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Abstract
Cancer arises from an evolutionary process where somatic mutations occur and eventually give rise
to clonal expansions. Modeling this evolutionary process as a phylogeny is useful for treatment
decision-making as well as understanding evolutionary patterns across patients and cancer types.
However, cancer phylogeny inference from single-cell DNA sequencing data of tumors is challenging
due to limitations with sequencing technology and the complexity of the resulting problem. Therefore,
as a first step some value might be obtained from correctly classifying the evolutionary process as
either linear or branched. The biological implications of these two high-level patterns are different
and understanding what cancer types and which patients have each of these trajectories could
provide useful insight for both clinicians and researchers. Here, we introduce the Linear Perfect
Phylogeny Flipping Problem as a means of testing a null model that the tree topology is linear and
show that it is NP-hard. We develop Phyolin and, through both in silico experiments and real data
application, show that it is an accurate, easy to use and a reasonably fast method for classifying an
evolutionary trajectory as linear or branched.

2012 ACM Subject Classification Applied computing → Molecular evolution

Keywords and phrases Constraint programming, intra-tumor heterogeneity, combinatorial optimiz-
ation

Digital Object Identifier 10.4230/LIPIcs.WABI.2020.5

Supplementary Material Code and data are available at https://github.com/elkebir-group/
phyolin.

Funding Mohammed El-Kebir : This work was supported by the National Science Foundation under
award number CCF 1850502.

Acknowledgements This work was a project in the course CS598MEB (Computational Cancer
Genomics, Spring 2020) at UIUC. We thank the students in this course for their valuable feedback.

1 Introduction

The clonal theory of cancer states that tumors arise from the accumulation of somatic
mutations in a population of cells [18]. This process leads to a tumor comprised of hetero-
geneous clones – groups of cells with similar genotypes – or what is commonly referred to
as intra-tumor heterogeneity. By performing bulk and/or single-cell DNA sequencing of
a heterogeneous tumor biopsy, researchers and clinicians may infer reasonable models of
this evolutionary process for important downstream analysis and clinical decision-making.
Specifically, the evolution of a tumor is represented by a phylogeny, i.e. a rooted tree where
the leaves of the tree represent the extant cells of the tumor, internal vertices represent
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Figure 1 Phyolin identifying a linear perfect phylogeny in single-cell DNA sequencing
data (a) A graphical depiction of Phyolin identifying a linear perfect phylogeny in single-cell DNA
sequencing data when given a binary matrix B and a false negative rate β∗. (b) An example of
error free single-cell data that represents a linear perfect phylogeny and the equivalent clonal tree
representation.

ancestral tumor cells, and the root represents a normal cell. Due to trade-offs between the two
data types, techniques for phylogeny inference have been developed for both bulk-sequencing
and single-cell data individually [4–6,13,20] as well as combined for joint inference [15,16,25].
Bulk-sequencing data is less costly than single-cell data but results in a set of plausible
phylogenies making it difficult to uniquely determine the true evolutionary history of a
tumor [7, 19]. Conversely, single-cell data allows high resolution of the evolutionary process
but is subject to high rates of sequencing errors and is more expensive than bulk-sequencing.
In particular, single-cell sequencing has a high false negative rate, as much as 40% [8],
implying that actual mutations present in a cell might not be indicated correctly in the
resulting data. Doublets, where multiple cells are simultaneously sequenced as a single cell,
are also a unique challenge of single-cell data.

One important open question is whether certain types or subtypes of cancers follow
specific evolutionary patterns. Since tumors are typically biopsied at only a single point
in time for reasons related to patient care, there does not yet exist sufficient longitudinal
data to fully answer this question. However, it is believed that there are four high-level
categories of tumor evolution: linear evolution, branching evolution, neutral evolution and
punctuated evolution [3]. Of these four types, the simplest is linear evolution and will be
the focus of this work. Linear evolution results when subsequent driver mutations develop
a strong selective advantage and outcompete other clones during a clonal expansion [3].
By contrast, in branching evolution, a clone can diverge into separate lineages resulting in
distinct branches and a tree-like model of evolution.

A useful first step in gaining insight into the evolutionary patterns of different cancer
types is to determine the likelihood of each evolutionary process under available sequencing
data. Suppose, we are given single-cell data in the form of a matrix where each row in the
data is a cell and each column is a single-nucleotide variant (SNV), hereafter referred to as
mutation. The entries in the data would then be either 1 or 0 indicating the presence of a
mutation in a particular cell. Suppose also that we assume a null model of linear evolution
and are given a false negative rate for the technology under which the single-cell sequencing
was performed. We could then determine the minimum number of changes from 0 to 1,
indicating the entry was a false negative, such that the data is representative of a linear
perfect phylogeny. This would then provide an estimate of the false negative rate which
could be compared with the expected false negative rate.
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Azer et al. [1] utilized a deep learning approach to decide if single-cell data indicates
whether a tumor followed a linear or branched evolutionary process. Although their method
is fast at prediction time and performs well on simulated data, it has not yet been proved
whether the problem of identifying the minimum number of flips to obtain a linear perfect
phylogeny is NP-hard. Additionally, the neural networks are trained on inputs of a fixed size
and while padding could be used in predicting an input smaller than the fixed size [1], a new
network would have to be trained if the input size is larger than the trained network. This
drawback significantly reduces the speed advantage of such an approach as training of neural
networks is both a time consuming and intensive process.

Here, we prove that the problem of determining the minimum number of flips from 0 to 1
in single-cell data in order for the data to represent a linear perfect phylogeny under the
infinite sites model is NP-hard. Therefore, we develop a method called Phyolin that makes
use of constraint programming to find the minimum number of flips required to represent
a linear perfect phylogeny. The outputted number of flips from Phyolin is then used to
compute the estimated false negative rate to assess the plausibility of a linear evolutionary
pattern (Figure 1(a)). We evaluate the performance of Phyolin on both simulated and real
datasets, demonstrating that our method is an accurate and reasonably fast method for
classifying an evolutionary trajectory as linear or branched.

2 Problem Statement

Let n be the number of single cells sequenced and m be the number of unique mutations
present in the n cells. When a single cell is sequenced, assuming no errors, the group of
mutations present in that cell form a clone of the tumor. Under the infinite sites assumption
(ISA), where each mutation i is gained exactly once and never subsequently lost, each
sequenced cell corresponds to a leaf and we may infer a two-state perfect phylogeny using
a polynomial time algorithm [12] where the binary character states encode the presence of
mutation i in a cell j. We may equivalently represent a perfect phylogeny T as a binary
matrix B ∈ {0,1}n×m where bij = 1 if cell i harbors mutation j and 0 otherwise, for all
i ∈ [n] and j ∈ [m]. We provide the following definition [11] for convenience:

I Definition 1. Given an n by m binary-character matrix B for n cells and m mutations, a
perfect phylogeny for B is a rooted tree T with exactly n leaves provided that:
1. Each of the n cells labels exactly one leaf of T .
2. Each of the m mutations labels exactly one edge of T .
3. For any cell p, the mutations that label the edges along the unique path from the corres-

ponding leaf to the root specify all of the mutations of p whose state is one.

Next, we formalize the notation of a set of cells that contain a mutation as the one-state.

I Definition 2. The one-state Oj of mutation j is the set of single cells i where bij = 1.

A perfect phylogeny T either depicts linear evolution or branched evolution. Intuitively, a
matrix B represents linear evolution if there exists a total order of the set of one-states with
respect to the subset relation. Otherwise, we say perfect phylogeny T represents branched
evolution. Also, we note that perfect phylogeny T is not necessarily bifurcating.

Utilizing the collection of one-states for all m mutations, we determine if a given binary
matrix B represents a linear perfect phylogeny as follows (Figure 1(b)):

I Definition 3. A binary matrix B ∈ {0,1}n×m represents a linear perfect phylogeny if there
exists a permutation π : [m]→ [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(|m|).

WABI 2020
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However, single-cell sequencing is not error free and matrix B can fail to represent a
linear perfect phylogeny even when it is representative of the true evolutionary process.
False negatives, where a mutation that is present is not indicated as such, are particularly
problematic with rates of up to 0.4 [8]. False positives, where absent mutations are indicated
as present, are less of an issue in practice with rates less than 0.0005 for typically used whole-
genome amplification strategies [9]. Given that false negatives are particularly prevalent, we
would like to know how many false negatives would have had to occur in order for the inferred
perfect phylogeny under the ISA to have a linear structure? This leads to the following
problem statement.

I Problem 1 (Linear Perfect Phylogeny Flipping Problem (LPPFP)). Given
a matrix B ∈ {0,1}n×m, find the minimum number of bit flips from 0 to 1 such that B
represents a linear perfect phylogeny.

Under the null model, the true phylogeny is linear and thus the input data B must
represent a linear perfect phylogeny. Therefore, any implied branching in matrix B is
interpreted as a false negative and must be corrected through flipping to represent the
presumed linear perfect phylogeny. It is important to note that under this null hypothesis
a trivial solution always exists for any input. In the worst case, every 0 can be flipped to
a 1. This results in a binary matrix with all values equal to 1, suggesting a linear perfect
phylogeny with a single clone harboring all of the mutations. By seeking the solution that
requires the fewest number of flips, we maximize the likelihood of the null model given
the observed data, assuming an estimated false negative rate β∗ ≤ 0.5 of the sequencing
technology. Upon obtaining the solution to the LPPFP, we reverse the problem and compute
the implied false negative rate β̂ that resulted from flipping in order to assess the plausibility
of our null model. Then given the following null hypothesis, H0 : β̂ ≤ β∗, rejection of H0 is
equivalent to concluding that a linear perfect phylogeny is not plausible.

3 Complexity

Following [2], we will prove that LPPFP is NP-hard by a reduction from the chain graph
insertion problem, a known NP-complete problem [24].

I Theorem 4. LPPFP is NP-hard.

Proof. We prove that LPPFP is NP-hard by considering a decision version k-LPPFP asking
whether there exist k bit flips in input matrix B from 0 to 1 yielding a linear perfect phylogeny.
We claim that k-LPPFP is NP-complete by reduction from the chain graph insertion problem.

We begin by stating the definition of a chain graph and introduce the chain graph insertion
problem.

I Definition 5. A bipartite graph G = (X∪Y,E) is a chain graph if there exists a permutation
φ : {1, . . . , |Y |} → Y such that η(φ(1)) ⊆ η(φ(2)) ⊆ . . . ⊆ η(φ(|Y |) where η(v) = {w ∈ X :
(v,w) ∈ E} is the set of adjacent nodes of v.

I Problem 2 (Chain Graph Insertion Problem (CG-IP) [24]). Given a bipartite graph
G = (X ∪ Y,E) and integer k, does there exist a chain graph G′ = (X ∪ Y,E′) such that
E ⊆ E′ and |E|+ k = |E′|?

k-LPPFP ∈ NP because given a certificate (set of k flips from 0 to 1) to k-LPPFP, we
could order the columns by increasing cardinality of the resulting one-state sets and then
check if that permutation satisfies the definition of a linear perfect phylogeny. We will now
show that CG-IP ≤p k-LPPFP.
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Figure 2 Chain graph insertion problem reduction (a) Polynomial time reduction of the
CG-IP to LPPFP. (b) An equivalent solution of the CG-IP and LPPFP when k = 3.

Starting from an instance (G = (X ∪ Y,E),k) of CG-IP, we construct an instance B of
k-LPPFP in the following manner. Binary matrix B has |X| rows and |Y | columns, and its
entries are directly obtained from the edge set E of G: For each v ∈ Y , we set biv = 1 if i is
a neighbor of v for all i ∈ X and let biv = 0 otherwise. This can be done in polynomial time.
Figure 2(a) demonstrates the polynomial time reduction. We claim that k edge insertions
suffice to obtain a chain graph from G if and only if B represents a linear perfect phylogeny
when k bits are flipped from 0 to 1.

(=⇒) Suppose (G,k) ∈ CG-IP. Then there exists an edge set D ⊆ {(u,v) : u ∈ X, v ∈
Y } − E such that |D| = k and H = (X ∪ Y,E ∪D) a chain graph. Then by definition of
chain graph, there exists an permutation φ : {1 . . . |Y |} → Y such that η(φ(1)) ⊆ η(φ(2)) ⊆
. . . ⊆ η(φ(|Y |). It is easy to see that by construction, η(v) = Ov, for all v ∈ Y . Since φ
exists, a permutation π of the one-states also exists. Therefore, B represents a linear perfect
phylogeny.

(⇐=) Suppose (B,k) ∈ k-LPPFP. Then there exists a set F of positions (i,j) where
bij = 0 to bij = 1 such that |F | = k. Let B∗ be the resulting matrix after each flip at
position (i,j) ∈ F is made. Then B∗ represents a linear perfect phylogeny and there exists
a permutation π : {1 . . .m} → [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(|m|). Using the
equivalence between one-states and neighbors, H = (X ∪Y,E) can be constructed from B∗ in
the following manner. First, create the set X = [n] from the rows of B∗ and the set Y = [m]
from the columns of B∗. Then, create the set E of edges as {(x,y) ∈ X × Y | b∗xy = 1}. By
construction, H = (X ∪ Y,E) is a chain graph. J

4 Method

4.1 Model

To solve the LPPFP, we formulate a constraint optimization problem (COP) [21]. A COP
is a constraint satisfaction problem (CSP) with an objective function that specifies which
feasible solutions are preferred based on an optimization criteria. A CSP is defined by a tuple
(X ,D, C), where X = {x1, . . . ,xn} is the set of decision variables, D = {d1, . . . dn} is the set of
domains for X and C is a set of constraints that must be satisfied. A solution a ∈ A(X ,D,C)
to a CSP is an assignment of values {x1 7→ v1, . . . , xn 7→ vn} such that vi ∈ di for all i ∈ [n]
and all constraints C are satisfied. To facilitate an objective function f : A(X ,D,C) → R,
an initial assignment â ∈ A(X ,D,C) is found. Then, a preference constraint is added to
C, such that f(a) ≤ f(â) for a minimization problem or f(a) ≥ f(â) for a maximization

WABI 2020
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problem. The search is continued and the preference constraint updated each time a feasible
assignment â is found until no more feasible assignments exist. When this occurs, the
assignment â is returned and f(â) is the objective value. We note that in problems where
multiple optimal solutions exist, it is possible to return all such valid solutions. But even
though multiple solutions may exist, our focus is on assessing the plausibility of the null
hypothesis. Therefore, it is sufficient to consider any optimal solution even if the respective
assignments yield different linear perfect phylogenies.

First, we describe the set X of decision variables and the associated domains D used in
the formulation. The set X contains the variables x and c. Intuitively, the values taken by x
represent a binary matrix B′ used to represent a linear perfect phylogeny after flipping. More
formally, given a set n of cells and a set m of mutations, let xij = 1 if cell i has mutation j
in the linear perfect phylogeny B′ after flipping and 0 otherwise for each cell i ∈ [n], and
mutation j ∈ [m]. Then, D(xij) = {0,1}, for all i ∈ [n], j ∈ [m]. Note that a decision variable
is defined for every entry in B, even though only flips from 0 to 1 are allowed. This is to
facilitate future handling of false positives. The variables c, are used to define a permutation
of the columns in B′, such that after flipping is completed, B′ will adhere to the definition of
a linear perfect phylogeny. Recall that in order to represent a linear perfect phylogeny, there
must exist permutation π : [m]→ [m] such that Oπ(1) ⊆ Oπ(2) ⊆ . . . ⊆ Oπ(m). Let cj = π(j)
for all j ∈ [m]. Then D(cj) = [m] for all j ∈ [m].

Since, our goal is to find the linear perfect phylogeny that requires as few flips as possible,
that is minimizing the number of false negatives we infer, we define an objective function
that minimizes the number of flips from 0 to 1,

min
∑
i∈[n]

∑
j∈[m]

(xij − bij). (1)

The set C ensures that the outputted binary matrix B′ meets the conditions of representing
a linear perfect phylogeny and also that only flips from 0 to 1 can be made. The set C
consists of three constraints,

alldifferent(c), (2)
(bij = 1)⇒ (xij = 1) ∀i ∈ [n],∀j ∈ [m], (3)
(ck < cj)⇒ (xij ≤ xik) ∀k,j ∈ [m],∀i ∈ [n]. (4)

Equation (2) is a global constraint that ensures that every mutation is assigned a unique
ordering in the permutation. Equation (3) ensures that all entries in B, where bij = 1 remain
1 in the linear perfect phylogeny B′. That is, they cannot be flipped from 1 to 0. Finally,
Equation (4) ensures the defining property of a linear perfect phylogeny is met by ensuring
that if π(k) is less than π(j) then it must hold that Ok ⊆ Oj for all k,j ∈ [m].

We implemented Phyolin in C++ utilizing IBM ILOG CP OPTIMIZER2. Phyolin is
publicly available at https://github.com/elkebir-group/phyolin.

4.2 Null Hypothesis
The formulation of the method assumes a null hypothesis that the phylogeny is linear. The
output of Phyolin is an estimate of the false negative rate β̂ under this hypothesis such that

β̂ =
∑
i∈[n]

∑
j∈[m] 1(b′ij = 1, bij = 0)∑
i∈[n]

∑
j∈[m] b

′
ij

, (5)

2 https://www.ibm.com/analytics/cplex-cp-optimizer

https://github.com/elkebir-group/phyolin
https://www.ibm.com/analytics/cplex-cp-optimizer
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where B′ = [b′ij ] is the value of the decision variables x obtained from the solution of Phyolin
and B = [bij ] is the input matrix.

Given some threshold β∗, which could be based on knowledge of the system estimated
false negative rate or alternatively conservatively set at 0.4 [8], then we can reject the null
hypothesis that the phylogeny is linear whenever β̂ > β∗.

5 Results

In order to evaluate Phyolin, we perform in silico experiments as well as run Phyolin on
real data. First, we seek to evaluate the performance of Phyolin when the simulated data
closely approximates a recently published high throughput single-cell DNA sequencing study
of an acute myeloid leukemia (AML) cohort [17] (Section 5.1). Section 5.2 describes the
application of Phyolin to patients with childhood acute lymphoblastic leukemia [10]. All
experiments were conducted on a server with Intel Xeon Gold 5120 dual CPUs with 14 cores
each at 2.20GHz and 512 GB RAM.

5.1 Simulations Approximating an Acute Myeloid Leukemia Cohort
In a recent study, Morita et al. [17] performed high-throughput targeted droplet microfluidic
DNA single-cell sequencing on a cohort of 77 patients with acute myeloid leukemia (AML)
and inferred the evolutionary tree of each patient using SCITE [13]. Utilizing high-throughput
sequencing resulted in a median of 7,584 cells sequenced per patient [17]. AML is a cancer
type where both linear and branching evolutionary patterns are suspected [17]. As a result,
the set of trees published [17] were a mix of linear and branched patterns.

Unfortunately, the single-cell data is not yet publicly available but the estimated clonal
prevalence of each clone in the inferred publish tree was included in the supplementary
material along with the estimated per patient false negative rate for the sequencing technology.
The clonal prevalence of clone i is the number of cells in the sample mapped to clone i
divided by the total number of cells in the sample. We utilize this published data to evaluate
Phyolin on a scenario that closely aligns to a highly realistic scenario. Therefore, we utilize
the published clonal prevalence rates for a subset of 12 patients in the cohort in order to
simulate the total number of single-cells sequenced at false negative rate β = 0.05. This value
of β is to approximate the average system false negative rate for the sequencing technology
used in [17]. The subset contains six patients with linear trees and mutations ranging from
3-5 and six patients with branched trees and mutations ranging from 3-7. A total of 10
replications were performed per simulated patient. Table 1 shows a summary of the patients
selected for inclusion in the simulation study.

We set an upper limit on runtime of Phyolin at 500 seconds with 80% of the replications
returning an optimal solution in under the time limit. We chose the 500 second time limit to
facilitate timely analysis of the input data. Figure 3(a) shows the distribution of runtime
by the simulated evolutionary pattern. Linear patterns resulted in a median runtime of 33
seconds (IQR: 8-82 seconds) and branched patterns resulted in a median of 156 seconds
(IQR: 117-502 seconds). The median input size (cells × mutations) of the linear patterns was
24,435 and 28,775 for branched patterns. The largest input was for AML-74 with 9,279 cells
by 5 mutations and no replications completed within the time limit. Only 1 replication with
a linear pattern did not complete within the time limit. This implies that optimal solutions
are found much faster when the true pattern is linear.

Figure 3(b) compares the distribution of the estimated false negative rate β̂ for the
patients with linear versus branched published trees over all 10 replications. The simulated
system false negative rate was 5% and is shown as a dashed line where relevant. From

WABI 2020
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Figure 3 Phyolin results of the in silico experiments on a simulated cohort of patients
with AML (a) A comparison of Phyolin runtimes in seconds between instances with different
evolutionary patterns. (b) A comparison of the distribution of β̂ between simulated linear and
branched topologies over 10 replications. (c) The distribution of the difference between the number
of flips performed by Phyolin and the simulated flips per patient. (d) The mean value of β̂ for each
patient along with the standard error. (e) Relationship between estimated false negative rate and
the ancestor-descendant distance. Each point represents the mean value over 10 replications and
is labeled by the numerical patient identifier. A linear trend line is shown with a 95% confidence
interval.
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Table 1 Simulation study based on characteristics of a published AML cohort [17]
Shown is the patient identifier, the published evolutionary pattern of the tree, the number of
mutations, the total cells sequenced [17], the median number of false negatives over 10 replications,
Phyolin estimated number of false negatives over 10 replications, the median β̂ over 10 replications,
and the median probability of a linear perfect phylogeny as determined by the comparison deep
learning method [1].

patient pattern m n

[17]
median
flips

Phyolin
median
flips

median
β̂

med
prob.

AML-2 Linear 5 7931 1826 1039 0.037 0.70
AML-8 Linear 3 4675 759 294 0.029 0.42
AML-10 Linear 4 8729 1427 584 0.037 0.56
AML-33 Linear 3 8120 1091 350 0.027 0.41
AML-47 Linear 3 6491 1135 488 0.032 0.42
AML-58 Linear 3 8170 1280 472 0.029 0.40
AML-53 Branched 3 8013 544 2220 0.44 0.39
AML-62 Branched 6 4027 726.5 2299 0.19 0.58
AML-63 Branched 4 8347 1238.5 1432 0.084 0.44
AML-67 Branched 7 6024 1061.5 6440 0.31 0.71
AML-69 Branched 3 7462 651.5 2122 0.16 0.29
AML-74 Branched 5 9279 1020 294 0.17 0.38

Figure 3(b), we note a significant difference in the distributions between linear and branched
instances. Additionally, the median of the linear perfect phylogeny patients is 0.03 (IQR:
0.028-0.032) and every linear replication is less than β∗ = 0.05 while the median of the
branched perfect phylogeny patients is 0.19 (IQR: 0.16-0.31) and every branched replication
is greater than β∗ = 0.05.

Figure 3(c) compares the difference between the number of flips performed by Phyolin
and the actual number of simulated false negatives. Interestingly, Phyolin performs fewer
flips than simulated false negatives for all linear patients and performs a much higher number
of flips than simulated for branched patterns. This underestimation can be attributed to
the fact that not every false negative implies that branching occurs and so Phyolin only
needs to flip those that do. Thus, the difference between the number of Phyolin flips and the
number of simulated flips may be negative. The fact that Phyolin performs more flips than
was actually simulated in the branched cases aligns with the original intuition for its design
as we not only need to correct false negatives but also true negatives in order to force the
pattern to be linear.

Figure 3(d) shows the mean β̂ and standard error for each simulated patient over the 10
replications. The number of mutations are also shown in order to investigate if increasing
number of mutations increases β̂. Although there appears to be some effect when increasing
the number of mutations, it does not strictly hold. However, utilizing a strict threshold of
β∗ = 0.05 results in perfect classification of the topology for all patients and all replications.

Since the number of mutations does not necessarily impact the estimated false negative
rate β̂, another consideration is whether or not β̂ increases with the amount of branching. To
this end, we compare the ancestor-descendant distance between the simulated true tree B∗
and the inferred linear tree B′. A mutation x is an ancestor of mutation y if x occurs on the
path from the root to y, in which case y is said to be a descendant of x. Ancestor-descendant
(AD) distance is defined as the size of the symmetric difference between the sets of ordered
pairs of characters, or ancestor-descendant pairs, introduced on distinct edges of perfect
phylogenies B∗ and B′. A higher AD distance implies a greater degree of branching in
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Figure 4 Results of the Deep Learning approach [1] applied to the in silico experi-
ments on a simulated cohort of patients with AML (a) A comparison of the distribution of
the probability of a linear perfect phylogeny between simulated linear and branched topologies over
10 replications. (d) The mean value of the probability of a linear perfect phylogeny for each patient
along with the standard error. A horizontal line indicates the threshold probability (0.05) used to
classify an input as linear.

the true tree. For example AML-63 has only one branch and AML-67 has three distinct
branching events. Figure 3(e) shows the relationship between the mean estimated false
negative rate β̂ and the mean AD distance per simulated patient over 10 replications. The
AD distance is 0 for all patients with a simulated linear perfect phylogeny. This means that
Phyolin correctly infers the true tree when it is linear. Also, there is evidence of a correlation
between the estimated false negative rate β̂ and the AD distance.

Azer et al.’s [1] deep learning method for classifying topology is the most similar method
for comparison with Phyolin. Therefore, we retrained this deep neural network to support
our input size of 9300 cells and 7 mutations. We used a default hidden layer size of 100
and drop-out rate of 0.9, 5000 training examples and 500 epochs. We did not modify any
other hyperparameters. The input size was selected so that only one network needed to
be trained for all in silico experiments and we used padding for any instances where the
n < 9300 or m < 7. After 200 epochs the best validation accuracy was 64.1% and completed
in 2168 seconds (36.1 minutes). After 500 epochs, the best validation accuracy was 64.8% and
completed in 3997 seconds (66.6 minutes). This suggests that further learning was unlikely.
We report the probability that the phylogeny is linear on the same simulation instances when
evaluated with the trained model.

Table 1 shows the median probability that the phylogeny is linear over the 10 replications
per simulated patient. We use a cutoff of 0.5 as the threshold for classifying a topology as
linear. Figure 4(a) shows the distribution of the probabilities over all patient replications by
ground truth topology. Classification accuracy was 100% for 6 of the 12 simulated patients
(Linear: AML-2, AML-10, Branched: AML-53, AML-63, AML-69 and AML-74) and 0%
for the remaining 6 simulated patients. Figure 4(b) shows mean estimated probability per
patient and standard error for the 10 replications. The predicted probability tends to increase
as the number of mutations increases.

In summary, the simulated AML cohort results show that, in contrast to the Deep
Learning approach [1], Phyolin correctly and quickly classifies large instances as linear with
a strict threshold β∗ set at the system estimated false negative rate. Furthermore, as the
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Table 2 Summary of Phyolin analysis of two patients with ALL Shown is the patient
identifier, the number of cells sequenced [10], the number of mutations, the number of flips performed
by Phyolin, the estimated false negative rate β̂ and the false negative rate threshold β∗ that was
estimated for the sequencing technology [14].

patient cells sequenced [10] mutations Phyolin flips β̂ β∗ [10]
Patient 2 115 16 403 0.36 0.18
Patient 6 146 10 191 0.15 0.18

amount of branching increases, the estimated β̂ tends to increase. Thus the greater the
difference between β̂ and β∗, the more confident we can be in rejecting the null hypothesis
that the phylogeny is linear.

5.2 Real Data of Childhood Acute Lympoblastic Leukemia Patients
Gawad et al. [10] performed single-cell DNA sequencing on a cohort of six patients with
childhood acute lymphoblastic leukemia (ALL). As a subtype of leukemia, ALL is also
postulated to follow both linear and branched trajectories [22]. We evaluate Phyolin on two
of the six patients in this cohort: Patient 2 and Patient 6. The input size for Patient 2 was
115 cells by 16 mutations. Two independent, previous analyses of the sequencing data of
Patient 2 suggested a branched topology [15,23].

In addition, we consider Patient 6 because this patient was analyzed by the deep learning
method [1]. In another line of work, Kuipers et al. [14] investigated the validity of the ISA
in single-cell data within the ALL dataset [10]. Using their method, they compared the
likelihood of the data under both a finite sites and infinite sites model via a Bayes Factor
and determined with high probability that Patient 6 suffered a loss of the SUSD2 mutation.
They used SCITE [13] to infer trees from the single-cell data under both an infinite sites
and finite sites model. These trees are show in Figure 5. The tree inferred under the ISA is
linear (Figure 5(a)) while the tree inferred under the finite sites model is branched due to
the loss of SUSD2 (Figure 5(b)). The input size for Patient 6 was 146 cells by 10 mutations.
Table 2 summarizes results obtained by Phyolin.

For Patient 2, Phyolin estimated a false negative rate of 0.36, which is much greater than
the rate of 0.18 estimated in [10]. Taking β∗ = 0.18 implies rejecting the null hypothesis of a
linear perfect phylogeny. This concurs with the branched trees published in [15, 23]. Phyolin
utilized the 500 second time limit to complete its run for Patient 2 despite the small input
size.

For Patient 6, Phyolin estimated a false negative rate of 0.15. The published false negative
rate β∗ in [10] was 0.18. This implies that we cannot reject the null hypothesis of a perfect
linear perfect phylogeny. Indeed, the linear tree output by Phyolin does concur with Figure
5(a). The comparison deep learning approach [1] also concluded that the phylogeny was
linear with probability 0.79. It is important to note that allowing for mutation loss of SUSD2,
in line with [14], will lead to a smaller false negative rate β̂. This suggests that incorporating
mutation loss into Phyolin is an important area for future study.

6 Discussion

In this work, we introduced the Linear Perfect Phylogeny Flipping Problem and
showed that it is NP-hard. To solve the LPPFP, we developed a method named Phyolin that
takes as input a binary matrix of single-cell DNA sequencing data and then identifies a linear
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Figure 5 Patient 6 candidate trees Two possible trees published in [14]. (a) Tree adheres to
the ISA, (b) Tree with a branched topology indicating a mutation loss of SUSD2.

perfect phylogeny in the data by assuming that any implied branching are actually false
negatives. It returns an estimate of the false negative rate under the null hypothesis that the
perfect phylogeny is linear and allows the user to compare this estimate to a false negative
threshold at which the null hypothesis of a linear perfect phylogeny can subsequently be
accepted or rejected. We tested Phyolin on both simulated data and real data and showed
that it is more accurate than a recent deep learning method [1]. In conclusion, Phyolin is
a reliable, easy to use and fast method to assess the likelihood of a linear evolution before
more complex reconstruction methods are utilized.

There are several future research directions. First, Phyolin lacks an absolute criterion or
threshold for rejecting the null hypothesis that the phylogeny is linear. To address this, we
plan to modify Phyolin so that instead of trying to solve the problem to optimality, a user
could input a false negative rate at which he or she would fail to reject the null hypothesis of a
linear perfect phylogeny if any solution exists below the supplied threshold. This would allow
Phyolin to explicitly solve a constraint satisfaction problem and likely reduce the runtime.

Second, Phyolin can be modified to allow false positives, which means allowing flips from
1 to 0. However, before that modification is made, more robust in silico experiments should
be conducted with simulated false positives and doublets. Although false positives are rare,
it is possible that a single or a few critically positioned false positives requires excessive
inference of false negatives in order to represent a linear perfect phylogeny. High doublet
rates could potentially result in low estimates of false negative when the true phylogeny is
branched. Therefore, a constraint could also be incorporated to ignore up to the inputted
number of doublets.
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Third, Phyolin could easily incorporate mutation and cell clustering through additional
constraints when supplied with a number of cell clusters and/or mutation clusters. A search
could be performed to find the optimal number of clusters such that the likelihood of the
data of is maximized. Fourth, even when the phylogeny is branched, the trunk of the tree
may be linear or there might be a long branch with linear evolution within that branch. This
means that a subset of the mutations form a linear perfect phylogeny. A future direction is
to explore if Phyolin can identify a subset of mutations that are likely to be truncal or form
a long branch of the tree, thus potentially providing fast partial inference of the tree.

Finally, given the results of ALL Patient 6, exploring evolutionary models that allow
ISA violations, such as mutation loss, is an exciting direction for future study. In particular,
modeling Patient 6 as a 1-Dollo phylogeny, where each mutation is gained only once and
subsequently lost at most once, could potentially be achieved by replicating each column
once and then using Phyolin. If the two columns representing the same mutation are distinct
in the inferred linear perfect phylogeny, then that implies that the mutation was lost once.
The plausibility of a linear perfect phylogeny under both ISA and under a 1-Dollo model
could be compared [5].
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