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Abstract

Oblivious transfer is a cryptographic primitive where Alice has two bits and Bob wishes to learn
some function of them. Ideally, Alice should not learn Bob’s desired function choice and Bob should
not learn any more than logically implied by the function value. While decent quantum protocols
for this task are known, many quickly become insecure if an adversary were to control the quantum
devices used in the implementation of the protocol. Here we present how some existing protocols
fail in this device-independent framework, and give a fully-device independent quantum protocol for
XOR oblivious transfer which is provably more secure than any classical protocol.
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12:2 A Device-Independent Protocol for XOR Oblivious Transfer

1 Introduction

Oblivious transfer is an important cryptographic primitive in two-party computation as it
can be used as a universal building block for constructing more elaborate protocols [10].
Indeed, some quantum protocols for this task are known [22, 18, 6, 5]. It can be shown that
there do not exist classical protocols with any level of information-theoretic security, and
there do not exist quantum protocols with perfect security [6, 11].

In this paper, we consider a variant of oblivious transfer called XOR oblivious transfer
(XOT). This is the two-party cryptographic primitive in which two spatially separated parties,
Alice and Bob, wish to do the following task: Alice outputs two bits (x0, x1), which are
uniformly random in {0, 1}2, and Bob outputs b which is uniformly random in {0, 1, 2}, as
well as xb where we define x2 = x0 ⊕ x1. In other words, Alice and Bob communicate and
Bob learns one bit of information from Alice’s two bits (either the first bit, second bit, or
their XOR). When designing XOT protocols, the security goals are:
1. Completeness: If both parties are honest, then their outcomes are consistent (i.e., xb is

the correct value), uniformly random, and neither party aborts.
2. Soundness against cheating Bob: If Alice is honest, then a dishonest (i.e., cheating) Bob

cannot learn both x0 and x1 by digressing from protocol.
3. Soundness against cheating Alice: If Bob is honest, then a dishonest (i.e., cheating) Alice

cannot learn b by digressing from protocol.

I Remark 1. One could imagine a situation where Alice already has a fixed choice of
(x0, x1) that she wishes to input into a XOT protocol (perhaps from the result of an earlier
computation). However, we can use the outcomes of an XOT protocol as described above as
a one-time pad to convey the information to Bob. For more details, see [6].

XOR Oblivious Transfer

(x0, x1, x2 = x0 ⊕ x1) (b, xb)

Figure 1 Desired outputs for XOR oblivious transfer.

In this paper we are concerned with information-theoretic security, meaning that Alice
and Bob are only bounded by the laws of quantum mechanics. In other words, Alice and Bob
can perform arbitrarily complicated computations, have arbitrarily large quantum memories,
and so on. We shall have occasion to change how much control Alice and Bob have over the
protocol, but precisely what actions are allowed to be performed by dishonest parties should
be clear from context, and will be described shortly.
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We focus on studying XOT protocols from the perspective of assuming perfect complete-
ness and trying to make them as sound as possible.1 To this end, we choose to quantify the
soundness via cheating probabilities, which we define as follows:

PXOT
B : The maximum probability with which a dishonest Bob can learn both of honest

Alice’s outcome (x0, x1) and the protocol does not abort.
PXOT

A : The maximum probability with which a dishonest Alice can learn honest Bob’s
choice outcome b and the protocol does not abort.

Any XOT protocol with perfect completeness necessarily has PXOT
A ≥ 1

3 and PXOT
B ≥ 1

2 ,
since a dishonest Alice could always guess one of three choices for Bob’s outcome b uniformly
at random; similarly, dishonest Bob can follow the honest protocol to gain perfect knowledge
of x0, x1, or x0 ⊕ x1, and then randomly guess the unknown bit in Alice’s outcome (x0, x1).

As mentioned earlier, XOT is a variation on the more well-known cryptographic primitive,
oblivious transfer (OT). In an oblivious transfer protocol, Alice and Bob wish to do the
following task: Alice outputs two bits (x0, x1), which are uniformly random in {0, 1}2, and
Bob outputs (b, xb) where b is uniformly random in {0, 1}. The completeness and soundness
against cheating Alice and Bob for OT are the same as in XOT, the only difference being
that here Alice is trying to learn which one of two possible values of b Bob has. Any OT
protocol with perfect completeness has POT

A ≥ 1/2, POT
B ≥ 1

2 .

I Remark 2. In this work, we chose to quantify soundness via cheating probabilities, but we
note that such a measure of security is not necessarily composable [23, 21]. Unfortunately, it
can be very challenging to prove that a protocol is composably secure, and in some settings
such protocols are in fact impossible [21]. As a first analysis of the protocol proposed in this
work, we will restrict ourselves to studying the cheating probabilities only.

Since the lowest possible bounds on PXOT
A and PXOT

B for perfectly complete XOT protocols
are asymmetric, we shall consider them in pairs and will not concern ourselves with finding
an “optimal protocol”. That is, we consider the security of XOT protocols a partial ordering.
Instead, we motivate our work by asking the following question:

“Is is possible to create quantum protocols where both PXOT
A ,PXOT

B < 1 when Alice and Bob
do not even trust their own quantum devices?”

Taken literally, this statement cannot be true, since arbitrarily malicious devices could
simply broadcast all desired information to a dishonest party. However, it turns out that
there exist quantum protocols that can be proven secure using almost no assumptions other
than ruling out this extreme scenario (which seems a rather necessary assumption in any
case). This is the notion of device-independent security, which typically exploits nonlocal
games played using entangled states. In a fully device-independent model, one only assumes
that the parties’ devices do not directly broadcast certain information to the dishonest party
and/or each other (we shall explain this in more detail in Section 1.4). In particular, one does
not assume that the states and/or measurements implemented by the devices are known, and
even the dimensions of the quantum systems are not specified. Device-independent security
analyses exist for other cryptographic tasks such as quantum key distribution [17, 3], bit
commitment [20, 2], and coin-flipping [1].

1 To contrast, the task of finding protocols with perfect soundness and the best possible completeness
was considered in [19].
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12:4 A Device-Independent Protocol for XOR Oblivious Transfer

While we have described the fully device-independent framework above, one can instead
choose to trust some subset of the properties described, leading to various levels of semi-
device-independent security. For instance, Alice and Bob could trust state preparation
devices, measurement devices, quantum operations, or any combination of the above.

In this work, we examine the security of XOT quantum protocols in semi-device-
independent and device-independent scenarios. By a slight abuse of notation, we use
the same notation PXOT

A and PXOT
B to denote the cheating probabilities of Alice and Bob

in all the different scenarios, corresponding to differently defined cheating capabilities of
the dishonest party. For example, if we were to allow a dishonest Alice to control Bob’s
measurements, it may lead to a different value of PXOT

A . The cheating capabilities of cheating
parties should be clear when we discuss PXOT

A and PXOT
B .

1.1 Trivial protocols
For readers new to oblivious transfer, we present two bad classical protocols and one bad
quantum protocol.

I Protocol 1 (Bad XOT Protocol 1).
1. Alice chooses (x0, x1) uniformly at random and sends (x0, x1) to Bob.
2. Bob chooses b uniformly at random.
3. Alice outputs (x0, x1) and Bob outputs (b, xb).

A moment’s thought shows that Bob has full information (he clearly learns (x0, x1)) while
Alice has no information. Therefore, we have

PXOT
A = 1/3 and PXOT

B = 1 (1)

which is as insecure concerning cheating Bob as possible.

I Protocol 2 (Bad XOT Protocol 2).
1. Bob chooses b uniformly at random and tells Alice his choice.
2. Alice chooses and outputs (x0, x1) uniformly at random and sends xb to Bob.
3. Alice outputs (x0, x1) and Bob outputs (b, xb).

Here Alice has full information while Bob has none. Therefore, here we have

PXOT
A = 1 and PXOT

B = 1/2. (2)

I Remark 3. Surprisingly, these protocols can be useful for protocol design. For instance,
suppose Alice wishes to test Bob to see if he has been cheating, and aborts if and only if the
test fails. Then if the test passes, the parties need a way to finish executing the protocol,
which they could do using Protocol 1 (which is independent of previous steps in the tested
protocol).

1.2 A quantum protocol for XOR oblivious transfer with no
device-independent security

It is tricky creating a protocol in which Alice and Bob both cannot cheat with high probability.
To this end, we often enlist the aid of quantum mechanics. Here we present the oblivious
transfer protocol from [6] adapted to the XOT setting.
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For b ∈ {0, 1, 2}, let |ψ±b 〉 ∈ XY denote the following two-qutrit state:

|ψ±b 〉 =


1√
2 (|00〉XY ± |22〉XY) if b = 0,

1√
2 (|11〉XY ± |22〉XY) if b = 1,

1√
2 (|00〉XY ± |11〉XY) if b = 2.

(3)

Note that for every b ∈ {0, 1, 2}, we have that |ψ+
b 〉 and |ψ

−
b 〉 are orthogonal. We are now

ready to state the protocol.

I Protocol 3.
1. Bob chooses b ∈ {0, 1, 2} uniformly at random, prepares the state |ψ+

b 〉 in registers XY,
and sends the register X to Alice.

2. Alice chooses (x0, x1) uniformly at random, performs the unitary

U(x0,x1) = (−1)x0 |0〉〈0|+ (−1)x1 |1〉〈1|+ |2〉〈2| (4)

on X , and then sends it back to Bob.
3. Bob performs the 2-outcome measurement {|ψ+

b 〉〈ψ
+
b |,1 − |ψ

+
b 〉〈ψ

+
b |} and records his

outcome as c = 0 if he gets |ψ+
b 〉〈ψ

+
b | and c = 1 otherwise.

4. Alice outputs (x0, x1), Bob outputs (b, c).

Protocol 3 can be checked to be complete (i.e., Bob gets the correct outcome). The
cheating probabilities in this protocol in the cases of trusted and untrusted devices are given
by Theorem 4 below. We give a proof for the trusted case Section 3, and the relatively simple
proof for the untrusted case is given here.

I Theorem 4. In Protocol 3, the cheating probabilities are as listed in the following table.
(In the untrusted setting, Alice controls Bob’s state preparation and Bob controls Alice’s
unitary.)

PXOT
A PXOT

B

Trusted devices 1/2 3/4

Untrusted devices 1 1

We show here that this protocol breaks down when they do not trust their own devices.
For example, assume Bob has full control over Alice’s unitary. It could be a unitary which
implements a superdense coding protocol:

U cheat
(x0,x1) =


1X if (x0, x1) = (0, 0),
σX if (x0, x1) = (0, 1),
σY if (x0, x1) = (1, 0),
σZ if (x0, x1) = (1, 1).

(5)

Note that this unitary acts on a qubit (which we can assume Bob sends if he wishes), or just
define it such that it acts trivially on the |2〉 subspace. Now, if Bob creates |ψ+

2 〉, he is left
with a state from the Bell basis. In other words, he can perfectly learn (x0, x1).

In the case of cheating Alice, she can simply control Bob’s state preparation device to
prepare the state |b〉 on input b, and have Bob send that. From this state, Alice simply
measures it to learn b. Thus, we have

PXOT
A = 1 and PXOT

B = 1 [Devices are NOT trusted]. (6)

TQC 2020
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Thus, we need a clever way to design protocols where Alice and Bob cannot cheat in
the above way. This motivates the need for device-independent XOT protocols and some
protocol design ideas that should be avoided.

1.3 XOR oblivious transfer from the magic square game – A case of
untrusted sources

Similar to device-independent protocols which exist for other cryptographic tasks, we design
our protocols using nonlocal games. In this work, we shall make use of the nonlocal game
known as the Mermin-Peres magic square game. In the magic square game,

Alice and Bob receive respective inputs a ∈ {0, 1, 2} and b ∈ {0, 1, 2} independently and
uniformly at random.
Alice outputs (x0, x1, x2) ∈ {0, 1}3 such that x0⊕x1⊕x2 = 0 and Bob outputs (y0, y1, y2) ∈
{0, 1}3 such that y0 ⊕ y1 ⊕ y2 = 1.
Alice and Bob win the game if xb = ya.

If Alice and Bob are allowed only classical strategies (using e.g. shared randomness), the
magic square game cannot be won with probability greater than 8/9. However, there exists
a quantum strategy where Alice and Bob share prior entanglement, with which the magic
square game can be won with probability 1. We shall refer to this strategy as the magic
square strategy which is detailed in Section 2.1.

Now, suppose Alice and Bob play the magic square game according to the above description.
Notice that x2 will always be equal to x0 ⊕ x1, similar to the definition of XOT, and that
(x0, x1) is uniformly distributed (see Section 2.1). Also, for each of Bob’s input choices, he
learns either x0, x1, or x2 = x0 ⊕ x1 depending on the choice of input a for Alice. Since a is
chosen uniformly at random, this is almost a proper XOT protocol (putting aside soundness
for now). The only missing ingredient is that Bob knows he has xb, but does not know which
of the bits of (y0, y1, y2) it is. To fix this small issue, we simply have Alice tell Bob which bit
it is.

We formalize this protocol below and add in a test step that helps to prevent cheating.
Strictly speaking, Protocol 4 should be thought of as a protocol framework, as we have not
specified who creates the entangled state that Alice and Bob share – either party can. We
consider different security analyses of Protocol 4, corresponding to each of these different
cases. In the trusted state analysis, the honest party (whomever that may be) creates the
state, and in the untrusted state analysis it is the cheating party who does so.

I Protocol 4 (XOR oblivious transfer from the magic square game).
1. Alice and Bob share the bipartite state used in the magic square strategy.
2. Bob chooses b ∈ {0, 1, 2} uniformly at random, performs the measurements corresponding

to b in the magic square strategy to his state to get the outcome (y0, y1, y2), and sends
(y0, y1, y2) to Alice.

3. Alice chooses a ∈ {0, 1, 2} uniformly at random and sends a to Bob.
4. Alice performs the measurement corresponding to a in her magic square strategy on her

state to get outcome (x0, x1, x2).
5. Test: If (x0, x1) = (0, 0) and Bob has sent (y0, y1) such that ya = 1, then Alice aborts.
6. Alice outputs (x0, x1) and Bob outputs (b, ya).

Intuitively, the test step in Protocol 4 serves as a weak test that the magic square winning
condition is fulfilled (though the test only occurs with somewhat small probability). This
provides a way to partially certify that Bob has measured his share of the state before
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shared state

y

a
Test(x, y, a)

Accept

Output x

Reject

Abort Output (b, ya = xb)

Figure 2 Schematic depiction of the messages sent in Protocol 4.

learning Alice’s input. (Note that if Bob has not measured his state yet, then even when the
states are trusted, he has the potential to perfectly learn Alice’s output after learning her
input, by simply performing the same measurement as Alice on his state. However, forcing
him to perform the magic square measurement “deletes” some of this information; a notion
referred to as certified deletion in [8].)

It can be checked that Protocol 4 accomplishes what XOT wants and that it never aborts
in the honest case; in other words, the protocol is complete. To prove its soundness, we
bound the cheating probabilities using appropriate SDPs, as described in the full version.
Our numerical results are shown as Theorem 5 below.

I Theorem 5. We assume Alice and Bob play the “canonical” strategy for the magic square
game (see Section 2.1). Then the cheating probabilities for Alice and Bob in Protocol 4 are
bounded by the values in the table below, rounded to 5 decimal places. The bounds for cheating
Alice are tight.

Upper bounds P XOT
A P XOT

B

Trusted state 0.83333 0.93628

Untrusted state 0.87268 0.94096

Untrusted measurement 1 1

As the last row of the table in Theorem 5 indicates, Protocol 4 is not fully device-
independent. To see this, note that if Bob were to control Alice’s measurements, he can force
(x0, x1) = (0, 1) to always occur (regardless of the state, by performing a trivial measurement),
and then he will never be tested. Moreover, he will learn (x0, x1) perfectly. Conversely, if
Alice controls Bob’s measurement, she can force the output to be such that y0 + y1 = b (note
the sum is not modulo 2). Then, Bob’s message will reveal b to Alice.

1.4 A device-independent protocol
We now aim to find an XOT protocol based on the magic square game that is fully device-
independent. We shall first clarify the premises and assumptions in such a setting. Specifically,
we shall suppose that Alice and Bob each possess one of a pair of black boxes, each of which
will accept a classical input in {0, 1, 2} and return a classical output in {0, 1}3. We shall

TQC 2020



12:8 A Device-Independent Protocol for XOR Oblivious Transfer

only require a single use of these boxes. In the honest scenario, the boxes will simply be
implementing the ideal magic square states and measurements. If either party is dishonest,
however, we shall suppose only that the boxes’ behaviour can be modelled as follows: the
boxes share some entangled state between them, and when one of the boxes receives an
input, it returns the output of some measurement (conditioned on the input) performed on
its share of the quantum state, without broadcasting either its input or output to any party
other than the one holding the box2. While the honest party can only interact with the
box as specified, the dishonest party is able to “open” any box they possess and perform
arbitrary quantum operations or measurements on the share of the state held by that box.
However, the dishonest party cannot interact with or change the behaviour of a box while it
is in the honest party’s possession.

This describes the general device-independent setting. For the purposes of this work,
we shall impose a small additional assumption on the states and measurements the boxes
implement, namely that they are described by a tensor product of Hilbert spaces, one for
each box. More general scenarios could be considered (for instance, one could require only
that the two boxes’ measurements commute), but these are outside the scope of this work.

It would seem difficult to design a secure protocol under such weak assumptions. However,
we can exploit the fact that many nonlocal games (including the magic square game) exhibit
the important property of self-testing or rigidity: if the boxes win the game with probability
equal to the maximum quantum value, then they must be implementing the ideal state
and measurements (up to trivial isometries). A robust version of this statement is formally
expressed as Lemma 9 in the next section.

This suggests the following idea to make Protocol 4 fully device-independent: we introduce
an initial step where with some probability, either party may ask the other to send over
their box, so they can perform a single-shot test of whether the boxes win the magic square
game. To prevent a dishonest party from always calling for a test, we shall enforce that a
party calling for a test must then cede all control if the test is passed, performing a XOT
protocol that is perfectly secure against them. If a test is not called, the parties simply
perform Protocol 4. We describe this idea more formally as Protocol 5 below.

Qualitatively, Protocol 5 imposes a “tradeoff” for the cheating party between passing
the test (if it is called) and the extent to which they deviate from the ideal implementation
of Protocol 4. More specifically, if (say) Bob is dishonest, he could cheat perfectly if Alice
decides to test, by having both boxes implement the honest behaviour, and he could also
cheat perfectly if Alice decides not to test, but to do so he needs to modify Alice’s box’s
behaviour at least (since our device-dependent arguments show that perfect cheating is
impossible when Alice’s box is honest). Since Alice’s box must behaves differently in the two
scenarios and Bob cannot change how that box behaves once the protocol starts, Alice can
constrain his cheating probability by randomly choosing between testing and not testing. A
similar argument applies to cheating Alice.

Note that for this reasoning to be valid, it is important that the honest party’s box cannot
be allowed to detect whether it is being subjected to a magic square test or whether it is
being used for Protocol 4 (we are implicitly assuming that the honest party’s box behaves
the same way in both situations). An assumption of this nature is typically required in
device-independent protocols that involve performing a test with some probability, e.g. [1, 3].

2 To take a slightly different perspective (used in e.g. [3]), we could suppose that the honest party is able
to “shield” their lab in a way such that signals cannot be broadcast out of it once they have supplied
the input to their box.
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In particular, as observed in [1], we note that if the behaviour of the boxes could be time-
dependent, then the honest party must ensure they provide the input to their box at a fixed
pre-determined time, regardless of whether the box is being tested or used for Protocol 4.

I Protocol 5 (XOR oblivious transfer from the magic square game with an extra test step).
1. Alice flips a coin whose outcome is 0 with probability 1− qA, to obtain cA ∈ {0, 1}, which

she sends to Bob.
2. a. If cA = 0, Bob flips a coin whose outcome is 0 with probability 1 − qB, to obtain

cB ∈ {0, 1}, which he sends to Alice.
b. If cA = 1, Bob sends his box to Alice.

3. a. If cA = 0, cB = 0, Alice and Bob perform Protocol 4 henceforth.
b. If cA = 0, cB = 1, Alice sends her box to Bob.
c. If cA = 1, Alice receives Bob’s box, picks aA, bA ∈ {0, 1, 2} uniformly at random to

input into her and Bob’s boxes, and checks if the outputs xA, yA satisfy xA
bA = yA

aA . If
not, she aborts.

4. If cA = 0, cB = 1, Bob receives Alice’s box, picks aB , bB ∈ {0, 1, 2} uniformly at random
to input into his and Alice’s boxes, and checks if the outputs xB , yB satisfy xB

bB = yB
aB . If

not, he aborts.
5. a. If cA = 1 and Alice has not aborted, Alice and Bob perform Protocol 1 henceforth.

b. If cA = 0, cB = 1 and Bob has not aborted, Alice and Bob perform Protocol 2 henceforth.

Alice flips
a coin

cA = 0 cA = 1

Bob flips
a coin

cB = 0 cB = 1

Protocol 4

Alice sends
her box

Bob self-
tests MS

Accept

Protocol 2

Reject

Abort

Bob sends
his box

Alice self-
tests MS

Accept

Protocol 1

Reject

Abort

Figure 3 Flowchart for Protocol 5.

We have required that when either party calls for a test, the tested party must send over
their box so that the testing party supplies an input to both boxes themselves, rather than
having the tested party self-report an input-output pair for their box. This is to ensure that
the inputs to the boxes are indeed uniformly chosen. Also, while it would be convenient if
Protocol 4 did not involve Alice sending her input to Bob (thereby more closely resembling
a standard nonlocal game), it would seem this step is necessary to allow an honest Bob to
know which bit of his output he should use, as previously mentioned regarding Protocol 4.

TQC 2020



12:10 A Device-Independent Protocol for XOR Oblivious Transfer

We give two soundness arguments for Protocol 5. The first consists of explicit numerical
bounds on the cheating probabilities, based on the family of SDPs known as the Navascués-
Pironio-Acín (NPA) hierarchy [16]. We state the results as Theorem 6 below, and give the
proof in the full version. The second is an analytic proof that the cheating probabilities
are bounded away from 1, based on the robust self-testing bounds for the magic square
game [24, 7]. We state this result formally as Theorem 8 below, and give the proof in the
full version.

I Theorem 6. Upper bounds on Alice and Bob’s cheating probabilities for Protocol 5 (the
fully device-independent scenario) with qA = 0.6, qB = 0.6 are given below, rounded to 5
decimal places.

Upper bounds PXOT
A PXOT

B

Fully Device-Independent 0.96440 0.99204

I Remark 7. The choices for qA and qB in Theorem 6 were made by computing the bounds
for different choices of qA and qB in intervals of 0.1, then simply taking the value that yields
the best bounds on the cheating probabilities. We note that the result obtained for PXOT

B is
rather close to 1; however, the significant figures shown here are within the tolerance levels
of the solver.

I Theorem 8. For any qA, qB > 0 in Protocol 5, there exists some δ > 0 such that
PXOT

A , PXOT
B ≤ 1− δ.

2 Background

In this section, we give the necessary background to prove the results mentioned in the
introduction.

2.1 The magic square game
The optimal quantum strategy for magic square can be described as follows. Alice and Bob
share the state

|ΨMS〉 = 1√
2

(|00〉X0Y0 + |11〉X0Y0) 1√
2

(|00〉X1Y1 + |11〉X1Y1) (7)

with Alice holding the registers X0X1, and Bob holding the registers Y0Y1. The measurements
of Alice and Bob are given by the following table.

On input a, Alice simultaneously performs the three 2-outcome measurements {(Π0
ab,Π1

ab)}b

in the row indexed by a in Table 1 (it can be checked that the three measurements in every
row are compatible, so they can be performed simultaneously) on her registers X0X1. Her
output (x0, x1, x2) is the outputs of the three measurements (in order). Similarly, on input
b, Bob simultaneously performs the three 2-outcome measurements {(Π0

ab,Π1
ab)}a in the

column indexed by b (the three measurements in every column are also compatible, so they
can be performed simultaneously) on his registers Y0Y1, and gives the outcomes of the three
measurements as his output (y0, y1, y2).

Clearly, the measurement Alice performs to output xb is the same as the measurement
Bob performs to output ya. Since these measurements are performed on maximally entangled
states, one can show Alice and Bob always get the same outcome for xb and ya. Also, it can
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Table 1 Possible measurements for either party in the quantum strategy for magic square.

a

b 0 1 2

0
Π0

00 = |0〉〈0| ⊗ 1 Π0
01 = 1⊗ |0〉〈0| Π0

02 = |0〉〈0| ⊗ |0〉〈0|
+ |1〉〈1| ⊗ |1〉〈1|

Π1
00 = |1〉〈1| ⊗ 1 Π1

01 = 1⊗ |1〉〈1| Π1
02 = |0〉〈0| ⊗ |1〉〈1|

+ |1〉〈1| ⊗ |0〉〈0|

1
Π0

10 = 1⊗ |+〉〈+| Π0
11 = |+〉〈+| ⊗ 1 Π0

12 = |+〉〈+| ⊗ |+〉〈+|
+ |−〉〈−| ⊗ |−〉〈−|

Π1
10 = 1⊗ |−〉〈−| Π1

11 = |−〉〈−| ⊗ 1 Π1
12 = |+〉〈+| ⊗ |−〉〈−|

+ |−〉〈−| ⊗ |+〉〈+|

2
Π0

20 = |1〉〈1| ⊗ |+〉〈+|
+ |0〉〈0| ⊗ |−〉〈−|

Π0
21 = |+〉〈+| ⊗ |1〉〈1|

+ |−〉〈−| ⊗ |0〉〈0|
Π0

22 = |+ i〉〈+i| ⊗ |+ i〉〈+i|
+ | − i〉〈−i| ⊗ | − i〉〈−i|

Π1
20 = |0〉〈0| ⊗ |+〉〈+|

+ |1〉〈1| ⊗ |−〉〈−|
Π1

21 = |+〉〈+| ⊗ |0〉〈0|
+ |−〉〈−| ⊗ |1〉〈1|

Π1
22 = |+ i〉〈+i| ⊗ | − i〉〈−i|

+ | − i〉〈−i| ⊗ |+ i〉〈+i|

be verified that these measurements always produce outcomes satisfying the parity conditions
x0 ⊕ x1 ⊕ x2 = 0 and y0 ⊕ y1 ⊕ y2 = 1 (this holds regardless of the state). Some tedious
calculation shows that in fact the output distribution is uniform over all combinations that
win the magic square game, i.e. Pr(xy|ab) = 1/8 if xb = ya (and x, y satisfy the parity
conditions), and Pr(xy|ab) = 0 otherwise.

The above description views Alice and Bob as performing 8-outcome measurements (via a
sequence of three 2-outcome measurements). However, since for any state the measurements
always produce outputs satisfying the parity conditions, we can equivalently suppose Alice
and Bob measure to determine only (x0, x1) and (y0, y1), with the last bit for each determined
by the parity conditions. (This is consistent with the way we defined the magic square
game earlier.) These are 4-outcome measurements that can be expressed in terms of the Π
operators from Table 1 as

MMS
x0x1|a = Πx0

a0Πx1
a1 NMS

y0y1|b = Πy0
0bΠy1

1b . (8)

It can be checked that eachMMS
x0x1|a and NMS

y0y1|b is a rank-1 projector. Since the measurements
for x0 and x1 (resp. y0 and y1) commute for every a (resp. b), the product of the Π operators
in each case can be taken in either order.

Certain nonlocal games exhibit the property that the quantum strategies achieving their
optimal values are essentially unique. That is, if a quantum strategy achieves within ε of
the optimal value of the game, that strategy must be δ(ε)-close to the ideal strategy for the
game, up to certain local operations. This property of rigidity or self-testing was shown first
for the CHSH game [13, 14] and has been shown for other nonlocal games since.

[24] originally gave a proof of the rigidity of a version of the magic square game which is
slightly different from ours. [7] showed that the rigidity statement also holds for the version
of the magic square game we use. However, both of these results show the self-testing of
some operators that are related to Alice and Bob’s measurement operators in the magic
square game, but not the measurement operators themselves. It is not immediately clear
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how to self-test the measurement operators themselves from their results. In the full version
we derive the following lemma for self-testing of the measurement operators of the magic
square strategy.

I Lemma 9. Consider any state |ρ〉 on registers XY and projective measurements Mx|a, Ny|b
such that Mx|a act only on X and Ny|b act only on Y. If this state and measurements win the
magic square game with probability 1− ε, then there exist local isometries VA : X → X0X1JA

and VB : Y → Y0Y1JB and a state |junk〉 on JAJB such that for all a, b, x, y,∥∥(VA ⊗ VB)|ρ〉 − |ΨMS〉 ⊗ |junk〉
∥∥

2 ≤ O(ε1/4),∥∥∥(VA ⊗ VB)(Mx|a ⊗ 1)|ρ〉 − ((MMS
x|a ⊗ 1)|ΨMS〉)⊗ |junk〉

∥∥∥
2
≤ O(ε1/4),∥∥∥(VA ⊗ VB)(1⊗Ny|b)|ρ〉 − ((1⊗NMS

y|b )|ΨMS〉)⊗ |junk〉
∥∥∥

2
≤ O(ε1/4),

where |ΨMS〉, MMS
x|a , NMS

y|b denote the ideal state and measurements in the magic square game.

2.2 Semidefinite programming
A semidefinite program is an optimization problem of the form

p∗ = sup{〈C,X〉 : Φ(X) = B, X � 0} (9)

where Φ is a linear transformation, C and B are Hermitian. When we write X � Y , it means
that X − Y is (Hermitian) positive semidefinite, noting the special case that X � 0 simply
means X is positive semidefinite. We use X � Y to mean that X − Y is positive definite.

We can define the dual of the above SDP as the optimization problem below

d∗ = inf{〈B, Y 〉 : Φ∗(Y ) = C + S, S � 0, Y is Hermitian} (10)

where use the notation Φ∗ to mean the adjoint of the linear operator Φ.
When we deal with an SDP and its dual, we refer to the original SDP as the primal SDP.

The primal is called feasible if the constraints are satisfiable, that is, if

Φ(X) = B and X � 0 (11)

has a solution. Similarly, if

Φ∗(Y ) = C + S, S � 0, and Y is Hermitian (12)

has a solution, then the dual is said to be feasible.
We can use primal and dual solutions to show weak duality, i.e. if X is primal feasible

and (Y, S) is dual feasible, then

〈C,X〉 ≤ 〈B, Y 〉. (13)

In particular, p∗ ≤ d∗. Under mild conditions, we can guarantee equality in Eq. (13). For
example, if there exists X � 0 which is primal feasible and (Y, S) which is dual feasible, then
one can show that p∗ = d∗. Alternatively, if there exists (Y, S) with S � 0 which is dual
feasible and X which is primal feasible, then we also have p∗ = d∗. Either of these conditions
is known as strong duality and the feasible solution with the positive definite solution is
known as a Slater point. We refer the reader to the book [4] for a proof of weak and strong
duality and for other useful information on the subject.
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3 A sample proof

In this section, we prove that when the devices are trusted in Protocol 3, then PXOT
A = 1/2

and PXOT
B = 3/4. Before continuing, recall that Protocol 3 is an adaptation of the protocol

in [6] where Alice’s actions are the exact same and so are the intentions of a dishonest
Bob. Therefore, we can also import PXOT

B = 3/4 directly from the security analysis of that
protocol.

The rest of this section is devoted to proving PXOT
A = 1/2. Since Bob never aborts, all

we need to ascertain is the ability for Alice to learn b from her information contained in the
first message. To do this, she must infer b from the ensemble{(

1
3 , ρb = TrY(|ψ+

b 〉〈ψ
+
b |
)

: b ∈ {0, 1, 2}
}
. (14)

This is known as the quantum state discrimination problem, and the optimal guessing
probability can be written as the following SDP:

Primal problem

sup 1
3

3∑
b=1

Tr(Ebρb)

subject to:
∑

b=0,1,2
Eb = 1

∀bEb ∈ Pos(X )

Dual problem

inf Tr(σ)

subject to: ∀b 1
3ρb � σ

σ ∈ Herm(X ).

Note that the success probability can easily be seen to be equal to the value of the primal
problem as it is a maximization over POVMs and the objective function is the success
probability of that POVM measurement.

Now, if Alice uses the POVM

{E0, E1, E2} = {|0〉〈0|+ |2〉〈2|, |1〉〈1|, 0}, (15)

we can see that

PXOT
A ≥ 1

3

3∑
b=1
〈Eb, ρb〉 = 1

3 + 1
3 ·

1
2 + 0 = 1

2 . (16)

Effectively what this measurement does is measure in the computational basis, then assign
the outcomes |0〉 and |2〉 to the guess b = 0 and the outcome |1〉 to the guess b = 1. Note
that b = 2 is never guessed in this strategy. All that remains to show is that PXOT

A ≤ 1/2.
For this, we use the dual problem. Consider the dual feasible solution

σ = 1
61X . (17)

It can be checked that σ satisfies the dual constraints, i.e., σ � 1
3ρb for all b ∈ {0, 1, 2}. Since

Tr(σ) = 1/2, we have that PXOT
A ≤ 1/2 by weak duality.

Computational platform

Computations were performed using the MATLAB packages QETLAB [9] and YALMIP [12]
with solver MOSEK [15]. Some of the calculations reported here were performed using the
Euler cluster at ETH Zürich.
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