
Singletons for Simpletons: Revisiting Windowed
Backoff with Chernoff Bounds
Qian M. Zhou
Mississippi State University, Department of Mathematics and Statistics, MS, USA
qz70@msstate.edu

Aiden Calvert
Mississippi School for Mathematics and Science, Columbus, MS, USA
calverta20@themsms.org

Maxwell Young
Mississippi State University, Department of Computer Science and Engineering, MS, USA
myoung@cse.msstate.edu

Abstract
Backoff algorithms are used in many distributed systems where multiple devices contend for a shared
resource. For the classic balls-into-bins problem, the number of singletons – those bins with a single
ball – is important to the analysis of several backoff algorithms; however, existing analyses employ
advanced probabilistic tools to obtain concentration bounds. Here, we show that standard Chernoff
bounds can be used instead, and the simplicity of this approach is illustrated by re-analyzing some
well-known backoff algorithms.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Chernoff bounds, backoff, contention resolution, algorithms

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.24

Funding Maxwell Young: This research is supported by the National Science Foundation grant CNS
1816076, and by the U.S. National Institute of Justice (NIJ) Grant 2018-75-CX-K002.

1 Introduction

Backoff algorithms address the general problem of how to share a resource among multiple
devices [38]. A ubiquitous application is IEEE 802.11 (WiFi) networks [31, 48, 34], where
the resource is a wireless channel, and devices each have packets to send. Any single packet
sent uninterrupted over the channel is likely to be received, but if the sending times of two
or more packets overlap, communication often fails due to destructive interference at the
receiver (i.e., a collision). An important performance metric is the time required for all
packets to be sent, which is known as the makespan.

Formal Model. Time is discretized into slots, and each packet can be transmitted within a
single slot. Starting from the first slot, a batch of n packets is ready to be transmitted on a
shared channel. This case, where all packets start at the same time, is sometimes referred to
as the batched-arrivals setting. Each packet can be viewed as originating from a different
source device, and going forward we speak only of packets rather than devices.

For any fixed slot, if a single packet sends, then the packet succeeds; however, if two or
more packets send, then all corresponding packets fail. A packet that attempts to send in a
slot learns whether it succeeded and, if so, the packet takes no further action; otherwise, the
packet learns that it failed in that slot, and must try again at a later time.

© Qian M. Zhou, Aiden Calvert, and Maxwell Young;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692785?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:qz70@msstate.edu
mailto:calverta20@themsms.org
mailto:myoung@cse.msstate.edu
https://doi.org/10.4230/LIPIcs.FUN.2021.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Singletons for Simpletons

Background on Analyzing Makespan. A natural question is the following: For a given
backoff algorithm under batched-arrivals, what is the makespan as measured in the number of
slots?

This question was first addressed by Bender et al. [5] who analyze several backoff
algorithms that execute over disjoint, consecutive sets of slots called windows. In every
window, each packet that has not yet succeeded selects a single slot uniformly at random in
which to send. If the packet succeeds, then it leaves the system; otherwise, the failed packet
waits for the next window to begin and repeats this process.

Bender et al. [5] analyze several algorithms where windows monotonically increase in size.
The well-known binary exponential backoff algorithm – a critical component of many
WiFi standards – exemplifies this behavior, where each successive window increases in size
by a factor of 2.1

There is a close relationship between the execution of such algorithms in a window, and
the popular balls-in-bins scenario, where N balls (corresponding to packets) are dropped
uniformly at random into B bins (corresponding to slots). In this context, we are interested in
the number of bins containing a single ball, which are sometimes referred to as singletons [52].

Despite their simple specification, windowed backoff algorithms are surprisingly intricate
in their analysis. In particular, obtaining concentration bounds on the number of slots
(or bins) that contain a single packet (or ball) – which we will also refer to as singletons
– is complicated by dependencies that rule out a straightforward application of Chernoff
bounds (see Section 2.1). This is unfortunate given that Chernoff bounds are often one of
the first powerful probabilistic tools that researchers learn, and they are standard material
in a randomized algorithms course.

In contrast, the makespan results in Bender et al. [5] are derived via delay sequences [33, 49],
which are arguably a less-common topic of instruction. Alternative tools for handling
dependencies include Poisson-based approaches by Mizenmacher [40] and Mitzenmacher and
Upfal [39], and the Doob martingale [21], but to the best of our knowledge, these have not
been applied to the analysis of windowed backoff algorithms.

1.1 Our Goal
Is there a simpler route to arrive at makespan results for windowed backoff algorithms?

Apart from being a fun theoretical question to explore, an affirmative answer might
improve accessibility to the area of backoff algorithms for researchers. More narrowly, this
might benefit students embarking on research, many of whom cannot fully appreciate the very
algorithms that enable, for example, their Instagram posts access to online course notes.2
Arguably, Chernoff bounds can be taught without much setup. For example, Dhubashi
and Panconesi [21] derive Chernoff bounds starting on page 3, while their discussion of
concentration results for dependent variables is deferred until Chapter 5.

What if we could deploy standard Chernoff bounds to analyze singletons? Then, the
analysis distills to proving the correctness of a “guess” regarding a recursive formula (a
well-known procedure for students) describing the number of packets remaining after each
window, and that guess would be accurate with small error probability.

1 In practice, the doubling terminates at some fixed large value set by the standard.
2 In our experience, the makespan analysis is inaccessible to most students in the advanced computer

networking course.

Q.M. Zhou, A. Calvert, and M. Young 24:3

Finally, while it may not be trivial to show that Chernoff bounds are applicable to
backoff, showing that another problem – especially one that has such important applications
– succumbs to Chernoff bounds is aesthetically satisfying.

1.2 Results

We show that Chernoff bounds can indeed be used as proposed above. Our approach involves
an argument that the indicator random variables for counting singletons satisfy the following
property from [22]:

I Property 1. Given a set of n indicator random variables {X1, · · · , Xn}, for all subsets
S ⊂ {1, · · · , n} the following is true:

Pr

∧
j∈S

Xj = 1

 ≤∏
j∈S

Pr [Xj = 1] . (1)

We prove the following:

I Theorem 1. Consider N balls dropped uniformly at random into B bins. Let Ij = 1 if
bin j contains exactly 1 ball, and Ij = 0 otherwise, for j = 1, · · · , B. If B ≥ N +

√
N or

B ≤ N −
√
N , then {I1, · · · , IB} satisfy the Property 1.

Property 1 permits the use of standard Chernoff bounds; this implication is posed as an
exercise by Dubhashi and Panconesi [21] (Problem 1.8), and we provide the argument in our
appendix.

We then show how to use Chernoff bounds to obtain asymptotic makespan results for
some of the algorithms previously analyzed by Bender et al. [5]: Binary Exponential
Backoff (BEB), Fixed Backoff (FB), and Log-Log Backoff (LLB). Additionally,
we re-analyze the asymptotically-optimal (non-monotonic) Sawtooth Backoff (STB)
from [29, 25].

These algorithms are specified in Section 5, but our makespan results are stated below.

I Theorem 2. For a batch of n packets, the following holds with probability at least 1−O(1/n):
FB has makespan at most n lg lgn+O(n).
BEB has makespan at most 512n lgn+O(n).
LLB has makespan O(n lg lgn/ lg lg lgn).
STB has makespan O(n).

We highlight that both of the cases in Theorem 1, B ≤ N +
√
N and B ≥ N −

√
N , are

useful. Specifically, the analysis for BEB, FB, and STB uses the first case, while LLB uses
both.

1.3 Related Work

Several prior results address dependencies and their relevance to Chernoff bounds and load-
balancing in various balls-in-bins scenarios. In terms of backoff, the literature is vast. In
both cases, we summarize closely-related works.

FUN 2021

24:4 Singletons for Simpletons

Dependencies, Chernoff Bounds, & Ball-in-Bins. Backoff is closely-related to balls-and-
bins problems [4, 18, 47, 50], where balls and bins correspond to packets and slots, respectively.
Balls-in-bins analysis often arises in problems of load balancing (for examples, see [9, 10, 11]).

Dubhashi and Ranjan [22] prove that the occupancy numbers – random variables Ni
denoting the number of balls that fall into bin i – are negatively associated. This result is
used by Lenzen and Wattenhofer [35] use it to prove negative association for the random
variables that correspond to at most k ≥ 0 balls.

Czumaj and Stemann [19] examine the maximum load in bins under an adaptive process
where each ball is placed into a bin with minimum load of those sampled prior to placement.
Negative association of the occupancy numbers is important to this analysis.

Finally, Dubhashi and Ranjan [22] also show that Chernoff bounds remain applicable
when the corresponding indicator random variables that are negatively associated. The same
result is presented in Dubhashi and Panconesi [21].

Backoff Algorithms. Many early results on backoff are given in the context of statistical
queuing-theory (see [30, 28, 43, 26, 30, 27]) where a common assumption is that packet-arrival
times are Poisson distributed.

In contrast, for the batched-arrivals setting, the makespan of backoff algorithms with
monotonically-increasing window sizes has been analyzed in [5], and with packets of different
sizes in [6]. A windowed, but non-monotonic backoff algorithm which is asymptotically
optimal in the batched-arrival setting is provided in [25, 29, 2].

A related problem is contention resolution, which addresses the time until the first packet
succeeds [51, 41, 24, 23]. This has close ties to the well-known problem of leader election
(for examples, see [13, 12]).

Several results examine the dynamic case where packets arrive over time as scheduled in
a worst-case fashion [36, 20, 8]; this is in contrast to batched-arrivals where it is implicitly
assumed that the current batch of packets succeeds before the next batch arrives. A similar
problem is that of wake-up [16, 15, 17, 14, 37, 32], which addresses how long it takes for a
single transmission to succeed when packets arrive under the dynamic scenario.

Finally, several results address the case where the shared communication channel is
unavailable at due to malicious interference [3, 44, 45, 46, 42, 1, 7].

2 Analysis for Property 1

We present our results on Property 1. Since we believe this result may be useful outside
of backoff, our presentation in this section is given in terms of the well-known balls-in-bins
terminology, where we have N balls that are dropped uniformly at random into B bins.

2.1 Preliminaries
Throughout, we often employ the following inequalities (see Lemma 3.3 in [46]), and we will
refer to the left-hand side (LHS) or right-hand side (RHS) when doing so.

I Fact 1. For any 0 < x < 1, e−x/(1−x) ≤ 1− x ≤ e−x.

Knowing that indicator random variables (i.r.v.s) satisfy Property 1 is useful since the
following Chernoff bounds can then be applied.

Q.M. Zhou, A. Calvert, and M. Young 24:5

I Theorem 3. (Dubhashi and Panconesi [21])3 Let X =
∑
iXi where X1, ..., Xm are i.r.v.s

that satisfy Property 1 . For 0 < ε < 1, the following holds:

Pr[X > (1 + ε)E[X]] ≤ exp
(
−ε

2

3 E[X]
)

(2)

Pr[X < (1− ε)E[X]] ≤ exp
(
−ε

2

2 E[X]
)

(3)

We are interested in the i.r.v.s Ij , where:

Ij =
{

1, if bin j contains exactly 1 ball.
0, otherwise.

Unfortunately, there are cases where the Ijs fail to satisfy Property 1. For example, consider
N = 2 balls and B = 2 bins. Then, Pr(I1 = 1) = Pr(I2 = 1) = 1/2, so Pr(I1 = 1) · Pr(I2 =
1) = 1/4, but Pr(I1 = 1 ∧ I2 = 1) = 1/2.

A naive approach (although, we have not seen it in the literature) is to leverage the
result in [35], that the variables used to count the number of bins with at most k balls are
negatively associated. We may bound the number of bins that have at most 1 ball, and the
number of bins that have (at most) 0 balls, and then take the difference. However, this is a
cumbersome approach, and our result is more direct.

Returning briefly to the context of packets and time slots, another approach is to consider
a subtly-different algorithm where a packet sends with probability 1/w in each slot of a
window with w slots, rather than selecting uniformly at random a single slot to send in.
However, as Bender et al. [5] point out, when n is within a constant factor of the window size,
there is a constant probability that the packet will not send in any slot. Consequently, the
number of windows required for all packets to succeed increases by a logn-factor, whereas
only O(log logn) windows are required under the model used here.

2.2 Property 1 and Bounding Singletons
To prove Theorem 1, we establish the following Lemma 4. For j = 1, · · · , B − 1, define:

Pj = Pr [Ij+1 = 1 | I1 = 1, · · · , Ij = 1]

which is the conditional probability that bin j + 1 contains exactly 1 ball given each of the
bins {1, · · · , j} contains exactly 1 ball. Note that Pr[Ij = 1] is same for any j = 1, · · · , B,
and let:

P0 , Pr[Ij = 1] = N

(
1
B

)(
1− 1

B

)N−1
. (4)

I Lemma 4. If B ≥ N +
√
N or B ≤ N −

√
N , the conditional probability Pj is a

monotonically non-increasing function of j, i.e., Pj ≥ Pj+1, for j = 0, · · · , B − 2.

Proof. First, for j = 1, · · · ,min{B,N} − 1, the conditional probability can be expressed as

Pj = (N − j)
(

1
B − j

)(
1− 1

B − j

)N−j−1
. (5)

3 This is stated in Problem 1.8 in [21]; we present a proof in Section A of our appendix.

FUN 2021

24:6 Singletons for Simpletons

Note that P0 in (4) is equal to (5) with j = 0.
For B ≥ N +

√
N , we note that beyond the range j = 1, ..., ,min{B,N} − 1 (i.e., N − 1),

it must be that Pj = 0. In other words, Pj = 0 for j = N,N + 1, · · · , B − 1 since all balls
have already been placed. Thus, we need to prove Pj ≥ Pj+1, for j = 0, · · · , N − 2.

On the other hand, if B ≤ N −
√
N , we need to prove Pj ≥ Pj+1, for j = 0, · · · , B − 2.

Thus, this lemma is equivalent to prove if B ≥ N +
√
N or B ≤ N −

√
N , the ratio

Pj/Pj+1 ≥ 1, for j = 0, · · · ,min{B,N} − 2.
Using the expression (5), the ratio can be expressed as

Pj
Pj+1

=
(N − j)

(
1

B−j

)(
1− 1

B−j

)N−j−1

(N − j − 1)
(

1
B−j−1

)(
1− 1

B−j−1

)N−j−2

= 1(
B−j
N−j

)(
N−j−1
B−j−1

) ·
(

1− 1
B−j

)N−j−1

(
1− 1

B−j−1

)N−j−2

= 1(
B−j
N−j

)(
N−j−1
B−j−1

) ·
(
B−j−1
B−j

)N−j−1

(
B−j−2
B−j−1

)N−j−1 (
B−j−1
B−j−2

)
= 1(

B−j
N−j

)(
N−j−1
B−j−2

) ·(B−j−1
B−j
B−j−2
B−j−1

)N−j−1

=

(
1 + 1

(B−j)(B−j−2)

)N−j−1

(N−j−1)(B−j)
(N−j)(B−j−2)

.

Let a = N − j, then 2 ≤ a ≤ N ; and let y = B −N . Thus, the ratio becomes

Pj
Pj+1

=

[
1 + 1

(a+y)(a+y−2)

]a−1

(a−1)(a+y)
a(a+y−2)

.

By the Binomial theorem, we have[
1 + 1

(a+ y)(a+ y − 2)

]a−1
= 1+ a− 1

(a+ y)(a+ y − 2) +
a−1∑
k=2

(
a− 1
k

)[
1

(a+ y)(a+ y − 2)

]k
.

Thus, the ratio can be written as:

Pj
Pj+1

= a(a+ y − 2)
(a− 1)(a+ y) + a

(a+ y)2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= a3 + 2a2y − a2 + ay2 − 2ay − a
a3 + 2a2y − a2 + ay2 − 2ay − y2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= a3 + 2a2y − a2 + ay2 − 2ay − a+ (y2 − y2)
a3 + 2a2y − a2 + ay2 − 2ay − y2 +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

= 1 + y2 − a
(a+ y)2(a− 1) +

∑a−1
k=2

(
a−1
k

) [1
(a+y)(a+y−2)

]k
(a−1)(a+y)
a(a+y−2)

. (6)

Q.M. Zhou, A. Calvert, and M. Young 24:7

Note that because 0 ≤ j ≤ min{B,N} − 2, then a+ y = B − j ≥ 2. Thus, the third term
in (6) is always non-negative. If y = B −N ≥

√
N or y ≤ −

√
N , then y2 ≥ N ≥ a for any

2 ≤ a ≤ N . Consequently, the ratio Pj/Pj+1 ≥ 1. J

We can now give our main argument:

Proof of Theorem 1. Let s denote the size of the subset S ⊂ {1, · · · , B}, i.e. the number
of bins in S. First, note that if B ≥ N +

√
N , when s > N (i.e., more bins than balls),

the probability on the left hand side (LHS) of (1) is 0, thus, the inequality (1) holds. In
addition, shown above Pr[Ij = 1] = P0 for any j = 1, · · · , B. Thus, the right hand side of
(1) becomes Ps0 . Thus, we need to prove for any subset, denoted as S = {j1, · · · , js} with
1 ≤ s ≤ min{B,N}

Pr

[
s∧

k=1
Ijk = 1

]
≤ Ps0 .

The LHS can be written as:

= Pr

[
Ijs = 1 |

s−1∧
k=1

Ijk = 1
]
Pr

[
s−1∧
k=1

Ijk = 1
]

= Ps−1Pr

[
s−1∧
k=1

Ijk = 1
]

= Ps−1Pr

[
Ijs−1 = 1 |

s−2∧
k=1

Ijk = 1
]
Pr

[
s−2∧
k=1

Ijk = 1
]

= Ps−1Ps−2Pr

[
s−2∧
k=1

Ijk = 1
]

...
= Ps−1Ps−2 · · · P0

Lemma 4 shows that if B ≥ N +
√
N or B ≤ N −

√
N , Pj is a non-increasing function of

j = 0, · · · , B − 1. Consequently, P0 ≥ Pj , for j = 1, · · · , B − 1. Thus:

Pr

[
s∧

k=1
Ijk = 1

]
≤ Ps0 ,

and so the bound in Equation (1) holds. J

The standard Cheroff bounds of Theorem 3 now apply, and we use them obtain bounds
on the number of singletons. For ease of presentation, we occasionally use exp(x) to denote
ex.

I Lemma 5. For N balls that are dropped into B bins where B ≥ N +
√
N or B ≤ N −

√
N ,

the following is true for any 0 < ε < 1.
The number of singletons is at least (1−ε)N

eN/(B−1) with probability at least 1− e
−ε2N

2 exp(N/(B−1)) .

The number of singletons is at most (1+ε)N
e(N−1)/B with probability at least 1− e

−ε2N
3 exp(N/(B−1)) .

FUN 2021

24:8 Singletons for Simpletons

Proof. We begin by calculating the expected number of singletons. Let Ii be an indicator
random variable such that Ii = 1 if bin i contains a single ball; otherwise, Ii = 0. Note that:

Pr(Ii = 1) =
(
N

1

)(
1
B

)(
1− 1

B

)N−1

≥
(
N

1

)(
1
B

)(
1− 1

B

)N
≥ N

Be(N/(B−1)) (7)

where the last line follows from the LHS of Fact 1. Let I =
∑B
i=1 Ii be the number of

singletons. We have:

E[I] =
B∑
i=1

E[Ii] by linearity of expectation

≥ N

e(N/(B−1)) by Equation (7)

Next, we derive a concentration result around this expected value. Since B ≥ N +
√
N or

B ≤ N −
√
N , Theorem 1 guarantees that the Iis are negatively associated, and we may

apply the Chernoff bound in Equation 3 to obtain:

Pr

(
I < (1− ε) N

e(N/(B−1))

)
≤ exp

(
− ε2N

2e(N/(B−1))

)

which completes the lower-bound argument. The upper bound is nearly identical. J

3 Bounding Remaining Packets

In this section, we derive tools for bounding the number of packets that remain as we progress
from one window to the next.

All of our results hold for sufficiently large n > 0. Let wi denote the number of slots in
window i ≥ 0. Let mi be the number of packets at the start of window i ≥ 0.

We index windows starting from 0, but this does not necessarily correspond to the initial
window executed by a backoff algorithm. Rather, in our analysis, window 0 corresponds to
the first window where packets start to succeed in large numbers; this is different for different
backoff algorithms.

For example, BEB’s initial window consists of a single slot, and does not play an important
role in the makespan analysis. Instead, we apply Chernoff bounds once the window size is at
least n+

√
n, and this corresponds to window 0. In contrast, for FB, the first window (indeed,

each window) has size Θ(n), and window 0 is indeed this first window for our analysis. This
indexing is useful for our inductive arguments presented in Section 4.

3.1 Analysis
Our method for upper-bounding the makespan operates in three stages. First, we apply an
inductive argument – employing Case 1 in Corollary 6 below – to cut down the number of
packets from n to less than n0.7. Second, Case 2 of Corollary 6 is used whittle the remaining
packets down to O(n0.4). Third, we hit the remaining packets with a constant number of
calls to Lemma 7; this is the essence of Lemma 8.

Q.M. Zhou, A. Calvert, and M. Young 24:9

Intuition for Our Approach. There are a couple things worth noting. To begin, why not
carry the inductive argument further to reduce the number of packets to O(n0.4) directly
(i.e., skip the second step above)? Informally, our later inductive arguments show that mi+1
is roughly at most n/22i , and so i ≈ lg lg(n) windows should be sufficient. However, lg lg(n)
is not necessarily an integer and we may need to take its floor. Given the double exponential,
taking the floor (subtracting 1) results in mi+1 ≥

√
n. Therefore, the equivalent of our

second step will still be required. Our choice of n0.7 is not the tightest, but it is chosen for
simpicity.

The second threshold of O(n0.4) is also not completely arbitrary. In the (common) case
where w0 ≥ n+

√
n, note that we require O(n1/2−δ) packets remaining, for some constant

δ > 0, in order to get a useful bound from Lemma 7. It is possible that after the inductive
argument, that this is already satisfied; however, if not, then Case 2 of Corollary 6 enforces
this. Again, O(n0.4) is chosen for ease of presentation; there is some slack.

I Corollary 6. For wi ≥ n+
√
n, the following is true with probability at least 1− 1/n2:

Case 1. If mi ≥ n7/10, then mi+1 <
(5/4)m2

i

n .
Case 2. If n0.4≤mi<n

7/10, then mi+1 =O(n2/5).

Proof. For Case 1, we apply the first result of Lemma 5 with ε =
√

4e lnn
n1/3 , which implies

with probability at least 1− exp(− 4e lnn
n2/3

n0.7

2) ≥ 1− exp(−2 lnn) ≥ 1− 1/n2:

mi+1 ≤ mi −
(1− ε)mi

emi/(wi−1)

≤ mi

(
1− 1

emi/(wi−1) + ε

)
≤ mi

(
mi

wi − 1 + ε

)
by RHS of Fact 1

≤ m2
i

n
+miε since wi ≥ n+

√
n (8)

≤ m2
i

n
+
(mi

n1/3

)√
4e lnn

<
(5/4)m2

i

n
since mi ≥ n7/10

where 5/4 is chosen for ease of presentation.
For Case 2, we again apply the first result of Lemma 5, but with ε =

√
4e lnn
m . Then,

with probability at least 1− 1/n2, the first and second terms in Equation 8 are at most n0.4

and O(n0.35
√

lnn), respectively, for the any n0.4 ≤ mi ≤ n7/10. J

The following lemma is useful for achieving a with-high-probability guarantee when the
number of balls is small relative to the number of bins.

I Lemma 7. Assume wi > 2mi. With probability at least 1 − m2
i

wi
, all packets succeed in

window i.

Proof. Consider placements of packets in the window that yield at most one packet per slot.
Note that once a packet is placed in a slot, there is one less slot available for each remaining
packet yet to be placed. Therefore, there are wi(wi − 1) · · · (wi −mi + 1) such placements.

Since there are wmii ways to place mi packets in wi slots, it follows that the probability
that each of the mi packets chooses a different slot is:

wi(wi − 1) · · · (wi −mi + 1)
wmii

.

FUN 2021

24:10 Singletons for Simpletons

We can lower bound this probability:

= wmii (1− 1/wi) · · · (1− (mi − 1)/wi)
wmii

≥ e
−
∑mi−1

j=1
j

wi−j by LHS of Fact 1

≥ e
−
∑mi−1

j=1
2j
wi since wi > 2mi > 2j which

leads to j
wi−j <

2j
wj

= e−(1/wi)(mi−1)mi by sum of natural numbers

≥ 1− m2
i

wi
+ mi

wi
by RHS of Fact 1

> 1− m2
i

wi

as claimed. J

I Lemma 8. Assume a batch of mi < n7/10 packets that execute over a window of size wi,
where wi ≥ n +

√
n for all i. Then, with probability at least 1 − O(1/n), any monotonic

backoff algorithm requires at most 6 additional windows for all remaining packets to succeed.

Proof. If mi ≥ n0.4, then Case 2 of Corollary 6 implies mi+1 = O(n0.4); else, we do not need
to invoke this case. By Lemma 7, the probability that any packets remain by the end of
window i+ 1 is O(n0.8/n) = O(1/n0.2); refer to this as the probability of failure. Subsequent
windows increase in size monotonically, while the number of remaining packets decreases
monotonically. Therefore, the probability of failure is O(1/n0.2) in any subsequent window,
and the probability of failing over all of the next 5 windows is less than O(1/n). It follows
that at most 6 windows are needed for all packets to succeed. J

4 Inductive Arguments

We present two inductive arguments for establishing upper bounds on mi. Later in Section 5,
these results are leveraged in our makespan analysis, and extracting them here allows us to
modularize our presentation. Lemma 9 applies to FB, BEB, and LLB, while Lemma 10
applies to STB. We highlight that a single inductive argument would suffice for all algorithms
– allowing for a simpler presentation – if we only cared about asymptotic makespan. However,
in the case of FB we wish to obtain a tight bound on the first-order term, which is one of
the contributions in [5].

In the following, we specify m0 ≤ n since a (very) few packets may have succeeded prior
to window 0; recall, this is the window where a large number of packets are expected to
succeed.

I Lemma 9. Consider a batch of m0 ≤ n packets that execute over windows wi ≥ m0 +√m0
for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

22i lg(5/4) with error probability at most
(i+ 1)/n2.

Proof. We argue by induction on i ≥ 0.

Q.M. Zhou, A. Calvert, and M. Young 24:11

Base Case. Let i = 0. Using Lemma 5:

m1 ≤ m0 −
(1− ε)m0

em0/(w0−1)

≤ m0

(
1− 1

em0/(w0−1) + ε

)

≤ m0

(
1− 1

e
+ ε

)
≤ (0.64)m0

where the last line follows by setting ε =
√

4e lnn
n1/3 , and assuming n is sufficiently large to

satisfy the inequality; this gives an error probability of at most 1/n2 . The base case is
satisfied since (4/5) m0

22i lg(5/4) = (0.64)m0.

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0
22i−1 lg(5/4) with error probability

at most i/n2.

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0
22i lg(5/4) with an

error bound of (i+ 1)/n2. Addressing the number of packets, we have:

mi+1 ≤
(5/4)m2

i

wi

≤
(

4m0

5 · 22i−1 lg(5/4)

)2(5
4wi

)
≤
(

4m0

5 · 22i lg(5/4)

)(
m0

wi

)
<

(
4m0

5 · 22i lg(5/4)

)
since wi > n

The first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥ m0 +√m0
for all i ≥ 0, and mi ≥ n7/10 by assumption. This yields an error of at most 1/n2, and so
the total error is at most i/n2 + 1/n2 = (i+ 1)/n2 as desired. The second line follows from
the IH. J

A nearly identical lemma is useful for upper-bounding the makespan of STB. The main
difference arises from addressing the decreasing window sizes in a run, and this necessitates
the condition that wi ≥ mi + √mi rather than wi ≥ m0 + √m0 for all i ≥ 0. Later in
Section 5, we start analyzing STB when the window size reaches 4n; this motivates the
condition that wi ≥ 4n/2i our next lemma.

I Lemma 10. Consider a batch of m0 ≤ n packets that execute over windows of size
wi ≥ mi +√mi and wi ≥ 4n/2i for all i ≥ 0. If mi ≥ n7/10, then mi+1 ≤ (4/5) m0

2i22i lg(5/4)

with error probability at most (i+ 1)/n2.

Proof. We argue by induction on i ≥ 0.

Base Case. Nearly identical to the base case in proof of Lemma 9; note the bound on mi+1
is identical for i = 0.

FUN 2021

24:12 Singletons for Simpletons

Induction Hypothesis (IH). For i ≥ 1, assume mi ≤ (4/5) m0
2i−122i−1 lg(5/4) with error prob-

ability at most i/n2.

Induction Step. For window i ≥ 1, we wish to show that mi+1 ≤ (4/5) m0
2i22i lg(5/4) with an

error bound of (i + 1)/n2 (we use the same ε as in Lemma 9). Addressing the number of
packets, we have:

mi+1 ≤ (5/4)m2
i

wi

≤
(

4m0

5 · 2i−122i−1 lg(5/4)

)2(5
4wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)(
m0

2i−2wi

)
≤

(
4m0

5 · 2i22i lg(5/4)

)
since wi ≥ 4n/2i

Again, the first line follows from Case 1 of Corollary 6, which we may invoke since wi ≥
m0 +√m0 for all i ≥ 0, and mi ≥ n7/10 by assumption. This gives the desired error bound
of i/n2 + 1/n2 = (i+ 1)/n2. The second line follows from the IH. J

5 Bounding Makespan

We begin by describing the windowed backoff algorithms Fixed Backoff (FB), Binary
Exponential Backoff (BEB), and Log-Log Backoff (LLB) analyzed in [5]. Recall
that, in each window, a packet selects a single slot uniformly at random to send in. Therefore,
we need only specify how the size of successive windows change.

FB is the simplest, with all windows having size Θ(n). The value of hidden constant does
not appear to be explicitly specified in the literature, but we observe that Bender et al. [5]
use 3e3 in their upper-bound analysis. Here, we succeed using a smaller constant; namely,
any value at least 1 + 1/

√
n.

BEB has an initial window size of 1, and each successive window doubles in size.
LLB has an initial window size of 2, and for a current window size of wi, it executes

dlg lg(wi)e windows of that size before doubling; we call these sequence of same-sized windows
a plateau.4

STB is non-monotonic and executes over a doubly-nested loop. The outer loop sets the
current window size w to be double that used in the preceding outer loop and each packet
selects a single slot to send in; this is like BEB. Additionally, for each such w, the inner loop
executes over lgw windows of decreasing size: w,w/2, w/4, ..., 1; this sequence of windows is
referred to as a run. For each window in a run, a packet chooses a slot uniformly at random
in which to send.

5.1 Analysis
The following results employ tools from the prior sections a constant number of times, and
each tool has error probability either O(logn/n2) or O(1

n). Therefore, all following theorems
hold with probability at least 1−O(1/n), and we omit further discussion of error.

4 As stated by Bender et al. [5], an equivalent (in terms of makespan) specification of LLB is that
wi+1 = (1 + 1/ lg lg(wi))wi.

Q.M. Zhou, A. Calvert, and M. Young 24:13

I Theorem 11. The makespan of FB with window size at least n+
√
n is at most n lg lgn+

O(n) and at least n lg lgn−O(n).

Proof. Since wi ≥ n+
√
n for all i ≥ 0, by Lemma 9 less than n7/10 packets remain after

lg lg(n) + 1 windows; to see this, solve for i in (4/5) n

22i lg(5/4) = n0.7. By Lemma 8, all
remaining packets succeed within 6 more windows. The corresponding number of slots is
(lg lgn+ 7)(n+

√
n) = n lg lgn+O(n). J

I Theorem 12. The makespan of BEB is at most 512n lgn+O(n).

Proof. Let W be the first window of size at least n+
√
n (and less than 2(n+

√
n)). Assume

no packets finish before the start of W ; otherwise, this can only improve the makespan.
By Lemma 9 less than n7/10 packets remain after lg lg(n) + 1 windows. By Lemma 8 all
remaining packets succeed within 6 more windows. Since W has size less than 2(n+

√
n),

the number of slots until the end of W , plus those for the lg lg(n) + 7 subsequent windows,
is less than:lg(2(n+

√
n))∑

j=0
2j
+

lg lg(n)+7∑
k=1

2(n+
√
n)2k

= 512(n+

√
n) lgn+O(n)

by the sum of a geometric series. J

I Theorem 13. The makespan of STB is O(n).

Proof. Let W be the first window of size at least 4n. Assume no packets finish before the
start of W , that is m0 = n; else, this can only improve the makespan.

While mi ≥ n0.7, our analysis examines the windows in the run starting with window
W , and so w0 ≥ 4n,w1 ≥ 2n, etc. To invoke Lemma 10, we must ensure that the condition
wi ≥ mi+

√
mi holds in each window of this run. This holds for i = 0, since w0 = 4n ≥ n+

√
n.

For i ≥ 1, we argue this inductively by proving mi ≤ (5/4)2i−1−1 n

32i−1 . For the base case
i = 1, Lemma 5 implies that m1 ≤ n(1− e−n/(4n−1) + ε) ≤ n(1− e−1/3 + ε) ≤ n/3, where
ε is given in Lemma 6. For the inductive step, assume that mi ≤ (5/4)2i−1−1 n

32i−1 for all
i ≥ 2. Then, by Case 1 of Corollary 6:

mi+1 ≤ (5/4)m2
i /n

≤ (5/4)
(

(5/4)2i−1−1 n

32i−1

)2
/n

≤ (5/4)2i−1 n

32i

where the second line follows from the assumption, and so the inductive step holds. On the
other hand, at window i, wi ≥ 4n

2i >
4n

(5/2)·(12/5)2i−1 = 2 · (5/4)2i−1−1 n

32i−1 ≥ 2mi > mi+
√
mi

holds.
Lemma 10 implies that after lg lgn+ O(1) windows in this run, less than n0.7 packets

remain. Pessimistically, assume no other packets finish in the run. The next run starts with
a window of size at least 8n, and by Lemma 8, all remaining packets succeed within the first
6 windows of this run.

We have shown that STB terminates within at most dlg(n)e + O(1) runs. The total
number of slots over all of these runs is O(n) by a geometric series. J

FUN 2021

24:14 Singletons for Simpletons

It is worth noting that STB has asymptotically-optimal makespan since we cannot hope
to finish n packets in o(n) slots.

Bender et al. [5] show that the optimal makespan for any monotonic windowed backoff
algorithm is O(n lg lgn/ lg lg lgn) and that LLB achieves this. We re-derive the makespan
for LLB.

I Theorem 14. The makespan of LLB is O
(
n lg lgn
lg lg lgn

)
.

Proof. For the first part of our analysis, assume n/ ln ln lnn ≤ m0 ≤ n packets remain.
Consider the first window with size w0 = cn/ ln ln lnn for some constant c ≥ 8. By Lemma 5,
each window finishes at least the following number of packets:

(1− ε)m0

e
m0

(cn/ ln ln lnn)−1
>

(1− ε)n
e

n
(cn/ ln ln lnn)−1 · ln ln lnn

= (1− ε)n
(ln lnn) 2

c · ln ln lnn

= (1− ε)n
(ln lnn) ln ln ln lnn

ln ln lnn + 2
c

>
n

(ln lnn) 3
c

where the third line follows from noting that (ln lnn)ln(ln ln lnn) = (ln ln lnn)ln(ln lnn), and
the last line follows for sufficiently-large n. Setting ε =

√
4e ln2(n)

n suffices to give an error
probability at most exp(− 4e ln2(n)

n · n

2 ln ln ln(n)e
n

(cn/ ln ln lnn)−1
) ≤ 1/n2.

Observe that in this first part of the analysis, we rely on wi ≤ mi−
√
mi or wi ≥ mi+

√
mi

in order to apply Lemma 5. However, after enough packets succeed, neither of these
inequalities may hold. But there will be at most a single plateau with windows of size
O(n/ ln ln lnn) where this occurs, since the window size will then double. During this
plateau, which consists of O(lg lg(n/ ln ln lnn)) = O(lg lgn) windows, we pessimistically
assume no packets succeed.

Therefore, starting with n packets, after at most n−n/ ln ln lnn
n/(ln lnn)3/c + O(lg lgn) = O(ln lnn)

windows, the number of remaining packets is less than n/ ln ln lnn, and the first part of our
analysis is over.

Over the next two plateaus, LLB has at least 2 lg lg(n) − O(1) windows of size
Θ(n/ ln ln lnn). Since in this part of the analysis, wi ≥ 8n/ ln ln lnn and mi < n/ ln ln lnn,
we have wi ≥ mi +√mi. Therefore, we may invoke Lemma 9, which implies that after at
most lg lg(n) + 1 windows, less than n0.7 packets remain. If at least n2/5 packets still remain,
by Case 2 of Corollary 1, at most O(n2/5) packets remain by the end of the next window,
and they will finish within an additional 6 windows by Lemma 8.

Finally, tallying up over both parts of the analysis, the makespan is O(ln lnn)O(n
ln ln lnn) =

O(n ln lnn
ln ln lnn). J

6 Discussion

We have argued that standard Chernoff bounds can be applied to analyze singletons, and we
illustrate how they simplify the analysis of several backoff algorithms under batched arrivals.

While our goal was only to demonstrate the benefits of this approach, natural extensions
include the following. First, there is some slack in our arguments, and we can likely derive
tighter constants in our analysis. For example, the number of windows required in Lemma 8
might be reduced; this would reduce the leading constant for our BEB analysis.

Q.M. Zhou, A. Calvert, and M. Young 24:15

Second, we strongly believe that lower bounds can be proved using this approach. In
fact, Max bets Qian (under penalty of eating bitter melon) that a lower bound on FB of
n lg lgn−O(n) can be proved, which is tight in the highest-order term.

Third, a similar treatment is possible for polynomial backoff or generalized exponential
backoff (see [5] for the specification of these algorithms).

Fourth, a plausible next step is to examine whether we can extend this type of analysis
to the case where packets have different sizes, as examined in [6].

References
1 Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki.

Medium access control for adversarial channels with jamming. In Proceedings of the 18th Inter-
national Colloquium on Structural Information and Communication Complexity (SIROCCO),
pages 89–100, 2011.

2 Antonio Fernández Anta, Miguel A. Mosteiro, and Jorge Ramón Muñoz. Unbounded contention
resolution in multiple-access channels. Algorithmica, 67(3):295–314, 2013.

3 Baruch Awerbuch, Andrea Richa, and Christian Scheideler. A jamming-resistant MAC protocol
for single-hop wireless networks. In Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing (PODC), pages 45–54, 2008.

4 Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, September 1999.

5 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
Leiserson. Adversarial contention resolution for simple channels. In Proceedings of the 17th
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
325–332, 2005.

6 Michael A. Bender, Jeremy T. Fineman, and Seth Gilbert. Contention Resolution with
Heterogeneous Job Sizes. In Proceedings of the 14th Conference on Annual European Symposium
(ESA), pages 112–123, 2006.

7 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Maxwell Young. How to scale
exponential backoff: Constant throughput, polylog access attempts, and robustness. In
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016.

8 Michael A. Bender, Tsvi Kopelowitz, Seth Pettie, and Maxwell Young. Contention resolution
with log-logstar channel accesses. In Proceedings of the Forty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 499–508, 2016.

9 Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel. Multiple-
choice balanced allocation in (almost) parallel. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM), pages 411–
422, 2012.

10 Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced allocations:
The heavily loaded case. SIAM J. Comput., 35(6):1350–1385, 2006.

11 Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-
into-bins with nearly optimal load distribution. In Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 326–335,
2013.

12 Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, Qizheng He, Wenzheng Li, and Seth Pettie.
The energy complexity of broadcast. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’18, pages 95–104, 2018.

13 Yi-Jun Chang, Tsvi Kopelowitz, Seth Pettie, Ruosong Wang, and Wei Zhan. Exponential
separations in the energy complexity of leader election. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 771–783, 2017.

FUN 2021

24:16 Singletons for Simpletons

14 Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-
channel single-hop radio networks. Theoretical Computer Science, 615(C):23–44, February
2016.

15 Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the
wake-up problem in radio networks. In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 347–359, 2005.

16 Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In
Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pages
266–274, 2004.

17 Marek Chrobak, Leszek Gasieniec, and Dariusz R. Kowalski. The wake-up problem in multihop
radio networks. SIAM Journal on Computing, 36(5):1453–1471, 2007.

18 Richard Cole, Alan M. Frieze, Bruce M. Maggs, Michael Mitzenmacher, Andréa W. Richa,
Ramesh K. Sitaraman, and Eli Upfal. On balls and bins with deletions. In Proceedings of the
Second International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 145–158, 1998.

19 A. Czumaj and V. Stemann. Randomized Allocation Processes. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 194–203, 1997.

20 Gianluca De Marco and Grzegorz Stachowiak. Asynchronous shared channel. In Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pages 391–400,
2017.

21 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 1st edition, 2009.

22 Devdatt Dubhashi and Desh Ranjan. Balls and Bins: A Study in Negative Dependence. Random
Structures & Algorithms, 13(2):99–124, 1998. doi:10.1002/(SICI)1098-2418(199809)13:
2<99::AID-RSA1>3.0.CO;2-M.

23 Jeremy T. Fineman, Seth Gilbert, Fabian Kuhn, and Calvin Newport. Contention resolution
on a fading channel. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 155–164, 2016.

24 Jeremy T. Fineman, Calvin Newport, and Tonghe Wang. Contention resolution on multiple
channels with collision detection. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 175–184,
2016.

25 Mihály Geréb-Graus and Thanasis Tsantilas. Efficient optical communication in parallel com-
puters. In Proceedings 4th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 41–48, 1992.

26 Leslie Ann Goldberg and Philip D. MacKenzie. Analysis of practical backoff protocols for
contention resolution with multiple servers. Journal of Computer and System Sciences,
58(1):232–258, 1999. doi:10.1006/jcss.1998.1590.

27 Leslie Ann Goldberg, Philip D. Mackenzie, Mike Paterson, and Aravind Srinivasan. Contention
resolution with constant expected delay. Journal of the ACM, 47(6):1048–1096, 2000.

28 Jonathan Goodman, Albert G. Greenberg, Neal Madras, and Peter March. Stability of binary
exponential backoff. Journal of the ACM, 35(3):579–602, July 1988.

29 Ronald I. Greenberg and Charles E. Leiserson. Randomized routing on fat-trees. In Proceedings
of the 26th Annual Symposium on Foundations of Computer Science (FOCS), pages 241–249,
1985.

30 Johan Hastad, Tom Leighton, and Brian Rogoff. Analysis of backoff protocols for multiple
access channels. SIAM Journal on Computing, 25(4):1996, 740-774.

31 IEEE. IEEE standard for information technology–telecommunications and information ex-
change between systems local and metropolitan area networks – Specific requirements - Part
11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications.
IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pages 1–3534, 2016.

https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1006/jcss.1998.1590

Q.M. Zhou, A. Calvert, and M. Young 24:17

32 Tomasz Jurdzinski and Grzegorz Stachowiak. The cost of synchronizing multiple-access
channels. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pages 421–430, 2015.

33 A R Karlin and E Upfal. Parallel Hashing - An Efficient Implementation of Shared Memory.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC),
pages 160–168, 1986.

34 James F. Kurose and Keith Ross. Computer Networking: A Top-Down Approach. Pearson,
6th edition, 2013.

35 Christoph Lenzen and Roger Wattenhofer. Tight Bounds for Parallel Randomized Load
Balancing: Extended Abstract. In Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 11–20, 2011.

36 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm
for conflict resolution in a dynamic multiple-access channel. SIAM Journal on Computing,
44(3):868–888, 2015.

37 Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. Theoretical Computer Science, 689:1–13, 2017.

38 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404, July 1976.

39 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

40 Michael David Mitzenmacher. The Power of Two Choices in Randomized Load Balancing.
PhD thesis, University of California, Berkeley, 1996.

41 K. Nakano and S. Olariu. Uniform leader election protocols for radio networks. IEEE
Transactions on Parallel and Distributed Systems, 13(5):516–526, May 2002. doi:10.1109/
TPDS.2002.1003864.

42 Adrian Ogierman, Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Sade:
competitive MAC under adversarial SINR. Distributed Computing, 31(3):241–254, June 2018.

43 Prabhakar Raghavan and Eli Upfal. Stochastic contention resolution with short delays, April
1999.

44 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. A jamming-resistant MAC
protocol for multi-hop wireless networks. In Proceedings of the International Symposium on
Distributed Computing (DISC), pages 179–193, 2010.

45 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and fair
medium access despite reactive jamming. In Proceedings of the 31st International Conference
on Distributed Computing Systems (ICDCS), pages 507–516, 2011.

46 Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. Competitive and Fair
Throughput for Co-existing Networks Under Adversarial Interference. In Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing (PODC), pages 291–300, 2012.

47 Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A
survey of techniques and results. Combinatorial Optimization, 9:255–304, 2001.

48 X. Sun and L. Dai. Backoff Design for IEEE 802.11 DCF Networks: Fundamental Tradeoff
and Design Criterion. IEEE/ACM Transactions on Networking, 23(1):300–316, 2015.

49 Eli Upfal. Efficient Schemes for Parallel Communication. J. ACM, 31(3):507–517, June 1984.
50 Berthold Vöcking. How asymmetry helps load balancing. Journal of the ACM, 50(4):568–589,

2003.
51 Dan E. Willard. Log-logarithmic selection resolution protocols in a multiple access channel.

SIAM J. Comput., 15(2):468–477, May 1986.
52 D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran. Fast and Robust Compressive Phase

Retrieval with Sparse-Graph Codes. In 2015 IEEE International Symposium on Information
Theory (ISIT), pages 2583–2587, June 2015.

FUN 2021

https://doi.org/10.1109/TPDS.2002.1003864
https://doi.org/10.1109/TPDS.2002.1003864

24:18 Singletons for Simpletons

Appendix

A Chernoff Bounds and Property 1

In Problem 1.8 of Dubhashi and Panconesi [21], the following question is posed: Show that if
Property 1 holds, then Theorem 3 holds. We are invoking this result, but an argument is
absent in [21].

We bridge this gap with Claim 15 below. This fits directly into the derivation of Chernoff
bounds given in Dubhashi and Panconesi [21]. In particular, the line above Equation 1.3 on
page 4 of [21] claims equality for Equation 10 below by invoking independence of the random
variables. Here, Claim 15 gives an inequality (in the correct direction) and the remainder of
the derivation in [21] follows without any further modifications.

B Claim 15. Let X1, · · · , Xn be a set of indicator random variables satisfying the property:

Pr

[∧
i∈S

Xi = 1
]
≤
∏
i∈S

Pr [Xi = 1] (9)

for all subsets S ⊂ {1, · · · , n}. Then the following holds:

E

[
n∏
i=1

eλXi

]
≤

n∏
i=1

E
[
eλXi

]
(10)

Proof. Let N denote the set of strictly positive integers. First, we need to point out two
properties of indicator random variables

(i) Xk
i = Xi for all k ∈ N; and

(ii) E [Xi] = Pr [Xi = 1], and E
[∏

i∈SXi

]
= Pr

[∧
i∈S

Xi = 1
]
for all subset S.

By Taylor expansion we have eλXi =
∑∞
k=0 λ

k X
k
i

k! , and then,

E
[
eλXi

]
=
∞∑
k=0

λk
E
[
Xk
i

]
k! (11)

Thus, the product in the left hand side (LHS) of (10) becomes
∏n
i=1 e

λXi =∏n
i=1

(∑∞
k=0

λk

k! X
k
i

)
, which can be written as a polynomial function of λ, i.e.

∑∞
r=0 frλ

r,
where fr are coefficients which may contain the indicator random variables Xis. Here f0 = 1.
To get the expression of fr for r ≥ 1, we first define a set, for all integers k, r ∈ N with k ≤ r,
let I(k, r) = {(d1, d2, · · · , dk) : d1, · · · , dk ∈ N, d1 ≤ d2 ≤ · · · ≤ dk, d1 + d2 + · · ·+ dk = r}.
Then the coefficients fr, r ≥ 1, can be expressed as

fr =
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

Xd1
i1

d1!
Xd2
i2

d2! · · ·
Xdk
ik

dk! . (12)

Q.M. Zhou, A. Calvert, and M. Young 24:19

For example,

f1 =
n∑
i=1

Xi

f2 =
n∑
i=1

X2
i

2! +
∑

1≤i1 6=i2≤n
Xi1Xi2

f3 =
n∑
i=1

X3
i

3! +
∑

1≤i1 6=i2≤n
Xi1

X2
i2

2! +
∑

1≤i1 6=i2 6=n3≤n

Xi1Xi2Xi3

...

With the expression (12), the LHS becomes

LHS = 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E

[
Xd1
i1

d1!
Xd2
i2

d2! · · ·
Xdk
ik

dk!

]

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1
Xd2
i2
· · ·Xdk

ik

]
d1!d2! · · · dk!

Similarly, with the Taylor expansion of (11), the product in the right hand side (RHS) of
(10) becomes

RHS =
n∏
i=1

(∞∑
k=0

λk
E
[
Xk
i

]
k!

)

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1

]
d1!

E
[
Xd2
i2

]
d2! · · ·

E
[
Xdk
ik

]
dk!

= 1 +
∞∑
r=1

λr
min{r,n}∑
k=1

∑
(d1,··· ,dk)∈I(r,k)

∑
1≤i1 6=i2 6=···6=ik≤n

E
[
Xd1
i1

]
E
[
Xd2
i2

]
· · ·E

[
Xdk
ik

]
d1!d2! · · · dk!

By the above-mentioned two properties (i) and (ii) of indicator random variables, then

E
[
Xd1

i1 Xd2
i2 · · ·X

dk
ik

]
= E [Xi1 Xi2 · · ·Xik] = P r [Xi1 = 1, Xi2 = 1, · · · , Xik = 1]

E
[
Xd1

i1

]
E
[
Xd2

i2

]
· · ·E

[
X

dk
ik

]
= E [Xi1] E [Xi2] · · ·E [Xik]

= P r [Xi1 = 1] P r [Xi2 = 1] · · ·P r [Xik = 1] .

By the condition (9), we have Pr [Xi1 = 1, Xi2 = 1, · · · , Xik = 1] ≤
Pr [Xi1 = 1]Pr [Xi2 = 1] · · ·Pr [Xik = 1], and thus

E
[
Xd1
i1
Xd2
i2
· · ·Xdk

ik

]
≤ E

[
Xd1
i1

]
E
[
Xd2
i2

]
· · ·E

[
Xdk
ik

]
.

Thus (10) holds. C

FUN 2021

	Introduction
	Our Goal
	Results
	Related Work

	Analysis for Property 1
	Preliminaries
	Property 1 and Bounding Singletons

	Bounding Remaining Packets
	Analysis

	Inductive Arguments
	Bounding Makespan
	Analysis

	Discussion
	Chernoff Bounds and Property 1

