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Abstract
Takuzu and Juosan are logical Nikoli games in the spirit of Sudoku. In Takuzu, a grid must be
filled with 0’s and 1’s under specific constraints. In Juosan, the grid must be filled with vertical
and horizontal dashes with specific constraints. We give physical algorithms using cards to realize
zero-knowledge proofs for those games. The goal is to allow a player to show that he/she has the
solution without revealing it. Previous work on Takuzu showed a protocol with multiple instances
needed. We propose two improvements: only one instance needed and a soundness proof. We also
propose a similar proof for Juosan game.
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1 Introduction

James Bond and Q decide to spend most of their holidays on the Spiaggia Praia beach
(located at Isola di Favignana, Sicily, Italy). Before swimming in the sea, they like to play
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with logical games. James Bond is a specialist of Takuzu. Takuzu is a puzzle invented by
Frank Coussement and Peter De Schepper in 20091. It was also called Binero, Bineiro,
Binary Puzzle, Brain Snacks or Zernero. Figure 1 contains a simple Takuzu grid and its
solution. Q is an expert of Juosan, which was published by Nikoli2. Figure 2 contains a
Juosan grid and its solution.

Each one proposes his favorite game to the other as a challenge. Both are competitive,
and each challenge ends to be so hard that the other cannot solve it. James Bond immediately
supposes that something is wrong and asks Q a proof that the grid has a solution. Of course,
Q thinks the same way about Bond’s challenge. Since they are both suspicious, they want to
prove that there is a solution without giving any information about the solution.

In cryptography, the process, which allows a party to prove that it has a data without
leaking any information on this data, is called Zero-Knowledge Proof (ZKP).

More formally, a ZKP is a protocol which enables a prover P to convince that it has a
solution s of a problem to a verifier V . This proof cannot leak any information on s. The
protocol must observe three properties.

Completeness: If P knows s then it can convince V .
Soundness: If P does not know s, it can convince V with only a negligible probability.
Zero-Knowledge: V learns nothing about s. This can be formalized by showing that
the outputs of a simulator and outputs of the real protocol follow the same probability
distribution.

The concept of interactive ZKP was introduced by Goldwasser et al. [12]. Then it was
shown that for any NP complete problem there exists an interactive ZKP protocol [11]. There
is also an extension showing that every provable statement can be proved in zero-knowledge [2].

There exist protocols where the prover and the verifier do not need to interact. Such
protocols are called non-interactive ZKP [4]. For a complete background on ZKP’s, see [18].

Usually ZKP protocols are executed by computers, yet, our aim is to design a solution
for Bond and Q’s dilemma using physical objects such as cards, since on the Spiaggia Praia
beach they do not want to use their computers. We first recall the rules of these two games
before presenting our contributions.

Takuzu’s Rules

The goal of Takuzu is to fill a rectangular grid of even size with 0’s and 1’s. An initial Takuzu
grid already contains a few filled cases. A grid is solved when it is full (i.e., no empty cases)
and respects the following constraints.
1. Equality Rule: Each row/column contains exactly the same number of 1’s and 0’s.
2. Uniqueness Rule: Each row (column) is unique among all rows (columns).
3. Adjacent Rule: In each row and each column there can be no more than two same

numbers adjacent to each other; for example 110010 is possible, but 110001 is impossible.

The problem of solving a Takuzu grid was proven to be NP complete in [3, 34].

Juosan’s Rules

A Juosan grid is divided into territories by bold lines, where a territory is possibly associated
with a number. The goal is to fill in all cells with a vertical (|) or horizontal (–) dash such

1 https://en.wikipedia.org/wiki/Takuzu
2 http://www.nikoli.co.jp/en/puzzles/juosan.html

https://en.wikipedia.org/wiki/Takuzu
http://www.nikoli.co.jp/en/puzzles/juosan.html
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0 0 1 1 0 1 0 1 0

0 0 1 1 0 0 1 0 1 0 1

0 1 0 1 0 0 1 0 1 1 0

1 0 1 1 0 1 0 0 1

0 0 1 1 0 0 1 1 0 1 1 0

1 1 0 0 1 1 0 1 0

1 1 0 1 1 1 0 0 1 0 0 1

1 1 0 1 1 0 0 1 0 1

Figure 1 Example of a 8× 8 Takuzu challenge, and its solution. We can verify that each row and
column is unique, contains the same number of 0’s and 1’s, and there are never three consecutive 1’s
or 0’s.

3 1

3 3 3

.
4

4

3 1

3 3 3

4

4

Figure 2 Example of a Juosan challenge, and its solution from Nikoli website.

that the following three constraints are satisfied.

1. Room Rule: The number in every territory equals the number of either vertical or
horizontal dashes in it (in some cases, there may be equal numbers of both). Territories
with no number may have any number of vertical dashes and horizontal dashes.

2. Adjacent (horizontal) Rule: Horizontal dashes can extend more than three cells
horizontally but no more than two cells vertically.

3. Adjacent (vertical) Rule: Vertical dashes can extend more than three cells vertically
but no more than two cells horizontally.

In 2018, the problem of solving a Juosan grid was proven to be NP complete in [16].

Contributions

We have the two main following contributions.
1. We propose better ZKP protocols for Takuzu which improve upon the approach given

in [5]. The latter used several instances of the protocol while ours use only one instance.
We also improve the soundness of the proof in the sense that if the prover does not have
a solution, he convinces the verifier with null probability.

2. We also propose an adapted version of this technique to Juosan. Again, only one instance
of the protocol is run for proving to V that if P does not know the solution, then P

convinces V with probability 0. We also propose an optimized version of the Adjacent
Verification which aims to show validity of four consecutive commitments.

FUN 2021
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Related Work

There are works on implementing cryptographic protocols using physical objects, as in [23]
for example, or in [9] where a physical secure auction protocol was proposed. Other
implementations have been studied using cards in [8], polarizing plates [32], polygon cards [31],
a standard deck of playing cards [20], using a PEZ dispenser [1], using a dial lock [21], using
a 15 puzzle [22], or using a tamper-evident seals [25, 26, 27].

In FUN’18, the authors of [29] revisited the ZKP for Sudoku proposed by Gradwohl et
al. in FUN’07 [13]. This is a clear progress in the construction of ZKP since the technique
proposed in this paper uses specific protocols to perform zero-knowledge proof for Sudoku.
Indeed, those protocols use a normal deck of playing cards and have no soundness error with
a reasonable number of playing cards. The original technique for Sudoku was extended for
Hanje [7]. ZKP’s for several other puzzles have been studied such as Akari [5], Takuzu [5],
Kakuro [5, 19], KenKen [5], Makaro [6], Norinori [10], and Slitherlink [17].

There is a ZKP proof for Takuzu puzzle [5] (recall in Section 2), but we propose an
enhanced version using only one instance of the protocol to convince the verifier. The previous
proof is decomposed into several cases to avoid leak of information toward the solution. This
implies the need of rerunning the protocol several times for completely convincing V that
P has the solution. The construction of the protocol leads to have a negligible probability
that the prover P does not know the solution. Our proof is designed in such a way that only
one instance is run leading to a complete soundness of the proof (i.e., if P does not have
the solution, the probability of convincing V is null). We show that this technique can be
adapted to Juosan game which has not been studied before. The detailed security proof for
our ZKP protocols for Takuzu is given in Section 3.4 and for Juosan in Section 4.4.

Outline: In Section 2, we present an existing ZKP protocol for Takuzu. In Section 3,
we improve the ZKP protocol for Takuzu. In Section 4, we present our ZKP protocol for
Juosan. In the last section we conclude.

2 The Existing ZKP Protocol for Takuzu

We give a ZKP proof using physical objects. The goal is to show that the prover P (aka
James Bond) can prove to the verifier V (aka Q) that he knows a solution of a given Takuzu
grid. The material used for the proof include two printed grids on a sheet of paper, a piece
of paper, an envelope and two kinds of cards: cards with a 0 or a 1 printed on them.

There are two phases in this protocol, the Setup which generates the permutations used
for the second phase called the verification.

Let G be the n× n initial Takuzu grid and S the matrix relative to the solution known
by P (including the initial cells).

Setup. The prover P chooses uniformly at random two permutations: πR for the rows, and
πC for the columns. He writes the two permutations on a paper and place the latter into an
envelope E. Then he computes S′ = πR(πC(S)). Finally, P places cards face down on the
second grid according to S′. We denote the configuration of these cards by the matrix S̃′

Verification. The verifier V picks c randomly among {0, 1, 2, 3}.
If c = 0: This case corresponds to P proving that the solution is the one of the initial grid.

V computes G′ = πR(πC(G)) with the permutations found in the envelope E. Then V
determines the cells of G′ corresponding to the initial cells of G. Finally, V checks if
the revealed cards are the same as the one revealed in the second grid (that are placed
according to S̃′).
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If c = 1: This case corresponds to P proving that adjacent rule holds.
V permutes (face down) the cards of S̃′ to obtain S̃ = π−1

c (π−1
R (S̃′)) using the permutations

in E. Then, V picks d randomly among {0, 1} and e randomly among {1, 2, 3}.
If d = 0: For each row, V sets x = bn−e

3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 · i+
2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith, the
jth and the kth cards of the row.

If d = 1: For each column, V sets x = bn−e
3 c decks of three cards {(e+ 3 · i+ 1, e+ 3 ·

i+ 2, e+ 3 · i+ 3)}{0≤i<x} where the triplet (i, j, k) denotes a deck containing the ith,
the jth and the kth cards of the column.

Then, V gives the triplets to P . For each deck, P removes one of the two identical cards.
Then P reveals the cards to V , who accepts only if he sees two different cards.

If c = 2: This case corresponds to P proving that uniqueness rule holds.
For this, V picks randomly one row or one column. V reveals all the cards of his chosen
row (or column). For each of the n − 1 other rows (or columns) the verifier picks the
cards where a 0 appears in the revealed rows (or column). At this step, V does not reveal
those cards. Each one of these n− 1 sets of cards is shuffled by the shuffle functionality
and given back to the prover. P reveals one card per set that is a 1. Thus each one of
the other n− 1 rows (or columns) are different from the revealed row, since the initial
row (or column) has a 0 where the other column (or row) has a 1. If there are several 1’s
in a deck, the prover randomly chooses which one to reveal.

If c = 3: This case corresponds to P proving that the equality rule holds.
The verifier V picks d randomly among {0, 1}.
If d = 0, for each row, V takes all the cards in the row and keep them face down. Then V
gathers the cards in order to shuffle those n decks. We assume that the verifier has access
to a shuffle functionality which is essentially an indistinguishable shuffle of face down
cards. Note that this action could be done by a trusted third party (M for instance) but
not by P or V (since they could cheat and modify the cards).
Finally, V checks that each deck contains exactly the same number of 1’s and 0’s.
If d = 1, the same process is done except that V picks columns instead of rows.

To have the best security guarantees, the verifier should choose his challenges c, d, etc. such
that each combination of challenges at the end has the same probability. This protocol
is repeated k times where k is a chosen security parameter. Note that the ZKP is again
polynomial in the size of the grid.

3 Our improved ZKP Protocols for Takuzu

In this section, we propose two ZKP protocols for Takuzu; our protocols are simple and have
no soundness error. Remember that the goal is to show the prover P (aka James Bond) can
prove to the verifier V (aka Q) that P knows a solution of a given Takuzu grid.

Our protocols use black cards ♣ , red cards ♥ , and number cards 1 2 · · · 6 whose
backs ? are all identical. In the sequel, we use the following encoding rule:

♣ ♥ = 0, ♥ ♣ = 1. (1)

That is, black-to-red represents 0 and red-to-black represents 1. We call two face-down cards
that correspond to a bit x ∈ {0, 1} according to the above encoding rule (1) a commitment
to x, and we write it as ? ?︸ ︷︷ ︸

x

. Roughly, our improved ZKP protocols for Takuzu proceed as

follows.

FUN 2021
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Table 1 The exact values of |tkz(n)| when n is up to ten.

n |tkz(n)|
4 6
6 14
8 34
10 84

Setup phase: The prover P places a commitment to each cell according to the solution.
Verification phases: The verifier V verifies that the placement of the commitments satisfies

all the constraints.

To present the complete description of our protocols in Section 3.2, we show some
preliminaries in Section 3.1. In Section 3.3, we show that there is a trade-off between our
two protocols and compare them.

3.1 Preliminaries

In this subsection, we introduce some notations and two subprotocols, which will be used to
present our constructions in Section 3.2.

3.1.1 Possible Sequences

For an even number n, we denote by tkz(n) the set of all binary sequences satisfying the
Uniqueness and Equality rules of Takuzu, that is, tkz(n) := {w ∈ {0, 1}n | w contains exactly
n/2 0’s and no three consecutive digits}. For example, tkz(4) = {0011, 1100, 0101, 1010, 0110,
1001}. The size of tkz(n) can be computed as Table 1. The size |tkz(n)| is known in the
On-line Encyclopedia of Integer Sequences (OIES) as “the number of paths from (0, 0) to
(n, n) avoiding 3 or more consecutive east steps and 3 or more consecutive north steps.3” We
can also show that tkz(n) = O(( 3+

√
5

2 )nn−
1
2 ).

3.1.2 Basic Shuffles

Pile-scramble shuffle [15]. This is the following shuffling operation: Given a sequence
of m piles, each of which consists of the same number of face-down cards, denoted by
?︸︷︷︸
p1

?︸︷︷︸
p2

· · · ?︸︷︷︸
pm

, applying a pile-scramble shuffle (denoted by [· |. . .| ·]) results in

[
?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · · ∣∣∣ ?︸︷︷︸
pm

]
→ ?︸︷︷︸

pr−1(1)

?︸︷︷︸
pr−1(2)

· · · ?︸︷︷︸
pr−1(m)

, where r ∈ Sm is a uniformly

distributed random permutation and Sm denotes the symmetric group of degree m. To
implement a pile-scramble shuffle, we use physical cases that can store a pile of cards, such
as boxes and envelopes; a player (or players) randomly shuffle them until nobody traces the
order of the piles.

3 https://oeis.org/A177790

https://oeis.org/A177790
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Pile-shifting shuffle. A pile-shifting shuffle (or a pile-shifting scramble [28]) is to cyclically
shuffle piles of cards. That is, given m piles, applying a pile-shifting shuffle (denoted by
〈· |. . .| ·〉) results in

〈
?︸︷︷︸
p1

∣∣∣ ?︸︷︷︸
p2

∣∣∣ · · · ∣∣∣ ?︸︷︷︸
pm

〉
→ ?︸︷︷︸

ps+1

?︸︷︷︸
ps+2

· · · ?︸︷︷︸
ps+m

, where s is uniformly

and randomly chosen from Z/mZ. To implement a pile-shifting shuffle, we use similar
materials as a pile-scramble shuffle; a player (or players) cyclically shuffle them by hand until
nobody traces the offset.

3.1.3 Mizuki–Sone AND (OR) Protocol
Given two commitments to a, b ∈ {0, 1} (along with additional two cards ♣ ♥ ), the Mizuki–
Sone AND protocol [24] outputs a commitment to a∧b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
a∧b

.

Note that the output commitment can be used for another protocol. The protocol proceeds
as follows.
1. Rearrange the sequence as follows:

1
?

2
?

3
?

4
?

5
?

6
? →

1
?

3
?

4
?

2
?

5
?

6
? .

2. Apply a random bisection cut:
[

? ? ? | ? ? ?
]
→ ? ? ? ? ? ? . A random

bisection cut is a special case of a pile-scramble shuffle; it bisects a sequence of cards and
then shuffles the two halves.

3. Reveal the first and fourth cards in the sequence. Then, the output commitment can be
obtained as follows: ♣ ? ? ♥ ? ?︸ ︷︷ ︸

a∧b

or ♥ ? ?︸ ︷︷ ︸
a∧b

♣ ? ? .

Note that by De Morgan’s laws we can have the Mizuki–Sone OR protocol that produces
a commitment to a ∨ b given two commitments to a and b.

3.1.4 Mizuki–Sone XOR protocol
Given two commitments to a, b ∈ {0, 1}, the Mizuki–Sone XOR protocol [24] outputs a
commitment to a⊕ b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

→ · · · → ? ?︸ ︷︷ ︸
a⊕b

. The protocol proceeds as follows.

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .

2. Apply a random bisection cut to the sequence:
[

? ? | ? ?
]
→ ? ? ? ? .

3. Rearrange the sequence as follows:
1
?

2
?

3
?

4
? →

1
?

3
?

2
?

4
? .

4. Reveal the first and second cards in the sequence. Then, the output commitment can be
obtained as follows: ♣ ♥ ? ?︸ ︷︷ ︸

a⊕b

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

.

3.1.5 Six-Card Trick
Given three commitments to a, b, c ∈ {0, 1}, the six-card trick [30]4 outputs 1 if a = b = c

and 0 otherwise: ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ · · · →

{
1 if a = b = c,

0 otherwise.
That is, we can know only whether the values of given three commitments are the same

or not by using the six-card trick. We use it in our construction to verify the Adjacent rule.

4 The protocol had been invented independently by Heather, Schneider, and Teague [14].

FUN 2021
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The protocol proceeds as follows.

1. Rearrange the sequences as follows:
1
?

2
?

3
?

4
?

5
?

6
? →

1
?

6
?

3
?

2
?

5
?

4
? .

2. Apply a random cut (which is denoted by 〈· · · 〉) to the sequence:
〈

? ? ? ? ? ?
〉
→

? ? ? ? ? ? . A random cut is a special case of a pile-shifting shuffle; it cyclically
shuffles a sequence of cards. Note that a random cut can be implemented easily with
human hands [33].

3. Reveal the sequence.
a. If the resulting sequence is ♣ ♥ ♣ ♥ ♣ ♥ (apart from cyclic shifts), the output is 1,

i.e., a = b = c holds.
b. If the resulting sequence is ♣ ♣ ♣ ♥ ♥ ♥ (apart from cyclic shifts), the output is 0,

i.e., a = b = c does not hold.

3.1.6 Input-Preserving Function Evaluation Technique
As seen in Section 3.1.5, we can know whether the equality of three input commitments
holds although the input commitments are destroyed after executing the six-card trick. The
input-preserving function evaluation technique enables us to obtain input commitments again
after some function evaluation (such as the equality) by using some number cards.

Let us first explain the input-preserving six-card trick as follows.
1. Place a number card below each card, and then turn them over:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

→ ?
1

?
2

?
3

?
4

?
5

?
6
→ ?

?
?
?

?
?

?
?

?
?

?
?
.

2. Rearrange the sequences as follow:
1
?
?

2
?
?

3
?
?

4
?
?

5
?
?

6
?
?
→

1
?
?

6
?
?

3
?
?

2
?
?

5
?
?

4
?
?
.

3. Apply a pile-shifting shuffle to the sequences:〈
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

〉
→

?
?

?
?

?
?

?
?

?
?

?
?
.

4. Reveal the cards of all sequences except for the number cards; then, we obtain the output
as shown in Step 3 in Section 3.1.5.

5. Turn over the face-up cards and apply a pile-scramble shuffle to the sequences:[
?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ ?
?

]
→

?
?

?
?

?
?

?
?

?
?

?
?
.

6. Reveal the number cards and rearrange the sequence of piles so that the revealed number
cards become in ascending order; then, we have restored input commitments to a, b, and
c. The following is an example case:

? ? ? ? ? ?
? ? ? ? ? ?

→
? ? ? ? ? ?
3 1 5 4 6 2

→
? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

1 2 3 4 5 6
.

More formally, assume that we have a protocol to evaluate some function with m input
piles of cards. Then, the input-preserving function evaluation technique enables us to obtain
m input piles again after some function evaluation by using m number cards:

? ? · · · ?
1 2 · · · m

→ · · · → some function evaluation → · · · → ? ? · · · ? .
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This proceeds as follows.
1. Attach a corresponding number card to each of m input piles:

? ? · · · ?
1 2 · · · m

→ · · · →
? ? · · · ?
? ? · · · ?

.

Together with the added number cards, execute a designated protocol to evaluate some
function.
2. Apply a pile-scramble shuffle to the sequence of piles:[

?
?

∣∣∣∣∣ ?
?

∣∣∣∣∣ · · ·
∣∣∣∣∣ ?

?

]
→

? ? · · · ?
? ? · · · ?

.

3. Reveal only the number cards. Then, rearrange the sequence of piles so that the revealed
number cards become in ascending order to obtain m input piles.

3.2 Our Constructions
We are now ready to present the full description of our ZKP protocols for Takuzu, namely
Protocols 1 and 2.

3.2.1 Protocol 1: Verifying Each Constraint Separately
Given a Takuzu puzzle instance of n × n grid, Protocol 1 verifies that all the constraints,
namely the Equality, Uniqueness, and Adjacent rules, are satisfied separately.

Setup phase. Remember the encoding rule (1). The prover P places a commitment on
each cell according to the solution (which is kind of a (0,1)-matrix).

Adjacent Verification phase. In this phase, V verifies that the Adjacent rule is satisfied.
For this, V repeats the following for every three consecutive commitments in rows and
columns.
1. Attach the corresponding number card to each of the six cards:

? ? ? ? ? ? → ? ?
1 2

? ?
3 4

? ?
5 6

→ ? ?
? ?

? ?
? ?

? ?
? ?

.

2. Perform the input-preserving six-card trick shown in Section 3.1.6 to prove that the three
commitments are not all 0s and 1s. If the six-card trick outputs 1, V rejects it.

Uniqueness Verification phase. In this phase, V verifies that the Uniqueness rule is satisfied.
V repeats the following for every pair of rows (and columns), each of which consists of n
commitments. Considering such a pair, let a1, a2, . . . , an ∈ {0, 1} denote the values of
commitments placed on the first row (in the pair) and b1, b2, . . . , bn ∈ {0, 1} denote those of
commitments on the second row.
1. V attaches the corresponding number card to each of the 4n cards.
2. V applies the “input-preserving” Mizuki–Sone XOR protocol obtained by Sections 3.1.4

and 3.1.6 to the commitments to ai and bi to produce a commitment to ai ⊕ bi for every
i, 1 ≤ i ≤ n. Note that V will return the 4n cards to their original positions after the
next step.
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3. V uses the “input-preserving” Mizuki–Sone OR protocol obtained by Sections 3.1.3
and 3.1.65 exactly n− 1 times to reveal the value of

∨n
j=1(aj ⊕ bj). If it is 0, it means

ai = bi for every i, and hence, V rejects it.

Equality Verification phase. In this phase, V verifies that the Equality rule is satisfied.
1. For every row, V repeats the following.

a. V attaches the corresponding number card to each of the 2n cards.
b. V applies a pile scramble shuffle.
c. V reveals the resulting n commitments. If the number of commitments to 0 is not

equal to that of commitments to 1, V rejects it.
d. Similar to the input-preserving function evaluation technique shown in Section 3.1.6,

V returns the n commitments to their original positions.
2. For every column, V follows the same steps except for Steps (a) and (d). Since the n

commitments will not be used after this phase, V does not need to return them to their
original positions.

This protocol uses n2 black cards, the same number of red cards, and 4n number cards
(recall that we have an n× n Takuzu grid). The numbers of required shuffles are 4n(n− 2)
in the Adjacent Verification phase, 2n2(n− 1) in the Uniqueness Verification phase, and 3n
in the Equality Verification phase.

3.2.2 Protocol 2: Verifying All the Constraints Simultaneously

Protocol 2 verifies that all the constraints are satisfied simultaneously using helping cards
that will be placed in the Setup phase. When displaying a figure, we are given a 4×4 Takuzu
grid as an example.

Setup phase. The prover P places a commitment to each cell according to the solution.
In addition, to show that all the constraints are satisfied, P arranges face-down sequences
corresponding to all the sequences in tkz(n) except for those in the solution (for both row
and column):

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

,

where a black card ♣ corresponds to 0 and a red card ♥ corresponds to 1 in any helping
sequence for the row, and ♥ corresponds to 0 and ♣ corresponds to 1 in any helping
sequence for the column. As shown in Table 1, the number of such helping sequences is two
in each direction in this case of 4× 4 grid.

5 For the two additional cards, we can make use of any two revealed cards appearing in the previous step
without opening the number cards.
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Verification phase. In this phase, V verifies all the constraints, namely the Equality,
Uniqueness, and Adjacent rules by revealing the commitments along with the helping
sequences after applying a pile-scramble shuffle. Note that V can also verify that the
commitments placed by P in the Setup phase form the valid ones according to the encoding
rule (1) (e.g., not ♣ ♣ or ♥ ♥ ).
1. For all the rows, take the left card of each commitment to make n sequences (along with

the helping sequences for the rows).

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ?
? ? ? ?︸ ︷︷ ︸
help. for row

→

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

→

?
?
?
?
?
?

.

2. Apply a pile-scramble shuffle to the sequence of piles.
3. Reveal the cards of all sequences. If there are either (i) a sequence whose number of black

cards is not the same as that of red cards, (ii) two identical sequences, or (iii) a sequence
containing more than two consecutive 0s or 1s, then V rejects it.

4. For all the columns, take the right card of each commitment to make n sequences (along
with the helping sequences for the columns).

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ?
? ?
? ?
? ?︸ ︷︷ ︸

help. for column

→

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

.

Then, the same is done.

This protocol uses n · |tkz(n)| black cards and the same number of red cards when we have
an n× n Takuzu grid. See Table 1 again for the value of |tkz(n)|. The number of required
shuffles is two.

3.3 Comparison
Let us compare the two protocols for Takuzu presented in the previous subsection. Table 2
summarizes the numbers of required cards and shuffles for the protocols.

Table 2 The numbers of required cards and shuffles for Protocols 1 and 2 when we have an n×n

Takuzu grid such that n is up to eight.

#Cards #Shuffles
n = 4 n = 6 n = 8 n = 4 n = 6 n = 8

Protocol 1 48 96 160 140 474 1112
Protocol 2 48 168 544 2 2 2

According to this table, there is a trade-off between the numbers of required cards and
shuffles, i.e., Protocol 1 presented in Section 3.2.1 needs a less number of cards but needs
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a more number of shuffles than Protocol 2 presented in Section 3.2.2. Both protocols are
reasonable, and hence, P and V may choose their favorite one. Let us stress that pencil
puzzles are usually played on a board of small size, say n = 8, and also that players enjoying
a puzzle normally do not use computers to solve it.

3.4 Security Proofs for Takuzu
We prove the security of our construction. We consider a shuffle functionality which is an
indistinguishable shuffle of face down cards. The first part is dedicated to give proofs of
protocol 1 while the second part is dedicated to prove the security for protocol 2.

3.4.1 Security Proofs of Protocol 1
Takuzu Completeness

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .

Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase
described in subsection 3.2.1. Then we show that P is able to perform the proof for the
three phases: (AV) adjacent verification phase, (UV) uniqueness and verification phase, and
equality verification phase (EV).

Since S is a solution of G, S is a valid grid respecting all the constraints. If S respects
the adjacent rule so the six-card trick outputs 0 in all cases. Indeed, if the number are all
equals then the rearranging step (step 1 of the six-card trick) has the same output than the
input. For example, consider the sequence 101 which is rearrange as:

1
♥

2
♣

3
♣

4
♥

5
♥

6
♣ →

1
♥

6
♣

3
♣

2
♣

5
♥

4
♥ .

The random cut will keep the pattern, up to a cyclic shift. The same result holds for
other possible sequences (there are 6 of them).

We conclude that S succeeds the AV challenge.
We show that S passes the UV challenge. The verification is done toward each possible

pair of row (and column) of the grid. Consider two rows where ai denote the values of
commitments on the first row and bi the values for the second row. Since S is a solution
those two rows are different, meaning that there exists at least a value j for which aj 6= bj .
This implies that aj = bj ⊕ 1 (recall that ∀i = 1 . . . n we have ai, bi ∈ {0, 1}) meaning that
aj ⊕ bj = 1. Thus the disjunction of all the possible ai ⊕ bi will output 1 (since at least on of
its term is equal to 1). Repeating this process for each possible pair of rows and columns
leads to always output 1 in step 3 of the UV.

Lastly, we show that S succeeds the EV challenge. Since it is a solution there is the same
number of 0 and 1 in each row and column. When shuffling the cards, only the their order is
modified but not their value thus the equality property still holds.

We conclude that P convinces V for AV, UV and EV phases. J

Takuzu Soundness

We show that if P does not provide a solution of a given Takuzu grid then he is not able to
convince V with probability 1.

Proof. Suppose that P does not know the solution, we want to show that V will detect it
during, at least, one verification phase.
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First, notice that if P places a commitment that respects all the Takuzu rules then it
is a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we
consider three possible cases corresponding to each rule that is not respected:

If the adjacent rule is not respected, then there exists three consecutive commitments
that have the same value (either 0 or 1). Without loss of generality, let consider that
those values are all 0’s. Thus the the rearrange step is:

1
♣

2
♥

3
♣

4
♥

5
♣

6
♥ →

1
♣

6
♥

3
♣

2
♥

5
♣

4
♥ .

Thus a random cut will keep this alternating pattern. (Note that the same result holds
with all 1 but black cards are replaced by red cards and vice-versa.) Hence, the six-card
trick outputs 1 so V rejects P ’s commitments.
If the uniqueness rule is not respected, then at least two rows or two columns are identical.
Thus, for all i = 1 . . . n, we have ai = bi =⇒ aj ⊕ bj = 0. This implies that the
disjunction of all those terms is equal to 0 so V rejects it.
If the equality rule is not respected, then there exists a row or column where the number
of 0 is not equal to the number of 1. W.l.o.g., consider a row with n

2 +1 0-commitment and
n
2 − 1 1-commitment. When applying a pile scramble shuffle the 0-commitment remains
0-commitment, and 1-commitment still remains 1-commitment so V will notice that there
is n

2 + 1 0-commitment and n
2 − 1 1-commitment. Finally, V won’t be convinced. J

Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. The idea of the proof is described in [13]. Proving zero-knowledge implies to describe
an efficient simulator which is an algorithm that simulates any interaction between a cheating
verifier and a real prover. The simulator has no access to the correct solution but it has an
advantage over the prover: when the cards are shuffled, the simulator can swap the decks
with different ones. We thus show how to construct a simulator for each challenge:

Adjacent Verification challenge: The simulator chooses randomly S such that three con-
secutive cells never contain the same number. Note that the uniqueness and equality
rule may not hold. Then it simulates the interaction between the prover and the verifier.
For each three vertically (or horizontally) consecutive commitments, the six-card trick
outputs 0 (there are exactly two identical number).

Uniqueness Verification challenge: When the verifier checks for pair of rows or columns,
the simulator picks cards to form distinct rows or columns (for example, during the
Mizuki-Sone XOR shuffle phase).

Equality Verification challenge: During the pile scramble shuffle, the simulator places n
2

0-commitment and n
2 1-commitment in a random order. J

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.

3.4.2 Security Proofs of Protocol 2
Completeness

We show that if P knows a solution of a given Takuzu grid then he is able to convince V .
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Proof. Suppose that P knows a solution S of the initial grid G and runs the input phase
described in subsection 3.2.2. Then we show that P is able to perform the proof for the
verification phase.

Since S is a solution of G, S is a valid grid respecting all the constraints. Indeed S

respects the adjacent rule so each three consecutive commitments cannot be all the same.
Thus the left cards of each commitment cannot be the same (recall our encoding 1). The other
rules can be verified using the same process since each left card (or right) fully determine the
value of a commitment. Indeed, if the left card is ♣ the the commitment corresponds to the
value 0 and if the left card is ♥ then it corresponds to a 1-commitment. We conclude, that
if P ’s commitment corresponds to the solution of G then all the constraints can be verified
by V when revealing the commitments. J

Soundness

We show that if P does not provide a solution of a given Takuzu grid then he is not able to
convince V with probability 1.

Proof. Suppose that P does not know the solution, we want to show that V will detect it
during the verification phase.

First, notice that if P places a commitment that respects all the Takuzu rules then it
is a solution. Thus if at least one rule is not respected then it is not a solution. Hence, we
consider three possible cases corresponding to each rule that is not respected:

If the adjacent rule is not respected, then there exists three consecutive commitments
that have the same value (either 0 or 1). Since the order of the cards is kept (only the
pile are shuffled), V can detect when three consecutive cards are identical.
If the uniqueness rule is not respected, then at least two rows or two columns are identical.
Again, V will detect it since all the left (right) cards are revealed and that left (right)
cards fully determine a commitment value.
If the equality rule is not respected, then there exists a row or column where the number
of 0 is not equal to the number of 1. As seen in the previous case, V won’t be convinced
since the number of 0 does not correspond to the number 1. J

Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. The idea is the same as for protocol 1. We show how to construct a simulator for the
challenge. During the pile-scramble phase, the simulator replaces each pile with a sequence
of tkz(n). Thus the set of those sequence verifies the rules. J

We conclude that our protocol for Takuzu is complete, soundness and zero-knowledge.

4 Our ZKP Protocol for Juosan

In this section, applying the ideas shown in Section 3, we construct a ZKP protocol for
Juosan, which allows the prover P (aka Q) to convince the verifier V (aka James Bond) that
he really knows a solution.
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4.1 Subprotocol: Five-Card Trick
We introduce the five-card trick [8] in this subsection, which is used in our construction to
verify Rules 2 and 3.

Given two commitments to a, b ∈ {0, 1} (along with a red card ♥ ), the five-card trick [8]
outputs a ∧ b: ? ?︸ ︷︷ ︸

a

? ?︸ ︷︷ ︸
b

♥ → · · · → a ∧ b . The protocol proceeds as follows.

1. Rearrange the sequence as follows:
1
?

2
?

3
?

4
?

5
? →

2
?

1
?

5
?

3
?

4
? .

2. Apply a random cut to the sequence:
〈

? ? ? ? ?
〉
→ ? ? ? ? ? .

3. Reveal the sequence. If the resulting sequence is:
a. ♣ ♣ ♥ ♥ ♥ (apart from cyclic shifts), the output is a ∧ b = 1.
b. ♥ ♣ ♥ ♣ ♥ (apart from cyclic shifts), the output is a ∧ b = 0.

4.2 Our Construction
We are now ready to present the full description of our ZKP protocol for Juosan. Let us
consider that we are given a 5× 5 Juosan grid as an example.

Our construction consists of three phases, the Setup phase, Adjacent Verification phase,
and Room Verification phase.

Setup phase. Regarding a vertical dash (|) as 0 and a horizontal dash (—) as 1, the prover
P places a commitment to each cell according to the solution:

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

.

Adjacent Verification phase. In this phase, V repeats applications of the Mizuki–Sone
AND protocol [24] and five-card trick [8] enhanced by the input-preserving function evaluation
technique to verify that the Adjacent condition is satisfied. Note that V can also verify
that the commitments placed by P in the Setup phase form the valid ones according to the
encoding rule (1).
1. Let us verify that there are no three consecutive horizontal dashes in any column. The

fact that three horizontal dashes are not consecutive to the vertical means that there is
at least one vertical dash among them. Therefore, it suffices to confirm the AND value of
of the corresponding three commitments is false because a vertical dash is encoded as 0
and a horizontal dash as 1.
Let a, b, c ∈ {0, 1} be the values of commitments on three consecutive cells in a column.
First, for commitments to a and b, perform the Mizuki–Sone AND protocol described in
Section 3.1.3. Then, a commitment to a ∧ b is obtained.

2. Perform the five-card trick described in Section 4.1 for the commitments to a ∧ b and c.
If the five-card trick outputs 1, V rejects it.

3. Restore commitments to a, b, and c by the input-preserving function evaluation technique
described in Section 3.1.6.

4. The same is done for rows. In this case, let the encoding be reversed.
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Room Verification phase. In this phase, V verifies the Room rule by revealing the com-
mitments after applying pile-scramble shuffles.
1. Apply a pile-scramble shuffle to all commitments in a territory with a number:

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

→
[

? ?
∣∣ ? ?

∣∣ ? ?
]
→ ? ? ? ? ? ? .

2. Take all the left cards and all the right cards of these commitments to make two piles.
Then, apply a pile-scramble shuffle to the two piles:

? ? ? ? ? ? →
? ? ?

? ? ?
→

?
?
→

[
?
∣∣ ?

]
→

? ? ?
? ? ?

.

3. Reveal all the cards of the piles. If the number of black cards or red cards is not the
same as the number written on the territory, V rejects it. For example, in the case of a
3-cell territory with a number “3,” each of the following two types of card groups should

appear with a probability of 1/2:
♥ ♥ ♥
♣ ♣ ♣

,
♣ ♣ ♣
♥ ♥ ♥

, where the order of cards in the

card set does not matter.
4. The same is done for all other numbered territories.

The numbers of required shuffles are 3(m(n− 2) + n(m− 2)) in the Adjacent Verification
phase and k in the Room Verification phase when we have an m × n Juosan grid and k

territories. This protocol uses mn+ 1 black cards, the same number of red cards, and eight
number cards.

4.3 Optimized Adjacent Verification for Juosan
In the original Adjacent Verification phase of our protocol for Juosan presented in Section 4.2,
the AND value a ∧ b ∧ c for a, b, c ∈ {0, 1} is securely computed to show the validity of three
consecutive commitments. We present an optimization technique to show the validity of four
consecutive commitments as follows.

1. Let a, b, c, d ∈ {0, 1} be commitments of four consecutive cells in a column. First, for
commitments to b and c, perform the Mizuki–Sone AND protocol described in Section 3.1.3.
Then, a commitment to b ∧ c is obtained.

2. Let x1 = b∧ c, x2 = a, and c3 = d. By slightly modifying the Mizuki–Sone AND protocol,
the following protocol is obtained:

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♥ ? ?︸ ︷︷ ︸
x3

♣ ♥ → · · · → ? ?︸ ︷︷ ︸
x1∧x2

? ?︸ ︷︷ ︸
x1∧x3

.

Note that this uses one random bisection cut only. Then, two commitments of x1 ∧ x2 =
a ∧ b ∧ c and x1 ∧ x3 = b ∧ c ∧ d are obtained.

3. Open the commitments of a ∧ b ∧ c and b ∧ c ∧ d. If they are not (0, 0), V rejects it.
4. Obtain the commitments to a, b, c, and d by the input-preserving function evaluation

technique described in Section 3.1.6.



D. Miyahara et al. 20:17

4.4 Security Proofs for Juosan
We prove the security of our construction. We consider a shuffle functionality which is an
indistinguishable shuffle of face down cards.

Juosan Completeness

We show that if P knows a solution of a given Takuzu grid then it is able to convince V .

Proof. Suppose that P knows a solution S of the initial grid G and runs the setup phase
described in Section 4. Then we show that P is able to perform the proof for the two phases:
adjacent verification phase (AV) and room verification phase (RV).

Since S is a solution of the grid G, we show that S is a valid grid respecting all the
constraints.

We first consider the adjacent verification. Let us take an example, the other cases (here
8 possible cases) are done the same way. We consider the case of horizontal dashes in a
column for verifying the adjacent (horizontal) rule. We need to show that the AND value of
these commitments is not equal to 1. Note that if we inverse the encoding rule (♥ ♣ = 0
and ♣ ♥ = 1) we can verify that no three consecutive vertical dashes are placed in a given
row.

We consider the 101-commitment: ♥ ♣ ♣ ♥ ♥ ♣ .
First we take the first four cards and apply the Mizuki-Sone AND protocol:
1
♥

2
♣

3
♣

4
♥

5
♥

6
♣ →

1
♥

3
♣

4
♥

2
♣

5
♥

6
♣ .

Then the random cut will output two possible combinations:
1
♥

3
♣

4
♥

2
♣

5
♥

6
♣ or

2
♣

5
♥

6
♣

1
♥

3
♣

4
♥ .

Both cases has output ♣ ♥ which is simply 0.
Note that if we replace the second commitment by 1 (which is encoded as ♥ ♣ ) then after

the random cut we have the two possible outputs:
1
♥

3
♥

4
♣

2
♣

5
♥

6
♣ or

2
♣

5
♥

6
♣

1
♥

3
♥

4
♣ .

The output is ♥ ♣ which is simply 1 (and this corresponds with the expected value).
Next, we compute the five-card trick for input ♣ ♥ ♥ ♣ ♥ .
The rearrange step outputs ♥ ♣ ♥ ♥ ♣ which is the same pattern of alternating figure

meaning that a ∧ b = 0. Note that a random cut will not modify the shape of the pattern.
The same process is applied to all other commitments so we can conclude that S respects

the adjacent verification for horizontal and vertical dashes. Hence S succeeds the AV
challenge.

Note that we can verify the adjacent rule by looking at three consecutives cells and the
next three consecutives cells (that is cells a, b, c and then cells b, c, d) or directly apply the
optimized adjacent verification in Section 4.3.

S also succeeds the room verification. Indeed, we make two piles corresponding to left
cards of each commitment and right cards of each commitment. Thus each vertical dash
(encoded as ♣ ♥ ) adds a card ♣ in a pile and a card ♥ in the other pile. Hence, a pile
represents the number of vertical dashes while the other represents the number of horizontal
dashes (but those two piles are indistinguishable). It remains to count the number of cards
that forms the majority to deduce if the room rule is achieved. Finally S is a correct solution
for RV challenge.

We conclude that P convinces V for AV phase and for RV phase. J
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Juosan Soundness

We show that if P does not provide a solution of a given Juosan grid then it is not able to
convince V .

Proof. Suppose that P is able to convince V meaning that P can provide S which succeeds
AV challenge and RV challenge. We want to show that P knows a solution to Juosan grid G.

During the input phase, P places a commitment.
Since P is able to perform the proof of AV challenge and RV challenge we have: initial

cells are the same as in S, horizontal bars are not arranged three times in a column, vertical
bars are not arranged three times in a row, and a room has correct numbers of vertical or
horizontal bars corresponding to its number.

We deduce that S is a solution of G (since each rule is respected). Hence if P does not
provide a solution of G then it fails the proof for at least one challenge. Since those two
phases are perform during the proof, P receives two challenges (AV and RV) out of two
possibilities.

Hence, if P gives a wrong grid then at least one of those two challenges will fail.
Thus P cannot convince V with a wrong proposition. J

Juosan Zero-knowledge

We show that during the verification process, V learns nothing about P ’s solution.

Proof. We follow the same process as for the zero-knowledge of Takuzu protocol. We thus
show how to construct a simulator for each challenge:

Adjacent Verification challenge: The simulator chooses randomly S. Before the final output
of the five-card trick, the simulator always chooses a deck for which red and black cards
are alternated. Thus the output is always 0 meaning that the Adjacent Verification
challenge succeed. Since S was chosen randomly then simulated proofs and real proofs
are indistinguishable.

Room Verification challenge: When the verifier checks for vertical direction, the simulator
looks at the room number to form the corresponding number with red cards (or black
ones) for each piles. This step is done the same way for all rooms. Since each row
(or column) are different from one to another, the simulated proofs and real proofs are
indistinguishable. J

We conclude that our protocol for Juosan is complete, soundness and zero-knowledge.

5 Conclusion

In this paper we improved the existing interactive zero-knowledge proof for Takuzu. Our
protocols use a reasonable number of cards and shuffles, implying that they are easy to
implement by humans. Our protocols are designed in such a way that the proof is completely
sound meaning that a prover P convinces the verifier V with probability 1 if P has a solution.
We also proposed an adapted version of this protocol for the Juosan puzzle which had never
been proposed before. An interesting puzzle, called Suguru, can also be studied with this
technique.
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