous surjective map p : T → K ∪ g(K) such
that there is S ⊆ T and an injective semi-algebraic map g̃ : S → T making the following
diagram commute:

S T

K K ∪ g(K)

p�S

g̃

p

g

We then construct a continuous function f̃ : T → R that satisfies the functional equation
f̃(x) = f̃(g̃(x)) + 1 for all x ∈ S and is constant on each fibre p−1(x), x ∈ K ∪ g(K). To
construct f̃ we find a partition of T into finitely many semi-algebraic pieces S1, . . . , Sm such
that (i) the boundary of a piece is contained in a union of pieces of lower dimension, (ii) S is
a union of pieces, (iii) each piece Si ⊆ S is mapped by g̃ onto another piece Sj . We order
the pieces of a given dimension by the transitive closure of the relation Si = g̃(Sj). This is
a well-founded partial ordering thanks to the termination assumption – that for all x ∈ K
there exists m such that gm(x) 6∈ K. Ignoring for now the technical requirement that f̃ be
constant on the fibres of p, we can essentially construct f̃ as follows: On the zero-dimensional
pieces Si which are minimal with respect to this ordering let f̃(Si) = 0. Extend f̃ to the
remaining zero-dimensional pieces using the functional equation f̃(x) = f̃(g̃(x)) + 1. Now f̃

can be defined on the minimal one-dimensional pieces by interpolating the boundary values.
It can be extended to all one-dimensional pieces using the functional equation. Continuing
with the higher-dimensional pieces in the same manner, we eventually obtain a continuous
solution to the functional equation f̃(x) = f̃(g̃(x)) + 1 on all of T . We will also be able to
ensure that it is constant on the fibres of the projection p, so that we obtain a continuous
solution to the equation f(x) = f(g(x)) + 1 on K ∪ g(K) by letting f(x) = f̃(x̃) where x̃ is
any point in T satisfying p(x̃) = x.

As a preliminary result we observe that if the iteration of a continuous function escapes a
compact set then the number of iterations required to escape is bounded independently of
the starting point.

CONCUR 2020
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I Proposition 2. Let g : Rn → Rn be a continuous map. Let K ⊆ Rn be a compact set.
Assume that for every x ∈ K there exists a positive integer m such that gm(x) /∈ K. Then
there exists a positive integer M such that for all x ∈ K there exists i ≤ M such that
gi(x) /∈ K.

Proof. For every positive integer m ∈ N let Bm = {x ∈ Rn | gm(x) /∈ K}. Since K is
closed and g is continuous, each of the sets Bm is open. The assumption says that every
x ∈ K is contained in Bm for some m. In other words, the family (Bm)m∈N is an open
cover for K. Since K is compact this cover has a finite subcover Bm1 , . . . , Bms

. Now take
M = max{m1, . . . ,ms}. J

Let us now state the required lemmas more formally. The first lemma concerns the
existence of a suitable covering space, which allows us to replace g with an injective map.

I Lemma 3. Let g : Rn → Rn be a continuous semi-algebraic map. Let K ⊆ Rn be a
compact semi-algebraic set. If for all x ∈ K there exists m ∈ N such that gm(x) /∈ K then
there exist a compact semi-algebraic set T ⊆ RN , a continuous semi-algebraic surjection
p : T → K ∪ g(K), and an injective continuous semi-algebraic map g̃ : p−1(K)→ T such that
the following diagram commutes:

p−1(K) T

K K ∪ g(K)

p

g̃

p

g

Proof. By Proposition 2 there exists a number M ≥ 0 such that for all x ∈ K there exists
i ≤M such that gi(x) /∈ K. Let

H =
{

(i, x, g(x), g2(x), . . . , gi(x), 0, . . . , 0) ∈ Rn(M+2)+1 | i ∈ N, i ≤M + 1, x ∈ K
}
.

Then H is clearly a compact semi-algebraic set.
Let

p : H → Rn, p(i, x, g(x), . . . , gi(x), 0, . . . , 0) = gi(x).

Let T = p−1(K ∪ g(K)) ⊆ H and S = p−1(K). Then S and T are compact semi-algebraic
subsets of H and p maps S onto K and T onto K ∪ g(K) (as we allow i = 0 in the definition
of H).

Let

g̃ : S → T, g̃(i, x, g(x), g2(x), . . . , gi(x), 0, . . . , 0) = (i+1, x, g(x), g2(x), . . . , gi+1(x), 0, . . . , 0).

Then g̃ is a continuous, injective semi-algebraic map. It satisfies the equation p◦g̃(x) = g◦p(x)
for all x ∈ S. J

We will construct a ranking function for g̃ that is constant on fibres of the projection.
This will be achieved through the construction and refinement of certain semi-algebraic
cellular decompositions of the codomain T of g̃. For the definition of semi-algebraic cellular
decomposition compare, e.g., [5, Definition 9.1.11].

I Definition 4. A subset C ⊆ Rn is a cell of dimension d ∈ N if there is a semi-algebraic
homeomorphism Φ: D → C where D is the open disk in Rd. Given a closed semi-algebraic
set S ⊆ Rn, a semi-algebraic cellular decomposition of S is a finite partition of S into cells
such that for each cell C its closure in Rn is the union of C and a collection of other cells of
strictly smaller dimension than C.
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Based on the above, we introduce the notion of an invariant semi-algebraic stratification:

I Definition 5. Let g : S → T be a semi-algebraic map between semi-algebraic sets S and
T , with S ⊆ T and T closed. A g-invariant semi-algebraic stratification of T consists of a
partition of T into finitely many semi-algebraic sets S1, . . . , Sm, called strata, together with
a semi-algebraic cellular decomposition of T , such that
1. Each stratum is a finite union of cells, homeomorpic to an open disk.
2. The set S is a finite union of strata.
3. For all strata Si ⊆ S, the set g(Si) is a stratum.
The boundary of a stratum S is defined to be cl (S) \ S. Note that this is different from the
topological boundary of S regarded as a subset of Rn. Since every stratum S is a finite union
of cells, and the closure of every cell is also a union of cells, the boundary of S is a finite
union of cells.

The next two lemmas constitute the core of the proof of Theorem 1. They will be proved
in Sections 3 and 4 respectively.

I Lemma 6. Let g : S → T be an injective continuous semi-algebraic map between compact
semi-algebraic sets S and T with S ⊆ T . Assume that for all x ∈ S there exists an integer
i ≥ 0 such that gi(x) /∈ S. Then there exists a g-invariant semi-algebraic stratification of T .

I Lemma 7. Let g : Rn → Rn be a continuous semi-algebraic map. Let K ⊆ Rn be a compact
semi-algebraic set such that for all x ∈ K there exists m ∈ N such that gm(x) /∈ K. Let
T ⊆ RN be a compact semi-algebraic set such that there exists a continuous semi-algebraic
surjection p : T → K ∪ g(K) and an injective continuous semi-algebraic map g̃ : p−1(K)→ T

such that the following diagram commutes:

p−1(K) T

K K ∪ g(K)

p

g̃

p

g

Assume that there exists a g̃-invariant stratification of T . Then there exists a continuous
function f̃ : T → R satisfying the functional equation f̃(x) = f̃(g̃(x)) + 1 for all x ∈ p−1(K)
which is constant on the fibres of p.

Assuming the lemmas above we can now prove Theorem 1:

Proof of Theorem 1. We will prove that there exists a continuous function f : K∪g(K)→ R
which satisfies the functional equation f(x) = f(g(x))+1 for all x ∈ K. This suffices to prove
the claim, for by the Stone-Weierstraß theorem there exists a polynomial p ∈ R[x1, . . . , xn]
satisfying |p(x)− f(x)| < 1

4 for all x ∈ K. Let c = min {p(x) | x ∈ K}. Then the polynomial
h(x) = 2(p(x)− c) satisfies h(x)− h(g(x)) ≥ 1 and h(x) ≥ 0 for all x ∈ K.

By Lemma 3 there exist compact semi-algebraic sets p−1(K) = S ⊆ T ⊆ RN , a continuous
semi-algebraic surjection p : T → K ∪ g(K), which restricts to a surjection p : S → K, and
an injective continuous semi-algebraic map g̃ : S → T such that p ◦ g̃ = g ◦ p. By Lemma 6
there exists a g̃-invariant stratification of T . By Lemma 7 there exists a continuous function
f̃ : T → R which satisfies f̃(x) = f̃(g̃(x)) + 1 for all x ∈ S and is constant on fibres of p.

Define on K ∪ g(K) the function f(x) = f̃(x̃) where x̃ is any point in the fibre of x
under p. This function is well-defined since f̃ is constant on fibres. We have for all x ∈ K:

f(x) = f̃(x̃) = f̃(g̃(x̃)) + 1 = f(g(x)) + 1.

The last equality uses the fact that p ◦ g̃ = g ◦ p, so that if p(x̃) = x then p(g̃(x̃)) = g(p(x̃)) =
g(x).

CONCUR 2020
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Finally, f is continuous. Observe that we have f−1(A) = p(f̃−1(A)) for all sets A ⊆ R.
If A is closed, then f̃−1(A) is compact, so that p(f̃−1(A)) is closed. Hence the preimage of
any closed set under f is closed, so that f is continuous. J

3 Proof of Lemma 6

In this section we prove Lemma 6. Throughout this section S and T are compact semi-
algebraic subsets of Rn with S ⊆ T , and g : S → T is a continuous injective semi-algebraic
map such that for all x ∈ S there exists an integer i ≥ 0 such that gi(x) /∈ S.

We show that we can find a g-invariant stratification of T , in the sense of Definition 5.
The construction relies on the following standard result in real-algebraic geometry on the
existence of cellular decompositions (see, e.g., [5, Proposition 9.1.12]):

I Theorem 8. Let S ⊆ Rn be a compact semi-algebraic set. Let S1, . . . , Sm be semi-algebraic
subsets of S. Then S admits a semi-algebraic cellular decomposition such that each Si is a
finite union of cells.

We have a semi-algebraic function

rank : T → N, rank(x) = min
{
i ∈ N | gi(x) /∈ S

}
.

We can decompose T into finitely many semi-algebraic subsets

Ei =
{
x ∈ T | gi(x) /∈ S and gj(x) ∈ S for all j < i

}
.

On these sets the function rank is constant. By Theorem 8 the set T admits a semi-algebraic
cellular decomposition such that each Ei is a finite union of cells. Then rank is constant on
every cell of this cellular decomposition, so that we can assign to every cell e the number
rank(e).

Let every cell of this decomposition be a stratum. We will keep refining this stratification
until g maps strata onto strata.

A stratum A is called an injury if it is not mapped by g onto another stratum, i.e., there
does not exist another stratum A′ such that g(A) = A′. If A is an injury which is mapped
into another stratum, i.e., there exists another stratum A′ such that g(A) ⊆ A′, then A is
called en injury of the second kind. Otherwise it is called an injury of the first kind.

The signature of an injury A is the tuple (kindA,dimA, rankA). The injury signature
of a stratification of T is the multiset of all signatures of all injuries. Thus, if n different
injuries have the same signature, then the injury signature of the stratification contains n
copies of this signature.

I Lemma 9. If the stratification of T contains an injury of the first kind, then the decom-
position can be refined such that the new injury signature is the old injury signature with
one signature of the form (1,m, k) removed and finitely many signatures added of the form
(2, l, k) with l ≤ m. Additionally, the subdivision may result in any number of injuries of the
second kind of rank k + 1 and dimension ≤ m becoming injuries of the first kind.

Proof. Let A be an injury of the first kind with dimension m and rank k.
The sets of the form g−1(C)∩A where C is a stratum are semi-algebraic subsets of cl (A).

By Theorem 8 there exists a semi-algebraic cellular decomposition of cl (A) such that each
set of the form g−1(C)∩A and every cell of the old cellular decomposition of cl (A) is a finite
union of cells. Replace the cellular decomposition on cl (A) with this new decomposition.
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This defines a new cellular decomposition of T that refines the old one. Remove A from the
stratification, and add all cells of the refined decomposition which are contained in A as new
strata.

The newly added strata get mapped into strata by construction, but they may still be
injuries of the second kind. Since they are contained in A they have the same rank as A and
their dimension is at most dimA. Strata that were mapped into but not onto A may no
longer be mapped into strata in the new stratification, so that they become injuries of the
first kind. Their rank is equal to rankA+ 1. Since g is injective their dimension is at most
dimA.

It may be the case that there is a stratum C that was mapped onto A. Since g is
injective there is at most one such stratum. Its closure cl (C) is mapped by g onto cl (A).
Its dimension is the same as the dimension of A and its rank is rankA+ 1. This stratum
would become an injury of the first kind in the new stratification. To remove this injury we
proceed as follows: Apply Theorem 8 to obtain a new cellular decomposition of cl (C) such
that each old cell which is contained in cl (C) and each set of the form g−1(c), where c is a
cell of the old cellular decomposition of cl (A), is a finite union of cells. Remove C from the
stratification. For each of the strata Ci that have replaced A in the new stratification add
the set g−1(Ci) to the stratification. Then every new stratum contained in the old stratum
C gets mapped onto some Ci by construction. The new strata are homeomorphic to disks, as
they are homeomorphic images of disks under g−1. Note that the refinement of the cellular
decomposition may change the cellular decomposition of strata that are not contained in
C, but this does not introduce new injuries, as the underlying set of these strata does not
change.

If there is a stratum C ′ that was mapped onto C, repeat this procedure with C ′ playing
the role of C and C playing the role of A. Continue in this manner until all injuries of the
first kind that arise in this way are removed. This happens after finitely many steps as the
rank of C increases by one with each repetition. J

I Lemma 10. If the stratification of T contains an injury of the second kind, then the
decomposition can be refined such that the new injury signature is the old injury signature
with at least one signature of the form (2,m, k) removed and finitely many signatures added
of the form (i, l, k − 1).

Proof. Let A be an injury of the second kind with dimension m and rank k. By assumption
it is mapped into a stratum C.

Let A1, . . . , As be all other injuries of the second kind that get mapped into the same
stratum C. By Theorem 8 there exists a semi-algebraic cellular decomposition of cl (C) such
that each of the sets g(A) and g(Ai), and each of the cells of the old cellular decomposition
of cl (C) is a finite union of cells. Replace the cellular decomposition on cl (C) with this new
decomposition. This defines a new cellular decomposition of T that refines the old one. Then
C is the disjoint union of g(A), the g(Ai)’s, and a finite union of cells c1, . . . , ck. Remove C
from the stratification and add g(A), the g(Ai)’s, and c1, . . . , ck as new strata.

Then A and the Ai’s are no longer injuries, as they are mapped onto strata by construction.
The ci are potentially new injuries with rank k − 1. As A is mapped into C, different strata
are disjoint, and g is injective, no stratum was mapped onto C before. For all other strata,
neither their underlying set nor the underlying set of their image has changed, so that no
further injuries are added. J

Now all injuries can be removed by repeatedly applying the two previous lemmas in the
correct order:

CONCUR 2020
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I Lemma 11. Consider the following algorithm:
1. Find a semi-algebraic cellular decomposition of T such that each cell has constant rank.

Let each cell of the decomposition be a stratum.
2. Sort the injuries of the stratification lexicographically, comparing first by dimension, then

by negative rank, and then by kind.
3. Pick a minimal element with respect to this ordering. If it is of the first kind, remove it

using the first lemma. If it is of the second kind, remove it using the second lemma.
4. If there are no injuries left, then output the stratification. Otherwise go to (2).
Then this algorithm terminates in finite time. It returns a g-invariant stratification of T .

Proof. Let N be the highest rank among all injuries. Consider the N × n matrix A =
((ai,j , bi,j)) whose entry at index (i, j) is the pair (ai,j , bi,j) ∈ N×N where ai,j is the number
of injuries of the first kind of rank N − i and dimension j, and bi,j is the number of injuries of
the second kind of rank N − i and dimension j. Thus, the jth column of the matrix records
all injuries of dimension j and the ith row of the matrix records all injuries of rank N − i. In
each step the algorithm will process an injury which is recorded in the first non-zero entry in
the first non-zero column of the matrix A. Define the rank of a non-zero column to be the
highest rank of all injuries that are recorded in the column.

We will now show by induction on the index of the first non-zero column that the
algorithm will make the first non-zero column into a zero column in finitely many steps
without introducing injuries whose dimension is smaller than or equal to the column index
or whose rank is greater than or equal to the column rank. In particular it will make all
columns into a zero column in finitely many steps, proving termination.

If the first non-zero column is the first column of the matrix, then the algorithm will first
remove all injuries of the first kind and of highest rank. This potentially introduces new
injuries of the second kind of the same dimension and the same rank, but no further injuries.
It will then remove all injuries of the second kind and of highest rank. This potentially
introduces new injuries of any kind and any dimension, but of a rank that is strictly lower
than the column rank. Once the first non-zero entry of the column has been made into
zero, the algorithm will proceed with the next entry of the column and continue in the same
manner until the column is made into a zero column. All injuries introduced by the end of
this process have rank strictly less than the initial column rank. Their dimension is higher
than the column index since the column was assumed to be the first column in the matrix.

Now assume that we have shown the result for all column indexes strictly smaller than
j > 0. Assume that the jth column is the first non-zero column, and let (ai,j , bi,j) be its first
non-zero entry. If ai,j > 0 then an application of one step of the algorithm decreases ai,j by
one, increases bi,j by an arbitrary amount, and potentially introduces new injuries of the
second kind in the ith row and to the left of (i, j). The algorithm will now proceed to remove
non-zero columns with smaller index than j. These columns have rank at most N − i, so
that by induction hypothesis any injuries added in the process of removing these columns
have rank strictly smaller than N − i, so that in particular the entry at index (i, j) does not
change throughout. Therefore, after finitely many steps, the first non-zero entry in the first
non-zero column will be (ai,j − 1, bi,j + c) with c ≥ 0. This shows that the value of the first
entry at index (i, j) is strictly decreasing and will hence eventually be equal to zero. Note
that at no point injuries of rank greater than or equal to N − i were introduced. If ai,j = 0
and bi,j > 0, then an application of one step of the algorithm decreases bi,j by at least one,
and potentially introduces new injuries of lower rank and any dimension. The algorithm
will proceed to remove non-zero columns of lower index, leaving the entries with index (i, j)
unaffected by induction hypothesis. Thus, after finitely many steps, the first non-zero entry
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in the first non-zero column will be (0, b′i,j) with b′i,j < bi,j . It follows that the entry is made
into zero after finitely many steps. Again, no injuries of rank greater than or equal to N − i
were introduced. The algorithm will proceed to process the rest of the entries of the column
in the same manner until the column and all columns to the left of it are made into zero, not
introducing any injuries of rank N − i or greater. J

4 Proof of Lemma 7

In this section we prove Lemma 7. Throughout this section, let g : Rn → Rn be a continuous
semi-algebraic map, let K ⊆ Rn be a compact semi-algebraic set such that for all x ∈ K
there exists m ∈ N such that gm(x) /∈ K, let T ⊆ RN be a compact semi-algebraic set, let
p : T → K ∪ g(K) be a continuous semi-algebraic surjection, and let g̃ : p−1(K)→ T be an
injective continuous semi-algebraic map such that the following diagram commutes:

p−1(K) T

K K ∪ g(K)

p

g̃

p

g

Write S = p−1(K). Fix a g̃-invariant stratification of T .
Define a well-founded partial ordering on the strata of T as follows: S1 ≤ S2 if and only

if S1 = g̃m(S2) for some m ≥ 0. Arrange the strata in a linear chain S1, S2, . . . , Sm such
that i < j implies dimSi ≤ dimSj and Sj 6≤ Si.

Let F1 = {x ∈ T | ∃x′ ∈ S1.p(x′) = p(x)}. For all k = 2, . . . ,m, define the set Fk =
{x ∈ T | ∃x′ ∈ Sk ∪ Fk−1.p(x′) = p(x)}. Note that we have Fk ⊇ Fi and Fk ⊇ Si for all
i ≤ k.

Before we begin with the construction of f̃ , we record some basic properties of the sets
Sk and Fk:

I Lemma 12. The sets Fk and Fk ∪ Sk+1 are closed for all k.

Proof. The set S1 is a zero-dimensional disk and hence a singleton. The set F1 = p−1(p(S1))
is closed, as S1 is compact and p is continuous.

Assume now that Fk is closed for a given k. The boundary of Sk+1 is contained in the
union of all strata of dimension < dimSk+1, which by definition are contained in Fk. Hence
Fk ∪Sk+1 is closed. It then follows, using compactness of Fk ∪Sk+1 and continuity of p, that
the set Fk+1 = p−1(p(Fk ∪ Sk+1)) is closed as well. J

I Lemma 13. For all k = 1, . . . ,m, the set Fk contains all fibres of p that intersect it.

Proof. Assume that there exists x′ ∈ p−1(x) ∩ Fk. Then there exists x′′ ∈ Sk ∪ Fk−1 with
p(x′′) = x. Let x′′′ ∈ p−1(x). Then p(x′′′) = x = p(x′′) with x′′ ∈ Sk ∪ Fk−1, so that
x′′′ ∈ Fk. J

I Lemma 14. For all k = 1, . . . ,m, if x ∈ Fk ∩ S then g̃(x) ∈ Fk.

Proof. We prove this by induction on k. We have S1 ∩ S = ∅, for if this were not the case
then we could apply g̃ to S1 to obtain a stratum Sj = g̃(S1) with j > 1. This would imply
Sj ≤ S1 which directly contradicts the definition of the linear ordering on strata. It follows
that p(S1)∩K = ∅ and hence F1 ∩ S = p−1(p(S1))∩ p−1(K) = ∅. This establishes the claim
for k = 1.
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Assume that the claim is true for k − 1. Let x ∈ Fk ∩ S. By definition of Fk there exists
x′ ∈ Sk ∪ Fk−1 with p(x′) = p(x). Since x is assumed to be contained in S = p−1(K) we
have p(x′) ∈ K and thus x′ ∈ S, so that g̃ can be applied to x′.

If x′ ∈ Fk−1 then g̃(x′) ∈ Fk−1. Since p ◦ g̃(x′) = p ◦ g̃(x) and Fk−1 contains all fibres
that intersect it, it follows that g̃(x) ∈ Fk−1. As Fk−1 ⊆ Fk the claim follows.

Now assume that x′ ∈ Sk. Since all strata are disjoint and S is a union of strata, the
stratum Sk is either contained in S or disjoint from S. We have seen above that x′ ∈ S, so
that Sk ⊆ S. It follows that g̃ can be applied to Sk. Since the stratification is g̃-invariant,
the set g̃(Sk) is again a stratum, say, g̃(Sk) = Sj for some j. By definition of the ordering on
strata we have Sj ≤ Sk which implies j ≤ k, and hence Sj ⊆ Fk by definition of Fk. Thus,
g̃(x′) ∈ Fk. Since p ◦ g̃(x′) = p ◦ g̃(x) and Fk contains all fibres that intersect it, it follows
that g̃(x) ∈ Fk. J

We prove by induction on k that there exists a continuous function f̃ : Fk → R which
satisfies the functional equation f̃(x) = f̃(g̃(x)) + 1 for all x ∈ Fk ∩ S and is constant on all
fibres of p which intersect Fk. Note that by Lemma 14, if x ∈ Fk ∩ S then g̃(x) ∈ Fk, so that
f̃(g̃(x)) is defined, and it makes sense to ask that f̃ satisfy the functional equation in x.

The stratum S1 is necessarily a 0-cell and minimal with respect to the ordering on strata.
In particular we have S1 ∩ S = ∅ and hence F1 ∩ S = ∅ (see also the proof of Lemma 14
above). Put f̃(x) = 0 on F1. Then clearly f̃ has all the required properties, as the functional
equation is only required to hold for points in S.

Assume that f̃ : Fk → R has been defined. We want to extend f̃ to Fk+1. Either Sk+1 is
minimal with respect to the ordering or it is mapped by g̃ onto some Si with i ≤ k.

If Sk+1 is minimal with respect to the ordering on strata, then Sk+1 is not contained in S.
Extend f̃ continuously from Fk ∩ cl (Sk+1) to all of Sk+1, ensuring that p(x) = p(x′) implies
f̃(x) = f̃(x′). This can be achieved as follows: By assumption the map f̃ is defined and
constant on all fibres of p which intersect Fk, so that we obtain a well-defined continuous map
ϕ : p(Fk ∩ cl (Sk+1))→ R by letting ϕ(p(x)) = f̃(x). By the Tietze extension theorem the
map ϕ extends continuously to p(cl (Sk+1)). Then letting f̃(x) = ϕ(p(x)) on Sk+1 yields the
desired function. This extension is continuous by definition. It still satisfies the functional
equation since no points in S were added to its domain.

We hence have a continuous map f̃ : Fk ∪ Sk+1 → R which factors through a continuous
map f : p(Fk ∪ Sk+1) → R. This yields a continuous extension to Fk+1, by letting f̃(x) =
f ◦ p(x) for all x ∈ Fk+1.

The extension still satisfies the functional equation: Let x ∈ Fk+1. Then there exists
x′ ∈ Sk+1 ∪ Fk with p(x′) = p(x). If x′ ∈ Sk+1 then x′ /∈ S by minimality of Sk+1, so there
is no constraint on f̃(x′). If x′ ∈ Fk then the functional equation f̃(x′) = f̃(g̃(x′)) + 1 is
satisfied by induction hypothesis. This yields the functional equation for x as f̃ is constant
on fibres and g̃ sends fibres to fibres.

This concludes the case where Sk+1 is minimal with respect to the ordering on strata.
Let us now assume that g̃(Sk+1) = Si for some i.

On Sk+1, put f̃(x) = f̃(g̃(x))+1. Then clearly f̃ is continuous and satisfies the functional
equation on Sk+1. To show that it is continuous on Sk+1 ∪ Fk it suffices to show that it is
continuous on the closure of Sk+1. Thus, let (xn)n be a sequence in Sk+1 which converges
to x ∈ Fk. The set S is closed, so that x ∈ S. As g̃(xn) ∈ Fk and Fk is closed, we have
g̃(x) ∈ Fk. By definition we have f̃(xn) = f̃(g̃(xn)) + 1. Since f̃ is continuous on Fk by
induction hypothesis we have f̃(g̃(xn))→ f̃(g̃(x)). Hence, f̃(xn)→ f̃(g̃(x))+1 = f̃(x) where
the equality holds because the functional equation is satisfied on Fk by induction hypothesis.
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On Fk+1, let f̃(x) = f̃(x′) where x′ ∈ Sk+1 and p(x′) = p(x). As above, the extension to
Fk+1 is well-defined and continuous.

It remains to show that the extension satisfies the functional equation on Fk+1 ∩ S. Let
x ∈ Fk+1 ∩ S. Then p(x) = p(x′) where x′ ∈ Sk+1 ∪ Fk. If x′ ∈ Fk then the functional
equation f̃(x) = f̃(g̃(x)) + 1 is satisfied by the same argument as above. If x′ ∈ Sk+1 then
the functional equation f̃(x′) = f̃(g̃(x′)) + 1 is satisfied by construction. By construction,
f̃(x′) = f̃(x) and f̃(g̃(x′)) = f̃(g̃(x)) since g̃(x′) ∈ Fk, the set Fk contains all fibres that
intersect it, and f̃ is constant on fibres.

5 Decidability of termination in the case of linear updates

Theorem 1 raises the question whether the existence of a ranking function or, equivalently,
termination is decidable for compact semi-algebraic K and continuous semi-algebraic update
g : Rn → Rn. We can answer this affirmatively in the case where g is linear:

I Theorem 15. There exists an algorithm which receives as input a compact semi-algebraic
set K ⊆ Rn, encoded as a finite boolean combination of rational polynomial inequalities, and
a linear map A : Rn → Rn, encoded as a rational matrix, and decides whether for all x ∈ K
there exists i ∈ N such that Aix /∈ K.

Proof. If every point of K escapes K under A in finitely many steps, then by Proposition 2
there exists a constant M ∈ N such that every point of K escapes K in at most M steps.
For a fixed m ∈ N, the statement that every point of K escapes K in at most m steps is a
sentence in the first-order theory of the reals and hence decidable. It follows that we can
semi-decide if every point escapes K under A.

We will show in Theorem 18 below that the existence of a point in K which does not
escape K under A implies the existence of a semi-algebraic invariant for A in K, i.e., a
semi-algebraic set S ⊆ K with A(S) ⊆ S. The statement that there exists a semi-algebraic
invariant which can be expressed as a boolean combination of m inequalities involving
polynomials of degree at most d is a sentence in the first-order theory of the reals and hence
decidable. It follows that the existence of a non-escaping point is semi-decidable as well. J

More generally, termination is decidable for affine maps, i.e., maps of the form g(x) =
Ax+ b where A is an n× n-matrix and b is an n-dimensional vector:

I Corollary 16. There exists an algorithm which receives as input a compact semi-algebraic
set K ⊆ Rn, encoded as a finite boolean combination of rational polynomial inequalities, and
an affine map A : Rn → Rn, encoded by a rational matrix, and decides whether for all x ∈ K
there exists i ∈ N such that Aix /∈ K.

Proof. Let A(x) = B(x)+c. Apply Theorem 15 to the compact semi-algebraic set K×{1} ⊆
Rn+1 and the linear map Ã(x, z) = (B(x) + cz, z). J

Note that the decision procedure in the proof of Theorem 15 combines two unbounded
searches, one of which is guaranteed to terminate. We hence do not obtain any non-trivial
upper bound on the computational complexity of deciding termination.

To complete the proof of Theorem 15 we require the following version of Kronecker’s
theorem, as stated in [15, Corollary 3.1]:

I Lemma 17. Let λ1, . . . , λf be complex numbers of modulus one. Consider the free abelian
group

L =
{

(v1, . . . , vf ) ∈ Zf | λv1
1 · · · · · λ

vf

f = 1
}
.
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Let {`1, . . . , `p} be a basis of this group. Then L is a free abelian group with a finite basis
{`1, . . . , `p}. Let

T =
{

(z1, . . . , zf ) ∈ Cf | |z1| = · · · = |zf | = 1, (z1 · · · · · zf )`i = 1 for all i = 1, . . . , p
}
.

Then the sequence (λs
1, . . . , λ

s
f )s∈N is dense in T .

I Theorem 18. Let K ⊆ Rn be a compact semi-algebraic set and let A : Rn → Rn be a
linear map. Assume that there exists x ∈ K such that Aix ∈ K for all i ∈ N. Then there
exists a closed semi-algebraic set S ⊆ K with A(S) ⊆ S.

Proof. By choosing an appropriate basis of Rn we may assume that A is given as a matrix
in real Jordan normal form, i.e., A can be written as

A1
A2

. . .
Al


where the Ak’s are Jordan blocks of the form

Ak =


Λk I

Λk I
. . . . . .

Λk I

Λk


where, by slight abuse of notation, Λk is either a real eigenvalue or a 2×2-matrix corresponding
to a pair of complex conjugate eigenvalues, and I is either the number 1 or the 2× 2-identity
matrix. The sth iterate of Ak is given by:

As
k =


Λs

k

(
s
1
)
Λs−1

k

(
s
2
)
Λs−2

k . . .
(

s
dk−1

)
Λs−dk+1

k

Λs
k

(
s
1
)
Λs−1

k . . .
(

s
dk−2

)
Λs−dk+2

k

. . .
...

...
Λs

k

(
s
1
)
Λs−1

k

Λs
k

 .

Here, dk denotes the size of the Jordan block, i.e., the number of Λk’s.
Let x ∈ K be a point whose orbit under A does not escape K. Fix a Jordan block Ak

as above. Let xk = (xk
0 , . . . , x

k
dk−1) be the corresponding component of x. Again by slight

abuse of notation, xk
i denotes a number if Λk is a number and a 2-dimensional vector if Λk

is a 2× 2-matrix.
If Λk is real, let |Λk| be the absolute value of Λk. If Λk is a 2× 2-matrix, then we have

Λk =
(
a −b
b a

)
. In this case, let |Λk| =

√
a2 + b2.

If |Λk| > 1 then we claim that xk = (0, . . . , 0). Indeed, if xk
i 6= 0, then the ith component

of As
k(xk) is of the form Λs

kx
k
i + O(|Λs−1

k |). Hence, the euclidean distance of Asx to 0 is
unbounded as s → ∞, contradicting the assumption that the sequence Asx stays in the
compact set K.

If |Λk| < 1 then each of the expressions
(

s
i

)
Λs−i

k converges to zero as s → ∞, so that
As

kx
k → 0 as s→∞.
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If |Λk| = 1 then we claim that xk = (xk
0 , 0, . . . , 0). Indeed, the first component of Asxk is

equal to

Λs
kx0 +

dk−1∑
i=1

(
s

i

)
Λs−i

k xk
i .

For large s the term
(

s
i

)
Λs−i

k xk
i with the largest i where xk

i 6= 0 dominates the whole expression.
If i 6= 0 then the expression is unbounded as s→∞. The claim follows.

Permute the basis vectors such that A is given in the new basis as

A =



Λ1
Λ2

. . .
Λf

A’


Where Λ1, . . . ,Λf correspond to all the real and complex eigenvalues of A of modulus one,
so that (Asx)i → 0 for all i ≥ f + 1.

Let

Ā =



Λ1
Λ2

. . .
Λf

0
. . .

0


Then we have AĀsx = Ās+1x, so that the orbit of x under Ā is invariant under A. Since A
is continuous, the closure of the orbit is still invariant under A. We will now show that the
closure of the orbit is a semi-algebraic set.

We can associate with each Λi with i ≤ f a complex algebraic number λi of modulus one.
Let

L =
{

(v1, . . . , vf ) ∈ Zf | λv1
1 · · · · · λ

vf

f = 1
}
.

Then L is a free abelian group with a finite basis {`1, . . . , `p}. Let

T =
{

(z1, . . . , zf ) ∈ Cf | |z1| = · · · = |zf | = 1, (z1 · · · · · zf )`i = 1 for all i = 1, . . . , p
}

Then T is a complex algebraic set and by Lemma 17 the sequence (λs
1, . . . , λ

s
f ) is dense in

T . This yields a real algebraic subset T ′ of Rn×n such that Ās is dense in T ′. The matrix
evaluation map Rn×n × Rn → Rn is a polynomial map, so that the image of T ′ × {x} under
this map is a semi-algebraic subset of Rn. But this is the same as the closure of the orbit of
x under Ā.

We have now shown that the closure S of the orbit of x under Ā is a semi-algebraic
invariant for A. It remains to show that S is contained in K. The above argument establishes
that the iterates Āsx are dense in S. Now, A can be written as A = Ā+B with As = Ās +Bs
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and Bsx→ 0 as s→∞. Since the iterates Āsx are dense in S, for every y ∈ S there exists
a sequence (sk)k with Āskx → y as k → ∞. It follows that Askx = Āskx + Bskx → y as
k →∞. By assumption Askx ∈ K for all k, and since K is closed it follows that y ∈ K. We
conclude that S ⊆ K. J

6 Conclusion

We have shown, by non-constructive means, that a single-path loop with continuous semi-
algebraic update function and compact semi-algebraic guard set terminates over the reals if
and only if it has a polynomial ranking function. In the case of an affine update we have
shown the existence of a polynomial ranking function to be decidable by proving that any
non-terminating loop of this form admits a semi-algebraic invariant.

This naturally suggests the question whether the existence of a polynomial ranking
function can be decided for non-linear updates as well. A sufficient condition for decidability
which may be of independent interest is whether an analogue of Theorem 18 holds true for
certain classes of non-linear maps, say for instance whether any non-terminating polynomial
loop with compact guard admits a semi-algebraic invariant.

Further, it would be interesting to study the computational complexity of deciding
termination in the case of affine updates. Our decidability proof unfortunately does not yield
any non-trivial complexity bounds.

Another direction of future research is to ascertain whether Theorem 1 generalises to set-
valued semi-algebraic updates with appropriate continuity properties. Also the boundedness
assumption on the guard set deserves to be further scrutinised. While the examples after
Theorem 1 show that closedness is necessary for the existence of a continuous ranking function
and that boundedness is necessary for the existence of a polynomial ranking function, it
seems reasonable to conjecture that a terminating semi-algebraic loop with a closed but not
necessarily bounded guard has, say, a piecewise-linear ranking function.
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