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Abstract
Recently, Scheerer [19] and Vandehey [21] showed that normality for continued fraction expansions
and base-b expansions are incomparable notions. This shows that at some level, randomness for
continued fractions and binary expansion are different statistical concepts. In contrast, we show that
the continued fraction expansion of a real is computably random if and only if its binary expansion
is computably random.

To quantify the degree to which a continued fraction fails to be effectively random, we define the
effective Hausdorff dimension of individual continued fractions, explicitly constructing continued
fractions with dimension 0 and 1.
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1 Introduction

Kolmogorov initiated the program of proving that all practical applications of randomness are
consequences of incompressibility [9]. A landmark achievement in the theory of computation
realizing Kolmogorov’s program is Martin-Löf’s definition of an individual random binary
sequence using constructive measure [15]. Alternative, equivalent characterizations using
martingales [20] and incompressible sequences [10], [6], [1], establish that the definition of an
individual random binary sequence is mathematically robust. This has led to a deep and rich
theory interacting fruitfully with computability theory, probability theory and dynamical
systems (see for example, [11], [3], [18]).

In this work, we study the concept of an individual random continued fraction. An
important question is whether randomness of a real is preserved when translating from one
representation to another, for example, from base 2 expansion to base 3 expansion, or from
binary expansion to continued fraction expansion. Recent elegant constructions by Vandehey
and Scheerer show that continued fraction normals and normals in base-b are incomparable
sets [21], [19]. In contrast, Nandakumar [17] remarks that the binary expansion of a real
is Martin-Löf random if and only if its continued fraction is. We extend this result using
martingales, and show that the continued fraction of a real is computably random if and only
if its binary expansion is.
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To quantify the degree of non-randomness, the topological notion of Hausdorff dimension
[7] has been effectivized in computability and complexity theory in a series of works by
Lutz [13], Lutz and Mayordomo [14], Mayordomo [16], Fernau and Staiger [5], and others.
Generalizing the definition of random continued fractions using martingales, we define the
effective Hausdorff dimension of sets of continued fractions, and of individual continued
fractions, in the spirit of Lutz [13]. We construct examples of continued fractions with
dimensions 0 and 1.

The tools and techniques for base-2 randomness do not lend themselves easily to con-
tinued fractions, which we can view as infinite sequences over a countably infinite alphabet.
Topologically, this is a non-compact space. Further, the canonical shift-invariant measure
on the space of continued fractions in [0, 1] is the Gauss measure, which is not a product
measure, or even a Markov distribution [4], [2]. A study of effective Hausdorff dimension in
this setting is new.

Our main contributions are - martingale-based definitions of Martin-Löf random and
computable random continued fractions, showing the preservation of Martin-Löf randomness
and computable randomness when converting from binary expansion to continued fractions
and vice versa, and a basic statistical property of random sequences. Further, we define
effective Hausdorff dimension of sets of continued fractions and individual continued fractions
using s-gales, and give explicit constructions of continued fractions with dimensions 0 and 1.
We develop techniques and approximation methods related to Gauss measure, which may be
of independent interest.

2 Preliminaries

Let N be the set of positive natural numbers, N∗ be the set of finite sequences of natural
numbers, and N∞ be the set of infinite sequences of natural numbers. If a finite sequence
v ∈ N∗ is a prefix of another finite sequence w ∈ N∗ or an infinite sequence X ∈ N∞, we
represent it respectively by v v w and v v X. If v, w ∈ N∗, their concatenation is written as
vw. λ denotes the empty string.

We identify any finite string (a1, . . . , an) ∈ N∗, and any infinite sequence 〈ai〉i∈N with

0 +
1

a1 +
1

. . . +
1
an

and 0 +
1

a1 +
1
. . .

(1)

respectively. We denote this respectively as the finite continued fraction [0; a1, . . . , an] and
the infinite continued fraction [0; a1, . . . ]. The continued fraction cylinder C[0;a1,...,ak] is the
set of infinite continued fractions with [0; a1, . . . , ak] as a prefix.

If v ∈ N∗, then the number of integers in v is denoted |v|. For j ∈ N, v � j denotes the
substring consisting of the first j integers in v when j ≤ |v|, and v itself, otherwise. For
X ∈ N∞ and j ∈ N, X � j denotes the substring consisting of the first j integers in X.

In this work, we consider the probability space (N∞,B(N∞), γ) where B(N∞) is the Borel
σ-algebra generated by the cylinders and γ is the Gauss measure defined on any A ∈ B(N∞)
by γ(A) = 1

log 2
∫
A

1
x+1 dx. The Gauss measure is a translation-invariant probability on the

space of continued fractions [4], [2].
Similar notations apply for the binary expansions of reals. We designate the binary

alphabet {0, 1} by Σ. Analogous with the notation for integers, let Σ∗ denote the set of finite
binary strings, and Σ∞ the set of infinite binary sequences. We use λ for the empty string.
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For any w ∈ Σ∗, the binary cylinder Cw is the set of all infinite binary sequences with w
as a prefix. The probability space on binary sequences is (Σ∞,B(Σ∞), µ) where B(Σ∞) is
the Borel σ-algebra on Σ∞, and µ is the Lebesgue (uniform) probability measure defined for
every Borel set A by µ(A) =

∫
A
xdx.

For w ∈ Σ∗, we denote µ(Cw) by µ(w), and analogously for v ∈ N∗ and γ.

3 Useful estimates for continued fractions and the Gauss measure

For [0; v1, . . . , vn], denote the rational represented by v � k by pk

qk
. This is called the kth

convergent of v. The standard continued fraction recurrence for computing convergents is
given by (see for example, Khinchin [8])

p−1 = 1, p1 = 0, pn = vnpn−1 + pn−2,

q−1 = 0, q1 = 1, qn = vnqn−1 + qn−2.

It follows that µ([0; v1, . . . , vk]) = 1
qk(qk+qk−1) for all 2 ≤ k ≤ n.

I Lemma 1. Let C[0;a1,...,ak] be the cylinder set of an arbitrary finite continued frac-
tion and C ′b1...bk

be the cylinder set of an arbitrary binary string of length k. Then,
µ(Ca1,a2,...,ak

) ≤ µ(C ′b1,b2,...,bk
).

The following estimate, which we can easily establish, shows a fairly tight relationship
between Lebesgue measure and Gauss measure. The proof uses the fact that the Radon-
Nikodym derivative dγ

dµ = 1
1+x is bounded in [0, 1].

I Lemma 2. For any subinterval B of the unit interval, we have 1
2 ln 2µ(B) ≤ γ(B) ≤

1
ln 2µ(B).

4 Martingales on Continued fraction expansions

The notion of binary supermartingales and their success sets is well-known in the study of
algorithmic randomness and resource-bounded measure [11], [18], [3]. We recall the binary
notion, and then define the notion of continued fraction supermartingales, by replacing the
measure appropriately.

I Definition 3 ([3]). A binary martingale d : Σ∗ → [0,∞) is a function with d(λ) <∞ and
such that for every v ∈ Σ∗, d(v) = d(v0)+d(v1)

2 . We say that d : Σ∗ → [0,∞) is a binary
supermartingale if d(λ) <∞, and the equality above is replaced with a ≥.

A supermartingale or a martingale d succeeds on X ∈ Σ∞, denoted X ∈ S∞[d],
if lim supn→∞ d(X � n) = ∞, and strongly succeeds on X, denoted X ∈ S∞str[d], if
lim infn→∞ d(X � n) =∞.

Analogously, we define the following.

I Definition 4. A continued fraction martingale d : N∗ → [0,∞) is a function with d(λ) <∞
and such that for every v ∈ N∗, d(v)γ(Cv) =

∑
n∈N d(vn)γ(Cvn). We say that d : N∗ → [0,∞)

is a continued fraction supermartingale if d(λ) <∞, and the equality above is replaced with
a ≥.

A supermartingale or a martingale d succeeds on an infinite sequence X, denoted X ∈
S∞[d], if lim supn→∞ d(X � n) = ∞, and strongly succeeds on X, denoted X ∈ S∞str[d], if
lim infn→∞ d(X � n) =∞.

MFCS 2020
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We view the value d(w) as the capital that the martingale has if the outcome is w. Thus,
a martingale is a “fair” betting condition on continued fractions where the expected value
(with respect to the Gauss measure) of the capital after a bet is equal to the expected value
before the bet. The reason for selecting Gauss measure in particular as the “canonical”
distribution is that it is translation invariant with respect to the continued fraction expansion,
which is necessary to study statistical properties of sequences like normality.

The following is a consequence of the definition of martingales.

I Lemma 5. Let d : N∗ → [0,∞) be a supermartingale. Let v ∈ N∗ and S ⊆ N∗ be
a prefix-free set where every w ∈ S is an extension of v with |w| ≤ k, k ∈ N. Then∑

w∈S d(w)γ(w) ≤ d(v)γ(v).

Now, we impose computability restrictions on the (super)martingale functions, analogous
to the existing notions for the computability of martingales on finite alphabets [3].

I Definition 6. A function d : N∗ −→ [0,∞) is called computably enumerable (alternatively,
lower semicomputable) if there exists a total computable function d̂ : N∗ × N −→ Q ∩ [0,∞)
such that the following two conditions hold.

Monotonicity : For all w ∈ N∗ and for all n ∈ N, we have d̂(w, n) ≤ d̂(w, n+1) ≤ d(w).
Convergence : For all w ∈ N∗, limn→∞ d̂(w, n) = d(w).

A real number r is said to be lower semicomputable if there is a total computable
function r̂ : N → Q such that for every n ∈ N, r̂(n) ≤ r̂(n+ 1) ≤ r, and limn→∞ r̂(n) = r.
Note that if d is a lower semicomputable supermartingale, then for every v ∈ N∗, d(v) is a
lowersemicomputable real, uniformly in N.

I Definition 7. A function d : N∗ → [0,∞) is called computable if there is a total computable
function d̂ : N∗ × N → Q ∩ [0,∞) such that for every w ∈ N∗ and n ∈ N, we have
|d̂(w, n)− d(w)| ≤ 2−n.

Note. By replacing N∗ with Σ∗, we get the analogous computability notions for binary
supermartingales. For a computable function d, it is sufficient for the witness d̂ that for
some f : N→ [0,∞), where f is a monotone computable function decreasing to 0 as n→∞,
|d̂(w, n)− d(w)| ≤ f(n).

For computably enumerable (abbreviated as c.e.) sequences of lower semicomputable
martingales, we have the following universality result.

I Theorem 8. If {d1, d2, . . . } : N∗ → [0,∞) is a computably enumerable sequence of lower
semicomputable martingales then there exists a lower semicomputable martingale d that
succeeds on ∪∞i=1S

∞[di], and which strongly succeeds on ∪∞i=1S
∞
str[di].

We now define individual random continued fractions for the above computability notions.
Random sequences are those on which martingales fail to make unbounded amounts of money.

I Definition 9. We call a continued fraction X ∈ N∞ Martin-Löf random if no lower
semicomputable supermartingale succeeds on X and computably random if no computable
supermartingale succeeds on X.

As it is well-known in the binary case using the “savings account trick” (see for example,
[3] or [18]), the following theorem states that the notion of success and strong success coincide
when we study Martin-Löf and computable randomness.
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I Theorem 10. If d : N∗ → [0,∞) is a supermartingale which succeeds on X ∈ N∞,
then there is a supermartingale g : N∗ → [0,∞) and such that limn→∞ g(X � n) = ∞.
Moreover, if d is lower semicomputable, then so is g. If d is computable, then there is a
function s : N∗ → [0,∞) which is monotone over lengths of inputs, such that g ≥ s and
limn→∞ s(X � n) =∞, where g nand s are computable functions.1

We can show that basic stochastic properties are satisfied by continued fraction randoms.

I Theorem 11. Suppose X is a computably random continued fraction. Then every positive
integer appears infinitely often in X.

5 Continued fraction non-randoms are binary non-random

The following lemmas are crucial in converting betting strategies on binary expansions into
those on continued fractions, and conversely.

I Lemma 12. Let 0 ≤ a < b ≤ 1, and
[
m
2k ,

m+1
2k

)
, where 0 ≤ m < 2k, be the smallest dyadic

interval that covers [a, b). Then 1
2k ≤ 4(b− a).

I Lemma 13. Let 0 ≤ a < b ≤ 1, and
[
m
2k ,

m+1
2k

)
, where 0 ≤ m < 2k, be the largest dyadic

interval which is a subset of [a, b). Then 1
2k ≥ 1

4 (b− a).

Now we show that if there is a martingale which succeeds on the continued fraction on a
real number x, then there is a martingale that succeeds on its binary expansion with similar
computability properties.

I Theorem 14. Let x ∈ (0, 1) be an irrational with continued fraction expansion X and
binary expansion B. Then the following hold.
1. If X is non-Martin-Löf random, then its B is non Martin-Löf random.
2. If X is not computably random, then B is not computably random.

Proof. Let X and B be as given.
Let d : N∗ → [0,∞) be a c.e. supermartingale which succeeds on X. By Theorem

10, we can assume that lim infn→∞ d(X � n) = ∞, equivalently, for every integer M , for
all sufficiently large prefix lengths n, d(X � n) ≥ M . We construct a c.e. martingale
h : Σ∗ → [0,∞) which succeeds on B, using the martingale d.

Note that for an arbitrary w ∈ {0, 1}∗, the continued fraction cylinder enclosing Cw may
not coincide exactly with Cw, and that certain intervals may overlap with both Cw0 and
Cw1. First, we introduce some notation to define the martingale.

Let w ∈ Σ∗ and v ∈ N∗ be the continued fraction such that Cv is the smallest cylinder
enclosing Cw. We classify the extensions of v as follows. Let I(w) = {vi | i ∈ N, Cvi ⊆ Cw}
be the set of cylinders which are contained in Cw. Let P (w) = {vi | i ∈ N, Cvi ∩ Cw 6=
∅, Cvi * Cw} be the set of cylinders which partially intersect Cv, but are not contained in it.
Then, let

h(w) =
∑

y∈I(w)

d(y) γ(y)
µ(w)

1
2
∑

y∈P (w)

d(y) γ(y)
µ(w) . (2)

1 s is called the “savings account” of g.

MFCS 2020
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Since µ(w0) = µ(w1) = µ(w)
2 , we have that [h(w0) + h(w1)]µ(w)

2 is equal to∑
y∈I(w0)∪I(w1)

d(y)γ(y) +
∑

y∈P (w0)∩P (w1)

d(y)γ(y) + 1
2

∑
y∈P (w0)⊕P (w1)

d(y)γ(y),

where ⊕ denotes the symmetric difference of sets. Note that every y ∈ I(w0) ∪ I(w1) ∪
(P (w0) ∩ P (w1)) is an extension of some v ∈ I(w). By Lemma 5, we have∑

y∈I(w0)∪I(w1)∪(P (w0)∩P (w1))

d(y)γ(y) ≤
∑

v∈I(w)

d(v)γ(v).

Further, every y ∈ P (w0)⊕ P (w1) is an extension of some v ∈ P (w). Hence∑
y∈P (w0)⊕P (w1)

d(y)γ(y) ≤
∑

v∈P (w)

d(v)γ(v).

We have

[h(w0) + h(w1)]µ(w)
2 ≤

 ∑
v∈I(w)

d(v)γ(v) + 1
2
∑

v∈P (w)

d(v)γ(v)

 = h(w)µ(w),

whence h is a supermartingale.
Let M be an arbitrary positive real, and let v v X be a prefix such that for all longer

prefixes, d(v) ≥M .
Let w v B be the string designating the largest binary cylinder Cw ⊆ Cv. We show that

h(w) ≥ cM for some constant c > 0 which is independent of w, v, and M .
By Lemma 13, we know that the largest dyadic interval which is a subset of Cv has

Lebesgue measure at least 1/4 of the Lebesgue measure of Cv. Thus,

γ(Cv ∩ Cw) ≥ µ(Cv ∩ Cw)
2 ln(2) ≥ µ(Cv)

8 ln(2) ≥
γ(Cv)

8 .

The first and third inequalities above are consequences of Lemma 2 (see also [4], Section 3.2)
and the second, Lemma 13.

By definition, we have that h(w) is greater than or equal to

M

 ∑
y∈I(w)

γ(y)2|w| + 1
2
∑

i∈P (w)

γ(y)2|w|
 ≥ M

2

 ∑
y∈I(w)

γ(y)2|w| +
∑

y∈P (w)

γ(y)2|w|


≥ M

2 γ(Cv ∩ Cw)2|w|.

From the bound above, we obtain that h(w) is greater than or equal to

M

2
γ(Cv ∩ Cw)
µ(Cw) ≥ M

16
γ(Cv)
µ(Cw) = M

32 ln 2
µ(Cv)
µ(Cw) ≥

M

32 ln(2) ,

where the last inequality follows from the fact that Cv ⊇ Cw. Thus h succeeds on the same
real.

If d is lower semicomputable, from equation (2), it is clear that h is the sum of lower
semicomputable terms involving a computable decision (i.e. i ∈ I(wb) and i ∈ P (wb)). Hence
h is a lower semicomputable function.

Now, suppose d is computable. Observe crucially that |I(wb)| <∞ for one bit b ∈ {0, 1}.
Assume, without loss of generality, that |I(w0)| < ∞. Hence, h(w0) is a sum of finitely
many computable terms, involving a computable decision. Moreover, h(w1) = h(w)−h(w0)

2 is
a difference of computable terms. It follows that h is computable. J
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6 Binary non-randoms are continued fraction non-random

We now show that if the binary expansion of a real number is non-Martin-Löf-random, then
so is its continued fraction expansion.

I Theorem 15. Let x be an irrational in [0, 1] with continued fraction expansion X and
binary expansion B. If B is not Martin-Löf random, then X is not a Martin-Löf random
continued fraction. If B is not computably random, then X is not a computably random
continued fraction.

Proof. Let d : Σ∗ → [0,∞) be a martingale with B ∈ S∞str[d]. Without loss of generality, we
may assume that d ≥ 2−c for some c ∈ N, c > 0.

Construct a collection of sets 〈Lv〉v∈N∗ by letting Lλ = {λ} and

Lvi = {w ∈ Σ∗ | (∃u v w) u ∈ Lv, (@u @ w) u ∈ Lvi, Cw ⊆ Cvi}. (3)

Dyadic rationals are dense in [0, 1]. Hence Lv contains a unique prefix of every irrational in
Cvi. By construction, every Lv is a prefix-free set. Further, membership of w in Lv can be
decided by ensuring that for every prefix v′ @ v, there is some u v w in Lv′ , and no w′ @ w
is in Lv, and by checking that Cw ⊆ Cv. Hence Lvs are decidable uniformly in v.

Let h : N∗ → [0,∞) be defined by

h(v) =
∑
w∈Lv

(log2 d(w) + c+ 1)µ(w)
γ(v) .

Since d ≥ 2−c, it follows that h is a positive real-valued function.
We can verify that log2 d+ c+ 1 is a supermartingale. We have that

∑
i∈N h(vi)γ(vi) is∑

i∈N

∑
w∈Lvi

(log2 d(w) + c+ 1)µ(w) ≤
∑
u∈Lv

∑
i∈N,

w∈Lvi,
uvw

(log2 d(w) + c+ 1)µ(w).

Since Lvi is a prefix-free set for each i ∈ N, by the Kolmogorov inequality [18], the above is at
most

∑
u∈Lv

(log2 d(u)+c+1)µ(u), which is h(v)γ(v), establishing that h is a supermartingale.
Suppose the savings account function of the log2 d+ c+ 1 supermartingale is denoted

sd. Then for every D ∈ Σ∞ and every n ∈ N, we have sd(D � n) ≤ sd(D � n+ 1) and that
limn→∞ sd(B � n) =∞. If sd(u) ≥M > 0, where Cu is the smallest cylinder which covers
Cv, v ∈ N∗, then we have

h(v) ≥
∑
w∈Lv

sd(w)µ(w)
γ(v) ≥

M

γ(v)
∑

w∈L(v)

µ(w) = Mµ(v)
γ(v) .

By Lemma 13, similar to the argument of the converse direction, we conclude that the above
quantity is at least M ln(2). It follows that X ∈ S∞str[d].

If d is lower semicomputable, then so is (log2 d+ c+ 1). Since Lv is decidable uniformly in
v, it follows that h is the sum of a computably enumerable sequence of lower semicomputable
terms, hence is lower semicomputable.

If d is computable, then so is (log2 d+ c+ 1), witnessed by, say, ˆ̀
d : N∗ ×N→ [0,∞)∩Q.

For each v ∈ N∗, let 〈wv,j〉j∈N be a computable enumeration of Lv in increasing order, which
exists since Lv is decidable. Hence, ĥ : N∗ × N → [0,∞) ∩ Q defined below witnesses the
computability of h. For v ∈ N∗ and n ∈ N, define

ĥ(v, n) =
Nv,n∑
j=1

ˆ̀
d(wv,j)

µ(wv,j)
γ̂(v, n) ,

MFCS 2020
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where

Nn,v = min

m ∈ N |
m∑
j=1

µ(wv,j) > µ(vi)− 2−n
 .

Then, Nn,v exists for all n and v. Moreover, Nn,v is computable uniformly in n and v. We
now show that for all n, |ĥ(v, n)− h(v)| ≤ (2 + c+ 1)2−n, showing that h is computable.

For any w ∈ Σ∗, we know that d(w) ≤ 2|w|, hence log2 d(w) + c+ 1 ≤ |w|+ c+ 1. Further,∑∞
j=Nn+1 µ(wv,j) ≤ 2−n. Hence,

∞∑
j=Nn+1

log2 d(wv,j) + c+ 1
2|wv,j |

≤
∞∑

j=Nn+1

|wv,j |+ c+ 1
2|wv,j |

,

which, is clearly upper bounded by a term computable from n and decreasing to 0 as n→∞.
It follows that h is computable. J

7 Effective dimension of continued fractions using s-gales

Adapting the approach of Lutz [13], Lutz and Mayordomo [14] for finite alphabets, we define
effective Hausdorff dimension of sets of continued fractions.

I Definition 16. Let s ∈ [0,∞) and N∞ denote the set of infinite sequences of positive
integers.

A continued fraction s-gale is a function d : N∗ −→ [0,∞) that satisfies the condition

d(w)[γ(Cw)]s =
∑
i∈N

d(wi)[γ(Cwi)]s

for all w ∈ N∗.
We say that d succeeds on a sequence Q ∈ N∞ if lim sup

n→∞
d(Q � n) =∞.

The success set of d is S∞(d) = {Q ∈ N∞| d succeeds on Q}.
For X ⊆ N∞,G(X ) denotes the set of all s ∈ [0,∞) such that for every X ∈ X , there
exists a lower semicomputable continued fraction s-gale d which succeeds on X.
The effective Hausdorff dimension of a set S ⊆ N∞ is the infimum of the set G(X).

It is possible to view s-gales as martingales with a specified rate of success. First, we
show that an s-gale can be converted into a martingale by multiplying the capital of the
s-gale with an adjusted rate for the success. This is similar to the corresponding result for
binary s-gales and martingales in [13].

I Lemma 17. Let d : N∗ → [0,∞) be an s-gale. Then g : N∗ → [0,∞) defined by
g(v) = d(v)γs−1(v) is a continued fraction martingale.

Proof. It is clear that g(λ) = 1. Further, for v ∈ N∗, we have∑
i∈N

g(vi)γ(vi) =
∑
i∈N

d(vi)γs−1(Cvi)γ(vi) =
∑
i∈N

d(vi)γs(vi) = d(v)γs(v) = g(v)γ(v),

where the penultimate equality follows since d is an s-gale. J

The following helps us to relate the success rate of martingales to the dimension.
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I Lemma 18. Let d : N∗ → [0,∞) be a lower semicomputable continued fraction martingale,
and s ∈ (0, 1). If X ∈ N∞ has infinitely many prefix lengths n for which d(X � n) ≥ γs−1(X �
n), then dim(X) ≤ s.

Thus, we have the following characterization of dimension of continued fractions in terms
of the success rate of martingales.

I Theorem 19. For any X ∈ N∞, s ∈ (0, 1), we have dim(X) ≤ s if and only if there is a
continued fraction martingale d : N∗ → [0,∞) such that for infinitely many n, d(X � n) ≥
γs−1(CX�n).

8 Continued fractions with dimension 0 and computability

I Lemma 20. Every computable continued fraction has effective dimension zero.

Proof. Let X = [0; a1, a2, . . . ] be an arbitrary continued fraction such that ai ∈ N. Let M
be total computable function on N such that for all i ∈ N, M(i) = ai.

Consider the function d : N∗ → [0,∞) which bets all of current capital along the sequence
computed by M , defined by d(a1, a2, . . . an) = γ−s(Ca1,a2,...an

). Let d(v) = 0 if v is not a
prefix of X.

Then d is an s-gale, since for every v ∈ N∗ which is a prefix of S,

∑
i∈N

d(vi)γs(Cvi) =
γs(CvM(|v|))
γs(CvM(|v|))

= 1 = γ−s(Cv)γs(Cv) = d(v)γs(Cv).

For v ∈ N∗ which is not a prefix of X, d(v) = 0, hence
∑
i∈N d(vi)γs(Cvi) = 0 = d(v)γs(Cv).

Since γ([0; a1, . . . , an])→ 0 as n→∞ and s > 0, it follows that γ−s([0; a1, . . . , an])→∞
as n→∞. Hence X ∈ S∞[d]. Since s was arbitrary, the infimum of all s such that there is
an s-gale which succeeds on X is 0. J

However, the converse does not hold in general. We show that there are uncomputable
continued fractions with dimension 0.

The standard technique for binary sequences uses the notion of “dilution” - we add a few
bits from a Martin-Löf random sequence, and intersperse it with a large number of 0s. By
making the number of zeroes grow in an unbounded manner, we can construct a dimension 0
sequence.

Surprisingly, with continued fractions, we can perform this “dilution” by following every
“random” integer with a single integer. We do not require arbitrarily long computable
stretches. We are able to do this since the underlying alphabet is infinite.

To make the continued fraction uncomputable, at every odd location, we copy the integer
from a Martin-Löf random continued fraction. To make the continued fraction have dimension
0, at every even location, we computably choose a large integer so that an s-gale can make
unbounded amounts of money by betting.

The construction is involved, because the underlying probability measure, Gauss measure,
is not a product distribution. Hence the choice of these “large integers” at even locations
necessarily depend on the previous integers. The argument which follows uses several
approximation techniques.

I Lemma 21. There is an uncomputable continued fraction with dimension 0.
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Proof. Let Y be a Martin-Löf random continued fraction. Let X be the continued fraction
defined by

X[n] =
{
Ydn/2e if n is odd,
f(X � n− 1) otherwise,

where f : N∗ → N defined by f(v) = [max(v)+2](|v|)2 for v ∈ N∗. We show that dimγ(X) = 0.
It suffices to show that for all s ∈ (0, 1), there is an s-gale that succeeds on X.

Consider the computable function d : N∗ → [0,∞) defined by d(λ) = 1 and for every v of
odd length and i ∈ N, letting d(vi) = d(v)γ1−s(Cvi|v). For every v of even length, j = f(v),
let d(vj) = d(v)γ−s(Cvj|v), and for k 6= f(v), let d(vk) = 0.

If |v| is odd, then∑
i∈N

d(vi)γs(vi|v) = d(v)
∑
i∈N

γ1−s(vi|v)γs(vi|v) = d(v)
∑
i∈N

γ(vi|v) = d(v),

and if |v| is even, then letting j = f(v),

∑
i∈N

d(vi)γs(vi|v) = d(v)γ
s(vj|v)
γs(vj|v) = d(v).

Hence d is an s-gale.
We show now that X ∈ S∞[d]. Denote X � 2k− 1 by v. Let X[2k] = Y [k] be denoted by

i and X[2k + 1] = f(vi) be denoted by j. Then

d(vij)
d(v) = 1

γs−1(vi|v)γs(vij|vi) = γ(vi|v)
γs(vi|v)γs(vij|vi) ≥

γ(vi|v)
γs(vij|vi) ,

since 0 ≤ γs(vi|v) ≤ 1. By Lemma 2, it follows that

γ(vi|v)
γs(vij|vi) ≥

µ(vi|v)
2(ln 2)1−sµs(vij|vi) .

We have that µ(vi|v) is

q2k−1(q2k−1 + q2k−2)
q2k(q2k + q2k−1) ≥

q2
2k−1
2q2

2k
=
(

q2
2k−1

2(iq2k−1 + q2k−2)2

)
≥
(

q2
2k−1

2(i+ 1)2q2
2k−1

)
= 1

2(i+ 1)2 ≥
1

2(m+ 2)2 ,

where m = max(vi). Similarly

1
µ(vij|vi) = q2k+1(q2k+1 + q2k)

q2k(q2k + q2k−1) ≥
q2k+1

q2k + q2k−1
= jq2k + q2k−1

q2k + q2k−1
≥ jq2k + q2k−1

2q2k
≥ j

2

Since j = (m+ 2)4k2 , it follows that

µ(vi|v)
2(ln 2)1−sµs(vij|vi) ≥

1
2(m+ 2)2

(m+ 2)4k2s

2s+1(ln 2)1−s = (m+ 2)4k2s−2

2s+2(ln 2)1−s

For fixed s, as k →∞, the above quantity is greater than 2. It follows that d succeeds on X.
Since s ∈ (0, 1) was arbitrary, we can conclude that dimγ(X) = 0. J
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9 Continued fractions with dimension 1 and Martin-Löf randomness

In this section, we study the relationship between Martin-Löf randomness of continued
fractions, normality of continued fractions, and the notion of effective dimension 1. We show
that all Martin-Löf random continued fractions have effective dimension 1. However, there
are continued fractions with effective dimension 1, which are normal as well, but which are
not Martin-Löf random.

I Lemma 22. Every Martin-Löf random continued fraction has effective dimension 1.

Proof. Let Y ∈ N∞ have s = dim(Y ) ≤ 1. Let d : N∗ → [0,∞) be a lower semicomputable
s-gale that succeeds on Y . Consider the lower semicomputable function h : N∗ → [0,∞)
defined by h(v) = d(v)γs−1(Cv), for v ∈ N∗. Then∑

i∈N
h(vi)γ(Cvi) =

∑
i∈N

d(vi)γs(Cvi) = d(v)γs(Cv) = h(v)γ(Cv),

where the second last equality follows by the fact that d is an s-gale.
Suppose d(Y � n) > M . Then h(Y � n) > Mγs−1(Y � n) > M . Since Y ∈ S∞[d], it

follows that Y ∈ S∞[h]. Hence Y is not a Martin-Löf random continued fraction. J

However, there are sequences with c.e. dimension 1, which are not random. The idea is
to intersperse the integer “1” at computable locations which are spaced very sparsely apart.
The proof that the resulting number is not Martin-Löf random uses the following estimate
on conditional Gauss probabilities, which, to our knowledge, is not present in literature.

I Lemma 23. For any v = [0; v1, . . . , vn] ∈ N∗, we have

1
2 ln(2)(2vn + 3) ≤ γ(Cv1|v) ≤

1
2 ln(2) .

The above lemma shows that the conditional probability of 1 in any cylinder [0; v1, . . . , vn, 1]
can be arbitrarily small if vn is arbitrarily large. Hence a betting function to win arbitrarily
large amounts. In the following constructions in the paper, unlike in the dimension 0
construction, it becomes necessary to allow a betting function to win, but also to prevent
large wins, at specific positions. We control this winning amount by inserting 1s at computable
locations only when vn is bounded.

I Lemma 24. There is a continued fraction with effective dimension 1, which is normal,
but which is not Martin-Löf random.

Proof. Let Y be a Martin-Löf random continued fraction. We construct X ∈ N∞ in stages,
as follows.

At each stage s ≥ 1, we copy at least s! integers from Y into X, maintaining the relative
order. Associated with each stage, we keep a cumulative count Ns of the number of integers
we have copied from Y , in stages 1 through s inclusive.

Construction. At stage 1, we set X[i] = Y [i] starting from i = 1, until we see a position
with Y [i] = 1. We denote this position as N1. Such a position always exists since Y is
Martin-Löf random by Theorem 11. Set X[N1 + 1] = 1.

Note that at every stage, we insert exactly one 1 into X, which is not present in Y .
At stage s > 1, we proceed as follows. Note that X is longer than Y by exactly s − 1

digits at the start of stage s. Set X[Ns−1 + (s− 1) + j] = Y [Ns−1 + j], for j from 1 through
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at least s!, and until we encounter a position in Y which has a 1. Such a position exists
by the normality of Y . We denote this position as Ks, and let Ns = Ns−1 + Ks. Set
X[Ns + (s− 1) + 1] = 1.

Let PX be the set of positions where we have inserted ones into X, and PY be the set of
positions in Y after which we have inserted ones in X while copying. At each stage s, we
copy at least s! entries from Y before inserting the additional 1 into X. Note that PY is
computable from Y . Hence for all sufficiently large n, the number of entries in PX and PY
which are less than or equal to n is o(logn). (End of construction)

Verification. We now show that there is a lower semicomputable martingale d : N∗ → [0,∞)
which succeeds on X, showing that X is not Martin-Löf random. Let d(λ) = 1, and for every
v ∈ N∗, if |v|+ 1 /∈ PX , then d(vi) = d(v). It is clear that on these v ∈ N∗, the martingale
condition is satisfied. If |v|+ 1 ∈ PX , then let d(v1) = d(v)γ−1(Cv1|v), and d(vj) = 0 for all
j 6= 1. For such v ∈ N∗, we have

∑
i∈N

d(vi)γ(Cvi|v) = d(v1)γ(Cv1|v) = d(v)
γ(Cv1|v)
γ(Cv1|v)

= d(v),

proving that d is a martingale. Since checking for membership in P is computable based on
the prefix v, it follows that d is lower semicomputable.

To see that d succeeds on X, we observe that at every position in P , d multiplies its
previous capital by γ−1(Cv1|v), and on other prefixes of X, d preserves its capital. By Lemma
23, γ−1(Cv1|v) ≥ 2 ln 2. Thus, limn→∞ d(X � n) =∞.

We now show that if dim(X) < 1, then Y is not Martin-Löf random. Let s ∈ (0, 1)
and h : N∗ → [0,∞) be a lower semicomputable s-gale which succeeds on X. At positions
n ∈ PX , we can assume without loss of generality that

h(X � n) = h(X � (n− 1)) γ−s((X � (n− 1))1 | (X � (n− 1))), (4)

i.e. h attains the maximum possible capital on the positions in PX .
Construct a martingale g : N∗ → [0,∞) thus. Let g(λ) = 1. If v ∈ N∗ is such

that |v| /∈ PY , then for every i ∈ N, let g(vi) = h(vi)γs−1(vi). Otherwise, let g(vi) =
h(v1i)γs(v1|v)γs−1(vi).

If v belongs to the first case above, then∑
i∈N

g(vi)γ(vi) =
∑
i∈N

h(vi)γs−1(vi)γ(vi) =
∑
i∈N

h(vi)γs(vi) = h(v)γs(v) = g(v)γ(v),

and otherwise,∑
i∈N

g(vi)γ(vi) =
∑
i∈N

h(v1i)γs(v1|v)γs(vi) = h(v1)γs(v1|v)γs(v) = h(v)γs(v) = g(v)γ(v),

where the second equality follows since h is an s-gale, and the third inequality follows by (4).
Hence, g is a lower semicomputable martingale.

By Lemma 1 and 2, γs−1(vi) > 2(1−s)|vi|(ln 2)1−s. Recall that PY contains o(logn)
elements which are less than n. Since every position in PX is preceded by vn = 1, it follows
that γs(v1|v) ≥ 1/(10 ln(2)) for every v with |v| ∈ PY . Hence g(Y � n) ≥ 2(1−s)n(ln 2)1−s

n

which tends to ∞ as n→∞. Hence Y is not Martin-Löf random, which is a contradiction.
Since s is arbitrary, it follows that dim(X) = 1. J
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