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Abstract
This article improves the time bound for calculating the weak/branching bisimulation minimisation
quotient on state-labelled discrete-time Markov chains from O(mn) to an expected-time O(m log4 n),
where n is the number of states and m the number of transitions. For these results we assume
that the set of state labels AP is small (|AP| ∈ O(m/n log4 n)). It follows the ideas of Groote et
al. (ACM ToCL 2017) in combination with an efficient algorithm to handle decremental strongly
connected components (Bernstein et al., STOC 2019).
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1 Introduction

Bisimilarity formalises when two behaviours are equal, where behaviours are given by
automata or variants of directed graphs, such as labelled transition systems, Kripke structures
or Markov chains. In these fields bisimilarity is also known as the zig-zag relation or lumping.
Bisimilarity is an equivalence relation that preserves all core properties of behaviour. Moreover,
calculating the bisimilarity quotient of a behaviour can lead to substantially smaller graphs.
This is particularly useful when analysing the behaviour either by visual inspection or using
other tools.
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Further reduction of the behaviour is possible by considering some or all of the edges
as silent steps, steps that cannot be observed directly. Milner referred to such steps as
τ -actions [18]. Bisimulation equivalences that take such internal steps into account are weak
bisimilarity [18], branching bisimilarity [9], stuttering equivalence [5], and weak/branching
bisimulation on fully probabilistic systems [1].

In this article we are interested in weak behavioural equivalences for discrete-time Markov
chains, similar to those introduced by [1]. There it was shown that branching and weak
bisimilarity are equal notions on fully probabilistic systems, and an O(mn) algorithm was
given to calculate the weak/branching bisimilarity quotient, where m is the number of
transitions and n is the number of states. In this paper we substantially improve upon this
by providing an expected-time O(m log4 n) algorithm, which is nearly linear in the number
of transitions m, to calculate the weak/branching bisimilarity quotient on Markov chains.

The algorithm is an intricate combination of a number of rather different ideas stemming
from various algorithms.

The first idea is to use the principle “Process the smaller half” of Hopcroft [13] in the
setting of probabilistic processes as in [7, 12, 20]. This means that whenever a state
is revisited in an algorithm, its context is at least reduced by half compared to the
previous visit. For n states this then means that each state is processed at most O(logn)
times. This leads to O(m logn) algorithms to calculate (strong) bisimilarity on graphs.
In our algorithm this is reflected in the use of two partitions of states, one containing
constellations and a finer (or equal) partition containing blocks. The blocks are the
context of a state that are reduced by a factor 2 for each visit.
As weak and branching bisimilarity coincide on Markov chains, we can use the ideas
from the algorithms for branching bisimulation minimisation. The first idea stems from
[11]: detecting whether blocks need to be split can be done as efficiently as in strong
bisimulation by only looking at bottom states, states without outgoing silent steps. The
second idea comes from [10, 14]: the actual splitting of blocks can be done in time
proportional to the smaller resulting subblock, guaranteeing that each state is visited at
most O(logn) times in a split, according to the principle “Process the smaller half”. This
is achieved by simultaneously extending the markings and non-markings of bottom states
to all other states in a block, and stop when the first of these two processes finishes.
We introduce the notion of C-silent states, which are states of which all outgoing transitions
lead to the constellation containing the state itself. The role of the bottom states can
now be played by non-C-silent states. A block is only splittable if it has non-C-silent
states marked with different probabilities to go to a splitter block. These probabilities
are then extended to the C-silent states in the block in time proportional to the sizes of
the smallest resulting subblocks.
For bottom states and the simultaneous extension of the (non-)markings, it is essential
that strongly connected components (SCCs) of inert steps can be contracted to a single
state in the behavioural graph. The algorithms in [11, 10, 14] preprocess the graph
accordingly. Unfortunately, it is not possible to contract inert SCCs in Markov chains,
as this does not preserve weak bisimilarity. This is caused by the fact that often, the
probability to leave an SCC through a specific edge is different for every state in the SCC,
which means that states within SCCs are not necessarily weakly bisimilar.
To extend the markings and non-markings, we need to know what the C-silent SCCs are,
i.e., the SCCs restricted to the C-silent states in each block. This would not be a problem
if the SCCs were static throughout each run of the algorithm, as they could be determined
in time O(m) as a preprocessing step. But whenever a constellation is split, the SCCs
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change, as more states become non-C-silent. It is not an option to recalculate the SCCs
each time a state becomes non-C-silent and is moved, as done in [21] for orthogonal
bisimulation, as this would lead to a runtime of O(mn).
Fortunately, we can use a recent result showing that SCCs can be maintained under
the removal of edges within an expected O(m log4 n) time [4]. Whenever splitting a
constellation, states become non-C-silent, and in particular their transitions are removed
from the SCCs. The algorithm of [4] maintains the SCCs using the above complexity,
allowing at any moment during the run of our algorithm to determine in constant time
which states are in the same SCC, and that is exactly what we require.

The result is the first algorithm with an expected near-linear time complexity and a linear
space complexity for the reduction of weak/branching bisimilarity of Markov chains.

Note that contrary to the previous less efficient algorithms we can only guarantee an
expected runtime. The reason for this is deeply embedded in the algorithm of [4] to maintain
decremental SCCs. The SCCs are constructed using a generalization of so-called ES-trees [8].
When SCCs fall apart, the ES-trees have to be recalculated, except for those SCCs which
contain the roots of the old ES-trees. If such roots are chosen uniformly at random, there is
a higher probability that the roots are in the larger ES-trees, and the work to recalculate
them falls within an expected “Process the smaller half” regime. This is the only place where
the algorithm is randomized. For the remainder it is completely deterministic.

The structure of this article is as follows. In Section 2 the required preliminaries are
explained. In Section 3 the algorithm is outlined. The details, correctness and complexity
are presented in Section 4, followed by a conclusion.

2 Preliminaries

We consider finite discrete-time Markov chains in the line of [1, 3]. In order to distinguish
states, we allow for a state labelling with atomic propositions from a set AP.

I Definition 1. A discrete-time Markov chain (DTMC) is a quadrupleM = (S,AP,P, L)
where:

S is a finite set of states. We write n for the number of states.
AP is a finite set of atomic propositions.
P : S × S → [0, 1] is a probability matrix satisfying

∑
t∈S P(s, t) = 1 for all s ∈ S. We

write m for the number of non-zero entries in P.
L : S → 2AP is a labelling function, which assigns to each state s ∈ S the set L(s) of
atomic propositions that are valid in s.

In a DTMCM = (S,AP,P, L), the transition probability function P(s, t) intuitively gives
the probability of a state s going to t in a single step. For s ∈ S and A ⊆ S, we define
P(s,A) :=

∑
t∈A P(s, t) to be the probability of a state s entering A in a single step. If

P(s, t) > 0, we sometimes write s→ t if the numerical value of the probability is irrelevant.
We define the sets of incoming transitions in(A) = {s → t | s /∈ A ∧ t ∈ A} and outgoing
transitions out(A) = {s→ t | s ∈ A ∧ t /∈ A} for A ⊆ S. We assume the set AP to be small.
For the complexity results we concretely require that |AP| ∈ O(m/n log4 n).

As a side note we observe that it is easy to accommodate subprobabilistic DTMCs (i.e.,
to allow P to be a subprobability matrix satisfying 0 ≤ P(s, S) ≤ 1). In that case, one
adds a pseudostate ⊥ /∈ S and defines P(s,⊥) = 1−P(s, S) and P(⊥,⊥) = 1. Also, ⊥ is
separated from normal states by an atomic proposition: L(⊥) = {pseudo} for pseudo /∈ AP.
Then, (S ∪ {⊥},AP ∪ {pseudo},P, L) is a fully probabilistic DTMC.
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A path in a DTMC is an infinite sequence of states π = (s0, s1, s2, . . .) with si−1 → si
for i > 0. A cylinder set Cyl(s0, s1, . . . , sn) is the set of paths that start with the sequence
(s0, s1, . . . , sn). Given an initial probability distribution µ on states, each cylinder set is
assigned a probability: Prµ(Cyl(s0, s1, . . . , sn)) = µ(s0)

∏n
i=1 P(si−1, si). The probability

space of a DTMC can be defined as the unique extension of this content Prµ to the σ-algebra
generated by the cylinder sets; details can be found in [16, Chapters 2, 4]. For a state s
we write the Dirac distribution on s as δ(s), i.e., δ(s)(s) = 1 and δ(s)(t) = 0 for t 6= s. We
denote the probability to take a path to a state in C ⊆ S through states in B ⊆ S:

Pr(s,B,C) :=
∑

s0,...,sn−1∈B\C, sn∈C

Prδ(s) (Cyl(s0, s1, . . . , sn)) .

Note that if s ∈ C, we have Pr(s,B,C) = 1 for any B; but if s /∈ B∪C, then Pr(s,B,C) = 0.
The presented algorithm is based on refining partitions of finite sets of states. For any

set S, a partition of S is a set B = {Bi ⊆ S | i ∈ I} satisfying ∅ /∈ B, Bi ∩Bj = ∅ whenever
i 6= j, and

⋃
B = S. We call each Bi a block.

For two partitions B1 6= B2 of S, we say B1 is finer than B2, or that B2 is coarser than
B1, iff for every block B1 ∈ B1, there is a block B2 ∈ B2, such that B1 ⊆ B2.

Given a partition B, we denote the block containing state s by [s]B. If a set of states
B′ ⊆ B for some block B in B, we also write [B′]B for B being the block in which B′ is
contained. Every partition B induces an equivalence relation, also denoted B, defined by
s B t iff s ∈ [t]B. Conversely, every equivalence relation R on S has a unique corresponding
partition {{t | t R s} | s ∈ S}. This partition is denoted as S/R. We denote by [s]R the
R-equivalence class of s ∈ S, i.e., [s]R = {t | t R s}.

Given a DTMC M = (S,AP,P, L), we define AP-equivalence to be the relation that
distinguishes states based on their labels: s ≡AP t iff L(s) = L(t). Its equivalence class for s
is denoted [s]AP .

I Definition 2. LetM = (S,AP,P, L) be a DTMC and R ⊆ S × S an equivalence relation.
A state s is R-silent iff P(s, [s]R) = 1. A transition s→ t is R-inert iff s R t.

If the equivalence relation R is given by a partition B of states, we also speak about a B-silent
state. For non-R-silent states, we define the conditional probability to enter some set of
states in a single step under the condition to leave the R-equivalence class:

P(s,B | non-R-inert) := P(s,B)
1−P(s, [s]R) .

We are now ready to introduce the notions of weak and branching bisimilarity.

I Definition 3. LetM = (S,AP,P, L) be a DTMC and R ⊆ ≡AP an equivalence relation
on S (which respects the atomic propositions of states). We say that R is
a weak bisimulation iff s R t implies, for all R-equivalence classes C ∈ S/R with s, t /∈ C,

that Pr(s, [s]AP , C) = Pr(t, [t]AP , C).
a branching bisimulation iff s R t implies, for all R-equivalence classes C ∈ S/R with

s, t /∈ C, that Pr(s, [s]R, C) = Pr(t, [t]R, C).
a conditional-probability bisimulation iff s R t implies

1. If s and t are both non-R-silent, for all R-equivalence classes C ∈ S/R with s, t /∈ C,
we have P(s, C | non-R-inert) = P(t, C | non-R-inert); and

2. s has a path to a state outside [s]R iff t has a path to a state outside [t]R.
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The states s and t are weakly bisimilar, denoted s ≈w t, iff a weak bisimulation R exists
such that s R t. Similarly, s and t are branching bisimilar, denoted s ≈b t, iff a branching
bisimulation R exists such that s R t. Finally, s and t are conditional-probability-bisimilar,
denoted s ≈c t, iff a conditional-probability bisimulation R exists such that s R t.

All three relations ≈w, ≈b and ≈c are equivalence relations. The essential difference between
branching and weak bisimulation is that in branching bisimulation a step from state s
must be mimicked by a number of steps through the equivalence class of s, whereas in
weak bisimulation a step can be mimicked by steps through states labelled with the same
propositions. For nondeterministic transition systems branching bisimilarity implies weak
bisimilarity but not vice versa. Furthermore, deciding branching bisimilarity is more efficient.
Remarkably, in the context of Markov chains, the notions are equal:

I Proposition 4. LetM = (S,AP,P, L) be a DTMC. States in S are weakly bisimilar iff
they are branching bisimilar iff they are conditional-probability-bisimilar.

Proof. [1, 2] prove this result for fully probabilistic systems (with action labels instead of
atomic propositions). See the Appendix for an adaptation of the proof to DTMCs. J

Due to this proposition, we only write “weak bisimulation” in the remainder of this paper.
Because conditional-probability bisimulation can be tested by looking at single-step probabil-
ities only, we use its conditions to calculate the weak bisimilarity quotient without having to
calculate a transitive closure.

If we allowed DTMCs with an infinite state space, conditional-probability bisimilarity
would not imply weak/branching bisimilarity. See [15] for an example and a possible
strengthening of Condition 2 in the definition of conditional-probability bisimulation.

3 Main ideas of the algorithm

Now we state our problem formally:

Given a DTMC M = (S,AP,P, L), we need to compute the weak bisimilarity
relation, or equivalently, to give a partition B of the state space S consisting of the
weak bisimilarity equivalence classes.

This section explains the main ideas to solve this problem efficiently.

Partition refinement. Typically, bisimilarity is computed by partition refinement. In our
case this starts from an initial partition where states are in the same block iff they have the
same atomic propositions and satisfy Condition 2 of conditional-probability bisimulation –
note that refinements of a partition preserve these conditions. Then the algorithm checks
Condition 1 of conditional-probability bisimulation for every block. If it finds a pair of states
in one block with different transition probabilities to another block, it splits the former block,
bringing the validity of Condition 1 closer. The latter block is called a splitter.

Avoid superfluous refinements. After a splitter Sp ∈ B has been used to split all blocks
with transitions to Sp, every further refined partition is stable w.r.t. Sp. However, the
algorithm of [1] does not register this information and may check whether Sp is a splitter
repeatedly. We optimize by registering former splitters. In addition to the current partition
B, we store a coarser (or equal) partition C to record the splitters already used in previous
iterations. We call blocks in C constellations and print them in boldface C ∈ C. The relation
between blocks ∈ B and constellations ∈ C is described by the main invariant:

CONCUR 2020
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I Main Invariant 5. If s and t are non-C-silent states in the same block, i.e., [s]B = [t]B,
and C ∈ C is a constellation that does not contain s and t, then

P(s,C | non-C-inert) = P(t,C | non-C-inert).

This invariant expresses that states in the same block have the same conditional probability
to enter every other constellation in a single step. This means that blocks cannot be split by
constellations. They can however be split by other blocks.

I Example 6. The formulation of the main invariant is inspired by conditional-probability
bisimulation. The DTMC fragment in Figure 1 shows that a formulation inspired by weak or
branching bisimulation does not appear to work.

States s and t have the same conditional probability to enter C in a single step:
P(s,C | non-C-inert) = 0.5

1−0.2−0.3 = 1 = 1
1−0 = P(t,C | non-C-inert). However, because s

also has a transition to state u, which is in a different block of the same constellation and
has no C-inert path to C, we have Pr(s, [s]C ,C) = 0.5 + 0.2 · 1 = 0.7 6== 1 = Pr(t, [t]C ,C),
and also P(s,C | non-B-inert) = 0.5

1−0.2 = 0.625 6== 1 = 1
1−0 = P(t,C | non-B-inert). If

B = C, then no states like u exist, and Main Invariant 5 (together with Condition 2 of
conditional-probability bisimulation, which was already ensured by the initial partition)
implies weak bisimulation.

Refining constellations in C. As mentioned in the example, we should try to reach the
situation that B = C. Therefore, as long as these partitions are different, we choose a
small splitter block Sp ∈ B \ C. We move Sp to its own constellation, and reestablish Main
Invariant 5 by splitting blocks with transitions to Sp. By choosing a small splitter, we ensure
that each state takes part in constellation processing only logarithmically often – according
to the principle “Process the smaller half”.

To register the fact that we have used some Sp as a splitter, we refine its C-equivalence
class [Sp]C into Sp and the rest [Sp]C \ Sp. Note that establishing Main Invariant 5 w.r.t. Sp
also automatically establishes the invariant w.r.t. [Sp]C \ Sp for most states: As we know
P(s, [Sp]C | non-C-inert) = P(t, [Sp]C | non-C-inert) for states s, t in the same block 6⊆ [Sp]C ,
and the algorithm ensures that P(s,Sp | non-C-inert) = P(t,Sp | non-C-inert), we get for
free that P(s, [Sp]C \ Sp | non-C-inert) = P(t, [Sp]C \ Sp | non-C-inert). Only for states in Sp
itself we have to additionally check whether they are stable under [Sp]C \ Sp.

Refining blocks in B. For every block B with transitions to the selected splitter Sp, we
first split its non-C-silent states into subblocks whose conditional probabilities to enter the
splitter in a single step are equal. Similarly, in algorithms for branching bisimilarity [11, 10],
one splits the bottom states into two subblocks first. But in our case the non-C-silent states
may fall apart into more than two subblocks, depending on the (conditional) probability to
enter the splitter in a single step.

[s]C

C

[s]Btsu
0.20.3

0.5 1

Figure 1 Even if P(s, C | non-C-inert) = P(t, C | non-C-inert), we still may have Pr(s, [s]C , C) 6=
Pr(t, [t]C , C).
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The next step is to extend this splitting to the C-silent states in B. Assume for the
moment that there are no strongly connected components of C-silent states. This means that
the B-inert transitions in B form a dag. The C-silent states that only have paths to a single
subblock of non-C-silent states join this subblock. This condition is checked by traversing the
transition relation backwards, to find states whose outgoing B-inert transitions all lead to the
same subblock. Only after we have investigated all outgoing B-inert transitions of a state,
we can extend the splitting to its predecessors. Those C-silent states that have B-inert paths
to multiple subblocks move to a special subblock, which we call the residue. These paths to
other subblocks may have different probabilities for different states, but as the residue will
be split further later in the algorithm, this is not a problem.

However, the subblocks have to be extended in a way compatible with the principle
“Process the smaller half”. This forbids to spend time on a subblock with more than half
the states of B. Because we do not know which subblock will end up to be the largest, all
subblocks are extended simultaneously, and when a subblock (which can be the residue)
becomes too large, we abort extending this subblock. Note that at most one block can be so
large. This process of simultaneous backward extension of the subblocks ends if all but one
block have been completed. All non-visited states necessarily belong to this non-completed
block. The time used for the backward extension can now be attributed completely to the
smaller subblocks whose sizes are guaranteed to be at most half that of B.

Strongly connected components. Unfortunately, if there are non-trivial SCCs in the B-
inert transitions, the backward extension does not work. The reason is that in order to decide
whether a state belongs to a subblock or to the residue, all its outgoing B-inert transitions
must have been investigated first. In a dag this is guaranteed, but with non-trivial SCCs,
this is impossible. Still, all states in such a non-trivial SCC have paths to the same subblocks.
It is therefore possible to view this SCC as a single state, and apply the dag-based backward
extension of subblocks as described above to the complete SCC.

For this to work we have to keep track of SCCs in the B-inert transitions within the
C-silent states of every block. When a constellation is split, some states may become non-C-
silent, and we have to dynamically recompute the sub-SCCs within the states that remain
C-silent. It is not possible to use a classical linear algorithm for this purpose, as the strongly
connected components have to be recomputed for all new blocks, including a potential block
that is larger than half of the size of B. Therefore, the “Process the smaller half” strategy
cannot be applied, leaving us with an O(mn) algorithm.

Fortunately, recently an efficient algorithm has been presented that can maintain the
strongly connected components within a lower time bound [4]. This algorithm initializes
a data structure for SCCs in worst-case time complexity O(m log4 n) and recomputes all
sub-SCCs in total expected time complexity O(m log4 n).

I Example 7. Figure 2 illustrates the above ideas for an example DTMC. The state labellings
with atomic propositions are not explicitly indicated, but different letters in the state name
indicate different labellings. For some transitions the exact probability value is not shown,
but it is nonzero, and all outgoing probabilities sum up to 1.

Subfigure 2a shows the initial partition: states with different labelling are in different
blocks (shown as rounded, darker grey shapes). Additionally, to satisfy Condition 2 of
conditional-probability bisimulation, we have separated s1 from states s2 and s3 as only
the latter two have paths to a state outside {s1, s2, s3}. All states are in one constellation
(shown as light grey rectangle).
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B

s1 s2 s3 u

t1

t2 t3 t4 t5

t6 t7
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.3
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(a) Initial partition.

C
B

s1 s2 s3 u

t1

t2 t3 t4 t5

t6 t7
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csc
csc

csc
c
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c scc scc scc scc scc scc scc scc scc scc
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(b) After stabilizing under {u} and {s1}.

C′ B

B1 B0.1 B0

Sp
s1 s2 s3 u

t1

t2 t3 t4 t5

t6 t7

scc
scc

sccsccsccsccscc
sc

c

scc scc scc scc scc
scc

sccsccsccsccscc
sc

c

scc scc scc scc

.5

.3

.2

.1 .9

(c) Non-C-silent states in B separated.

C′

B1 B0.1 B0

Bresidue

s1 s2 s3 u

t1

t2 t3 t4 t5

t6 t7

scc
scc

sccsccsccsccscc
sc

c

scc scc scc scc scc
scc

sccsccsccsccscc
sc

c

scc scc scc scc

.5

.3

.2

.1 .9

(d) All states in B and Sp separated.

Figure 2 The first few steps of partition refinement.

Subfigure 2b shows the situation after blocks {u} and {s1} have been used as splitters.
This is recorded by putting them into their own constellations. However, these two splitters
did not lead to actual refinements. State s2 only has a transition to another block in the
same constellation, and when this block becomes a splitter, it will separate s2 from s3.

Then, the only remaining small splitter is block Sp = {s2, s3} in constellation C. Block
B, the block with transitions to Sp, needs to be refined. Subfigure 2c shows the situation
after the non-C-silent states t1, t6 and t7 have been separated: every state is in a block
corresponding to its conditional probability to enter Sp in a single step. Also, state t1 was
C-silent but is so no longer, so it had to be removed from its SCC, and the algorithm quickly
finds two sub-SCCs in the remaining C-silent states. Note that the transition t1 → t4 is
ignored when calculating the conditional probability P(t1,Sp | non-C-inert).

The refinement has to be extended to the C-silent SCCs in the block. The situation after
this has finished is shown in subfigure 2d: SCC {t2, t3} is completely added to B1 because
its only outgoing transition goes to a state in B1. Here, one can see that it is necessary to
move the SCC to B1 as a whole. If we would have tried to move state t2 individually to B1,
we would have to wait until t3 is in B1 first, which in turn depends on t2 already being in B1.
The SCC {t4, t5} is moved to the residue because t5 can enter both B0.1 and B0 in a single
step. Note that also Sp has been split into two because it was unstable under C′ = [Sp]C \Sp.
State s2 has (conditional) probability 1 to enter C′ in a single step, while s3 has conditional
probability .3/(.3 + .2) = 0.6.

In further refinements, where the new blocks are used as splitters, the algorithm will find
that the states in SCC {t2, t3} are equivalent, but SCC {t4, t5} will be split up because the
states have different probabilities to reach other blocks like B0.
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Algorithm 1 Efficient algorithm for weak bisimulation of Markov chains.

1.1: B := coarsest partition of S that is at least as fine as S/≡AP and satisfies Condition 2
of conditional-probability bisimulation

1.2: Add all B ∈ B (except one maximal-size one) to the set of potential splitters
1.3: Label all transitions as C-inert, C := {S}
1.4: Construct all SCCs based on the B-inert transitions
1.5: for all potential splitters Sp ∈ B do
1.6: for all incoming transitions t→ s ∈ in(Sp) do
1.7: if t→ s is labelled as C-inert then {i.e. t ∈ [Sp]C \ Sp}
1.8: if t is C-silent then remove t from SCC(t), Pnon-C-inert(t) := 0, P→splitter(t) := 0
1.9: Pnon-C-inert(t) := Pnon-C-inert(t) + P(t, s)

1.10: Label t→ s as non-C-inert
1.11: end if
1.12: if P→splitter(t) = 0 then mark state t (as a predecessor)
1.13: P→splitter(t) := P→splitter(t) + P(t, s)
1.14: end for
1.15: for all outgoing transitions s→ t∈out(Sp) labelled as C-inert do {i.e. t ∈ [Sp]C \Sp}
1.16: if s is C-silent then remove s from SCC(s), Pnon-C-inert(s) := 0, P→splitter(s) := 0
1.17: Pnon-C-inert(s) := Pnon-C-inert(s) + P(s, t)
1.18: Label s→ t as non-C-inert
1.19: if P→splitter(s) = 0 then mark state s (as a predecessor)
1.20: P→splitter(s) := P→splitter(s) + P(s, t)
1.21: end for
1.22: Remove Sp from the set of potential splitters, C′ := (C \ {[Sp]C})∪ {[Sp]C \ Sp,Sp}
1.23: for all all blocks B containing marked states do
1.24: Refine B according to P→splitter( · )

Pnon-C-inert( · ) (Algorithm 2)
1.25: end for
1.26: C := C′
1.27: end for
1.28: return B

4 Detailed algorithm for weak bisimilarity on Markov chains

In this section, we walk through the pseudocode to explain how the ideas of the previous
section can be fleshed out.

We store all states such that we can easily traverse all incoming transitions. There is a
partition B of states. We store a set of potential splitter blocks, and we label every transition
to indicate whether it is C-inert. As this is all we need to know of the constellation, we do
not have to maintain C explicitly. We treat C as a ghost variable, as it is only used to prove
correctness. Code referring to the ghost variable is printed in grey.

Non-C-silent states are handled individually, while C-silent states are handled as part of
an SCC. When some state becomes non-C-silent, the algorithm moves it to the individually-
handled states and recalculates the maximal sub-SCCs in the remaining C-silent states.

To make the code slightly more efficient, every non-C-silent state also has an associated
probability Pnon-C-inert(s), which is the probability to take a non-C-inert transition. This is
the denominator in the conditional probability P(s, · | non-C-inert).
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Algorithm 2 Refine block B (Line 1.24).

2.1: Move the non-C-silent states of B to new subblocks Bp = {s ∈B | P→splitter(s)
Pnon-C-inert(s) = p}

2.2: Unmark all states and set P→splitter( · ) := 0 in the subblocks Bp
2.3: if for some Bp, we have |Bp| > 1

2 (original size of B) then Mark this Bp as aborted
2.4: Create an empty block Bresidue for the residue
2.5: while there are at least two non-completed subblocks (including Bresidue) do
2.6: for all non-completed and non-aborted normal subblocks Bp do
2.7: Take one step for Bp in Algorithm 3
2.8: end for
2.9: if Bresidue is not aborted then take one step for Bresidue in Algorithm 4

2.10: end while
2.11: Let Baborted be the only non-completed subblock (or residue).
2.12: if Bresidue = ∅ then
2.13: if Bresidue = Baborted then let Baborted := a maximal-size normal Bp
2.14: Delete Bresidue
2.15: end if
2.16: Move all states in Baborted back to B and delete Baborted

Algorithm 1: Main program. We initialize all data structures in Lines 1.1–1.4. To construct
the initial partition (Line 1.1), one starts with the partition S/≡AP and marks all states s
that have a path to a state outside their block [s]AP . Then, every block is separated into the
marked and unmarked states if necessary. The resulting partition satisfies Condition 2 of
conditional-probability bisimulation. – Line 1.4 does not need to check whether states are
C-silent, as there are no non-C-inert transitions at this moment.

Each iteration of the main loop refines one constellation of C. This is done by selecting a
small splitter Sp and the following two steps.

First, it calculates the probability to enter the splitter Sp in a single step for each state
in the loop at Lines 1.6–1.14. It also calculates, for the states in Sp, the probability to
enter [Sp]C \ Sp in a single step at Lines 1.15–1.21 because Sp is the one block that is not
automatically stabilized under [Sp]C \ Sp by stabilizing under Sp. During these calculations,
the algorithm may find that some states in [Sp]C are no longer C-silent at Lines 1.8 and 1.16.
In that case, it (efficiently) recalculates the SCCs that formerly contained these states.

Second, from Line 1.23 it splits all blocks that have some transition to their splitter by
calling Algorithm 2.

Algorithm 2: Refine block B. At Line 2.1, we split the non-C-silent states. This can be
done by sorting them according to their conditional probability and group those with the
same probability in one subblock.

To extend the separation to C-silent states, we start a coroutine (see Algorithm 3) for each
initial subblock. Additionally, we also start one coroutine (see Algorithm 4) for the so-called
residue, i.e. the part of the block that cannot be put into one subblock because it has paths
to several non-C-silent states with different probabilities P→splitter(s)/Pnon-C-inert(s). In the
main loop in Lines 2.5–2.10, we let each coroutine do one step (execute one loop iteration,
handle one transition) in turn until all of them except one have completed their search.
Then, the remaining states must belong to the incomplete subblock. If there is a subblock
containing the majority of the states, this will be the incomplete subblock; otherwise, the
incomplete subblock will often be large, but it does not matter much. This guarantees that
the processing time is proportional to the cumulative size of those subblocks that are at most
half the original block.
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Algorithm 3 Extend a normal subblock Bp (Line 2.7).

3.1: for all unmarked states s ∈ Bp do
3.2: for all incoming transitions t→ s ∈ in(SCC(s)) with C-silent t do
3.3: if SCC(t) ⊆ B then
3.4: Move SCC(t) from B to the marked states of Bp
3.5: untested(SCC(t)) := |{outgoing B-inert transitions of SCC(t)}|
3.6: end if
3.7: if SCC(t) ⊆ Bp then {SCC(t) must have been marked}
3.8: untested(SCC(t)) := untested(SCC(t))− 1
3.9: if untested(SCC(t)) = 0 then

3.10: Unmark SCC(t)
3.11: if |{unmarked states ∈ Bp}| > 1

2 (original size of B) then
3.12: Mark Bp as aborted
3.13: Abort this copy of Algorithm 3
3.14: end if
3.15: end if
3.16: else if SCC(t) ⊆ Bq for some q 6= p then {SCC(t) must have been marked}
3.17: Unmark SCC(t) and move it from Bq to Bresidue
3.18: if |Bresidue| > 1

2 (original size of B) then Mark Bresidue as aborted
3.19: end if
3.20: end for
3.21: end for
3.22: Unmark all marked SCCs in Bp and move them to Bresidue
3.23: if |Bresidue| > 1

2 (original size of B) then Mark Bresidue as aborted
3.24: Insert Bp into the set of potential splitters
3.25: Mark Bp as completed

After B has been divided completely, the identity of B is reused to become a large
subblock (so that most pointers from states to their block need not be changed). Only if the
residue is empty, it may have become aborted accidentally, so we correct for that.

Algorithm 3: Extend a normal subblock Bp. This algorithm extends the subblock Bp
by all C-silent states in B that only have transitions to Bp-states. The basic idea is as
follows. As soon as we find a transition from such a state t to an unmarked Bp-state s, we
provisionally add it to Bp as a marked state at Line 3.4 – here, marked states indicate that
if t is not in the residue, then it is in Bp. Note that each such transition from t to s is only
investigated once. We also initialize a counter untested(t) to the number of outgoing B-inert
transitions of t that are not known to go to Bp. When we have determined that no more of
such transitions exist, we unmark t at Line 3.10 to indicate that it is definitely in Bp. If,
however, we find that state t has already been moved to another Bq 6= Bp, it has transitions
to several subblocks, so it has to move to the residue at Line 3.17.

The above is slightly complicated by the fact that we may have nontrivial SCCs in B.
Therefore, we do not handle C-silent states individually, but always their SCC as a whole.
Instead of moving a single state t, we move the whole SCC (t) to Bp or the residue. And
instead of considering the incoming transitions of a single C-silent state s, we simultaneously
consider all incoming transitions of SCC (s) at Line 3.2. In case s is not C-silent, we regard
in(SCC(s)) to be in(s) at this line.
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Algorithm 4 Extend the residue Bresidue (Line 2.9).

4.1: while there are at least two non-completed subblocks Bp, Bq do
4.2: for all states s ∈ Bresidue that are not yet completely handled do
4.3: for all incoming transitions t→ s ∈ in(SCC(s)) with C-silent t do
4.4: if SCC(t) ⊆ Bp for some p or SCC(t) ⊆ B then
4.5: Unmark SCC(t) and move it to Bresidue
4.6: if |Bresidue| > 1

2 (original size of B) then
4.7: Mark the residue as aborted
4.8: Abort Algorithm 4
4.9: end if

4.10: end if
4.11: end for
4.12: end for
4.13: end while
4.14: Insert Bresidue into the set of potential splitters
4.15: Mark the residue as completed

When Bp gets too large at Line 3.11 its handling is aborted, simply meaning that it is
not handled further in the algorithm. Note that at most one subblock can be too large, so
every subblock except possibly one is completely investigated. At the end of Algorithm 2 the
aborted block is cleaned up. When no more states can be added, the states that are still
marked must have a transition to Bp and either to some other Bq 6= Bp or to the residue.
So, they also move to the residue at Line 3.22.

Algorithm 4: Extend the residue. The handling of the residue is, in a sense, simpler than
Bp: every predecessor t of a state in the residue with t originally in B also belongs to the
residue. Therefore, we greedily add all states in SCC (t) to the residue.

However, when all states currently in the residue have been handled and still two or more
normal subblocks Bp, Bq are incomplete, it may happen that new states will be added to the
residue at Lines 3.17 or 3.22 in the coroutines for Bp or Bq. Therefore Algorithm 4 has to
wait until (at most) one normal subblock is incomplete (Line 4.1). When only one subblock
is incomplete, no other subblock has marked states left that could still move to the residue.

4.1 Correctness
The correctness can be expressed by the following lemmas.

I Lemma 8 (Loop invariants in Algorithm 1).
1. Whenever Line 1.5 is reached, the following holds:

B satisfies Condition 2 of the definition of conditional-probability bisimulation, and is
at least as coarse as weak bisimilarity and at least as fine as S/≡AP and C.
Main Invariant 5.
For every constellation C ∈ C, exactly one block B ⊆ C is not in the set of potential
splitters.
For non-C-silent state s∈S, we have Pnon-C-inert(s)=1−P(s, [s]C) and P→splitter(s)=0.
Every transition is labelled as C-inert iff it is (cf. Line 1.10).
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2. After executing Line 1.22, it holds:
For every constellation C ∈ C′, exactly one block B ⊆ C is not in the set of potential
splitters.
For every state s ∈ S, (†) Pnon-C-inert(s) = 1−P(s, [s]C′).

If s /∈ Sp, then P→splitter(s) = P(s,Sp).
If s ∈ Sp, then P→splitter(s) = P(s, [Sp]C \ Sp).

Every transition is labelled as C-inert iff it is C′-inert.
In the proof of Lemma 8, we refer to Algorithm 2. Therefore, we first state its correctness:

I Lemma 9 (Correctness of Algorithm 2). If all states in B satisfy the conditions (†) of
Lemma 8, then Algorithm 2 splits B into the coarsest subblocks that satisfy

Main Invariant 5 w.r.t. C′, i.e. if s and t are non-C′-silent states in B before Algorithm 2,
then they are in the same subblock Bp after Algorithm 2 iff for all constellations C ∈ C′
that do not contain s or t, P(s,C | non-C′-inert) = P(t,C | non-C′-inert).
C′-silent states in Bp have a Bp-inert path to some state outside Bp, but not to a state in
another Bq.
All states ∈ Bresidue are C′-silent and have Bresidue-inert paths to at least two subblocks
of the form Bp.
For every state s ∈ B before Algorithm 2, we have P→splitter(s) = 0 after Algorithm 2.

Proof of Lemma 9. Line 2.1 ensures the condition on non-C′-silent states holds; the re-
mainder of Algorithms 2–4 only moves C′-silent states around.

During the execution of Algorithm 3, we have for every C′-silent SCC ⊆ B: If all its
outgoing B-inert transitions have been tested and go to Bp, then the SCC also is in the
unmarked part of Bp. If some (but not all) of its outgoing B-inert transitions have been
tested, then the SCC is either in the marked part of Bp or in Bresidue. (It is in Bresidue only if
it satisfies the conditions in the next paragraph.) Also, every state in Bp has a Bp-inert path
to some non-C′-silent state in Bp. From this we can conclude that at Line 3.22, the unmarked
C′-silent states of Bp have Bp-inert paths to some non-C′-silent state in Bp (and therefore
some state outside Bp), but they have no Bp-inert path to different Bq. The marked C′-silent
states of Bp can go in a single step to some state in Bp and also some other state, that
either is in some Bq 6= Bp or in Bresidue. In both cases, adding the marked states to Bresidue
maintains the condition on Bresidue of the lemma.

During the execution of Algorithm 4, we have for every SCC ⊆ B: The SCC is in the
residue if it has tested transitions to at least two subblocks of the form Bp (because it was
a marked SCC of one copy of Algorithm 3, and another copy executed Line 3.17), or if it
has a tested transition to a completed subblock Bp and a transition that leads elsewhere
(because it was a marked SCC of Bp at Line 3.22), or if it has a transition to some other
state in Bresidue that was visited in Line 4.5. In all such cases, it consists of C′-silent states
which have Bresidue-inert paths to at least two subblocks of the form Bp. When Algorithm 4
leaves the loop at Lines 4.1–4.13, at most one copy of Algorithm 3 is still running. This copy
will not add anything to the residue because all states with transitions to completed copies
of Algorithm 3 have already been visited and moved to the appropriate Bp or Bresidue. J

Proof of Lemma 8. When Line 1.5 is reached for the first time, B and C have just been
initialized to values that obviously satisfy Item 1 of Lemma 8.

Let’s now look at the situation after Line 1.22. Lines 1.6–1.22 do not change B or C,
so Item 1 remains valid, except that Sp is not marked as a splitter any more. – The only
difference between C and C′ is that Sp is now in its own constellation. As Sp was in the set
of potential splitters, exactly one other block ⊆ [Sp]C was not in this set, and we now have
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that this is the one block ⊆ [Sp]C \ Sp not in the set of potential splitters. Therefore, the
first part of Item 2 of Lemma 8 holds. Condition (†) is ensured for every state by the loops
in Lines 1.6–1.21. Note that C-inert transitions that enter or leave Sp must be transitions
from and to [Sp]C \ Sp, so these transitions are not C′-inert.

After Algorithm 2 has been called for all blocks with marked states (i.e. all blocks that
have transitions to a splitter) at Lines 1.23–1.25, we have that Item 1 of Lemma 8 is satisfied
for C′. In particular, no split by Algorithm 2 separated weakly bisimilar states. Line 1.26
then ensures Item 1 for C. J

I Theorem 10. Algorithm 1 returns the partition of S into weak bisimilarity equivalence
classes.

Proof. This is an immediate consequence of Item 1 of Lemma 8, in particular Main Invariant 5
and the fact that B = C if the set of potential splitters is empty. J

4.2 Complexity
The time complexity can be described by the following theorem. Observe that n ≤ m.

I Theorem 11. All operations in the main loop of Algorithm 1 fall under one of the following
cases.
1. State s is handled as part of a small splitter at most blog2 nc times. Whenever this

happens, O((|in(s)|+ 1) logn + |out(s)|) time is spent.
2. State s becomes part of a small subblock at most blog2 nc times. Whenever this happens,

O(|in(s)|+ 1) time is spent.
3. All operations on decremental SCC handling together run in expected time O(m log4 n).
Summing up, the overall time complexity is in expected time O(m log4 n).

Data structures. To prove Theorem 11, we propose that the algorithm stores the following
information.
Per block: a set of unmarked non-C-silent states, a set of marked non-C-silent states, a set

of unmarked C-silent SCCs, a set of marked C-silent SCCs, and a way to iterate over its
incoming and outgoing non-B-inert transitions (possibly through its states and SCCs).
The set of potential splitters can be stored as a set or list of pointers to blocks.
In Algorithm 2, some subblocks are marked as completed, and possibly one block is
marked as aborted; one can store the non-completed and the completed subblocks in two
(circular) list of pointers to blocks, and the aborted block as a (possibly NULL) pointer
to a block.

Per state: a flag to indicate whether it is C-silent.
Per non-C-silent state: its block, P→splitter and Pnon-C-inert, and a way to iterate over its

incoming B-inert transitions.
Per C-silent state: the SCC it belongs to.
Per C-silent SCC: its block, the untested counter, the number of states, the number of

outgoing B-inert transitions, and a way to iterate over its incoming B-inert transitions.
The last three items can be collected and stored while (re)computing the ES-trees in the
SCC algorithm without increasing the time complexity.

Per transition: a label to indicate whether it is C-inert.

Proof of Theorem 11. We walk through the algorithms and show under which clause each
individual step can be subsumed. Algorithm 1 mostly falls under Clause 1: the incoming and
outgoing transitions of Sp are visited in Lines 1.6–1.22, and every transition is handled in
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constant time, except for Lines 1.8 and 1.16. In these lines predecessor states are removed
from SCCs. Since a state is initially in at most one SCC, and it can effectively only be
removed once, these lines fall under Clause 3. In Lines 1.23–1.25, Algorithm 2 is called.

The first part of Algorithm 2 runs in time proportional to logn times the marked states
of B. Note that marked states either have a transition to Sp or are in Sp. Therefore, the
calls to Algorithm 2 caused by one splitter together lead to at most |in(Sp)|+ |Sp| marked
states. Hence, those parts of Algorithm 2 that use marked states fall under Clause 1.

At Line 2.1, we separate the non-C-silent states. This boils down to sorting the marked
states of B according to the conditional probability P→splitter(s)/Pnon-C-inert(s), which can
be done in time O(|Marked(B)| logn). Note that using techniques as in [7, 20, 12] the factor
logn can be saved, but this will not reduce the overall complexity of our algorithm. The
subblock Bp with p = 0 requires special care, as it receives the unmarked non-C-silent states
of B 6= Sp. If p > 0, states moved to Bp have transitions to the small splitter Sp, and we are
guaranteed to move only a small number of states to Bp. This does not hold for B0; there
may be too many non-C′-silent states that have no transition to the splitter. In our proposed
data structure, B0 can be initialized from the unmarked non-C-silent states, which are stored
in a separate subset of B.

Unmarking states and related operations at Lines 2.2–2.3 take O(|Marked(B)|).
The loop at Lines 2.5–2.10 falls under Clause 2. We interpret “Take one step” as “execute

one loop iteration”. In Algorithms 3 and 4, this takes constant time. The work in these
algorithms is proportional to the number of states and incoming transitions of the respective
subblock. The only part that is not trivial is Line 3.22, which can be executed in time
proportional to the incoming transitions of the (clearly small) subblock Bp, as every marked
SCC in Bp has a transition to the unmarked states of Bp.

In most cases, executing one loop iteration means that one state or transition is handled,
or alternatively, that Algorithm 4 confirms that nothing needs to be done right now. In this
way, we ensure that at most one more step is handled in the largest subblock than in the
second largest subblock. The overhead caused by this is at most proportional to the work
done for the second largest subblock (including the residue) and can be attributed to this.

In Clauses 1 and 2 it is indicated that each state is handled at most blog2 nc times. This
is due to the fact that each state when it is processed again is in a block of at most half the
size of the previous block it belonged to, according the the principle “Process the smaller
half”. When we sum the complexity up over all states in Clauses 1 and 2 we obtain the
complexity O((m + n) log2 n). Together with the complexity of Clause 3, we obtain the
overall expected time complexity O(m log4 n), as n ≤ m. J

In Theorem 11 we did not include the time complexity of the initialisation of the algorithm.
However, if we assume that AP is small enough to find the initial partition fast, namely
|AP| ∈ O(m/n log4 n), then we can find an initial partition within the desired overall time
complexity. In Line 1.4 the SCCs are constructed, which also fits within the time assigned to
Clause 3 of Theorem 11.

5 Conclusion and Outlook

The combination of the ideas from the algorithms from [10, 14] on the one hand and [4] on the
other hand allow to come up with a near-linear expected-time algorithm for weak bisimilarity
on Markov chains. There are many equivalences that have the same structure, namely
direct steps between equivalence classes as in branching bisimilarity and irreducible strongly
connected components of inert steps in these equivalence classes. Examples are orthogonal
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bisimilarity [21], governed stuttering bisimilarity [6], various branching bisimilarities on
non-deterministic probabilistic systems [3, 19] and equivalences using other forms of weighted
transitions [17]. We expect that all these equivalences can be provided with a near-linear
expected-time algorithm using the techniques provided in this paper.
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A Proof of Proposition 4

This appendix compares the three notions of bisimilarity. First let’s recall the definition of
the three bisimulation relations:

I Definition 3. LetM = (S,AP,P, L) be a DTMC and R ⊆ ≡AP an equivalence relation
on S (which respects the atomic propositions of states). We say that R is
a weak bisimulation iff s R t implies, for all R-equivalence classes C ∈ S/R with s, t /∈ C,

that Pr(s, [s]AP , C) = Pr(t, [t]AP , C).
a branching bisimulation iff s R t implies, for all R-equivalence classes C ∈ S/R with

s, t /∈ C, that Pr(s, [s]R, C) = Pr(t, [t]R, C).
a conditional-probability bisimulation iff s R t implies

1. If s and t are both non-R-silent, for all R-equivalence classes C ∈ S/R with s, t /∈ C,
we have P(s, C | non-R-inert) = P(t, C | non-R-inert); and

2. s has a path to a state outside [s]R iff t has a path to a state outside [t]R.
The states s and t are weakly bisimilar, denoted s ≈w t, iff a weak bisimulation R exists
such that s R t. Similarly, s and t are branching bisimilar, denoted s ≈b t, iff a branching
bisimulation R exists such that s R t. Finally, s and t are conditional-probability-bisimilar,
denoted s ≈c t, iff a conditional-probability bisimulation R exists such that s R t.

I Proposition 4. LetM = (S,AP,P, L) be a DTMC. States in S are weakly bisimilar iff
they are branching bisimilar iff they are conditional-probability-bisimilar.

We prove this proposition by the three lemmas below. The proofs are adapted from [2],
where Markov chains are defined with action labels instead of atomic propositions.

I Lemma 12. Let R be a conditional-probability bisimulation. Then R is a branching
bisimulation.

Proof. Consider a state s ∈ S. If all states in [s]R are R-silent, they are all trivially branching
bisimilar to s, as Pr(s, [s]R, C) = 0 for all C ∈ S/R\{[s]R}. Otherwise, Pr(s, [s]R, S\[s]R) = 1
because S is finite. Fix some non-R-silent s′ ∈ [s]R. Note that for any C ∈ S/R \ {[s]R}, we
have that P(s′, C | non-R-inert) does not depend on the concrete choice of s′. Then,
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Pr(s, [s]R, C) =
∑

s1,...,sn∈[s]R,sn+1∈C

Prδ(s)(Cyl(s, s1, . . . , sn, sn+1))

=
∑

s1,...,sn∈[s]R

Prδ(s)(Cyl(s, s1, . . . , sn))P(sn, C)

=
∑

s1,...,sn∈[s]R

Prδ(s)(Cyl(s, s1, . . . , sn))P(sn, C | non-R-inert)(1−P(sn, [s]R))

= P(s′, C | non-R-inert)
∑

s1,...,sn∈[s]R

Prδ(s)(Cyl(s, s1, . . . , sn))P(sn, S \ [s]R)

= P(s′, C | non-R-inert)
∑

s1,...,sn∈[s]R,sn+1 /∈[s]R

Prδ(s)(Cyl(s, s1, . . . , sn, sn+1))

= P(s′, C | non-R-inert)Pr(s, [s]R, S \ [s]R)
= P(s′, C | non-R-inert)

By the same method Pr(t, [s]R, C)=P(s′, C | non-R-inert) for any t∈ [s]R, so Pr(s, [s]R, C)=
Pr(t, [t]R, C) whenever s R t. J

I Lemma 13. Let R be a branching bisimulation. Then R is a weak bisimulation.

Proof. We first define the auxiliary notion of a block-cylinder set: Cyl(B1, B2, . . . , Bn)
is the set of paths that start in B1, after visiting a number of states in B1 move on to
B2, and visit all further blocks in the order mentioned. After entering Bn the paths may
continue without any restrictions. A block-cylinder set is a countable union of (basic) cylinder
sets. Hence, it is in the σ-algebra generated by the basic cylinder sets allowing to write
Prδ(s)(Cyl([s]R, B1, B2, . . . , Bn, C)). We can therefore define:

Pr(s, [s]R, B1, B2, . . . , Bn, C) := Prδ(s)(Cyl([s]R, B1, B2, . . . , Bn, C)).

Further, we have, for all states s ∈ S \ C,

Pr(s, [s]AP , C) =
∑

B1,B2,...,Bn∈S/R
B1,B2,...,Bn⊆[s]AP\C
[s]R 6=B1 6=B2 6=···6=Bn

Pr(s, [s]R, B1, B2, . . . , Bn, C).

Now assume given two branching bisimilar states s R t. Note that [s]AP = [t]AP . It is easy to
show that Pr(s, [s]R, B1, B2, . . . , Bn, C) = Pr(t, [t]R, B1, B2, . . . , Bn, C) for blocks Bi ∈ S/R
for i = 1, . . . , n, and therefore Pr(s, [s]AP , C) = Pr(t, [t]AP , C). J

I Lemma 14. Weak bisimilarity, ≈w, is a conditional-probability bisimulation.

Proof. We adapt the proof of [1] (for action-labelled fully probabilistic systems) to our
state-labelled DTMCs. Condition 2 of conditional-probability bisimulation is easy to check,
so we concentrate on Condition 1.

Let B1, B2, . . . , Bk be an enumeration of the ≈w-equivalence classes with at least one
non-≈w-silent state, and let B0, B−1, . . . , Bksil be an enumeration of the other ≈w-equivalence
classes, in which all states are ≈w-silent. Let s be a non-≈w-silent state. Assume w.l.o.g.
that [s]≈w = Bk. Let C 6= [s]≈w be an ≈w-equivalence class. Then

Pr(s, [s]AP , C) =
k∑

i=ksil

P(s,Bi)Pr(Bi, [s]AP , C).
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As ≈w is a weak bisimulation, Pr(Bi, [s]AP , C) does not depend on the concrete initial state
in Bi if Bi 6= C, and Pr(C, [s]AP , C) = 1. Therefore the above sum is well-defined. Note
that Pr(Bi, [s]AP , C) = 0 if C 6= Bi 6⊆ [s]AP . Then

Pr(s, [s]AP , C)
1−P(s, [s]≈w ) =

k∑
i=ksil

P(s, Bi)
1−P(s, [s]≈w )Pr(Bi, [s]AP , C)

=
k−1∑
i=ksil

P(s, Bi)
1−P(s, [s]≈w )Pr(Bi, [s]AP , C) + P(s, Bk)

1−P(s, [s]≈w )Pr(Bk, [s]AP , C)

=
k−1∑
i=ksil

P(s, Bi)
1−P(s, [s]≈w )Pr(Bi, [s]AP , C) + P(s, [s]≈w )

1−P(s, [s]≈w )Pr(s, [s]AP , C).

We now solve the above equation for Pr(s, [s]AP , C) and get:

Pr(s, [s]AP , C) =
k−1∑
i=ksil

P(s,Bi)
1−P(s, [s]≈w)Pr(Bi, [s]AP , C).

This shows that the conditional probabilities xi = P(s,Bi | non-≈w-inert) = P(s,Bi)
1−P(s,[s]≈w ) for

i ∈ {ksil, . . . , k − 1} solve the following linear equation system:

k−1∑
i=ksil

xiPr(Bi, [s]AP , C) = Pr([s]≈w , [s]AP , C) for all C ∈ {Bksil , . . . , Bk−1} (1)

We claim that Equation System (1) has at most one solution. Therefore, for each non-≈w-
silent state t ∈ [s]≈w , we have P(t, Bi | non-≈w-inert) = P(s,Bi | non-≈w-inert), which
proves this lemma.

We now prove the claim that Equation System (1) has at most one solution. We first
prove that the matrix A = (Pr(Bj , [s]AP , Bi))i,j∈{1,...,k} is regular. For every Bi (with i ≥ 1),
fix some state si ∈ Bi that is non-≈w-silent. Let

C = (cij)i,j∈{1,...,k} where cij =

{
P(sj , Bi) if sj ∈ [s]AP

0 otherwise

E =

1− e1 0
. . .

0 1− ek

 where ei =


k∑
h=1

P(si, Bh)Pr(Bh, [s]AP , Bi) if si ∈ [s]AP

0 otherwise.

Let D = (dij)i,j∈{1,...,k} = A ·C + E. We show that D = A. For the diagonal elements dii
with si ∈ [s]AP , we have:

dii =
k∑
h=1

Pr(Bh, [s]AP , Bi)P(si, Bh) + 1− ei = 1 = Pr(Bi, [s]AP , Bi)

and for the off-diagonal elements dij with sj ∈ [s]AP , we have:

Pr(Bj , [s]AP , Bi) = Pr(sj , [s]AP , Bi) =
k∑
h=1

Pr(Bh, [s]AP , Bi)P(sj , Bh) = dij

Elements dij with sj /∈ [s]AP are trivial.
This proves that A ·C + E = A, so also E = A · (I−C). Next we show that all ei < 1.

This is trivial if si /∈ [s]AP , so we now assume that Bi ⊆ [s]AP .

CONCUR 2020
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Assume that there is some Bh0 6= Bi with Pr(Bh0 , [s]AP , Bi) 6= 0. Note that if some state
s′ satisfies Pr(s′, [s]AP , Bi) = 1 then s′ ∈ Bi (here we use that we started with ≈w and
not just any weak bisimulation); therefore, Pr(Bh0 , [s]AP , Bi) < 1. Then

ei ≤
k∑
h=1
h6=h0

P(si, Bh) + P(si, Bh0)Pr(Bh0 , [s]AP , Bi) < P(si, S) ≤ 1.

If for all Bi 6= Bj we have Pr(Bj , [s]AP , Bi) = 0, then

ei = P(si, Bi)Pr(Bi, [s]AP , Bi) = P(si, Bi) < 1.

Therefore, E is regular, and hence A is regular because A−1 = (I−C) ·E−1.
Now we prove that the extended matrix A0 = (Pr(Bj , [s]AP , Bi))i,j∈{ksil,...,k} is regular.

Note that if i 6= j ≤ 0, then Pr(Bj , [s]AP , Bi) = 0. So, we can write A0 as follows

A0 =
(

I ∗
0 A

)
.

Hence, A0 is regular as well. The matrix of Equation System (1) is the matrix A0 without
the last column and row, i.e., (Pr(Bj , [s]AP , Bi))i,j∈{ksil,...,k−1}. Let A′ be A0 without the
last row, and consider the equation system A′x = b, where bi = Pr([s]≈w , [s]AP , Bi) for
i = ksil, . . . , k − 1. If some x solves this equation system, then (xi)i=ksil,...,k−1 solves (1) iff
xk = 0. We argue that there is at most one such x.

As A0 is regular, the solution space of A′x = b is (at most) one-dimensional and can
therefore be described by {a + t · c | t ∈ R} for some vectors a, c ∈ Rk−ksil+1.

To come to a contradiction, we assume ak = ck = 0 and c 6= 0; in that case, there would
be more than one solution of (1). We know A′(a + tc) = b for all t ∈ R, so

k−1∑
h=ksil

Pr(Bh, [s]AP , Bi)(ah + tch) = Pr([s]≈w , [s]AP , Bi) for i = ksil, . . . , k − 1.

Because this holds for all t ∈ R, we must have that

k−1∑
h=ksil

Pr(Bh, [s]AP , Bi)ch = 0 for i = ksil, . . . , k − 1.

Because A0 is regular, we cannot have A0c = 0, therefore

c :=
k−1∑
h=1

Pr(Bh, [s]AP , Bk)ch 6= 0.

By these equations, the vector ( 1
cci)i=1,...,k is equal to the last row of A−1. We have

0 = 1
cck = (A−1)kk = (I−C)kk/(1− ek) = (1−P(sk, Bk))/(1− ek) 6= 0. Contradiction! J
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