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Abstract
We consider the following model for sampling pairs of strings: s1 is a uniformly random bitstring
of length n, and s2 is the bitstring arrived at by applying substitutions, insertions, and deletions
to each bit of s1 with some probability. We show that the edit distance between s1 and s2 can be
computed in O(n lnn) time with high probability, as long as each bit of s1 has a mutation applied
to it with probability at most a small constant. The algorithm is simple and only uses the textbook
dynamic programming algorithm as a primitive, first computing an approximate alignment between
the two strings, and then running the dynamic programming algorithm restricted to entries close
to the approximate alignment. The analysis of our algorithm provides theoretical justification for
alignment heuristics used in practice such as BLAST, FASTA, and MAFFT, which also start by
computing approximate alignments quickly and then find the best alignment near the approximate
alignment. Our main technical contribution is a partitioning of alignments such that the number
of the subsets in the partition is not too large and every alignment in one subset is worse than an
alignment considered by our algorithm with high probability. Similar techniques may be of interest
in the average-case analysis of other problems commonly solved via dynamic programming.
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1 Introduction

Edit distance is an important string similarity measure whose computation has applications
in many fields including computational biology. Its simplest variant is the Levensthein
distance, which is the minimum number of insertions, deletions, or substitutions required to
turn the first string into the second. A textbook dynamic programming algorithm computes
the edit distance between two length n strings in O(n2) time (see e.g. Section 6.3 of [12]),
and the best known worst-case exact algorithm runs in O( n2

ln2 n
) time [23]. Assuming the

Strong Exponential Time Hypothesis, Backurs and Indyk showed that no O(n2−ε) time
algorithm exists [7] for any ε > 0, and Bringmann and Künnemann extended this result to
the special case of bitstrings, suggesting that these algorithms are near-optimal [10].
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In many practical applications, a quadratic runtime is prohibitively expensive. For
example, it was once estimated that using the textbook algorithm to align the full genomes
of a human and a mouse (although not a very practical problem) would take 95 CPU years
[14]. When the edit distance is small, one can do better. An immediate result is that if
the edit distance between two length n strings is at most d, it can be computed in time
O(nd) (by considering only entries in the dynamic programming table which are distance
at most d from entries indexed (i, i) for some i), and Landau et al. give a more nuanced
algorithm which finds the edit distance in time O(n+ d2) [22]. However, when e.g. aligning
the sequences of two different species the edit distance can still be as large as Ω(n), so these
results do not offer substantial improvements over the textbook algorithm.

Motivated by this and the aforementioned lower bounds, there have been many efforts to
design faster algorithms. Many worst-case approximation algorithms exist for the problem
(e.g. [9, 5, 6, 11]). However, most results give super-constant approximation ratios, and even
the known constant approximation ratios are perhaps too large for practical applications. For
example, popular knowledge suggests that a 3-approximation algorithm1 for edit distance
when applied to genome sequences is not guaranteed to determine that humans are more
closely related to dogs than chickens.

However, there is good reason to believe that in biological applications, the subquadratic
lower bound is not applicable. Roughly speaking, the lower bounds of [7, 10] say that every
part of one string must be compared to every part of another string in order to compute
the edit distance exactly. In practice, this should rarely be true. e.g. when aligning two
genomes, there is good reason to believe that the beginning of the first genome only needs to
be compared to the beginning of the second genome. Observations like this motivate the
need for average-case analysis of edit distance algorithms. There are already several results
on average-case analyses of edit distance. For example, [4] gives an approximation algorithm
when the inputs are chosen adversarially but then perturbed, [17] gives an exact algorithm
when the inputs are compressible, and [21] gives an approximation algorithm when one of
the input strings satisfies a pseudo-randomness condition. Note that all these results require
losing an approximation factor (which as mentioned before is undesirable) and/or for fairly
specific conditions (such as compressibility) to hold for the input.

1.1 Our Contribution

In this paper, we consider a model for average-case analysis of edit distance called the indel
channel which is motivated by biological applications. In this model, we generate a random
bitstring of length n as our first string (using bitstrings simplifies the presentation, and the
results generalize easily to larger alphabets), and then at each position in the string randomly
apply each of the three types of mutations (insertion, deletion, substitution) independently
with some probability to get the second string. We let ID(n) denote the distribution of
pairs of strings and sets of mutations generated by this model. This model of random
string mutation is popular as an extension of the CFN model for biological mutations in
computational biology, and problems based on the indel channel have been defined and
studied in the areas of sequence alignment [15], phylogenetic reconstruction [13, 2, 3, 16],
and trace reconstruction [19, 24, 18]. We show that for pairs of strings generated by this
model, we can compute their exact edit distance in near-linear time with high probability:

1 The approximation ratio proven by [11] is 1680, though they conjecture their algorithm is actually a
(3 + ε)-approximation.
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I Theorem 1 (Informal). Let s1 be a uniformly random bitstring of length n and s2 be the
bitstring generated by applying substitution, insertion, and deletion to each bit of s1 each
uniformly at random and with probability at most some constant. Then with high probability
we can compute the edit distance between s1 and s2 in O(n lnn) time.

Our Techniques. Our algorithm is simple, using only the dynamic programming algorithm
as a primitive. The high-level approach is as follows: While we cannot use the dynamic
programming algorithm to compute the edit distance between the two strings and get a
near-linear time algorithm, we can repeatedly use it to compute the edit distance between
two substrings of length k lnn, where k is a (sufficiently large) constant. Under the indel
channel, a substring of length k lnn of the first string s1 and the corresponding substring of
the second string s2 have low edit distance compared to two random substrings with high
probability. So by computing the edit distance between two substrings of length k lnn, we
can determine if the correct alignment places these two substrings close to each other.

We can now use this as a primitive to find an alignment of the two strings that is
an approximation of the “canonical” alignment, i.e. the alignment corresponding to the
insertions and deletions caused by indel channel. If we know bit i of s1 is aligned with bit j
of s2, then with high probability there are only O(lnn) indices in s2 that bit i+ k lnn of s1
can be aligned with. Even if we only have an estimate for where bit i of s1 is aligned with
in s2 that is O(lnn) bits off, with high probability the number of indices bit i+ k lnn of s1
can be aligned with is still O(lnn). So, once we have computed an approximate alignment
for the first i bits of s1, we can iteratively extend the approximate alignment by using a
small number of edit distance computations on bitstrings of length O(lnn) to determine
approximately where bit i+ k lnn of s1 should be aligned. We note that some past works
studying the indel channel in phylogenetic reconstruction use the trivial “diagonal” alignment
(e.g. [13, 16]) as an approximate alignment.

Once we have an approximate alignment, our algorithm is straightforward: Use the
dynamic programming algorithm, but only compute entries in the dynamic programming
table which are close to the approximate alignment. We show that with high probability,
the best alignment is close to the canonical alignment suggested by the indel channel, which
is close to our approximate alignment, giving the correctness of this algorithm. To show
this statement holds, we would like to use the fact that that any alignment which differs
significantly from the canonical alignment is better than the canonical alignment with
probability decaying exponentially in the difference between the two alignments. However,
there are too many alignments for us to conclude by combining this fact with a union bound.
Instead, we construct a partition B of the alignments such that for each element B of the
partition B, the alignments in B are structurally similar. Roughly speaking, this lets us
argue for each B that with probability much smaller than 1/|B| all alignments in B are not
optimal. We can then take a union bound over the subsets in B instead of over all alignments
to get the desired statement.

We note that techniques similar to finding an approximate alignment and then computing
the DP table restricted to entries near this alignment are used in heuristics in practice such
as BLAST [1], FASTA [25], and MAFFT [20]. Our analysis thus can be viewed as theoretical
support for these kinds of heuristics.

The rest of the paper is as follows: In Section 2, we define the indel channel model
formally, give some simple probability facts that are useful, and define some terms that
appear frequently in the analysis. In Section 3, as a warm-up we show that in the substitution-
only case, the optimal alignment is close to the diagonal. In Section 4 we describe and
analyze our algorithm for finding an approximate alignment. In Section 5, we extend the
analysis from Section 3 to the general case, completing the proof of Theorem 1.

WABI 2020
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2 Preliminaries and Definitions

To simplify the presentation, we will often treat possibly non-integer numbers like lnn, k lnn
and n/k lnn as integers without explicitly rounding them first. The correctness of all proofs
in the paper is unaffected by replacing these quantities by their rounded versions (e.g. dlnne)
where appropriate.

2.1 Problem Setup
In this section, we describe the model used to generate the pairs of correlated strings
and formally state our main result. We start by sampling a uniformly random bitstring
s1 ∼ {0, 1}n. We pass s1 through an indel channel to arrive at a new bitstring s2. When
passed through the indel channel, for the jth bit of s1, bj := (s1)j :

bj is substituted, i.e. flips, with probability ps.
bj is deleted, with probability
pd if the previous bit bj−1 was not deleted,
qd > pd if the previous bit bj−1 was deleted. (This is similar but not equivalent to
deleting a geometric number of bits whenever a deletion occurs)

That is, whenever a bit bj is deleted, an additional number of bits equal to roughly a
geometric random variable with mean 1/(1− qd) are deleted to the right of bj .
An insertion event occurs with probability pi, inserting a uniformly random bit string
t ∼ {0, 1}I with length I ∼ Geo (1− qi) (I has mean 1/(1−qi)) to the right of bj . Inserted
bits are not further acted upon by the indel channel.

We call each of these edits, and use E to denote the set of edits occurring in the indel
channel. Each mutation happens independently for each bit and across different bits. As
mentioned before, this definition of the indel channel is chosen to parallel models in both the
computer science theory and computational biology communities that account for splicing
in/out entire subsequences rather than individual sites (e.g. see [15] for an example of a
model for mutation which uses geometric indel lengths; of course, setting qd = pd, qi = 0
gives the setting where only single bits are spliced in/out). We require that

ps ≤ ρs, pd ≤ ρd,
1− ρd
1− qd

≤ ρ′d, pi ≤ ρi,
1

1− qi
≤ ρ′i. (1)

for some small constants {ρ} := {ρs, ρd, ρ′d, ρi, ρ′i}. Our lemma/theorem statements will
implicity assume (1) holds, and our proofs will specify certain inequalities which must hold for
the values {ρ}, thus specifying a range of values for the mutation probabilities for which our
algorithm is proven to work. We do not attempt to the optimize the values of {ρ} for which
our algorithm works, but will state the exact inequalities that need to hold for {ρ} when it
is convenient to do so. We use ID(n) to denote the distribution of tuples (s1, s2, E) arrived
at by this process for some p, q values - we often make statements about (s1, s2, E) ∼ ID(n)
which apply for any realization of the p, q values satisfying the constraints given by {ρ}, in
which case we will not specify what these values are. Given (s1, s2, E) ∼ ID(n) we want to
compute the edit distance ED(s1, s2) between s1 and s2 as quickly as possible. For simplicity,
we specifically use the Levenshtein distance in our proofs, but they can easily be generalized
to other sets of penalties for edits. We now formally restate Theorem 1 as our main result:

I Theorem 2. Assuming (1) holds for certain constants {ρ}, there exists a (deterministic)
algorithm running in time O(n lnn) that computes ED(s1, s2) for (s1, s2, E) ∼ ID(n) with
probability 1− n−Ω(1).
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2.2 Probability Facts
We start with some basic probability facts appearing in our analysis. We denote the number
of ways to sort a+ b+ c elements into three groups of size a, b, c, i.e. trinomial, by

(
a+b+c
a,b,c

)
.

This of course equals (a+b+c)!
a!b!c! . When the trinomial appears, we use Stirling’s approximation

to bound its value:

I Fact 3 (Stirling’s approximation).
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

We do not aim to optimize constants, so we will use the following standard simplified
Chernoff bound in our proofs:

I Fact 4 (Chernoff bound). Let X1 . . . Xn be independent Bernoulli random variables and
X =

∑n
i=1Xi and µ = E[X]. Then for 0 < ε < 1:

Pr[X ≥ (1 + ε)µ] ≤ e−
ε2µ

3 , P r[X ≤ (1− ε)µ] ≤ e−
ε2µ

2 .

We will also use the following simplified negative binomial tail bound:

I Fact 5 (Negative binomial tail bound). Let X ∼ NBinom(n, p), i.e. X is a random variable
equal to the number of probability p success events needed before n successes are seen. Then
for k > 1:

Pr[X ≥ kn/p] ≤ e−
kn(1−1/k)2

2 .

Proof. This follows from noticing that Pr[X ≥ kn/p] = Pr[Binom(kn/p, p) < n] and
applying a Chernoff bound with ε = 1− 1/k. J

We’ll chain together these facts to get a tail bound for a binomial number of geometric
random variables:

I Lemma 6. Consider X ∼ NBinom(m, q) where m =
∑t
i=1mi, mi ∼ Bern(pi), i.e. X is

a random variable obtained by first sampling m, the sum of t independent Bernoullis, and
then sampling X ∼ NBinom(m, q). Then for 1 < k ≤ 4, µ =

∑t
i=1 pi :

Pr

[
X ≥ k · µ

q

]
≤ e−

(
√
k−1)2µ

3 + e−
kµ(1−1/

√
k)2

2 .

A proof is given in Appendix A.

2.3 Definitions
In this section we give definitions that simplify the presentation. There are many identical
definitions for solutions to the edit distance problem - we will define solutions as paths
through the dependency graph as doing so simplifies the presentation of the analysis.

I Definition 7. Consider the dependency graph of the edit distance dynamic programming
table: For two strings s1, s2 of length n1, n2, the dependency graph of s1, s2 has vertices (i, j)
for i ∈ {0, 1, . . . n1}, j ∈ {0, 1, . . . n2} and directed edges from (i, j) to (i+ 1, j), (i, j + 1) and
(i+ 1, j + 1) for i ∈ [n1], j ∈ [n2] if these vertices exist. The edges {(i− 1, j− 1), (i, j)} where
(s1)i = (s2)j have weight 0 and all other edges have weight 1. The edit distance between s1
and s2, denoted ED(s1, s2), is the (weighted) shortest path from (0, 0) to (n1, n2).

WABI 2020
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For completeness we recall the standard dynamic programming algorithm for edit distance
and its restriction to a subset of indices.

I Fact 8 (Textbook Algorithm). The edit distance between s1, s2 of length n1, n2 can be
computed in O(n1n2) time by using e.g. the O(|V | + |E|)-time2 dynamic programming
algorithm for shortest paths in a DAG. In addition, if we know the shortest path in the
dependency graph is contained in vertex set V ′, we can compute the edit distance in O(|V ′|)
time by applying the dynamic program “restricted to V ′” i.e. by applying it to the dependency
graph after deleting all vertices not in V ′.

I Definition 9. An alignment (of two strings s1, s2) is any path A = {(i1 = 0, j1 =
0), (i2, j2) . . . (iL−1, jL−1), (iL = n1, jL = n2)} from (0, 0) to (n1, n2) in the dependency graph
of s1, s2. Denote the set of all alignments by A.

For convenience, we will abuse notation and sometimes use A to also denote the cost of
alignment A, e.g. using A ≥ A′ to denote that the cost of A is at least the cost of A′.

I Definition 10. For (s1, s2, E) ∼ ID(n), the canonical alignment of s1, s2, denoted A∗,
is informally the alignment corresponding to E. More formally, A∗ starts at (0, 0), and for
each row i of the dependency graph, if the first vertex in A∗ in this row is (i, j), we extend
A∗ as follows according to E:

If no insertion or deletion occurs on the ith bit, we include the edge {(i, j), (i+ 1, j + 1)}.
If an insertion of I bits occurs on the ith bit and no deletion occurs, we include the path
{(i, j), (i, j + 1), . . . (i, j + I), (i+ 1, j + I + 1)}
If a deletion and no insertion occurred on the ith bit, we include the edge {(i, j), (i+1, j)}.
If an insertion of I bits occurred and a deletion, we include the path {(i, j), (i, j +
1), . . . (i, j + I), (i+ 1, j + I)}.

The definition of (canonical) alignments depends on the pair of strings s1, s2, but through-
out the paper usually it will be clear that the pair of strings being referred to is sampled
from ID(n), so for brevity’s sake we may refer to a canonical alignment without referring to
strings, letting the strings be implicit.

Note that the canonical alignment is not necessarily the optimal alignment (in fact, even in
the substitution-only case, the substitutions cause the optimal alignment to be one including
insertions and deletions with high probability). However, alignments which differ sufficiently
from the canonical alignment should not perform better than the canonical alignment with
high probability. For alignments which aren’t the canonical alignment, we characterize their
differences from the canonical alignment in terms of where they break from the canoncial
alignment.

I Definition 11. Fix a canonical alignment A∗, and let A be any alignment. A break of
A (from A∗) is any subpath ({(i1, j1), (i2, j2) . . . (iL, jL)}) of A such that (i1, j1) and (iL, jL)
are in A∗ but none of (i2, j2) to (iL−1, jL−1) are in A∗. The length of the break is the value
iL − i1.

For (s1, s2, E) ∼ ID(n), a break of alignment A from (i1, j1) to (iL, jL) is long if its
length is at least k lnn (for a constant k to be specified later) and short otherwise3. An
alignment is good if it has no long breaks and bad if it has at least one long break.

2 Note that the dependency graph has |E| = O(|V |).
3 Note that in the definition of length, we use iL − i1 and ignore j1, jL. This is because with high

probability, for all i, i′ such that i′ > i+ k lnn, if the canonical alignment goes through (i, j) and (i′, j′),
j′ − j will be within a constant factor of i′ − i. So defining length as iL − i1 instead of jL − j1 will not
substantially affect our categorization of which breaks are short or long.
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Intuitively, short breaks are smaller and might make an alignment better than the canonical
alignment, so we can’t rule out alignments containing only short breaks in our analysis. On the
other hand, long breaks are sufficiently large such that replacing them with the corresponding
part of the canonical alignment should be an improvement with high probability. Lastly,
we define two functions that take alignments and make them look more like the canonical
alignment A∗.

I Definition 12 (Short and Long Break Replacement). We define SBR : A 7→ A as a function
from alignments to alignments, such that for any alignment A, SBR(A) is the alignment
arrived at by applying the following modification to all short breaks in A: For a short break
from (i1, j1) to (iL, jL), replace it with the subpath of A∗ from (i1, j1) to (iL, jL). We define
LBR analogously, except LBR applies the modification to all long breaks instead of short
breaks.

Note that all alignments in the range of LBR are good by definition. The idea behind
these functions and the definitions of good and bad alignments is to use them in the analysis as
follows: It is possible to compute the best of the good alignments quickly by only considering
a narrow region within the DP table. So it suffices to show any bad alignment is not the best
alignment. For a single bad alignment A, it is fairly straightforward to show that A∗ is better
than A with high probability. However, there are many bad alignments and thus a simple
union bound does not suffice to complete the analysis. We instead use LBR to show that it
suffices if all alignments in the range of SBR are not better than A∗ with high probability.
There are considerably fewer of these alignments and they can be partitioned in a way that
is easy to analyze, and so simple counting and probability techniques let us show this holds.

3 Substitution-Only Case

As a warmup, let’s consider the easier case when only substitutions are present in the indel
channel. In this case, A∗ is just the diagonal {(0, 0), (1, 1) . . . (n, n)}. We show the following
theorem:

I Theorem 13. For (s1, s2, E) ∼ ID(n) with pi, pd = 0, as long as ps ≤ ρs where ρs = .028,
there is an O(n lnn) time algorithm for calculating ED(s1, s2) which is correct with probability
1− n−Ω(1).

The algorithm is simple - compute entries of the canonical DP table indexed by (i, j)
where |i− j| ≤ k lnn, ignoring dependencies on entries for which |i− j| > k lnn. The value
of k used in the algorithm and the definition of long breaks will be specified by the analysis,
which will determine a lower bound for k needed to make the failure probability sufficiently
small.

We start by showing that “off-diagonal” alignments, i.e. alignments which do not share
any edges with A∗, are not better than A∗ with high probability. While there are many bad
alignments which are not entirely off-diagonal, this will be useful as later we can show that a
bad alignment A in the range of SBR being better than A∗ corresponds to an off-diagonal
alignment being better than A∗ in a subproblem.

I Lemma 14. For (s1, s2, E) ∼ ID(n), with probability 1−e−Ω(n), A > A∗ for all alignments
A such that A and A∗ do not share any edges.

WABI 2020
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Proof. The cost of A∗ can be upper bounded using a Chernoff bound: The expected number
of substitutions is at most ρsn, so Fact 4 gives

Pr

[
A∗ ≤ 3

2ρsn
]
≤ 1− e−

ρsn
12 .

Now our goal is to show that with high probability, no alignment A that does not share
edges with A∗ has cost lower than cn (where c = 3

2ρs). We achieve this using a union
bound over alignments, grouping alignments by their number of deletions d (which in the
substitution-only case is also the number of insertions). We can ignore alignments with more
than cn/2 deletions, as they will of course have cost more than cn.

Pr[∃A,A ≤ cn] ≤
cn/2∑
d=1

∑
A with d deletions

Pr[A ≤ cn]

≤
cn/2∑
d=1

(
n+ d

d, d, n− d

)
Pr

[
Binom(n− d, 1

2) ≤ cn− 2d
]

≤ cn

2

(
(1 + c

2 )n
c
2n,

c
2n, (1−

c
2 )n

)
Pr

[
Binom((1− c

2)n, 1
2) ≤ cn

]
.

The second line counts the number of alignments with d deletions, and it expresses the
probability of success in terms of the number of substitutions, or edges in A of the form
((i− 1, j − 1), (i, j)): The cost of each off-diagonal edge of the form ((i− 1, j − 1), (i, j)) is
Bern( 1

2 ), even if we condition on the cost of all previous edges in A: assuming wlog that
i > j knowing the costs of all edges before ((i− 1, j − 1), (i, j)) in A gives no information
about the bit i of s1, which is distributed uniformly at random. So the total cost of these
edges is given by Binom((1− c

2 )n, 1
2 ). In the third line we upper bound the probability for

simplicity. A Chernoff bound now gives:

Pr

[
Binom((1− c

2)n, 1
2) ≤ cn

]
= Pr

[
Binom((1− c

2)n, 1
2) ≤ (1− 2− 5c

2− c )1
2(1− c

2)n
]

≤ exp
(
− (2− 5c)2

8(2− c) n
)
. (2)

Next we upper bound the trinomial using Stirling’s approximation:(
(1 + c

2 )n
c
2n,

c
2n, (1−

c
2 )n

)
≤ e

(2π)3/2
((1 + c

2 )n)(1+ c
2 )n+ 1

2

( c2n)cn+1((1− c
2 )n)(1− c2 )n+ 1

2

≤ e

(2π)3/2
2
cn

√
2 + c

2− c

[
(1 + c

2 )(1+ c
2 )

( c2 )c(1− c
2 )(1− c2 )

]n
. (3)

Putting everything together, we have the following upper bound

Pr[∃A,A ≤ cn] ≤ e

(2π)3/2
2
cn

√
2 + c

2− c

[
(1 + c

2 )(1+ c
2 )

( c2 )c(1− c
2 )(1− c2 )

]n [
exp

(
− (2− 5c)2

8(2− c)

)]n
.

For the above bound to be exponentially decaying in n, we need that:

(1 + c
2 )(1+ c

2 )

( c2 )c(1− c
2 )(1− c2 ) exp

(
− (2− 5c)2

8(2− c)

)
< 1, (4)

which holds as long as c ≤ 0.042, i.e. ρs ≤ .028. For these values of c, with high
probability A∗ < cn and A > cn for any A which does not share any edges with A∗. J
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We now make the following observations which will allow us to apply Lemma 14 to make
more powerful statements about the set of all alignments:

I Fact 15. Fix any s1, s2, E in the support of ID(n), and let A,A′ be any two alignments
with the same set of long breaks. Then LBR(A)−A = LBR(A′)−A′.

This follows because applying LBR to A,A′ results in the same pairs of subpaths being
swapped (and thus the same change in cost) as A,A′ have the same long breaks.

I Corollary 16. Fix any (s1, s2, E) in the support of ID(n). If for all alignments A in the
range of SBR, A ≥ A∗, then any lowest-cost good alignment is also a lowest-cost alignment.

Proof. Applying a composition of LBR and SBR to any alignment gives A∗, and for any A,
A and SBR(A) have the same long breaks. This gives that for any alignment A, LBR(A) (a
good alignment) satisfies LBR(A) ≤ A:

LBR(A)−A Fact 15= LBR(SBR(A))− SBR(A) = A∗ − SBR(A) ≤ 0.

Now, letting A′ be a lowest-cost good alignment, we get A ≥ LBR(A) ≥ A′ for all A, i.e.
A′ is the lowest cost alignment. J

We complete the argument by showing that the assumption of Corollary 16 holds with
high probability.

I Lemma 17. For (s1, s2, E) ∼ ID(n), with probability 1− nΩ(1) for all alignments A in the
range of SBR, A ≥ A∗.

Proof. As in Lemma 14, we apply a union bound over the range of SBR, grouped by
total length of breaks from A∗. Consider the set Ai contained in the range of SBR, which
contains all alignments A for which the sum of the lengths of breaks of A from A∗ is in
[ik lnn, (i+ 1)k lnn). Then the sets {Ai : 0 ≤ i ≤ n

k lnn} forms a disjoint cover of the range
SBR(A). Note that elements of Ai have at most i breaks from A∗, each of length at least
k lnn. Also note that A0 is a singleton set containing only A∗.

For any alignment A, we call the set of starting and ending indices of all breaks of that
alignment the breakpoint configuration of A (to simplify future analysis, we index with respect
to s1

4). Let Bi be the set of all possible breakpoint configurations of alignments in Ai. We
can view B ∈ Bi as a binary assignment of each edge in A∗ to either agree or disagree with
A ∈ Ai. For a fixed set of break points B ∈ Bi, let AB be the set of all alignments having
the breakpoints corresponding to B (i.e. every alignment in AB has the same breaks from
A∗). Note that the set {AB : B ∈ Bi} forms a disjoint cover of Ai.

For any fixed set of breaks B ∈ Bi, let sB1 , sB2 denote the restriction of s1, s2 to indices
contained in the breaks in B, and (A)B denote the restriction of an alignment A to these
indices. sB1 , sB2 are distributed according to ID(b) for b ≥ ik lnn. Furthermore, for A ∈ AB ,
A < A∗ if and only if (A)B < (A∗)B. Since for all A ∈ AB, (A)B does not share any edges
with (A∗)B , by Lemma 14:

Pr[∃A ∈ AB , A < A∗] = Pr[∃A ∈ AB , (A)B < (A∗)B ] ≤ e−Ω(ik lnn) = n−Ω(ik).

4 In the substitution only case, indexing with respect to s1 and s2 is the same, but when indels are present
indexing with respect to s1 will simplify the analysis.
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This reduces our problem to that of counting the cardinality of Bi:

Pr[∃A ∈ SBR(A), A < A∗] =
n

k lnn∑
i=1

Pr[∃A ∈ Ai, A < A∗]

=
n

k lnn∑
i=1

∑
B∈Bi

Pr[∃A ∈ AB , A < A∗]

≤
n

k lnn∑
i=1

∑
B∈Bi

n−Ω(ik) =
n

k lnn∑
i=1
|Bi|n−Ω(ik).

Now we must count the cardinality of Bi. We claim that each B ∈ Bi can be uniquely
mapped to i or less contiguous subsets of [n], each of a size in [k lnn, 2k lnn) or size 0. There
are at most nk lnn + 1 such subsets (there are n different possible smallest elements for
each non-empty subset, and k lnn different possible sizes for each non-empty subset, and the
smallest element and size uniquely determine the non-empty subsets), giving that

|Bi| ≤ (nk lnn+ 1)i.

Our mapping is as follows: For a break in B ∈ Bi which starts at index j and has length
` ∈ [i′k lnn, (i′ + 1)k lnn), we map the break to the subsets {j, j + 1 . . . j + k lnn− 1}, {j +
k lnn, j + k lnn+ 1 . . . j + 2k lnn− 1} . . . {j + (i′ − 1)k lnn, j + (i′ − 1)k lnn+ 1 . . . `}. That
is, for a break we take the indices the break spans, and peel off the first k lnn elements to
create a subset, until there are less than 2k lnn indices remaining, which then form their
own subset. We map B to the union of the subsets its breaks are mapped to, plus enough
empty subsets to make the total number of subsets i. It is straightforward to see that this
map from Bi to a set of subsets is injective as desired, and that the set of subsets has the
stated properties.

Using |Bi| ≤ (nk lnn+ 1)i and assuming k is a sufficiently large constant we get:

Pr[∃A ∈ SBR(A), A < A∗] ≤
n

k lnn∑
i=1

(nk lnn+ 1)in−Ω(ik) ≤ n−Ω(k). J

Proof of Theorem 13. The algorithm is to use the standard DP algorithm restricted to
entries indexed by (i, j) where |i − j| ≤ k lnn, ignoring dependencies on entries for which
|i − j| > k lnn. Theorem 13 follows immediately from Corollary 16, Lemma 17, and the
observation that all good alignments are contained in the set of entries used by the DP
algorithm. J

4 Finding an Approximate Alignment

We now consider the case where insertions and deletions are present. While in the substitution
case it is obvious that the canonical alignment is the diagonal, in the presence of insertions
and deletions there is the additional algorithmic challenge of finding something close to
the canonical alignment. We now use our previous definition for alignments to define an
alignment function, which will be useful in analyzing the approximate alignment algorithm.

I Definition 18. Given an alignment A of (s1, s2, E) ∼ ID(n), let fA : [n] → Z be the
function such that for all i ∈ [n], (i, fA(i)) is the first vertex in A of the form (i, j).
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Using this definition, fA∗(j) gives the location of the jth bit of s1 in s2, or if the jth bit
is deleted, where the location would be had it not been deleted. To find the edit distance
between s1, s2, our algorithm will start by computing an approximate alignment function
which does not differ much from fA∗ . Before describing our algorithm, it will help to prove
some properties about edit distances between pairs of strings sampled from ID(n).

4.1 Properties of the Indel Channel
The term (ρiρ′i + (ρd + 1/k lnn)(ρ′d + 1)), which is roughly speaking an upper bound on
the edit distance (divided by k lnn) between s1, s2 sampled from ID(k lnn) due to indels,
appears frequently in the rest of the analysis. To simplify the presentation, we denote
(ρiρ′i + (ρd + 1/k lnn)(ρ′d + 1)) by κn for the rest of the paper. Our goal in the following
lemmas is to show that by computing the edit distance between the substrings of length
k lnn starting at bit i1 of s1 and bit i2 of s2, we can identify if i2 ≈ fA∗(i1).

I Lemma 19. For (s1, s2, E) ∼ ID(n), let s′1 be the substring formed by bits i to i+k lnn−1
of s1, and s′2 be the substring formed by bits fA∗(i) to fA∗(i+ k lnn)− 1 of s2. Then:

Pr
(s1,s2,E)∼ID(n)

[
ED(s′1, s′2) ≥ 3

2(ρs + κn)k lnn
]
≤ n−ρsk/12 + 2n−ρik/60 + 3n−ρdk/60.

Proof. The edit distance between s1 and s2 is upper bounded by the number of substitutions,
deletions, and insertions that occur in the channel on bits i to i + k lnn − 1 of s1. So it
suffices to show this total is at most 3

2 (ρs + ρi + ρd)k lnn with high probability. In turn, it
suffices to show the number of substitutions is at most 3

2ρsk lnn, the number of insertions is
at most 3

2ρiρ
′
ik lnn, and the number of deletions is at most 3

2 (ρdk lnn+ 1)(ρ′d + 1) with high
probability. We do this using a union bound over the three types of mutations.

The number of substitutions is at most ρsk lnn in expectation. A Chernoff bound
with ε = 1/2 gives that the number of substitutions exceeds 3

2ρsk lnn with probability at
most n−ρsk/12. The probability the number of insertions exceeds 3

2ρiρ
′
ik lnn is maximized

when pi = ρi, 1/(1 − qi) = ρ′i. The number of insertions is then the random variable
NBinom(Binom(k lnn, ρi), 1/ρ′i) with expectation ρiρ′ik lnn, and by Lemma 6 with k = 3/2
the probability it exceeds 3

2ρiρ
′
ik lnn is at most 2n−ρik/60.

To bound the number of deletions, we consider the following process for deciding where
deletions occur in s1:

For each bit of s1 a “type 1” deletion occurs with probability pd, except bit 1 of s1 where
the probability is qd.
For each bit j where a type 1 deletion occurs, we sample δ ∼ Geo( 1−qd

1−pd ). Let ∆ be the
number of bits between j and the next bit with a type 1 deletion. A type 2 deletion
occurs on the min{δ,∆} bits following j.

For bit 1, its probability of seeing a deletion in the indel channel is upper bounded by
qd. Otherwise, if no deletion occurs on bit j − 1, then for bit j > i, the only way bit j
sees a deletion is if it has a type 1 deletion, which occurs with probability pd. If a deletion
occurs on bit j − 1 and bit j does not have a type 1 deletion, it sees a type 2 deletion
with probability (1− 1−qd

1−pd ) = qd−pd
1−pd by the properties of the geometric distribution (this is

regardless of the type of deletion on bit j−1). So its overall probability of seeing a deletion is
pd + (1− pd) qd−pd1−pd = qd. So, the number of deletions in this process stochastically dominates
the number of deletions on bits i to i+ k lnn− 1 of s1.
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Then, the number of deletions is stochastically dominated by the random variable X + Y

arrived at by sampling Y ∼ Binom(k lnn − 1, pd) + Bern(qd), X ∼ NBinom(Y, 1−qd
1−pd ),

which exceeds 3
2 (ρd + ρdρ

′
d)k lnn with maximum probability when pd = ρd, 1−ρd

1−qd = ρ′d.
The probability Y exceeds 3

2 (ρdk lnn) + 1 is at most n−ρdk/12 by a Chernoff bound. The
probability X exceeds 3

2 (ρdk lnn+ 1)ρ′d is at most 2n−ρdk/60 by Lemma 6 with k = 3/2. So
by a union bound the probability the number of deletions exceeds 3

2 (ρdk lnn+ 1)(ρ′d + 1) is
at most 3n−ρdk/60. J

I Lemma 20. Let s1, s2 be bitstrings of length k lnn, chosen independently and uniformly
at random from all bitstrings of length k lnn. Then Pr[ED(s1, s2) ≤ D] ≤ (4e k lnn

D +5e+ 4e
D )D

2k lnn .

The proof of this lemma is fairly standard (see e.g. [8, Lemma 8]). For completeness, we
give a proof in Appendix A.

I Lemma 21. For constant k > 0, i ≤ n− k lnn,

Pr(s1,s2,E)∼ID(n)

[
|fA∗(i+ k lnn)− fA∗(i)− k lnn| ≤ 3

2κn · k lnn
]
≥

1− 2n−ρik/60 − 3n−ρdk/60.

Proof. fA∗(i+k lnn)−fA∗(i)−k lnn is the signed difference between the number of insertions
and deletions happening in indices i to i+ k lnn− 1 of s1. A simple upper bound for this
difference is the sum of the number of insertions and deletions. The same analysis as
Lemma 19 gives the lemma. J

I Corollary 22. Consider the following random process, which we denote P: we choose i1
such that i1 < n− k lnn, sample (s1, s2, E) ∼ ID(n), and then choose an arbitrary i2 such
that |i2 − fA∗(i1)| ≤ lnn and i2 is at least k lnn less than the length of s2. Let s′1 denote the
string consisting of bits i1 to i1 + k lnn− 1 of s1 and s′2 the string consisting of bits i2 to
i2 + k lnn− 1 of s2. Then for any i2 we choose satisfying the above conditions,

Pr
P

[
ED(s′1, s′2) ≤ (1 + 3

2(ρs + 2κn))k lnn
]
≥

1− 2n−ρik/12 − 4n−ρik/60 − 6n−ρdk/60.

Proof. By Lemma 21 and the assumptions in the corollary statement, with probability at least
1−2n−ρik/60−3n−ρdk/60, the edit distance between s′2 and bits fA∗(i1) to fA∗(i1 +k lnn)−1
of s2 (call this substring s∗2) is at most (1 + 3

2κn)k lnn (the upper bound on the difference
between starting indices plus the high-probability upper bound on the difference between
ending indices). s∗2 is the result of passing s′1 through the indel channel, so by Lemma 19 with
probability at least 1−n−ρsk/12−2n−ρik/60−3n−ρdk/60, the edit distance between s∗2 and s′1
is at most 3

2 (ρs + κn)k lnn, giving the lemma by a union bound and triangle inequality. J

I Corollary 23. Consider the following random process, which we denote P: we choose i1
such that i1 < n− k lnn, sample (s1, s2, E) ∼ ID(n), and then choose an arbitrary i2 such
that

|i2 − fA∗(i1)| >
(

3
2κn + 1

)
k lnn,

and i2 is at least k lnn less than the length of s2. Let s′1 denote the string consisting of
bits i1 to i1 + k lnn− 1 of s1 and s′2 the string consisting of bits i2 to i2 + k lnn− 1 of s2.
Then for 0 < r < 1,
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PrP [ED(s′1, s′2) > kr lnn] ≥ 1−
[

( 4e
r +5e+ 4e

kr lnn )r
2

]k lnn
− 2n−ρik/60 − 3n−ρdk/60.

Proof. Either i2 < fA∗(i1)− k lnn or i2 > fA∗(i1) + (3
2κn + 1)k lnn. If i2 < fA∗(i1)− k lnn,

then none of the bits in s′2 are inherited from bits in s′1. If i2 > fA∗(i1) + ( 3
2κn + 1)k lnn,

then by Lemma 21 we have with probability 1− 2n−ρik/60 − 3n−ρdk/60:

i2 − fA∗(i1 + k lnn) = [i2 − fA∗(i1)− k lnn] + [fA∗(i1) + k lnn− fA∗(i1 + k lnn)] ≥

3
2κn · k lnn− 3

2κn · k lnn = 0.

Then since i2 > fA∗(i1 + k lnn), none of the bits are in s′2 are inherited from bits in s′1.
In either case, s′1, s′2 are independent and uniformly random bitstrings, and we can apply
Lemma 20 with D = kr lnn to get the lemma by a union bound. J

Let n0 be a sufficiently large constant. If we choose any r which is less than a certain
constant (which is approximately .1569), for all n ≥ n0, if k is sufficiently large then the
term ( 4e

r +5e+ 4e
kr lnn )r

2 from Corollary 23 is less than 1 and thus the failure probability in
Corollary 23 becomes n−Ω(k). If for all n ≥ n0, (1 + 3

2k(ρs + 2κn)) < kr, then for all n ≥ n0
the lower bound on edit distance given by Corollary 23 exceeds the upper bound given by
Corollary 22. In turn, informally we have the desired property that we can use the edit
distance between substrings of length k lnn in s1 and s2 to test if these substrings are close
in the canonical alignment. So for the rest of this section, we will fix ρs, ρi, ρ′i, ρd, ρ′d, r to
be positive values satisfying these conditions for all n ≥ n0. Once these values are fixed we
can make the failure probabilities in both corollaries n−c with any exponent c of our choice
(c = 2 will suffice to achieve a final failure probability of O(1/n)) by choosing a sufficiently
large k depending only on c and n0. So we also fix k to be said sufficiently large value.

4.2 Algorithm for Quickly Finding an Approximate Alignment
We now describe the algorithm ApproxAlign, given as Algorithm 1, which finds the
approximate alignment f ′. Informally, ApproxAlign runs as follows: It starts by initializing
f ′(1) = 1, which is of course exactly correct. By Lemma 21, we know that fA∗(k lnn+ 1)
will be within O(lnn) of 1 + k lnn. So, to decide what f ′(k lnn + 1) will be, we compute
the edit distance between bits k lnn + 1 to 2k lnn of s1 and bits j to j + k lnn − 1 of s2
for various values of j close to 1 + k lnn. By Corollary 22 we know that when j is near
fA∗(k lnn+ 1), the edit distance will be small, and by Corollary 23 we know that when j is
far from fA∗(k lnn+ 1) the edit distance will be large. So whichever value of j causes the
edit distance to be minimized is not too far from the true value of fA∗(k lnn + 1). Once
we’ve decided on the value f ′(k lnn + 1), we proceed analogously to choose a value for
f ′(2k lnn+ 1), using f ′(k lnn+ 1) to decide what range of values try, and so on. We now
formally prove our guarantee for ApproxAlign (including the runtime guarantee).

I Lemma 24. For (s1, s2, E) ∼ ID(n), ApproxAlign(s1, s2) computes in time O(n lnn)
a function f ′ such that with probability at least 1− n−Ω(1), for all i where f ′(i) is defined
|f ′(i)− fA∗(i)| ≤ d( 3

2κn + 1)k lnne.

Proof. We proceed by induction. Clearly, |f ′(1)− fA∗(1)| = |1− 1| ≤ d( 3
2κn + 1) · k lnne.

Suppose |f ′((i− 1)k lnn+ 1)− fA∗((i− 1)k lnn+ 1)| ≤ d( 3
2κn + 1) · k lnne. By Lemma 21

and our choices of constants, with probability 1− n−Ω(1), |fA∗((i− 1)k lnn+ 1) + k lnn−
fA∗(ik lnn+ 1)| ≤ 3

2κn · k lnn. This gives:
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Algorithm 1 Algorithm for Approximate Alignment.

1: function ApproxAlign(s1, s2)
2: f ′(1)← 1
3: J ← 2d( 3

2κn + 1) · ke
4: for i = 1, 2, . . . b n

k lnnc − 1 do
5: minED ←∞
6: for j = −J,−J + 1, . . . J do
7: s′1 ← bits ik lnn+ 1 to (i+ 1)k lnn of s1
8: s′2 ← bits f ′((i− 1)k lnn+ 1) + (j + k) lnn to

f ′((i− 1)k lnn+ 1) + (j + 2k) lnn− 1 of s2
9: if ED(s′1, s′2) ≤ minED then
10: minED ← ED(s′1, s′2)
11: f ′(ik lnn+ 1)← f ′((i− 1)k lnn) + (j + k) lnn
12: end if
13: end for
14: end for
15: return f ′

16: end function

|[f ′((i− 1)k lnn+ 1) + k lnn]− fA∗(ik lnn+ 1)| ≤
|[f ′((i− 1)k lnn+ 1) + k lnn]− [fA∗((i− 1)k lnn+ 1) + k lnn]|

+ |[fA∗((i− 1)k lnn+ 1) + k lnn]− fA∗(ik lnn+ 1)| =
|f ′((i− 1)k lnn+ 1)− fA∗((i− 1)k lnn+ 1)|

+ |fA∗((i− 1)k lnn+ 1) + k lnn− fA∗(ik lnn+ 1)| ≤⌈
(3
2κn + 1) · k lnn

⌉
+ 3

2κn · k lnn ≤ J.

So for some j in the range iterated over by the algorithm, |f ′((i−1)k lnn+ 1) + (j+k) lnn−
fA∗(ik lnn+ 1)| ≤ lnn and thus the minimum edit distance minED found by the algorithm
in iterating over the j values is at most (1 + 3

2k(ρs + 2κn) lnn < kr lnn by Corollary 22 with
probability at least 1−n−Ω(1). By Corollary 23, with probability at least 1−n−Ω(1) the final
value of f ′(ik lnn + 1) can’t differ from fA∗(ik lnn + 1) by more than d( 3

2κn + 1) · k lnne
as desired - otherwise, by the corollary with high probability minED would be larger than
kr lnn.

Thus by induction, |f ′(i)− fA∗(i)| ≤ d( 3
2κn + 1) · k lnne for all i if the high probability

events of Lemma 21, Corollary 22, and Corollary 23 occur in all inductive steps. Across
all inductive steps we require O(n) such events to occur, and each occurs with probability
1− n−Ω(1) where the negative exponent can be made arbitrarily large, so by a union bound
we can conclude that with probability 1− n−Ω(1), |f ′(i)− fA∗(i)| ≤ 2k lnn for all i.

For runtime, note that the for loops iterate over O( n
lnn ) values of i and O(1) values of j.

For each i, j pair, we perform an edit distance computation between two strings of length
O(lnn) which can be in done in O(ln2 n) time using the canonical dynamic programming
algorithm. So the overall runtime is O(n lnn). J
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5 Error Analysis with Indels

In this section, we extend the results from Section 3 to the case where indels are present.

I Lemma 25. For any realization of (s1, s2, E) ∼ ID(n), let s′1 be the restriction of s1 to
any fixed subset of indices B of total size ` ≥ k lnn, s′2 be the substring of s2 that A∗ aligns
with s′1, and let (A∗)B denote the restriction of the alignment A∗ to indices in s′1, s′2. Then
with probability 1− e−Ω(`) over (s1, s2, E) ∼ ID(n), A > (A∗)B for all alignments A of s′1, s′2
such that A and (A∗)B do not share any edges.

The proof is almost identical to that of Lemma 14. We defer the proof to Appendix A. We
remark that the resulting constraint on the mutation probailities is given by 3

2ρs+κn < .03485.

I Lemma 26. For (s1, s2, E) ∼ ID(n), with probability 1− n−Ω(1) for all alignments A in
the range of SBR, A ≥ A∗.

Proof. The proof proceeds similarly to that of Lemma 17. Recall that the starting/ending
indices and the lengths of breaks are defined with respect to the indices in s1. Since s1’s
length is n always, we can define sets of break points independently of the realization of
ID(n), and so we define Ai, Bi, AB as in Lemma 17. The restriction of s1 to a fixed subset
of indices in the statement 25 can be applied to the subsets of indices contained in breaks, so
the same analysis as in Lemma 17 gives:

Pr[∃A ∈ SBR(A), A < A∗] =
n

k lnn∑
i=1
|Bi|n−Ω(ik).

Since breakpoints are defined with respect to the fixed-length string s1, as before we have
|Bi| ≤ (nk lnn+ 1)i and thus Pr[∃A ∈ SBR(A), A < A∗] ≤ n−Ω(k) as desired. J

Proof of Theorem 2. We estimate fA∗ using ApproxAlign to obtain f ′. Then, we use the
standard DP algorithm restricted to entries that are within distance k2 lnn from (i, f ′(i))
for some i. By Theorem 24, for any fixed k, if k2 is sufficiently large, this range of entries
computed contains all entries within distance k lnn of A∗, i.e. contains the range of LBR.
Fact 15 and Corollary 16 also hold when indels are present, so by Lemma 26, the optimality
of the DP algorithm gives that the algorithm is correct.

For runtime, note that ApproxAlign runs in O(n lnn) time per Theorem 24 and the
set of entries considered by the DP algorithm is size at most O(n lnn) (each of the n/ lnn
indices where f ′ is defined contribute O(ln2 n) entries to be computed), and each entry can
be computed in constant time. So the overall runtime is O(n lnn) as desired. J
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A Deferred Proofs

A.1 Proof of Lemma 6
Proof. We consider two cases for the realization of m and apply tail bounds to each case:

Pr

[
X ≥ k · µ

q

]
= Pr

[
X ≥ k · µ

q
∧m ≥

√
kµ

]
+ Pr

[
X ≥ k · µ

q
∧m <

√
kµ

]

≤ Pr
[
m ≥

√
kµ
]

+ Pr

[
X ≥ k · µ

q
|m ≤

√
kµ

]
.

A Chernoff bound gives Pr[m ≥
√
kµ] ≤ e−

(
√
k−1)2µ

3 , the negative binomial tail bound
(and noticing that Pr[X ≥ k · µq |m ≤

√
kµ] is maximized when m =

√
kµ) gives Pr[X ≥

k · µq |m <
√
kµ] ≤ e−

√
kµ(1−1/

√
k)2

2 , giving the lemma. J

A.2 Proof of Lemma 20
Proof. We first bound the number of strings within edit distance D of s1. Fix any set of up
to D edits that can be applied to a bitstring initially of length k lnn, that does not contain
redundant edits (such as substituting the same bit more than once, deleting an inserted bit).
This set can be mapped to a set of D tuples as follows:

For a substitution (or deletion) applied to the bit in the ith position (using the indexing
prior to insertions and deletions), it is encoded as the tuple (i, S) (or (i,D) for a deletion).
Note that by the assumption that there are no redundant edits, all substitution and
deletion edits in the set of edits map to distinct tuples.
For insertions, we handle indexing differently to still ensure no two insertions are mapped
to the same tuple. Suppose the set of D edits inserts the bitstring b1b2 . . . bk to the right
of index of i (using the original indexing - we treat bits are being inserted to the left of
the entire bitstring as being inserted to the right of bit 0). Let i′ be i plus the number of
insertions in the set of edits occurring before bit i. Then we map these k insertions to
the tuples (i′, Ib1), (i′ + 1, Ib2) . . . (i′ + k − 1, Ibk). This ensures that the insertions in the
set of edits also get mapped to different tuples, since the first index will be distinct for
all tuples that insertions are mapped to.
If the number of edits is D−k, we include (1, N), (2, N) . . . (k,N) in the final set of tuples
so the final set of tuples still has size D.
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Every tuple that can be mapped to in this encoding scheme is of the form (i, E) for
0 ≤ i ≤ k lnn + D,E ∈ {S,D, I0, I1} or (i,N) for 1 ≤ i ≤ D. So, there are at most(4k lnn+5D+4

D

)
sets of D tuples that any set of up to D edits can be mapped to. Furthermore,

note that the mapping is injective, i.e. given a set of D tuples, using the reverse of the
above process it can be uniquely mapped to set of edits. So, there are also at most(4k lnn+5D+4

D

)
possible ways to apply at most D edits to a bitstring which is initially length

k lnn. Stirling’s approximation gives that this is at most (4ek lnn
D + 5e+ 4e

D )D. So there are
at most (4ek lnn

D + 5e+ 4e
D )D strings s′ such that ED(s1, s

′) ≤ D. The number of bitstrings
of length k lnn is 2k lnn. So the probability ED(s1, s2) ≤ D is at most (4e k lnn

D +5e+ 4e
D )D

2k lnn . J

A.3 Proof of Lemma 25
Proof. We proceed similarly to Lemma 14, but for the case with indels. The same analysis
as in Lemma 19 gives that that for a fixed s′1,

Pr
(s1,s2,E)∼ID(n)

[(A∗)B ≥
3
2 (ρs + κn) `] ≤ e−ρs`/12 + 2e−ρi`/60 + 3e−ρd`/60.

Our goal now is to show any alignment A of s′1, s′2 that shares no edges with (A∗)B has
A > c` with high probability, where c = 3

2ρs + κn.
Fix any realization ζ of the positions of indels generated by (s1, s2, E) ∼ ID(n), without

fixing the values of s1, the inserted bits, or the positions of substitutions. Let `1 = ` and `2
be the lengths of s′1 and s′2. Let r = |`1 − `2|. A similar analysis to Lemma 21 gives that
r ≤ κn` with probability 1− e−Ω(`), so it suffices to prove the lemma statement holds with
high probability conditioned on any ζ such that r < κn`, so we condition on ζ for the rest of
the proof. Assume without loss of generality that `2 − `1 = r, i.e. that the r excess indels
are insertions. The counting argument is similar when `1 − `2 = r. As before, we sum over
the number of deletions, d, which corresponds to d+ r insertions and `− d substitutions.

Pr[∃A,A ≤ c`] ≤
c`/2∑
d=0

∑
A∈A with d deletions

Pr[A ≤ c`]

≤
c`/2∑
d=0

(
`+ d+ r

d, d+ r, `− d

)
Pr[Binom(`− d, 1

2) ≤ c`− 2d− r]

≤ c`

2

(
(1 + c

2 )`+ r
c
2`,

c
2`+ r, (1− c

2 )`

)
Pr[Binom((1− c

2)`, 1
2) ≤ c`].

Where the probability is taken over the events we haven’t conditioned on, i.e. the realization
of s1, the inserted bits, and the positions of substitutions. Since we assume r < κn`, then( (1+ c

2 )`+r
c
2 `,

c
2 `+r,(1−

c
2 )`
)
≤
( (1+ c

2 +κn)`
c
2 `,(

c
2 +κn)`,(1− c2 )`

)
with high probability. Note also that κn ≤ 3

2ρs+κn < c.
Hence, similar to Equation (3) from Lemma 14, Stirling’s approximation gives an upperbound
on the trinomial(

(1 + c
2 + κn)`

c
2`, (

c
2 + κn)`, (1− c

2 )`

)
≤ e

(2π)3/2
2
c`

√
2 + 3c
2− c

[
(1 + 3

2c)
(1+ 3

2 c)

( c2 )c(1− c
2 )(1− c2 )

]`
.

We combine this with Equation (2) from Lemma 14 for the term Pr[Binom((1− c
2 )`, 1

2 ) ≤ c`],
to get that when c < 0.03485, the probability decays exponentially in `. Hence requiring
that 3

2ρs + κn < .03485 ensures that A > (A∗)B with high probability. J
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