
Computational Fun with Sturdy and Flimsy
Numbers
Trevor Clokie
University of Waterloo, Canada
trevor.clokie@uwaterloo.ca

Thomas F. Lidbetter
University of Waterloo, Canada
finnlidbetter@gmail.com

Antonio J. Molina Lovett
University of Waterloo, Canada
antonio@amolina.ca

Jeffrey Shallit
University of Waterloo, Canada
shallit@uwaterloo.ca

Leon Witzman
University of Waterloo, Canada
lwitzman@uwaterloo.ca

Abstract
Following Stolarsky, we say that a natural number n is flimsy in base b if some positive multiple
of n has smaller digit sum in base b than n does; otherwise it is sturdy. We develop algorithmic
methods for the study of sturdy and flimsy numbers.

We provide some criteria for determining whether a number is sturdy. Focusing on the case
of base b = 2, we study the computational problem of checking whether a given number is sturdy,
giving several algorithms for the problem. We find two additional, previously unknown sturdy
primes. We develop a method for determining which numbers with a fixed number of 0’s in binary
are flimsy. Finally, we develop a method that allows us to estimate the number of k-flimsy numbers
with n bits, and we provide explicit results for k = 3 and k = 5. Our results demonstrate the utility
(and fun) of creating algorithms for number theory problems, based on methods of automata theory.

2012 ACM Subject Classification Theory of computation → Grammars and context-free languages;
Theory of computation → Dynamic programming

Keywords and phrases sturdy number, flimsy number, context-free grammar, finite automaton,
enumeration

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.10

Related Version The full paper is available at https://arxiv.org/abs/2002.02731.

Supplementary Material Implementations of our algorithms can be found in the GitHub repository
https://github.com/FinnLidbetter/sturdy-numbers.

Acknowledgements We would like to thank Kenneth Stolarsky and the referees for helpful comments.

1 Introduction

Let sb(n) denote the sum of the digits of n, when expressed in base b. Thus, for example,
s2(9) = 2. A number n is said to be k-flimsy in base b if there exists a positive integer k such
that sb(kn) < sb(n). Any such k, if one exists, is called a flimsy witness for n. If n is k-flimsy
for some k, it is said to be flimsy. If there is no such k, then n is said to be sturdy in base b.
For example, 7 is sturdy in base 2, while 13 is flimsy, because s2(13) = 3 > 2 = s2(5 · 13).
Thus 5 is a flimsy witness for 13. In this paper we examine the computational aspects of
sturdy and flimsy numbers.

© Trevor Clokie, Thomas F. Lidbetter, Antonio J. Molina Lovett, Jeffrey Shallit, and Leon Witzman;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:trevor.clokie@uwaterloo.ca
mailto:finnlidbetter@gmail.com
https://orcid.org/0000-0002-1890-9517
mailto:antonio@amolina.ca
https://orcid.org/0000-0003-1197-3820
mailto:shallit@uwaterloo.ca
mailto:lwitzman@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.FUN.2021.10
https://arxiv.org/abs/2002.02731
https://github.com/FinnLidbetter/sturdy-numbers
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Computational Fun with Sturdy and Flimsy Numbers

Sturdy and flimsy numbers were introduced by Stolarsky in 1980 [28]. For other papers
on the topic, see [25, 10, 8, 6].

Many of the sequences we discuss appear in the On-Line Encyclopedia of Integer Sequences
[27]. For example, the base-2 sturdy numbers form sequence A125121 in the OEIS, while
the base-2 sturdy primes form sequence A143027. The base-2 flimsy numbers form sequence
A005360, while the base-2 flimsy primes form sequence A330696. The base-10 sturdy numbers
form sequence A181862, while the base-10 sturdy primes form sequence A181863. Sequence
A086342 gives the value of mink≥1 s2(kn), while sequence A143069 gives argmink≥1 s2(kn) =
min{k : s2(kn) = mink≥1 s2(kn)}.

The goal of this paper is to examine the algorithmic aspects of sturdy and flimsy numbers.
The outline of the paper is as follows. In Section 2, we prove some basic properties of digit
sums of multiples. In Section 3, we give a criterion for determining if a number is flimsy, and
use it to find two previously unknown sturdy primes.

Next, we turn to algorithms for sturdy and flimsy numbers. A priori it is not immediately
clear that it is even decidable whether a given n is flimsy or sturdy. Indeed, in a recent paper
by Elsholtz [11], he asks, “How can one algorithmically find a “sparse” representation of a
multiple of p?”

More precisely, there are four computational problems worthy of study:
1. Given a positive integer n, decide whether it is sturdy in base b.
2. Compute swmb(n) := mink≥1 sb(kn). This is the smallest weight of a multiple; the

smallest digit sum of a multiple of n; if n is sturdy, then swmb(n) = sb(n).
3. Compute mswb(n) := argmink≥1 sb(kn). This is the minimum sum witness; the smallest

k such that kn achieves its minimum digit sum; if n is sturdy, then mswb(n) = 1.
4. Given that n is flimsy, determine mfwb(n) := min{k : sb(kn) < sb(n)}. This is the

minimal flimsy witness.
A table of these functions is given in Table 1. Here the column labeled “char” is F if the
number is flimsy and S if it is sturdy.

In Sections 4–7, we discuss algorithms to solve these problems. The fastest, based on
automata theory, shows that we can check whether a number n is sturdy in O(n) time.
Section 10 gives our computational results achieved with our algorithms.

In Section 11 we give an application of automata to help characterize the flimsy numbers
with a fixed number of 0’s.

Finally, in Section 12, we turn to estimating the number of k-flimsy numbers with n bits.
We use techniques from formal language theory to solve the problem.

2 Basic properties

In this section, we prove some of the basic properties of digit sums of multiples.
We start with some notation. For n ≥ 0, we define (n)b to be the base-b representation

of n, starting with the most significant digit. If x is a string, we define [x]b to be the integer
that x represents when interpreted in base b. If b is fixed, we define x to be the base-b
complement of x, that is, the string where each digit d in x is replaced by b− 1− d.

I Theorem 1. Let b ≥ 2 be an integer, and t be a positive divisor of b. Then for all integers
n, r ≥ 1, there exists a positive integer j such that sb(jn) = r if and only if there exists a
positive integer k such that sb(ktn) = r.

Proof. For one direction, take j = kt.
For the other direction, assume that there exists j ≥ 1 such that sb(jn) = r. Let k = bj/t.

Then sb(ktn) = sb(bjn) = sb(jn) = r. J

https://oeis.org/A125121
https://oeis.org/A143027
https://oeis.org/A005360
https://oeis.org/A330696
https://oeis.org/A181862
https://oeis.org/A181863
https://oeis.org/A086342
https://oeis.org/A143069

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:3

Table 1 Table of sturdy and flimsy numbers.

n char swm(n) msw(n) mfw(n) n char swm(n) msw(n) mfw(n)
3 S 2 1 - 5 S 2 1 -
7 S 3 1 - 9 S 2 1 -
11 F 2 3 3 13 F 2 5 5
15 S 4 1 - 17 S 2 1 -
19 F 2 27 27 21 S 3 1 -
23 F 3 3 3 25 F 2 41 41
27 F 2 19 3 29 F 2 565 5
31 S 5 1 - 33 S 2 1 -
35 S 3 1 - 37 F 2 7085 7085
39 F 3 7 7 41 F 2 25 25
43 F 2 3 3 45 S 4 1 -
47 F 3 11 3 49 S 3 1 -
51 S 4 1 - 53 F 2 1266205 5
55 F 3 7 3 57 F 2 9 9
59 F 2 9099507 3 61 F 2 17602325 5
63 S 6 1 - 65 S 2 1 -
67 F 2 128207979 128207979 69 S 3 1 -
71 F 3 119 119 73 S 3 1 -
75 S 4 1 - 77 F 3 5 5
79 F 3 13 7 81 F 2 1657009 1657009
83 F 2 26494256091 395 85 S 4 1 -
87 F 3 3 3 89 S 4 1 -
91 F 3 3 3 93 S 5 1 -
95 F 3 5519 3 97 F 2 172961 172961
99 F 2 331 11 101 F 2 11147523830125 365
103 F 3 5 5 105 S 4 1 -
107 F 2 84179432287299 3 109 F 2 2405 5
111 F 3 591 3 113 F 2 145 145
115 F 3 571 9 117 F 4 5 5
119 F 3 71 3 121 F 2 297758653049289 9
123 F 4 19 3 125 F 2 9007199254741 5
127 S 7 1 - 129 S 2 1 -

We now show that in order to compute swmb, it suffices to consider only those arguments
relatively prime to b.

I Corollary 2. Write the prime factorization of n as
∏

1≤i≤t p
ei
i , and define g =

∏
pi|b p

ei
i .

Then swmb(n) = swmb(n/g), and gcd(b, n/g) = 1.

Proof. Let p be any prime dividing both b and n. From Theorem 1, we see that swmb(n) =
swmb(n/p). By repeatedly applying this observation, and replacing n with n/p, we can
remove from n all primes dividing both b and n, while maintaining the same value of swmb.
At the end, the resulting n/g is relatively prime to b. J

I Theorem 3. There exists j ≥ 1 such that sb(jn) = t if and only if there exist t distinct
powers of b that sum to a multiple of n.

Proof. By Corollary 2, we may assume that n is coprime with b.
In such cases, b has finite order, say ν, modulo n. Suppose

∑ν−1
i=0 cib

i ≡ 0 (mod n) where
each ci ≥ 0 and

∑ν−1
i=0 ci = t. Then

∑ν−1
i=0

∑ci−1
j=0 bjν+i ≡ 0 (mod n), and this sum consists

of distinct powers of b. J

FUN 2021

10:4 Computational Fun with Sturdy and Flimsy Numbers

Empirical evidence suggests that if b = 2 and swmb(n) = t, then for all i ≥ 0, some
multiple of n has digit sum t + i. However, the analogous result is false for b = 3. For
example, swm3(13) = 3, but no multiple of 13 has digit sum 4. These observations are
explained in the following theorem.

I Theorem 4. Suppose j, n are positive integers such that sb(jn) = t. Then for all r ≥ 0,
there exists k ≥ 1 such that sb(kn) = t+ r(b− 1).

Proof. Assume sb(jn) = t for some t ≥ 1. Then from Theorem 3 we know that
∑t
i=1 b

mi ≡
0 (mod n) for some strictly increasing mi and (replacing j by bj if needed) we can assume
mt ≥ 1. Now replace the high-order bit bmt in this sum with the sum of b terms bν+mt−1 +
b2ν+mt−1 + · · · + b(b−1)ν+mt−1, where ν is the order of b, modulo n. This has the effect
removing 1 bit, while adding b additional bits, and each of the b new terms is congruent to
bmt−1 (mod n). So we have found another multiple of n with digit sum t+ b− 1. We can
repeat this transformation any number of times. J

I Remark 5. The result is optimal. Since b− 1 divides the digit sum of any multiple of b− 1,
there is no k ≥ 1 satisfying b− 1 < sb(k(b− 1)) < 2(b− 1).

3 Infinite classes of sturdy numbers

We first give a criterion for deciding whether a number is flimsy. This shows that Problem 1
on our list, determining whether a given positive integer is sturdy, is decidable.

I Theorem 6. Let n, b, j be positive integers, b ≥ 2 such that n divides bj − 1. Then n is
flimsy in base b if and only if sb(kn) < sb(n) for some k satisfying 1 ≤ k ≤ bj−1

n .

Proof. One direction is easy: if sb(kn) < sb(n) for some k, then n is flimsy in base b.
For the other direction, suppose n is flimsy, but sb(kn) ≥ sb(n) for all k with 1 ≤ k ≤ bj−1

n .
Let k′ be the smallest positive integer such that sb(k′n) < sb(n). By assumption k′n ≥ bj ,
and so we can write k′n = cbj + d for uniquely-determined c ≥ 1 and 0 ≤ d < bj . Since
bj ≡ 1 (mod n), it follows that cbj +d ≡ c+d ≡ 0 (mod n). Then c+d = fn < cbj +d = k′n

for some integer f with 1 ≤ f < k′. Thus sb(k′n) = sb(cbj + d) = sb(c) + sb(d) ≥ sb(c+ d) =
sb(fn) ≥ sb(n), achieving the desired contradiction. J

I Remark 7. Since j ≤ ϕ(n), this together with Theorem 1 shows that sturdiness is reduced
to a finite search. The result for b = 10 was observed by Phedotov [20].

We applied Theorem 6 to known prime factors of composite Mersenne numbers [29] and
found

57912614113275649087721 = 283 − 1
167

and

10350794431055162386718619237468234569 = 2131 − 1
263

as previously unknown sturdy primes in base 2.

I Corollary 8. If b, j are positive integers, with b ≥ 2, then bj−1
m is sturdy in base b for every

positive m dividing b− 1.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:5

Proof. Let k be an integer with 1 ≤ k ≤ m. Then we have

sb

(
k
bj − 1
m

)
= sb

(
k(b− 1)
m

j−1∑
i=0

bi

)
= kj

b− 1
m
≥ j b− 1

m
,

where we have used the fact that k ≤ m. The result now follows by Theorem 6. J

I Theorem 9. Let n be sturdy in base b ≥ 2, with n dividing bj − 1 for some j ≥ 1. Fix a
positive integer r, and define m = n

(
brj−1
bj−1

)
. Then m is sturdy in base b.

Proof. Let x = (n)b. Observe that m = [(x 0j−|x|)r−1 x]b, so sb(m) = rsb(n). If 1 ≤ k ≤
bj−1
n , then (km)b consists of r copies of (kn)b concatenated, separated by some number of

0’s. So sb(km) = rsb(kn) ≥ rsb(n) = sb(m). The result now follows by Theorem 6. J

We can now get a generalization of a theorem of Stolarsky [28, Thm. 2.1].

I Corollary 10. Let e, k, r ≥ 1, and b ≥ 2. Define n=[(1k 0(e−1)k)r−1 1k]b=
(
bk−1
b−1

)(
brek−1
bek−1

)
.

Then n is sturdy in base b.

Proof. Note that bk−1
b−1 is sturdy in base b by Corollary 8. Additionally, bk− 1 divides bek− 1.

The result now follows by Theorem 9. J

The next theorem gives another infinite class of sturdy numbers.

I Theorem 11. Fix b ≥ 2. Let n be a positive integer, and x be the base-b representation of
n. Then every integer with base-b representation of the form x (b− 1)i x, where i ≥ 0 and x
is the base-b complement of x, is sturdy in base b.

Proof. Suppose y = x (b− 1)i x for some i ≥ 0. Then [y]b + n = nb|x|+i + b|x|+i − 1. Then
[y]b = (n+1)(b|x|+i−1). Observe that sb(b|x|+i−1) = (|x|+i)(b−1) = sb([y]b). Furthermore,
b|x|+i − 1 is sturdy in base b by Corollary 8. Then for every positive integer k we have
sb(k[y]b) = sb(k(n+ 1)(b|x|+i − 1)) ≥ sb(b|x|+i − 1) = sb([y]b). J

I Corollary 12. Let b ≥ 2 be an integer, and m be a positive integer dividing b− 1. Then
(bn−1)2

m is sturdy in base b for all n ≥ 1.

Proof. Suppose m divides b− 1. Then we have

(bn − 1)2

m
= bn − 1

m
bn − bn − 1

m

= bn − 1
m

bn − bn + bn − bn − 1
m

=
(
bn − 1
m

− 1
)
bn + bn − bn − 1

m

=
(
bn − 1
m

− 1
)
bn + (bn − 1)−

(
bn − 1
m

− 1
)
,

which has base-b representation xx where x =
(
bn−1
m − 1

)
b
. Then by Theorem 11, (bn−1)2

m is
sturdy in base b. J

In the rest of this paper we are almost exclusively concerned with the case b = 2, and
so from now on we omit the subscripts on the functions msw, swm,mfw, and use the terms
flimsy or sturdy without further elaboration. In this case s2(n) equals the number of 1’s in
the binary representation of n, also known as the Hamming weight of n.

FUN 2021

10:6 Computational Fun with Sturdy and Flimsy Numbers

4 Algorithms when swm(n) is small

As we will see in Section 5, for general n we can determine whether n is sturdy in O(n) time.
We call this a linear-time algorithm.1 Therefore, it is of interest to see when this can be
improved.

If swm(n) is small, this fact can be verified efficiently in some cases. This is particularly
relevant in the case where n is prime because, according to a recent result of Elsholtz [11],
almost all primes p have swm(p) ≤ 7. Furthermore, we know from results of Hasse [14] and
Odoni [18] that a positive proportion of all primes satisfy swm(p) = 2; asymptotically, this
fraction is 17/24. For general n, however, the situation is different: the set of n for which
swm(n) = 2 has density 0; see the results of Moree in [21, Appendix B].

4.1 The case swm(n) = 2
If swm(n) = 2, then n ·msw(n) = 2k + 1 for some integer k ≥ 1. Hence n | 2k + 1, and so
−1 belongs to the subgroup generated by 2 (mod n). We can decide if −1 belongs to the
subgroup generated by 2 (mod n) by using an algorithm for the discrete logarithm problem.
For example, the baby-step giant-step algorithm can be used to find k such that 2k ≡ −1
(mod n), if such a k exists, with time complexity O(

√
n logn) [26]. If the factorization of n

is known, this running time can be substantially improved.

4.2 The case swm(n) = 3
If swm(n) = 3, then n ·msw(n) = 2k + 2` + 1 for some integers k > ` ≥ 1. It follows that
2k + 2` ≡ −1 (mod n), which means that we are dealing with a 2-SUM problem. This can be
solved in O(n logn) time using sorting and binary search. (Briefly, compute a table of powers
of 2, mod n; sort them in ascending order, and then for each power 2k use binary search to
see if there is an ` such that 2` ≡ −1− 2k (mod n).) Although this does not beat our O(n)
algorithm given below asymptotically, in many cases it will run more quickly because of the
simplicity of the operations. This is particularly true if the subgroup generated by 2 (mod n)
is small.

5 A dynamic programming algorithm

In this section we show how to check whether n is sturdy using dynamic programming.
By Corollary 2, we can restrict our attention to the case where n is odd. In this case,

the powers of two Pn = {2i : i ≥ 0} form a cyclic subgroup of (Z/(n))∗, the multiplicative
group of integers relatively prime to n. Define ν = ord2 n = |Pn|, the order of 2 in the group
(Z/(n))∗. Hence, to find a positive multiple of n whose binary expansion contains exactly k
1’s, it suffices to find an appropriate linear combination of k elements of Pn (counted with
repetition) that sums to 0 (mod n). More precisely, we need to find non-negative integers
a1, a2, . . . , ai and distinct elements e1, e2, . . . , ei ∈ Pn such that

a1e1 + · · ·+ aiei ≡ 0 (mod n)
a1 + a2 + · · ·+ ai = k,

1 Strictly speaking, the usage “linear-time” in the context of algorithms on integers would usually mean
an algorithm that runs in O(log n) time. But since no algorithm is this efficient, we stray from the
common usage for brevity.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:7

for integers k ≥ 1. This is the kind of problem that dynamic programming is well-suited for.
To restrict the amount of work required in a dynamic programming algorithm for this we
make use of the following lemma.

I Lemma 13. For an integer base b ≥ 2 let Pb,n = {bi mod n : i ∈ N} and suppose
that e1, e2, . . . , em are the distinct elements of Pb,n. If there exist non-negative integers
a1, a2, . . . , am such that a1e1+a2e2+· · ·+amem ≡ 0 (mod n) and a1+· · ·+am = k, then there
exist non-negative integers c1, c2, . . . , cm < b and l ≤ k such that c1e1 + c2e2 + · · ·+ cmem ≡
0 (mod n) and c1 + · · ·+ cm = l.

Proof. Suppose we have non-negative integers a1, a2, . . . , am such that a1e1 + a2e2 + · · ·+
amem ≡ 0 (mod n) and a1 + · · ·+am = k. If we have a1, a2, . . . , am < b then we are done. So
suppose that there is some i such that ai ≥ b. Let j be the integer such that bei ≡ ej (mod n).
Then we can take m∑

r=1,r 6=i,r 6=j
arer

+ (ai − b)ei + (aj + 1)ej ≡ 0 (mod n),

giving m∑
r=1,r 6=i,r 6=j

ar

+ (ai − b) + (aj + 1) = a1 + · · ·+ am − b+ 1 = k − b+ 1 < k.

Setting ai := ai − b and aj := aj + 1 and k := k − b+ 1, we can repeat this argument until
a1, . . . , am < b. J

Let us start with determining whether n is sturdy. It suffices to solve the problem of
the previous paragraph for 1 ≤ k < s2(n). The idea is that we will fill in the entries of a
3-dimensional boolean array x with the following meaning: the entry x[i, j, r] is true if and
only if the integer j has a representation as a sum of i ≥ 1 powers of 2, using as summands
only the first r elements of the set Pn without repetition. We fill in the array x in increasing
order of r.

For initialization, we set all elements of x to false, except that we set x[0, 0, r] to true
for 0 ≤ r ≤ ν.

To solve the remaining three problems, we need to record more information than just the
ability to represent j as a sum of powers of 2. The integer array y[i, j, r] is used to record
the smallest integer congruent to j (mod n) that is the sum of exactly i powers of 2 (without
repetition), using only the first r elements of the set Pn.

In the pseudocode that follows, the scope of loops is indicated by the indentation.

minrep(n) { assumes n odd and at least 3 }

sumd := sumdig(2,n); {sum of base-2 digits of n}

{make a table of powers of 2}
b := 1;
a := 0;
repeat

b := (2*b) mod n;
a := a+1;

FUN 2021

10:8 Computational Fun with Sturdy and Flimsy Numbers

until
b = 1;

ord2 := a; { the order of 2 mod n }
power2 := array[0..ord2-1] of integer;
for m := 0 to ord2-1 do

power2[m] := b;
b := (2*b) mod n;

{ the intent is that x[i,j,r] = true, if j (mod n) has a representation
as a sum of exactly i powers of 2, using only the first r elements of
power2 (without repetition), and false otherwise.
y[i,j,r] = smallest integer congruent to j (mod n)
representable by the sum of exactly i powers of 2,
using only the first r elements of power2 (without repetition) }

x := array[0..sumd-1, 0..n-1, 0..ord2] of boolean;
y := array[0..sumd-1, 0..n-1, 0..ord2] of integer;

{ initialize }

for r := 0 to ord2 do
for i := 1 to sumd-1 do

for j := 0 to n-1 do
x[i,j,r] := false;
y[i,j,r] := infinity;

x[0,0,r] := true;
y[0,0,r] := 0;

{ fill in table }

for r := 1 to ord2 do {consider summand 2^{r-1} mod p}
for j := 0 to n-1 do { check position j }

for i := 1 to sumd-1 do {fill in level i of the array}
x[i,j,r] := x[i,j,r-1];
y[i,j,r] := y[i,j,r-1];
{check if we can use 2^{r-1} }
if x[i-1, (j-power2[r-1]) mod n, r-1] then

x[i,j,r] := true;
y[i,j,r] := min(y[i,j,r],
y[i-1, (j-power2[r-1]) mod n, r-1] + 2^{r-1});

sturdy := true;
for i := 2 to sumd-1 do

sturdy := sturdy and x[i,0,ord2];

if (sturdy) then
print("swm(n) = ",sumd);
print("msw(n) = ",1);

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:9

else
i := 1;
while (not x[i,0,ord2]) do i := i+1;
print("swm(n) = ",i);
print("msw(n) = ",y[i,0,ord2]/n);
mfw := infinity;
while (i < sumd) do

mfw := min(mfw, y[i,0,ord2]);
i := i+1;

print("mfw(n) = ",mfw);

end;

Our dynamic programming algorithm has three nested loops, which gives a running time
of O(ν · n · s2(n)). Since ν = ordn 2 could be as large as n− 1, and s2(n) could be as big as
log2 n, this gives a worst-case running time of O(n2 logn), where we are measuring the run
time in terms of RAM operations on integers of size about n. This means that this algorithm
will only be feasible for integers smaller than about 107.

6 An algorithm based on finite automata

In this section we provide a different, much faster algorithm for checking sturdiness, based
on finite automata.

The idea is simple. It is easy to create a deterministic finite automaton (DFA) accepting
the binary representations of the positive integers divisible by n. Such an automaton has n
states [1] and exactly one final state. Next, we can easily construct a DFA At accepting those
strings starting with a 1 and having at most t ones. Using the standard “direct product”
construction [15, pp. 59–60], we can construct a DFA Mt of (t+2)n states for the intersection
of these two languages; it has exactly t+ 1 final states f0, f1, . . . , ft corresponding to positive
integers divisible by n with 0, 1, . . . , t 1’s respectively. Then some multiple of n has at
most t 1’s iff Mt accepts at least one string. We can test this condition (and even find the
lexicographically least string accepted) using breadth-first search to decide if some fi for
0 ≤ i ≤ t is reachable from the start state of Mt, in linear time in the size of M , so in
O((t+ 2)n) time.

By choosing t = s2(n)− 1 we can determine if n is sturdy in O(n logn) steps. Similarly,
by allowing the breadth-first search to run to completion and keeping track of the least string
in radix order used to reach each state, we can recover swm(n), msw(n), and mfw(n) by
examining each of the final states for whether or not they were visited in the search and
looking at the least string in radix order used in each case. More precisely, the value of
swm(n) is the least integer i such that final state fi in Mt is reached in the breadth-first
search, or s2(n) if no final state is reached. The value of msw(n) is the least string in radix
order used to reach fswm(n) interpreted as an integer and divided by n, or 1 if n is sturdy.
The value of mfw(n), if it is defined, is the least string in radix order among all such strings
used to reach a final state, interpreted as an integer and divided by n. To avoid needing
to store the representation of large integers, we instead store the exponents of the current
power of 2 and a pointer to the previous power. From this linked list we can reconstruct the
appropriate number.

FUN 2021

10:10 Computational Fun with Sturdy and Flimsy Numbers

I Theorem 14. We can decide whether n is sturdy O(n logn) steps. In the same time bound
we can compute swm(n) and msw(n). If n is flimsy, we can compute mfw(n) in the same
time bound.

This algorithm is practical for n up to about 1010. The main constraint is likely to be space
and not time.

7 Improving the automaton-based algorithm

With a small modification to this idea of using a breadth-first search on the graph defined
by automaton M , we can make further improvements to the time complexity. Consider
the deterministic finite automaton Mn accepting the binary representations of the positive
integers divisible by n. We then define a directed graph Gn with vertices given by the states
of Mn and directed, weighted edges given by the transitions of Mn where transitions on the
symbol 0 are given an edge weight of 0 in Gn and transitions on the symbol 1 are given
an edge weight of 1 in Gn. We augment Gn with one additional vertex, vs, with a single
outgoing edge of weight 1 to the vertex corresponding to the state reached when Mn reads
any input of the form 0∗1. If vf is the vertex corresponding to the accepting state in Mn,
then there is a path from vs to vf of weight k if and only if there is a non-zero multiple of
n with Hamming weight k. The shortest path problem on a graph G = (V,E) with edge
weights in {0, 1} can be solved in time O(|V | + |E|) using a variation of the breadth-first
search algorithm. In place of the queue used in a standard breadth-first search, we use a
double ended queue. We process a node by traversing incident edges of weight 0 and pushing
the nodes reached to the front of the queue if they have not been processed already. Edges
of weight 1 are also traversed, but the nodes reached are pushed to the back of the queue
provided that they have not been processed already. After a node has been processed, the
next node at the front of the queue is dequeued and processed if it has not been processed
already, otherwise it is just discarded. The depth of the search can be tracked as in a standard
breadth-first search. Thus we achieve the following improvement.

I Theorem 15. We can test if n is sturdy in O(n) steps.

From this approach we are still able to construct an example of a multiple of n achieving
the minimum Hamming weight over all multiples of n. It is simply a matter of maintaining
the path used in the breadth-first search algorithm finding the shortest path from vs to vf in
Gn. However, there is no guarantee that this is the least multiple of n with this property. To
find the least multiple we can use the linear-time algorithm to first determine the minimum
Hamming weight. For minimum Hamming weight k, we take the direct product of automaton
Mn accepting the base-2 representations of all multiples of n and the automaton accepting
all binary strings with exactly k 1’s. A breadth-first search on this product automaton gives
the least non-zero multiple of n with Hamming weight k. This second breadth-first search
has worst case time complexity O(n logn), giving overall complexity O(n logn) for finding
the least non-zero multiple of n having the minimum Hamming weight over all non-zero
multiples of n.

8 Another breadth-first search approach

We can take advantage of Lemma 13 to evaluate sturdiness and compute swm and msw using
a breadth-first search on a different graph structure. As before, to test the sturdiness of an
integer n ≥ 3, we construct an (n+ 1)-vertex graph with n of the vertices representing the

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:11

distinct residue classes modulo n, which we will refer to as [0], [1], . . . , [n− 1], and one special
vertex, v0, corresponding to the number 0. The graph contains a directed edge from vertex
[x] to vertex [y] if and only if x+ 2j ≡ y (mod n) for some integer j ≥ 0. Similarly, there
is an edge from v0 to [y] if and only if 2j ≡ y (mod n). Hence each vertex has out-degree
ν = ordn 2. The idea of this construction is to treat traversing an edge from [x] to [x+ 2j] as
choosing to use the jth power of 2 as a summand in a summation to a value congruent to 0
modulo n. Thus, to compute swm(n) we are looking for the length of the shortest path from
v0 to [0] and this can be found via a breadth-first search. Furthermore, by keeping track
of the smallest sum required to reach each state, we can also recover msw(n) from such a
breadth-first search. Rather than running the breadth-first search to completion, we can
terminate as soon as we reach a depth equal to s2(n), as we will know by then whether or
not n is sturdy.

With this approach we can take advantage of the structure of the graph to speed up
testing for sturdiness. If during the breadth first search we visit a node [x] such that [n− x]
has already been visited, then since the length of the shortest path from [x] to [0] is equal to
the length of the shortest path from v0 to [n− x] either we will know that n is not sturdy, or
that it is not necessary to continue searching from [x]. This greatly improves the efficiency
of the testing for sturdiness.

The complexity of this approach, for evaluating sturdiness, and computing swm(n) and
msw(n) is O(n2) since we are performing a breadth-first search on a graph with n+1 vertices
each with ν = O(n) outgoing edges. In practice this approach seems to perform much better
than our naive O(n2) upper bound would suggest, especially in testing for sturdiness, due to
the early exit conditions.

9 Running time comparison

To demonstrate how these algorithms behave in practice, we compiled timing information
for each of the approaches and each of the four functions of interest for consecutive integers
starting from 1. Each of the algorithms are implemented as described above. However,
before applying each algorithm the baby-step giant-step algorithm, as in Section 4.1, is used
to exit faster in those cases where swm(n) = 2. Running times for the mfw function with
the order_deg_bfs algorithm are not given because there does not seem to be a natural
approach for using this idea to evaluate mfw. The computations producing the given running
times were performed on macOS Catalina version 10.15.2 on a 2.3 GHz Intel Core i5 processor.
Implementations of our algorithms can be found in the GitHub repository

https://github.com/FinnLidbetter/sturdy-numbers.

Table 2 Running time in milliseconds for each of the algorithms to evaluate the functions for all
values of n (odd and even) between 1 and 2000 inclusive.

Algorithm is_sturdy swm msw mfw
dp 22836 2667063 5675228 5167556
aut 1042 1050 1473 1430

order_deg_bfs 322 1646 4339 —
bfs01 224 226 650 1416

In Tables 2 and 3, the algorithmic approaches are named according to the commands
used in the program-runner in the GitHub repository. Here, the dp algorithm refers to the
dynamic programming approach described in Section 5, the aut algorithm refers to the

FUN 2021

https://github.com/FinnLidbetter/sturdy-numbers

10:12 Computational Fun with Sturdy and Flimsy Numbers

automaton-based approach described in Section 6, the bfs01 algorithm refers to the improved
automaton-based approach described in Section 7, and the order_deg_bfs algorithm refers
to the alternative breadth-first search approach described in Section 8.

Table 3 Running time in milliseconds for the algorithms to evaluate the functions for all values
of n (odd and even) between 1 and 10000 inclusive. The dynamic programming algorithm was not
included because it was not feasible to evaluate the functions for all integers between 1 and 10000
with this approach.

Algorithm is_sturdy swm msw mfw
aut 31950 31990 42229 41747

order_deg_bfs 7378 164543 439794 —
bfs01 5209 5207 15515 41761

10 Computational results

Sequence A143027 in the OEIS [27] gives a list of the first few sturdy primes, namely,

2, 3, 5, 7, 17, 31, 73, 89, 127, 257, 1801, 2089, 8191, 65537, 131071,
178481, 262657, 524287, 2099863,

and mentions 616318177 as an additional sturdy prime, although it was not known if this was
the next sturdy prime to occur in the sequence. Using our methods, we checked all primes
p < 232. We confirmed the results in the OEIS and found that 616318177 and 2147483647
are the only remaining sturdy primes in that range.

We also computed frequency counts for the values of swm for odd n > 1, not just primes,
and they are given in Table 4.

11 Numbers with few 0’s

We can also use finite automata to determine when numbers with few 0’s are flimsy. More
precisely, for each pair of integers j, k we can build a DFA M2(j, k) accepting those (n)2 for
which (n)2 has j 0’s and (kn)2 has more than j + t 0’s, where t = |(kn)2| − |(n)2|. Such an
n is guaranteed to be flimsy. We can determine t by reading the input n, least significant
digit first, and computing (kn)2 on the fly, keeping track of the carries.

Let j be a fixed natural number. By choosing an appropriate set of flimsy witnesses
k (which can be guessed empirically), we can determine all flimsy numbers having exactly
j 0’s in their binary representation. We do this by computing the DFA’s M2(j, k) and
unioning them together to get a final automaton M ′j . We expect there to be a finite set
of “sporadic” sturdy exceptions, and (according to Theorem 11) an infinite set of sturdy
exceptions consisting of those numbers with binary representation of the form s1is, where
s begins with 1 and ends with 0. This expectation can then be verified by considering
the language accepted by M ′j ; the finite set of sturdy exceptions can be tested using our
algorithms previously discussed. The multipliers we used in constructing M ′j are the odd
numbers ≤ 2j+1 + 1.

https://oeis.org/A143027

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:13

Table 4 Counts of swm(n) for odd n > 1.

swm(n) n < 220 220 < n < 221 221 < n < 222 222 < n < 223

2 115931 107650 208333 403823
3 286681 294938 596522 1205753
4 83895 83958 168138 336448
5 19287 19242 38566 77071
6 9903 9892 19812 39635
7 4246 4265 8510 17023
8 2274 2269 4548 9104
9 1027 1030 2058 4119
10 529 527 1059 2118
11 256 257 514 1024
12 130 131 260 521
13 64 64 128 256
14 32 33 64 129
15 16 16 32 64
16 8 8 16 32
17 4 4 8 16
18 2 2 4 8
19 1 1 2 4
20 1 0 1 2
21 0 1 0 1
22 0 0 1 0
23 0 0 0 1

We also computed counts of odd sturdy numbers up to 10i for i = 1, 2, 3, 4, 5, 6, and they
are given below:

Table 5 Counts of sturdy numbers.

i Number of odd sturdy numbers < 10i

1 5
2 22
3 81
4 292
5 995
6 3438

With these ideas we can prove the following theorem.

I Theorem 16.
(a) Every integer with no 0’s is sturdy.
(b) Every odd integer with one 0 is flimsy, with the exception of 5 = [101]2, and is proven

flimsy by multiplier 3 or 5.
(c) Every odd integer with two 0’s is flimsy, with the exception of 51 and numbers of the

form 101i01, i ≥ 0, which are all sturdy.
(d) Every odd integer with three 0’s is flimsy, with the exception of 17, 85, 89, 455 and numbers

of the form 1001i011 or 1101i001, i ≥ 0, which are all sturdy.

FUN 2021

10:14 Computational Fun with Sturdy and Flimsy Numbers

(e) Every odd integer with four 0’s is flimsy, with the exception of 33, 69, 73, 153, 3855, and
numbers of the form 10001i0111, 11001i0011, 10101i0101, 11101i0001, i ≥ 0, which are
all sturdy.

(f) Every odd integer with five 0’s is flimsy, with the exception of 65, 133, 161, 267, 275, 1365,
31775, and numbers specified by Theorem 11.

(g) Every odd integer with six 0’s is flimsy, with the exception of 129, 259, 261, 273, 385, 525,
549, 561, 585, 645, 657, 705, 771, 777, 801, 1729, 1801, 2275, 3185, 11565, 13107, 258111, and
numbers specified by Theorem 11.

(h) Every odd integer with seven 0’s is flimsy, with the exception of 257, 515, 517, 529, 1035,
1065, 1105, 1155, 1157, 1185, 1285, 1545, 1665, 2077, 2201, 2325, 2449, 2573, 2697, 2821, 2945,
19065, 19275, 21845, 26985, 95325, 2080895, and numbers specified by Theorem 11.

(i) Every odd integer with eight 0’s is flimsy, with the exception of 513, 1027, 1029, 1057, 1281,
2055, 2085, 2089, 2097, 2115, 2145, 2193, 2313, 2337, 2563, 2565, 2625, 3075, 3105, 3585, 4123,
4185, 4371, 4389, 4433, 4619, 4675, 4681, 4867, 4929, 5187, 6169, 6417, 6665, 6913, 8253, 8505,
8525, 8645, 8757, 9009, 9261, 9513, 9765, 10017, 10269, 10465, 10521, 10773, 11025, 11277,
11529, 11781, 12033, 12483, 13505, 14497, 18631, 25623, 34695, 39321, 42405, 50115, 57825,
158875, 222425, 774333, 16711935, and numbers specified by Theorem 11.

(j) Every odd integer with nine 0’s is flimsy, with the exception of 1025, 2051, 2057, 2065, 2177,
3073, 4131, 4165, 4233, 4361, 4369, 4417, 4641, 5129, 5185, 6273, 8215, 8277, 8339, 8401, 8711,
8773, 8835, 8897, 10261, 10385, 10757, 10881, 12307, 12369, 12803, 12865, 14353, 14849,
16443, 16569, 16835, 16947, 17073, 17451, 17577, 17745, 17955, 18081, 18459, 18585, 18963,
19089, 19467, 19593, 19971, 20097, 24605, 24633, 25025, 25137, 25641, 26145, 26649, 26691,
27153, 27657, 28161, 28679, 32893, 33401, 33909, 34417, 34925, 35433, 35941, 36449, 36957,
37465, 37973, 38481, 38989, 39497, 40005, 40513, 41021, 41529, 41769, 42037, 42545, 43053,
43561, 44069, 44577, 45085, 45593, 46101, 46609, 47117, 47625, 48133, 48641, 178481,
285975, 349525, 413075, 476625, 1290555, 1806777, 1864135, 6242685, 133956095, and num-
bers specified by Theorem 11.

Based on this theorem, we make the following conjecture.

I Conjecture 17. Every number with j 0’s is flimsy, with exceptions of the form s1is,
i ≥ 0, where |s| = j and s begins with 1 and ends with 0, and only finitely many additional
exceptions.

12 The k-flimsy numbers via formal language theory

In this section we describe a new approach, based on formal language theory, for understanding
the distribution of the k-flimsy numbers. Recall these are the numbers

Fk = {n ≥ 1 : s2(kn) < s2(n)}.

The majority of the results in this section are about the case k = 3, although in principle our
technique can be applied to any odd k.

Kátai [16] studied the difference s2(3n)−s2(n), and proved that this quantity is essentially
normally distributed, in a certain sense. Stolarsky [28] conjectured that the natural density
of the k-flimsy numbers is 1/2 for all odd k. His conjecture was later proved by W. M.
Schmidt [25] and J. Schmid [24]. All these results use rather sophisticated tools of number
theory and probability.

In contrast, in this section we obtain rather detailed results on the distribution of 3-flimsy
numbers through a (more or less) purely mechanical approach based on formal language
theory. The main result of this section is the following:

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:15

I Theorem 18. The number of 3-flimsy numbers in the interval [2N−1, 2N) is

2N
(

1
4 − cN

−1/2 +O(N−3/2)
)
, (1)

where c = 7
√

6
24
√
π

.= 0.4030765.

Our method starts with a pushdown automaton (PDA) recognizing the k-flimsy numbers,
and by a series of steps, it is converted into an asymptotic series expansion for the number
of k-flimsy numbers with N bits. Previously, the basic approach has been used for a wide
variety of combinatorial enumerations; see, for example, [4, 5, 2, 3]. We have implemented
all the steps, and the flow of control is explained in the diagram below.

k

k

such that L(G’) = (F)
grammar G’
clean unambiguous

(in Maple)
Groebner bases

of equations
CFG to system

k

R
2k(F)k

k

to order r

nexpansion for [x]S(x)
asymptotic series

integer r algebraic eqn

satisfied by S(x)

integer k

by Bruno Salvy
Maple gdev pkg

in S, x, and
other variables

system of eqns

R
2

L(G) =

PDA
constructor

unambiguous
grammar G

such that
L(M) = (F)

PDA Mk

unambiguous

R
2kk

such that

CFG cleaner
(remove useless symbols)converter

PDA to CFG

We now explain briefly what each box in the diagram does, with more detailed explanation
to follow. For all undefined terms, see any textbook on automata theory or formal languages,
such as [15].

First, given an odd integer k ≥ 3, we build an unambiguous pushdown automaton (PDA)
Mk that recognizes the base-2 representation of elements of Fk; more precisely, Mk recognizes
the language (Fk)R2 . The length-N strings in (Fk)R2 are in 1-1 correspondence with the flimsy
numbers in the half-open interval [2N−1, 2N), so our goal is to estimate the cardinality of
(Fk)R2 ∩ {0, 1}N as precisely as possible.

Second, we convert Mk to an unambiguous context-free grammar Gk generating (Fk)R2 .
We simplify this context-free grammar by deleting useless symbols (those symbols that

do not participate in the derivation of any terminal string, or are not reachable from the
start variable), obtaining a new CFG G′k.

Third, we convert G′k to a system of equations in the variables of G′k. These variables
represent formal power series, with the property that the number of length-N strings generated
by a variable A is given by [xN]A(x), the coefficient of xN in the power series A(x).

Fourth, using Gröbner bases, we solve this system of equations, obtaining an algebraic
equation satisfied by the formal power series S(x), where S is the start variable of the
grammar G′k.

Finally, using Bruno Salvy’s gdev package, written in Maple, we can determine the
asymptotic behavior of [xN]S(x) using the saddle-point method (as discussed by, e.g.,
Flajolet and Sedgewick [12]). In principle, we can obtain as many terms as we wish of the
asymptotic expansion.

Theorem 18 now follows by performing each of these steps. The first four steps are done
with original code written by the first author in Python, and the last two steps are done
with Maple. The code for each step is available at

https://git.uwaterloo.ca/Flimsy/CFLpy.
We now give more complete details of some of the steps.

FUN 2021

https://git.uwaterloo.ca/Flimsy/CFLpy

10:16 Computational Fun with Sturdy and Flimsy Numbers

12.1 Constructing the PDA Mk

The general idea is as follows: we create a PDA accepting the base-2 representation of k-flimsy
numbers n. We use the stack of the PDA to record the absolute value of s2(n)− s2(kn), and
we use the state to record both the carry needed when multiplying input by k, and the sign
of s2(n)− s2(kn). We accept the input if the carry is 0, the sign of s2(n)− s2(kn) is positive,
and the stack has at least one counter.

Our PDA is assumed to begin its computation with a special symbol, Z, on top of the
stack, and if the input is accepted, to end its computation when the stack becomes empty.

The sketch above is not quite enough because of two technical issues. First, (a) in some
cases this approach requires reading extra leading zeroes (which, because we are representing
numbers starting with the least significant digit first, would be at the end of the input), in
order to guarantee that the carry for s2(kn) was taken into account and (b) we must have
that the leading bit of the input is 1, to avoid incorrectly counting smaller numbers as having
n bits.

To handle both these issues, we slightly modify the construction in several ways. First,
if the state has a minus sign, then the stack holds |y|1 − |x|1 X’s, where x is the input seen
so far and y is the |x| least significant bits of k(x)R2 . On the other hand, if the state has a
positive sign, then the stack holds |x|1 − |y|1 − 1 X’s.

Second, to simulate the needed leading zeroes required to handle the carry, without
actually reading them, we use a special series of log2 k states to pop X’s from the stack.

Finally, we have a special state used to empty the stack when acceptance is detected. The
total number of states is therefore at most 2k + log2 k. The resulting PDA M3 is depicted in
Figure 1.

One important property of our construction is that our PDA Mk is unambiguous. By
this we mean that every accepted word has exactly one accepting computational path.

12.2 Converting the PDA to a CFG

We can convert Mk to an equivalent context-free grammar Gk using a standard technique
called the “triple construction” [15, pp. 115–119]. This gives us a grammar Gk with O(k2)
variables and O(k3) productions.

Now we use the fact, proved in [13, Thm. 5.4.3, p. 151], that performing the triple
construction on an unambiguous PDA gives us an unambiguous grammar.

12.3 Cleaning the CFG

We can remove useless symbols from our grammar Gk by removing all variables that do not
derive a terminal string, then removing all productions containing these removed variables,
and then removing all variables and terminals that are not reachable from the start variable.
This is a standard procedure, and is described in greater detail in [15, pp. 88–90].

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:17

Figure 1 PDA M3.

Once this is complete, it may be found that there is a variable X that has only one
production X → α. If X is not the start variable, then it can be deleted from the set of
variables, and all instances of X in production rules can be replaced with α.

For example, when we convert our PDA M3, we get an unambiguous grammar G3;
cleaning G3 using this procedure gives us the following grammar G′3:

S → 1F | 0S A→ 1E | 0A
B → 1G | 0B C → 1H | 1 | 0C
D → 1I | 0D E → 1 | 0AJ
F → 1N | 0AK G→ 1LB | 0
H → 1M | 1LC | 1 I → 1M | 1LD | 1 | 0S
J → 1J | 0E K → 1K | 0F
L→ 1L | 0G M → 1M | 1 | 0H
N → 1N | 0I

FUN 2021

10:18 Computational Fun with Sturdy and Flimsy Numbers

12.4 Converting the CFG to a system of equations
This transformation was discussed in [9]. It suffices to replace, in each set of productions
A→ α1 | α2 | · · · | αi of a grammar G, each terminal symbol by the indeterminate x, each |
symbol by a plus sign, and the → with an equals sign. For a proof of correctness, see [17, 19].

Performing this transformation on G′3 gives us the following system of equations:

S = xF + xS A = xE + xA

B = xG+ xB C = xH + x+ xC

D = xI + xD E = x+ xAJ

F = xN + xAK G = xLB + x

H = xM + xLC + x I = xM + xLD + x+ xS

J = xJ + xE K = xK + xF

L = xL+ xG M = xM + x+ xH

N = xN + xI

12.5 Solving the system
We can now solve the resulting system of equations for S, obtaining an algebraic equation for
which S is the root. The main tool is Groebner bases, for which a helpful package already
exists in Maple.

Using the Maple code below, we find the following quadratic equation for S in the case
k = 3.

x(2x−1)2(x+1)(2x2−x+1)S(x)2+(2x−1)(x−1)2(x+1)(2x2−x+1)S(x)+x4(x2−x+1) = 0.

To use this code, you will first need to download the algolib package from http:
//algo.inria.fr/libraries/.

eqs := [-S + x*V_F + x*S,
-V_A + x*V_E + x*V_A,
-V_B + x*V_G + x*V_B,
-V_C + x*V_H + x + x*V_C,
-V_D + x*V_I + x*V_D,
-V_E + x + x*V_A*V_J,
-V_F + x*V_N + x*V_A*V_K,
-V_G + x*V_L*V_B + x,
-V_H + x*V_M + x*V_L*V_C + x,
-V_I + x*V_M + x*V_L*V_D + x + x*S,
-V_J + x*V_J + x*V_E,
-V_K + x*V_K + x*V_F,
-V_L + x*V_L + x*V_G,
-V_M + x*V_M + x + x*V_H,
-V_N + x*V_N + x*V_I]:
Groebner[Basis](eqs, lexdeg([V_A, V_B, V_C, V_D, V_E, V_F, V_G, V_H,
V_I, V_J, V_K, V_L, V_M, V_N], [S]));
algeq := %[1]:
map(series, [solve(algeq, S)], x);
f := solve(algeq,S);

http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:19

ps := f[1]:
assume(x, positive):
series(ps, x, 40);
libname:="<insert current directory path>",libname:
combine(equivalent(ps,x,n,5));

Solving this quadratic for S gives

S(x) =
−(x− 1)2(x + 1)(2x2 − x + 1) +

√
−(x− 1)(2x− 1)(2x2 − x + 1)(x3 + x2 − x + 1)2

2x(2x− 1)(x + 1)(2x2 − x + 1) .

Since the grammar G′3 is unambiguous, the formal power series S(x) is the census generating
function for the set (F3)R2 . In particular, this means that [xN]S(x) = |F3 ∩ [2N−1, 2N)|, or in
other words, the coefficient of xN in S(x) is the number k-flimsy numbers in [2N−1, 2N).

12.6 Asymptotic expansion of the coefficients of the power series
Finally, we use Flajolet-Sedgewick-style asymptotic analysis [12, §VII. 7.1] to determine
an asymptotic formula for the N ’th coefficient of the power series expansion for S(x).
Conveniently, there is a Maple package algolib, written by Bruno Salvy [23], to accomplish
this. When we run this on our formula for S(x), we get our desired result.

This completes our discussion of the proof of Theorem 18.
I Remark 19. We could easily determine more terms in the asymptotic expansion, if we
wanted, using the same ideas. For example, we can find that the number of 3-flimsy numbers
in the interval [2N−1, 2N) is

2N
(

1
4 −

√
6√
π

(
7
24N

−1/2 + 13
72N

−3/2 − 17
64N

−5/2 + 3365
13824N

−7/2 + · · ·
))

.

I Corollary 20. The number of 3-flimsy numbers < 2N is 2N−1 −O(2NN−1/2).

Proof. For any real number a > 0 we have

2NN−a ≤
∑

1≤n≤N
2nn−a ≤

∑
1≤n≤N/2

2nn−a +
∑

N/2<n≤N

2nn−a

≤
∑

1≤n≤N/2

2n + (N/2)−a
∑

N/2<n≤N

2n

≤ 2N/2+1 + (N/2)−a2N+1.

Summing (1) and applying the inequalities above gives the desired result. J

I Theorem 21. The number of 5-flimsy numbers in the interval [2N−1, 2N) is

2N
(

1
4 − cN

−1/2 +O(N−3/2)
)
, (2)

where c = 3
√

5
8
√
π

.= 0.473087348.

Proof. This is determined using the same method as the proof for Theorem 18. The details
will appear in the full paper. J

We can also use the same ideas to compute the distribution of flimsy numbers in other
bases. As an example we proved

FUN 2021

10:20 Computational Fun with Sturdy and Flimsy Numbers

I Theorem 22. The number of integers in the range [3N−1, 3N) that are 2-flimsy in base 3
is

3N
(

1
3 +

√
3√
π

(
−1

3N
−1/2 + 1

48N
−3/2 − 13

1536N
−5/2 − 65

24576N
−7/2 +O(N−9/2)

))
.

Proof. As before. We omit the details. J

13 The k-equal numbers via formal language theory

Another quantity of interest is the number of n for which s2(n) = s2(kn). We call such n
k-equal. By generalizing the approach used in Section 12, we can compute how many integers
n ∈ [2N−1, 2N) are k-equal.

In particular, we modify PDA Mk by changing the transitions to the END states. Whereas
Mk transitions to END when reading a 1 if following that 1 with sufficiently many zeros
would reach the state (+, 0), instead we want such an input to reach the state (−, 0) with no
counters on the stack. With this approach we can prove

I Theorem 23. The number of 3-equal numbers in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O(N−3/2)

)
, (3)

where c =
√

6
4
√
π

.= 0.345494149.

I Theorem 24. The number of 5-equal numbers in the interval [2N−1, 2N) is

2N
(
cN−1/2 +O(N−3/2)

)
, (4)

where c =
√

5
4
√
π

.= 0.315391565.

The details will appear in the final paper.

14 Conclusions and open problems

We have shown that techniques from automata theory can be used to solve problems in
number theory. For other fun along these lines, see [7, 22].

It would be interesting to understand the distribution of values of msw(n) and mfw(n)
for n flimsy. We leave this as an open problem.

References
1 B. Alexeev. Minimal DFAs for testing divisibility. J. Comput. System Sci., 69:235–243, 2004.
2 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice

paths with forbidden patterns: enumerative aspects. In S. T. Klein et al., editors, LATA 2018,
volume 10792 of Lecture Notes in Computer Science, pages 195–206. Springer-Verlag, 2018.

3 A. Asinowski, A. Bacher, C. Banderier, and B. Gittenberger. Analytic combinatorics of lattice
paths with forbidden patterns, the vectorial kernel method, and generating functions for
pushdown automata. Algorithmica, 82:386–428, 2020.

4 C. Banderier and M. Drmota. Coefficients of algebraic functions: formulae and asymptotics.
In FPSAC 2013, volume AS of DMTCS Proc., pages 1065–1076. DMTCS, 2013.

5 C. Banderier and M. Drmota. Formulae and asymptotics for coefficients of algebraic functions.
Combin. Prob. Comput., 24:1–53, 2015.

T. Clokie, T. F. Lidbetter, A. J. Molina Lovett, J. Shallit, and L. Witzman 10:21

6 B. Bašić. The existence of n-flimsy numbers in a given base. Ramanujan J., 43:359–369, 2017.
7 J. Bell, K. Hare, and J. Shallit. When is an automatic set an additive basis? Proc. Amer.

Math. Soc. Ser. B, 5:50–63, 2018.
8 L. H. Y. Chen, H.-K. Hwang, and V. Zacharovas. Distribution of the sum-of-digits function of

random integers: a survey. Prob. Surveys, 11:177–236, 2014.
9 N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In

P. Braffort and D. Hirschberg, editors, Computer Programming and Formal Systems, pages
118–161. North Holland, Amsterdam, 1963.

10 C. Dartyge, F. Luca, and P. Stănică. On digit sums of multiples of an integer. J. Number
Theory, 129:2820–2830, 2009.

11 C. Elsholtz. Almost all primes have a multiple of small Hamming weight. Bull. Austral. Math.
Soc., 94:224–235, 2016.

12 P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
13 M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
14 H. Hasse. Über die Dichte der Primzahlen p, für die einevorgegebene ganz rationale Zahl a 6= 0

von gerader bzw. ungerader Ordnung mod p ist. Math. Annalen, 166:19–23, 1966.
15 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.
16 I. Kátai. Change of the sum of digits by multiplication. Acta Sci. Math. (Szeged), 39:319–328,

1977.
17 W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-Verlag, 1986.
18 R. W. K. Odoni. A conjecture of Krishnamurthy on decimal periods and some allied problems.

J. Number Theory, 13:303–319, 1981.
19 A. Panholzer. Gröbner bases and the defining polynomial of a context-free grammar generating

function. J. Automata, Languages, and Combinatorics, 10:79–97, 2005.
20 Pavel V. Phedotov. Sum of digits of a multiple of a given number (in Russian), 2002. Available

at http://digitsum.narod.ru/Index.htm.
21 V. Pless, P. Solé, and Z. Qian. Cyclic self-dual Z4-codes. Finite Fields Appl., 3:48–69, 1997.
22 A. Rajasekaran, J. Shallit, and T. Smith. Additive number theory via automata theory. Theor.

Comput. Sys., 64:542–567, 2020.
23 B. Salvy. gdev package of algolib version 17.0. Available at http://algo.inria.fr/

libraries/, 2013.
24 J. Schmid. The joint distribution of the binary digits of integer multiples. Acta Arith.,

43:391–415, 1984.
25 W. M. Schmidt. The joint distributions of the digits of certain integer s-tuples. In P. Erdős,

editor, Studies in Pure Mathematics to the Memory of Paul Turán, pages 605–622. Birkhäuser,
1983.

26 D. Shanks. Class number, a theory of factorization and genera. In Proc. Sympos. Pure Math.,
volume 20, pages 415–440, 1969.

27 N. J. A. Sloane et al. The on-line encyclopedia of integer sequences. Available at https:
//oeis.org, 2019.

28 K. B. Stolarsky. Integers whose multiples have anomalous digital frequencies. Acta Arith.,
38:117–128, 1980/81.

29 S. S. Wagstaff et al. The Cunningham project. Available at https://homes.cerias.purdue.
edu/~ssw/cun/index.html, 2019.

FUN 2021

http://digitsum.narod.ru/Index.htm
http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/
https://oeis.org
https://oeis.org
https://homes.cerias.purdue.edu/~ssw/cun/index.html
https://homes.cerias.purdue.edu/~ssw/cun/index.html

	Introduction
	Basic properties
	Infinite classes of sturdy numbers
	Algorithms when swm(n) is small
	The case swm(n) = 2
	The case swm(n) = 3

	A dynamic programming algorithm
	An algorithm based on finite automata
	Improving the automaton-based algorithm
	Another breadth-first search approach
	Running time comparison
	Computational results
	Numbers with few 0's
	The k-flimsy numbers via formal language theory
	Constructing the PDA M_k
	Converting the PDA to a CFG
	Cleaning the CFG
	Converting the CFG to a system of equations
	Solving the system
	Asymptotic expansion of the coefficients of the power series

	The k-equal numbers via formal language theory
	Conclusions and open problems

