
Randomized Polynomial-Time Equivalence
Between Determinant and Trace-IMM
Equivalence Tests
Janaky Murthy
Indian Institute of Science, Bangalore, India
janakymurthy@iisc.ac.in

Vineet Nair 1

Technion Israel Institute of Technology, Haifa, Israel
vineet@cs.technion.ac.il

Chandan Saha
Indian Institute of Science, Bangalore, India
chandan@iisc.ac.in

Abstract
Equivalence testing for a polynomial family {gm}m∈N over a field F is the following problem: Given
black-box access to an n-variate polynomial f(x), where n is the number of variables in gm for
some m ∈ N, check if there exists an A ∈ GL(n,F) such that f(x) = gm(Ax). If yes, then output
such an A. The complexity of equivalence testing has been studied for a number of important
polynomial families, including the determinant (Det) and the family of iterated matrix multiplication
polynomials. Two popular variants of the iterated matrix multiplication polynomial are: IMMw,d

(the (1, 1) entry of the product of d many w × w symbolic matrices) and Tr-IMMw,d (the trace of
the product of d many w × w symbolic matrices). The families – Det, IMM and Tr-IMM – are
VBP-complete under p-projections, and so, in this sense, they have the same complexity. But, do
they have the same equivalence testing complexity? We show that the answer is “yes” for Det and
Tr-IMM (modulo the use of randomness).

The above result may appear a bit surprising as the complexity of equivalence testing for
IMM and that for Det are quite different over Q: a randomized poly-time equivalence testing for
IMM over Q is known [28], whereas [15] showed that equivalence testing for Det over Q is integer
factoring hard (under randomized reductions and assuming GRH). To our knowledge, the complexity
of equivalence testing for Tr-IMM was not known before this work. We show that, despite the
syntactic similarity between IMM and Tr-IMM, equivalence testing for Tr-IMM and that for Det
are randomized poly-time Turing reducible to each other over any field of characteristic zero or
sufficiently large. The result is obtained by connecting the two problems via another well-studied
problem in computer algebra, namely the full matrix algebra isomorphism problem (FMAI). In
particular, we prove the following:
1. Testing equivalence of polynomials to Tr-IMMw,d, for d ≥ 3 and w ≥ 2, is randomized polynomial-

time Turing reducible to testing equivalence of polynomials to Detw, the determinant of the
w × w matrix of formal variables. (Here, d need not be a constant.)

2. FMAI is randomized polynomial-time Turing reducible to equivalence testing (in fact, to tensor
isomorphism testing) for the family of matrix multiplication tensors {Tr-IMMw,3}w∈N.

These results, in conjunction with the randomized poly-time reduction (shown in [15]) from determ-
inant equivalence testing to FMAI, imply that the four problems – FMAI, equivalence testing for
Tr-IMM and for Det, and the 3-tensor isomorphism problem for the family of matrix multiplication
tensors – are randomized poly-time equivalent under Turing reductions.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases equivalence testing, determinant, trace of the matrix product, full-matrix
algebra isomorphism

1 A part of this work was done when the author was still a graduate student at Indian Institute of Science.
© Janaky Murthy, Vineet Nair, and Chandan Saha;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 72; pp. 72:1–72:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:janakymurthy@iisc.ac.in
mailto:vineet@cs.technion.ac.il
mailto:chandan@iisc.ac.in
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Randomized Poly-Time Equivalence Between DET and TRACE

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.72

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2020/091/.

Funding Vineet Nair : The author is supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 682203 -ERC-[Inf-Speed-Tradeoff].

Acknowledgements We are thankful to Avi Wigderson for his suggestion on designing an equivalence
testing algorithm for Tr-IMM at the end of VN’s presentation at CCC 2017. We would like to thank
Christian Ikenmeyer for his question on equivalence testing for Tr-IMM which encouraged us to
work on this problem. Thanks also to Neeraj Kayal and Ankit Garg for helpful discussions, and
particularly to Neeraj for pointing us to [20]. We thank the anonymous reviewers for their helpful
comments.

1 Introduction

The polynomial equivalence problem or equivalence testing is the following algorithmic task:
Given two n-variate polynomials f and g over a field F as lists of coefficients, determine if
there exists an A ∈ GL(n,F) such that f(x) = g(Ax). If yes, then f is said to be equivalent
to2 g over F. The complexity of equivalence testing depends on the underlying field F. Over
finite fields, the problem is in NP ∩ coAM [45, 48]3, and hence unlikely to be NP-complete.
Whereas over Q, it is not even known whether equivalence testing is decidable. The best
known complexity of the problem over other fields follows from a naive reduction to solving
a system of polynomial equations. However, polynomial solvability could be harder than
testing polynomial equivalence.

Connections to other problems. A few works in the literature have related equivalence
testing to other fundamental problems. For example, [1] showed that the special instance of
cubic form equivalence is at least as hard as (but possibly harder than) graph isomorphism,
irrespective of the underlying field. There is a close connection between cubic form equi-
valence and the algebra isomorphism problem. [2] gave a polynomial-time reduction from
commutative algebra isomorphism to cubic form equivalence over any field. In the reverse
direction, a polynomial-time reduction is known from cubic form equivalence to commutative
algebra isomorphism over almost all fields [1, 20]. In fact, the results in [6], [14] and [20]
together imply that a host of problems, which includes 3-tensor isomorphism, matrix space
isometry, matrix space conjugacy, (commutative or associative) algebra isomorphism and
cubic form equivalence, are polynomial-time reducible to each other. There is a cryptographic
authentication scheme [40] based on the presumed hardness of cubic form equivalence4 over
finite fields (or rather a generalization of it known as Isomorphism of Polynomials with one
Secret (IP1S)). It is not known whether cubic form equivalence is even decidable over Q.
In contrast, the complexity of quadratic form equivalence testing is completely resolved,
primarily due to well-known classification results for quadratic forms (see [3, 46]). The
classification yields a polynomial-time quadratic form equivalence testing over finite fields.
Over Q though, quadratic form equivalence can be solved in polynomial time only with oracle
access to integer factoring. Moreover, integer factoring reduces in randomized poly-time to
the search version of quadratic form equivalence over Q [50].

2 Indeed, f and g represent the same function on Fn upto a change of basis.
3 This is shown by using the classic set lower bound protocol [18].
4 more generally, constant-degree form equivalence

https://doi.org/10.4230/LIPIcs.MFCS.2020.72
https://eccc.weizmann.ac.il/report/2020/091/.
https://eccc.weizmann.ac.il/report/2020/091/.

J. Murthy, V. Nair, and C. Saha 72:3

Special polynomial families. The work of [24] initiated the study of a natural variant
of the polynomial equivalence problem, namely equivalence testing for special families of
polynomials. In this setting, we fix some important family of polynomials G = {gm}m∈N
and then aim to design an equivalence testing algorithm for G. Such an algorithm takes
input black-box access5 to a single n-variate polynomial f(x) and determines whether f is
equivalent to gm for some m ∈ N, and if yes, then it also outputs an A ∈ GL(n,F) such that
f(x) = gm(Ax). [24, 25] gave randomized polynomial-time equivalence testing algorithms for
a few interesting polynomial families, viz. the determinant, the permanent, the family of
elementary symmetric polynomials and the family of power symmetric polynomials. These
families are quite popular in algebraic complexity theory, particularly in the context of proving
arithmetic circuit lower bounds (see the surveys [8, 44, 47]). Except for the determinant, the
algorithms in [24,25] work over C,Q, and finite fields6, and for the determinant it works only
over C. Recently, [15] gave a randomized polynomial-time equivalence testing algorithm for
the determinant over finite fields7. They also showed that determinant equivalence test over
Q is intimately connected to integer factoring: Let Detw(x) be the determinant of the w×w
symbolic matrix. Then, deciding if a given polynomial is equivalent to Detw over Q can be
done in randomized polynomial-time with oracle access to integer factoring, provided w is a
constant8. Furthermore, assuming GRH, there is a randomized polynomial-time reduction
from factoring square-free integers to finding an A ∈ GL(2,Q) such that a given quadratic
form f = Det2(Ax), if f is equivalent to Det2.

Determinant equivalence test is particularly interesting in the context of the permanent
versus determinant problem [49]. An approach to solve this long-standing open problem is
given by Geometric Complexity Theory (GCT) [35,36], which proposes the applications of
deep tools and techniques from algebraic geometry, group theory and representation theory
to achieve this goal. GCT reduces the problem to showing that the (padded) permanent
polynomial is not in the orbit closure9 of a polynomial-size determinant polynomial, and
suggests (among other things) to develop an algorithmic approach to do the same. Equivalence
testing for the determinant is the related problem of checking if a given polynomial is in the
orbit of the determinant polynomial.

The determinant Det := {Detw}w∈N is complete (under p-projections) for the class
VBP [34] 10. Likewise, the family of iterated matrix multiplication polynomials is also
complete for the class VBP, and has been used quite a bit in proving arithmetic circuit lower
bounds. In this sense, the two families have the same complexity. But, do they have similar
equivalence testing complexity? Our work here, in conjunction with [15] and [28], gives an
answer to this question.

5 i.e., query access to evaluations of f at chosen points from Fn.
6 Over C, the computation model assumes that arithmetic with numbers in C and root finding of univariate

polynomials over C can be done efficiently. Also, the finite fields are assumed to be of sufficiently large
characteristic.

7 A determinant equivalence test over finite fields was also given in [26], but the algorithm there outputs
an invertible transformation over a low extension of the base field.

8 When w is not a constant, [15] gave a randomized polynomial-time determinant equivalence test over Q,
but the algorithm (which works without an integer factoring oracle) outputs a transformation over a
low extension of Q.

9 The orbit of an n-variate degree-d polynomial g ∈ C[x] is the set {g(Ax) | A ∈ GL(n,C)}, and the orbit
closure of g is the Zariski closure of the orbit when viewed as points in C(n+d

d).
10Class VBP consists of polynomial families that are computable by polynomial-size algebraic branching

programs (ABP). ABP is a powerful model for computing polynomials that subsumes arithmetic
formulas.

MFCS 2020

72:4 Randomized Poly-Time Equivalence Between DET and TRACE

Iterated matrix multiplication. Two natural versions of the iterated matrix multiplication
polynomial are: a) IMMw,d that is defined as the (1, 1) entry of the product of d many w×w
symbolic matrices (i.e., matrices whose entries are distinct variables), and b) Tr-IMMw,d

that is defined as the trace of the product of d many w × w symbolic matrices. The
IMM := {IMMw,d}w,d∈N family has been studied more from the lower bound perspective
[9, 12,27, 29, 30, 32,39] because it naturally captures the algebraic branching program model.
On the other hand, Tr-IMM := {Tr-IMMw,d}w,d∈N has been studied in [16,17,19,33]11 owing
to its nice structural properties (pertaining to its group of symmetries and the associated
Lie algebra) that may be quite useful for studying GCT methods when applied to the
“Permanent versus Tr-IMM” problem. IMM and Tr-IMM are also complete for the class VBP.
Interestingly, the three polynomials – Detw, IMMw,d and Tr-IMMw,d – are characterized by
their respective groups of symmetries [13,16,28].

Equivalence testing for iterated matrix multiplication. How does equivalence testing for
IMM and Tr-IMM relate to that of Det? In [28], a randomized polynomial-time equivalence
testing algorithm was given for IMM over C,Q and finite fields. Comparing this with the
above-mentioned results on determinant equivalence test [15, 25], we see that the complexity
of equivalence tests for Det and IMM are quite different over Q (unless integer factoring is
easy). Is this also the case between Det and Tr-IMM? One may be tempted to say “yes”
owing to the closeness of the definitions of IMM and Tr-IMM. However, contrary to this first
impression, we show that equivalence testing for Det and that for Tr-IMM are randomized
polynomial-time Turing reducible to each other over C, Q and finite fields12 (see Corollary
3). Thus, viewed in this way, Det and Tr-IMM are closer to each other than to IMM.13 For
brevity, we would henceforth denote the equivalence testing problems for Det and Tr-IMM
by DET and TRACE respectively.

Connections to algebra isomorphism and 3-tensor isomorphism. As mentioned before,
cubic form equivalence, algebra isomorphism and 3-tensor isomorphism are polynomial-time
equivalent. Moreover, degree-d form equivalence reduces to cubic form equivalence [1, 2]
and d-tensor isomorphism reduces to 3-tensor isomorphism [20] in polynomial-time, if d is
bounded. Det and Tr-IMM being two important polynomial families, we wonder if DET and
TRACE can be linked with any natural case of algebra isomorphism. Further, do DET and
TRACE reduce to any special case of cubic form equivalence or 3-tensor isomorphism? We
show that the answers to these are “yes”. The relevant problems are the full-matrix algebra
isomorphism (FMAI) problem and the 3-tensor isomorphism problem for the family of matrix
multiplication tensors (MMTI).

FMAI is a well-studied problem in computer algebra which is defined as follows: Given a
basis of a matrix algebra A ⊆Mm(F), check if A is isomorphic14 toMw(F), whereMm(F)
is the algebra of m × m matrices over F and dimF(A) = w2, and if yes then output an
isomorphism from A toMw(F). A randomized polynomial-time algorithm to solve FMAI

11Actually, [17] studied a related polynomial Tr-Poww,d, which is the trace of the d-th power of a w × w
symbolic matrix. They showed that a particular line of attack prescribed by GCT, namely orbit
occurrence obstructions, cannot prove super-linear lower bound on the “Tr-Pow complexity” of the
permanent. We are not aware of a similar result (or, more generally, a result that rules out the occurrence
obstructions approach as in [7, 21]) with Tr-Pow (or Det) replaced by Tr-IMM.

12The reduction works over any adequately large field F of characteristic zero or sufficiently large. We
also require that univariate polynomial factoring over F can be done efficiently.

13Talking of the difference between the “trace model” and the “(1,1) model”, a recent work [5] showed that
in the non-commutative setting, the border width complexity and the width complexity of a polynomial
are not always equal for the trace-ABP model, unlike the case for the classical (1, 1)-ABP model [38].

14 i.e., isomorphic as algebras over F.

J. Murthy, V. Nair, and C. Saha 72:5

over finite fields was given in [41,42], whereas over Q a randomized Turing reduction from
FMAI to integer factoring was shown in [10,22]. The reduction is polynomial-time if dimQ(A)
is bounded. Also, [4, 11] gave a randomized polynomial-time algorithm that outputs an
isomorphism from A ⊗Q L to Mw(L), where L is a degree w extension field of Q, if A is
isomorphic to Mw(Q). The decision version of FMAI over Q is in NP ∩ coNP [43]. The
results for DET in [15] were obtained by giving a randomized poly-time Turing reduction
from DET to FMAI. In this work, we give a randomized polynomial-time Turing reduction
from TRACE to DET (Theorem 1).

A d-tensor is a degree-d form (i.e., a degree-d homogeneous polynomial) f(x1,x2, . . . ,xd)
whose every monomial has exactly one variable from each of the sets x1,x2, . . . ,xd. The
d-tensor isomorphism problem is the following: Given two d-tensors f(x1,x2, . . . ,xd) and
g(x1,x2, . . . ,xd) decide if there exist A1 ∈ GL(|x1|,F), . . . , Ad ∈ GL(|xd|,F) such that
f = g(A1x1, A2x2, . . . , Adxd). The d-tensor isomorphism problem for a family of d-tensors is
defined accordingly, just like equivalence testing for a family of polynomials. MMTI is the 3-
tensor isomorphism problem for the family of matrix multiplication tensors {Tr-IMMw,3}w∈N.
The matrix multiplication tensor Tr-IMMw,3 is a crucial object in the study of asymptotically
fast algorithms for multiplying two w × w matrices. In this paper, we give a randomized
polynomial-time Turing reduction from FMAI to MMTI (Theorem 2). Further, it follows
easily from the symmetries of Tr-IMMw,d ([16], see Lemma 14) that MMTI reduces in
polynomial-time to TRACE.

Thus, the above results together with the reduction in [15] show that the four problems
– TRACE, DET, FMAI and MMTI – are randomized polynomial-time Turing reducible to
each other. Although, the equivalence between MMTI and FMAI has the same essence
as the equivalence between 3-tensor isomorphism (or cubic form equivalence) and algebra
isomorphism, our proofs are quite different from the proofs in [1, 2, 14,20]15. In particular,
we do not see any easy adaptation of the arguments in [1, 2, 14, 20] leading to the results
mentioned above. Our proofs link MMTI with FMAI, via TRACE and DET, by exploiting
the structure of the Lie algebra of Tr-IMMw,d (which is in the same spirit as the reduction
from DET to FMAI in [15] using the Lie algebra of Detw). Also, the reduction from d-tensor
isomorphism (similarly, degree-d form equivalence) to 3-tensor isomorphism (respectively,
cubic form equivalence) in [1,2,20] is efficient only if d is a constant. Whereas, our reduction
from testing equivalence to Tr-IMMw,d to MMTI runs in time poly(w, d).

1.1 The results (stated formally)
The polynomial Tr-IMMw,d := tr(Q0 ·Q1 . . . Qd−1), where Qk is a w×w symbolic matrix in
xk variables. Throughout, we will assume that w ≥ 2, d ≥ 3 and char(F) = 0 or > (w2d)5,
and univariate polynomial factoring over F can be done in probabilistic polynomial time.
The restriction on the characteristic of F has not been optimized in this paper. The missing
proofs can be found in the extended version of this paper (see [37]).

I Theorem 1 (TRACE to DET). There is a randomized algorithm that takes as input black-
box access to an n-variate degree-d polynomial f and oracle access to DET over F, and
does the following with high probability: If there is a w ∈ N such that f is equivalent to
Tr-IMMw,d, then it outputs an A ∈ GL(n,F) such that f = Tr-IMMw,d(Ax), otherwise it
outputs “No such w exists”. The algorithm runs in poly(n, β) time, where β is the bit length
of the coefficients of f .

15The reductions in these prior works are deterministic and hold for the decision versions of the problems,
whereas the reductions here are randomized and for the search versions of the problems.

MFCS 2020

72:6 Randomized Poly-Time Equivalence Between DET and TRACE

The reduction is given in Section 4. Theorem 1 implies a randomized poly-time algorithm for
TRACE over C and finite fields, and also over Q (provided the algorithm has access to integer
factoring oracle and w is bounded) via known results on DET [15, 25]. Two other remarks:
1. No knowledge of w: The algorithm requires no knowledge of w, if the input polynomial f

is equivalent to Tr-IMMw,d for some w ∈ N then the algorithm finds such a w.
2. Reduction to TRACE-TI: The tensor isomorphism problem for Tr-IMM (denoted

TRACE-TI) is as follows: Given blackbox access to a d-tensor g(x0, . . . ,xd−1), check
if there are B0, . . . , Bd−1 ∈ GL(w2,F) such that g = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1),
and if yes then output such B0, . . . , Bd−1. The algorithm in Theorem 1 first reduces
TRACE to TRACE-TI (finding w in this step), and then solves TRACE-TI using DET oracle
over F. The reduction from TRACE to TRACE-TI (which resembles a similar reduction
used in the equivalence test for IMM [28]) does not require oracle access to DET. A
randomized polynomial-time algorithm for TRACE-TI over C was given in [19], but the
algorithm does not reduce TRACE-TI to DET.

I Theorem 2 (FMAI to MMTI). There is randomized algorithm that takes as input a basis
of an algebra A ⊆ Mm(F), and oracle access to MMTI, and does the following with high
probability: If A ∼= Mw(F), where w2 = dimF(A) then it outputs ’Yes’ and otherwise it
outputs ’No such w ∈ N exists’. If the algorithm outputs ’Yes’ then it also outputs an algebra
isomorphism from A toMw(F). The algorithm runs in poly(m,β) time, where β is the bit
length of the entries of the input basis matrices.

The algorithm is given in Section 5.2. It uses a characterization of Tr-IMMw,d by the Lie
algebra gTr-IMM of its group of symmetries (Lemma 17) along with a nice choice of basis of
gTr-IMM (Section 3) to reduce FMAI to degree four TRACE-TI in deterministic polynomial
time, which in turn reduces to MMTI in randomized polynomial time (Theorem 4). Two
more remarks on Theorem 2:
1. MMTI to TRACE: Using oracle access to TRACE, it is easy to solve MMTI (in fact

TRACE-TI) in polynomial time: Since a polynomial identity test at the end of a
TRACE-TI algorithm ensures that the output of the algorithm is correct, it suffices
to prove that if the input to a TRACE algorithm is a d-tensor f that is isomorphic
to Tr-IMMw,d, then the algorithm outputs d matrices B0, . . . , Bd−1 such that f(x) =
Tr-IMMw,d(B0x0, . . . , Bd−1xd−1). This is true as any algorithm for TRACE outputs a
block-diagonal matrix B such that f(x) = Tr-IMMw,d(Bx) (from Lemma 14). Matrices
B0, . . . , Bd−1 can be easily derived from B.

2. A reduction from FMAI to DET: A Turing reduction from FMAI to DET over F was given
in [15] that runs in exponential time. We improve this run-time significantly: Theorems 1
and 2 imply that FMAI is in fact randomized polynomial-time Turing reducible to DET.

I Corollary 3. It follows from Theorems 1 and 2, and the randomized polynomial-time
Turing reduction from DET to FMAI in [15], that the four problems – TRACE, DET, FMAI
and MMTI – are randomized polynomial-time equivalent under Turing reductions.

As mentioned before, the next theorem (proof is omitted) is used in the proof of Theorem 2.

I Theorem 4 (TRACE-TI to MMTI). There is a randomized algorithm that takes as input
black-box access to an n-variate d-tensor f(x0, . . . ,xd−1), and oracle access to MMTI, and
does the following with high probability: If f is isomorphic to Tr-IMMw,d then it outputs
B0, B1, . . . , Bd−1 ∈ GL(w2,F) such that f = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1), otherwise
it outputs “No”. The algorithm runs in poly(n, β) time, where β is the bit length of the
coefficients of f .

J. Murthy, V. Nair, and C. Saha 72:7

2 Notations and definitions

Recall that Tr-IMMw,d := tr(Q0 · Q1 . . . Qd−1), where Qk = (x(k)
ij)i,j∈[w]. Let xk =

{x(k)
ij }i,j∈[w], x =]k∈[0,d−1]xk, and n = w2d. At times, we will refer to the x variables as

x1, . . . , xn. The x variables are ordered as x0 > x1 > . . . > xd−1, and within a variable set
xk, if k is even (similarly, odd) then the variables are ordered in row-major (respectively,
column-major) fashion. The rows and columns of a matrix inMn =Mn(F), and the entries
of a column vector in Fn are indexed by x variables ordered as above. A matrix inMn is
called block-diagonal if the row and column of every non-zero entry of the matrix is indexed
by variables from the same variable set. A few more basic definitions and terminologies about
matrices, matrix products and ABP (like full-rank linear matrices and matrix products)
can be found in [37]. The indices k, ` ∈ [0, d− 1] will be treated as elements in Z/dZ, i.e.,
k + 1 = 0 if k = d − 1. Let L ⊆ Mn. A subspace U ⊆ Fn is L-invariant if for all M ∈ L,
M · U ⊆ U .

I Definition 5 (Irreducible invariant subspace). An L-invariant subspace U ⊆ Fn is irreducible
if there are no proper L-invariant subspaces U1 and U2 of U such that U = U1 ⊕ U2.

I Definition 6 (Closure of a vector). The closure of a vector v ∈ Fn under the action of
L ⊆Mn is the smallest L-invariant subspace of Fn containing v.

An algorithm to compute the closure of a vector in polynomial-time is given in [28]. An
easy-to-work-with definition of the Lie algebra of the group of symmetries of a polynomial
was given in [25]. For brevity, we will call it the Lie algebra of a polynomial.16

I Definition 7 (Lie algebra gf of a polynomial f). The Lie algebra of an n-variate polyno-
mial f(x) is denoted as gf and it consists of matrices E = (eij)i,j∈[n] ∈ Mn that satisfy∑

i,j∈[n] eijxj ·
∂f
∂xi

= 0.

Note that gf is a vector space, and a basis of gf can be computed in randomized polynomial-
time from blackbox access to f by solving a linear system (see [25]).

I Fact 1. If f(x) = g(Ax) for an A ∈ GL(n,F), then gf = A−1ggA.

3 Symmetries and Lie algebra of Tr-IMM

The symmetries and the Lie algebra gTr-IMM of Tr-IMMw,d have been studied in [16] over C.
Here, we work out the exact structure of the matrices in gTr-IMM with respect to the variable
ordering mentioned above, and use it to identify the gTr-IMM-invariant subspaces of Fn and
the symmetries of Tr-IMMw,d over F. These facts about the Lie algebra and the symmetries
will be used in the proofs of Theorems 1, 2 and 4.

B Claim 8. If E ∈ gTr-IMM then E is block-diagonal.

Define the spaces B0, . . . ,Bd−1 of block-diagonal matrices as follows: Every matrix in Bk
is a block-diagonal matrix whose non-zero entries are confined to the rows and columns
indexed by xk and xk+1 variables. For k ∈ [0, d− 1] and B ∈ Bk, let [B]k be the 2w2 × 2w2

16Geometrically speaking, the Lie algebra of an n-variate polynomial f(x) is the subspace of Mn(F)
obtained by translating the tangent of the algebraic set {A ∈ Mn : f(Ax) = f(x)} at A = In and
making it pass through origin.

MFCS 2020

72:8 Randomized Poly-Time Equivalence Between DET and TRACE

sub-matrix of B whose rows and columns are indexed by xk and xk+1 variables. If d is even
then

Bk :=
{
B ∈Mn : [B]k =

[
Iw ⊗MT 0

0 −Iw ⊗M

]
for M ∈Mw

}
if k is even,

Bk :=
{
B ∈Mn : [B]k =

[
MT ⊗ Iw 0

0 −M ⊗ Iw

]
for M ∈Mw

}
if k is odd. (1)

If d is odd, then the definition of Bk remains the same except for Bd−1 which is defined as

Bd−1 :=
{
B ∈Mn : [B]d−1 =

[
Iw ⊗MT 0

0 −M ⊗ Iw

]
for M ∈Mw

}
.

I Lemma 9. The space B0 + . . .+ Bd−1 is contained in gTr-IMM.

I Lemma 10. Suppose B ∈ gTr-IMM and there is a k ∈ [0, d−1] such that the non-zero entries
of B are confined to the rows and columns that are indexed by xk and xk+1 variables. Then
B ∈ Bk.

In fact gTr-IMM = B0 + . . . + Bd−1, but we do not prove this stronger statement here. Let
ei ∈ Fn be the vector with 1 in the entry indexed by xi ∈ x and zero elsewhere. A subspace
of Fn is a coordinate subspace if it is spanned by a set of ei’s. Let Uk = spanF{ei | xi ∈ xk}.

B Claim 11. Any non-zero gTr-IMM-invariant subspace is a coordinate subspace of Fn.

I Lemma 12. The only irreducible gTr-IMM-invariant subspaces of Fn are U0, . . . ,Ud−1.

I Corollary 13. If f = Tr-IMMw,d(Ax), where A ∈ GL(n,F), then the only irreducible
gf -invariant subspaces of Fn are A−1U0, . . . , A

−1Ud−1.

The above lemmas help us derive the group of symmetries of Tr-IMMw,d over F (proof
omitted).

I Lemma 14. Let Tr-IMMw,d = tr(Q′0 · · ·Q′d−1), where Q′0 · · ·Q′d−1 is a full-rank (w, d, n)-
matrix product over F. Then there are Ck ∈ GL(w,F) for k ∈ [0, d − 1], and ` ∈ [0, d − 1]
such that either Q′k = Ck · Q`+k · C−1

k+1 for k ∈ [0, d − 1] or Q′k = Ck · QT`−k · C
−1
k+1 for

k ∈ [0, d− 1].

4 Reduction from TRACE to DET: Proof of Theorem 1

The reduction is given in Algorithm 1. The algorithm proceeds by assuming that the input
polynomial f is equivalent to Tr-IMMw,d for some w ≥ 2. A final polynomial identity test
(PIT) takes care of the case when it is not. Algorithm 1 has two main steps – reduction from
TRACE to TRACE-TI (Algorithm 4 in [37]), and reduction from TRACE-TI to DET (Algorithm
2). The reduction from TRACE to TRACE-TI is inspired by a similar reduction in [28] for
the IMM polynomial. Below we discuss the proof strategy of the reduction from TRACE
to TRACE-TI, and give the details in the extended version. Algorithm 2 is given in Section 4.1.

J. Murthy, V. Nair, and C. Saha 72:9

Reduction from TRACE to TRACE-TI. First, we compute bases of the irreducible gf -
invariant subspaces of Fn. By Corollary 13, these are bases of the spaces A−1Uσ(0), . . . ,

A−1Uσ(d−1), where σ is an unknown permutation on {0, . . . , d−1}. As dimF(Uk) = w2, we get
w. Now, let Vk be the n×w2 matrix consisting of the basis vectors of A−1Uσ(k). Form the n×n
matrix V = [V0 | V1 | . . . | Vd−1]. Observe that V = A−1 ·E, where E is a “block-permuted”
invertible matrix (by the definition of Uk). Thus, h(x) := f(V x) = Tr-IMMw,d(Ex). We
now make use of the evaluation dimension measure (Definition C.1 in [37]) on h to essentially
ensure that E is a block-diagonal matrix.

Algorithm 1 Reduction from TRACE to DET.

INPUT: Blackbox access to an n-variate, degree d polynomial f and oracle access to DET.
OUTPUT: If there is an w ∈ N such that f is equivalent to Tr-IMMw,d then output an
A ∈ GL(n,F) such that f(x) = Tr-IMMw,d(Ax). Otherwise output “No such w exists”.

Reduction to TRACE-TI
1: Use Algorithm 4 in [37] with input f to compute A′ ∈ GL(n,F) and a w ∈ N such that
h(x) = f(A′x) is a d-tensor in the variable sets x0, . . . ,xd−1 which is isomorphic to
Tr-IMMw,d. If the algorithm outputs ’No’, output “No such w exists”.

Reduction from TRACE-TI to DET
2: Use Algorithm 2 with input h, w and oracle access to DET to compute matrices
B0, . . . , Bd−1 ∈ GL(w2,F) such that h(x) = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1). If Al-
gorithm 2 outputs ’No’ then output “No such w exists”.

3: Let B ∈ GL(n,F) be the block-diagonal matrix whose k-th block is Bk, and let A =
B(A′)−1.

Final PIT
4: Pick a random point a ∈ Sn where S ⊆ F is of size n5. If f(a) = Tr-IMMw,d(Aa) then

output w and A, else output “No such w exists”.

4.1 Reduction from TRACE-TI to DET
The following two claims (proofs are omitted) help in the argument.

B Claim 15. Let X be a w × w full-rank linear matrix17 and Y = Iw ⊗X. Then there do
not exist non-zero matrices T, S ∈Mw2(F) such that T · Y = Y T · S.

B Claim 16. Let X be a w × w full-rank linear matrix and Y = Iw ⊗ X, and suppose
T, S ∈Mw2(F) such that T · Y = Y · S. Then T = S = M ⊗ Iw for some M ∈Mw(F).

The correctness of Algorithm 2 is argued below by tracing its steps.

Steps 1–3: Assume that h is isomorphic to Tr-IMMw,d. Hence, there is a full-rank
(w, d, n) set-multilinear matrix product X0 . . . Xd−1 in x0, . . . ,xd−1 variables such that

17The entries in a full-rank linear matrix are linearly independent linear forms, and it is different from
a matrix whose entries are linear forms and has full-rank over the corresponding field. Note that a
full-rank linear matrix has full-rank over the corresponding field but the vice-versa is not always true.

MFCS 2020

72:10 Randomized Poly-Time Equivalence Between DET and TRACE

Algorithm 2 Reduction from TRACE-TI to DET.

INPUT: A w ∈ N, blackbox access to d-tensor h(x0, . . . ,xd−1) that is isomorphic to
Tr-IMMw,d, and oracle access to DET.
OUTPUT: Matrices B0, . . . , Bd−1 ∈ GL(w2,F) such that h(x) = Tr-IMMw,d(B0x0, . . . ,

Bd−1xd−1).
1: Use the set-multilinear ABP reconstruction algorithm (which follows from [31]) to

construct a (w2, d, n) set-multilinear ABP Y ′0 . . . Y
′
d−1 in x0, . . . ,xd−1 variables that

computes h.
2: For k ∈ [1, d− 2], use the factorization algorithm in [23] to compute blackbox access to a

degree-w polynomial gk such that det(Y ′k) = αkgk(xk)w, where αk ∈ F×.
3: For k ∈ [1, d− 2], use the DET oracle on input gk to compute X ′k such that det(X ′k) = gk.

If DET returns gk is not equivalent to Detw, then output “No”.

4: For k ∈ [1, d− 2], let Zk = Iw ⊗X ′k.
5: For k ∈ [1, d− 2], compute T ′k−1, S

′
k ∈ GL(w2,F) such that either T ′k−1 · Y ′k = Zk · S′k or

T ′k−1 · Y ′k = ZTk · S′k. If both equalities are satisfied, output “No” (see Observation 4.1).

6: Let Ŷ0 = Y ′0 · (T ′0)−1, Ŷk = (T ′k−1) · Y ′k · (T ′k)−1 for k ∈ [1, d− 3], Ŷd−2 = (T ′d−3) · Y ′d−2 ·
(S′d−2)−1, and Ŷd−1 = S′d−2 · Y ′d−1.

7: Let X̂d−2 be such that Ŷd−2 = Iw⊗ X̂d−2, and for k ∈ [1, d−3] construct M̂k ∈ GL(w,F)
and X̂k such that Ŷk = (M̂k ⊗ Iw) · (Iw ⊗ X̂k). (See Observation 4.3.)

8: Let Y d−1 = (
∏d−3
k=1(M̂k ⊗ Iw)) · Ŷd−1. Construct X̂d−1 such that its (i, j)-th entry is the

((j−1)w+ i)-th entry of Y d−1, and X̂0 such that its (i, j)-th entry is the ((i−1)w+ j)-th
entry of Ŷ0.

9: Obtain the transformations B0, . . . , Bd−1 ∈ GL(w2,F) from (the entries of) X̂0, . . . , X̂d−1
respectively. Return B0, . . . , Bd−1.

h = tr(X0 . . . Xd−1). Observe that, h is computed by the (w2, d, n)-set-multilinear ABP
Y0 . . . Yd−1, where

Y0 = (X0(1, 1), . . . , X0(1, w), X0(2, 1), . . . , X0(2, w), . . . , X0(w, 1), . . . , X0(w, w))
Yk = Iw ⊗Xk for k ∈ [1, d− 2]

Yd−1 = (Xd−1(1, 1), . . . , Xd−1(w, 1), Xd−1(1, 2), . . . , Xd−1(w, 2), . . . , Xd−1(1, w), . . . , Xd−1(w, w))T .

Using the randomized polynomial-time set-multilinear ABP reconstruction algorithm in
[31], a (w2, d, n) set-multilinear ABP Y ′0 . . . Y

′
d−1 computing h is constructed in Step 1.

It follows from the properties of this algorithm and the ABP Y0 . . . Yd−1 that there are
T0, . . . , Td−2 ∈ GL(w2,F) so that

Y ′0 = Y0 · T0 , Y ′k = T−1
k−1 · Yk · Tk for k ∈ [1, d− 2], and Y ′d−1 = T−1

d−2 · Yd−1 .

Hence, for all k ∈ [1, d − 2], det(Y ′k) = ck(det(Xk))w, where ck ∈ F×. As the determinant
polynomial is irreducible, at Step 2, we have gk = βk det(Xk) = det(diag(βk, 1, . . . , 1) ·Xk)
for some βk ∈ F× which implies gk is equivalent to Detw. At step 3, DET on input gk returns
X ′k such that

Xk = Ck ·X ′k ·Dk or Xk = Ck · (X ′k)T ·Dk where Ck, Dk ∈ GL(w,F).

The above follows from the group of symmetries of Detw (see Fact 1 in [26]).

J. Murthy, V. Nair, and C. Saha 72:11

Steps 4–5: At Step 4, for k ∈ [1, d− 2], the matrix Zk = Iw ⊗X ′k satisfies

Yk = (Iw ⊗ Ck) · Zk · (Iw ⊗Dk) or Yk = (Iw ⊗ Ck) · ZTk · (Iw ⊗Dk).

Hence, at Step 5 there are T ′k−1 := (Iw ⊗C−1
k) · Tk−1 and S′k := (Iw ⊗Dk) · Tk in GL(w2,F)

such that

T ′k−1 · Y ′k = Zk · S′k or T ′k−1 · Y ′k = ZTk · S′k.

Observation 4.1 uses Claim 15 to show that at Step 5 we can identify between the above two
cases, as only one of them is true.

I Observation 4.1. If h(x0, . . . ,xd−1) is isomorphic to Tr-IMMw,d then for matrices Y ′k
and Zk as computed in Algorithm 2, where k ∈ [1, d− 2], there are no matrices T ′k−1, S

′
k ∈

GL(w2,F) such that both T ′k−1 · Y ′k = Zk ·S′k and T ′k−1 · Y ′k = ZTk ·S′k are simultaneously true.

At step 5 the matrices T ′k−1 and S′k are computed by solving linear equations. Choosing a
solution at random from the solution space ensures that the computed matrices T ′k−1 and S′k
are invertible with high probability. Henceforth, we assume that T ′k−1 · Y ′k = Zk · S′k. The
proof for T ′k−1 · Y ′k = ZTk · S′k is similar. In Observation 4.2 we show that T ′k−1 and S′k are
related to Tk−1 and Tk respectively for k ∈ [1, d− 2].

I Observation 4.2 (Structure of T ′k−1 and S′k). The matrices T ′k−1 and S′k computed at Step
5 of Algorithm 2, where k ∈ [1, d− 2], satisfy the following: (T ′k−1)−1 = T−1

k−1 · (Iw ⊗ Ck) ·
(M−1

k ⊗ Iw) and S′k = (Mk ⊗ Iw) · (Iw ⊗Dk) · Tk, where Mk ∈ GL(w,F).

Steps 6–8: Observation 4.3 describes the structure of the matrices Ŷ0, . . . , Ŷd−1 computed
at Step 6. Clearly, Ŷ0 . . . Ŷd−1 = Y ′0 . . . Y

′
d−1 is a set-multilinear ABP computing h.

I Observation 4.3. Let M1, . . . ,Md−2 be the matrices as defined in Observation 4.2. Then
1. Ŷk = (MkM

−1
k+1 ⊗ Iw) · (Iw ⊗ (C−1

k ·Xk · Ck+1)) for k ∈ [1, d− 3],
2. Ŷd−2 = Iw ⊗ (C−1

d−2 ·Xd−2 ·D−1
d−2),

3. Ŷ0 = Y0 · (Iw ⊗ C1) · (M−1
1 ⊗ Iw), and Ŷd−1 = (Md−2 ⊗ Iw) · (Iw ⊗Dd−2) · Yd−1.

By the above observation, at Step 7, X̂d−2 = C−1
d−2 ·Xd−2 ·D−1

d−2. Moreover, the structure
of Ŷk (as stated in the observation) enables the algorithm to factor it in Step 7 and obtain
X̂k, M̂k such that

X̂k = ak(C−1
k ·Xk · Ck+1) and M̂k = a−1

k (Mk ·M−1
k+1) for some ak ∈ F×.

Let a =
∏d−3
k=1 ak. Then at step 8, Y d−1 = a−1 · (M1 ⊗ Iw) · (Iw ⊗Dd−2) · Yd−1. Now, it is a

simple exercise to verify that at step 8

X̂0 = (MT
1)−1 ·X0 · C1 and X̂d−1 = a−1(Dd−2 ·Xd−1 ·MT

1).

Step 9: Therefore, h = tr(X̂0 . . . X̂d−1). The transformation Bk ∈ GL(w2,F) is such that
its rows are the coefficient vectors of the linear forms in X̂k.
Hence, h = Tr-IMMw,d(B0x0, . . . , Bd−1xd−1).

MFCS 2020

72:12 Randomized Poly-Time Equivalence Between DET and TRACE

5 Reduction from FMAI to MMTI: Proof of Theorem 2

5.1 Characterization of Tr-IMM by its Lie algebra
The following lemma gives a characterization of Tr-IMMw,d by its Lie algebra. The spaces
B0, . . . ,Bd−1 are as defined in Section 3.

I Lemma 17. Let f be a non-zero d-tensor in the variable sets x0, . . . ,xd−1 such that for
all k ∈ [0, d− 1] Bk ⊆ gf . Then there is an α ∈ F× such that f(x) = α · Tr-IMMw,d(x).

I Corollary 18. Let B ∈ GL(n,F) be a block-diagonal matrix with individual blocks B0, . . . ,

Bd−1 and f be a non-zero d-tensor in the variable sets x0, . . . ,xd−1 such that for all k ∈
[0, d−1], B−1·Bk·B ⊆ gf . Then there is an α ∈ F× such that f(x) = α·Tr-IMMw,d(B0x0, . . . ,

Bd−1xd−1).

5.2 Proof of Theorem 2
Algorithm 3 takes as input a basis {E1, E2, . . . , Er} of an algebra A ⊆ Mm(F), and if
A ∼=Mw for some w ∈ N, then it computes a 4-tensor f in the variable sets x0,x1,x2,x3
in deterministic polynomial time such that f is isomorphic to Tr-IMMw,4. It then uses the
algorithm in Theorem 4 to find an isomorphism from f to Tr-IMMw,4 using oracle access to
MMTI in randomized polynomial time. An easy check at the end of the algorithm ensures
that if the algorithm outputs an isomorphism then it is correct. Thus, we need to prove that
if A is isomorphic toMw for some w ∈ N then the algorithm outputs an isomorphism. This
is argued by tracing the steps of the algorithm assuming A is isomorphic toMw for some
w ∈ N.

Steps 1–2: At Step 2 there is a K ∈ GL(w2,F) and a basis {C1,1, . . . , Cw,w} ofMw such
that Li,j = K−1 · (Iw ⊗ Ci,j) ·K for all i, j ∈ [w] (by the Skolem-Noether theorem, see next
claim).

B Claim 19. Suppose A ∼=Mw for some w ∈ N. Then there exists a K ∈ GL(w2,F) and
linearly independent matrices {C1,1, . . . , Cw,w} inMw such that Li,j = K−1·(Iw⊗Ci,j)·K for
all i, j ∈ [w].

Step 3: The space spanned by {LT1,1, . . . , LTw,w} is KT · (Iw ⊗Mw) · (KT)−1.

I Observation 5.1. The space of matrices in Mw2 that commute with every matrix in
KT · (Iw ⊗Mw) · (KT)−1 is KT · (Mw ⊗ Iw) · (KT)−1. So, {N1,1, . . . , Nw,w} is a basis of
KT · (Mw ⊗ Iw) · (KT)−1.

Step 4: Let n = 4w2. For k ∈ [0, 3], let B′k be the following spaces: Every matrix in B′k is a
n× n block-diagonal matrix (with rows and columns indexed by x0, . . . ,x3) and its non-zero
entries are confined to the rows and columns indexed by xk and xk+1. For B ∈ Bk, let [B]k
be the 2w2 × 2w2 sub-matrix of B as defined in Equation 1 (Section 3). Then
B′k :={

B ∈Mn : [B]k =
[

KT · (Iw ⊗MT)(KT)−1 0
0 K−1 · (−Iw ⊗M) ·K

]
for M ∈Mw

}
if k is even,

:={
B ∈Mn : [B]k =

[
K−1 · (MT ⊗ Iw) ·K 0

0 KT · (−M ⊗ Iw) · (KT)−1

]
for M ∈Mw

}
if k is odd.

The following observation follows from Lemma 9 and Fact 1.

J. Murthy, V. Nair, and C. Saha 72:13

Algorithm 3 Reduction from FMAI to MMTI.

INPUT: A basis {E1, E2, . . . , Er} of an algebra A ⊆Mm(F), and oracle access to MMTI.
OUTPUT: If A ∼=Mw(F) for some w ∈ N then output an algebra isomorphism φ : A →
Mw, otherwise output “No w ∈ N such that A ∼=Mw”.

1: If r 6= w2 for any w ∈ N, then output “No w ∈ N such that A ∼=Mw”.
2: Rename and order the basis elements as E1,1, . . . , E1,w, . . . , Ew,1, . . . , Ew,w. Compute

matrices L1,1, . . . , Lw,w, whose rows and columns are indexed by the above basis elements
in order, as follows: Li,j is the matrix corresponding to the left multiplication of Ei,j on
E1,1, . . . Ew,w. In particular, Ei,j · Ei2,j2 =

∑
i1,j1∈[w] Li,j((i1, j1), (i2, j2))Ei1,j1 .

3: Compute a basis of the space spanned by matrices in Mw2 that commute with
{LT1,1, . . . , LTw,w}. If the dimension of this space is not w2, then output ’No w ∈ N
such that A ∼=Mw’. Otherwise, let the computed basis be {N1,1, . . . , Nw,w}.

4: Compute a non-zero 4-tensor f in x0, . . . ,x3 variables whose coefficients satisfy the
following equations: a) for all k ∈ [0, 3], k even, and for all L ∈ {L1,1, . . . Lw,w}∑

i1,j1,i2,j2∈[w2]

LT ((i1, j1)(i2, j2))x(k)
i2,j2

∂f

x
(k)
i1,j1

−
∑

i1,j1,i2,j2∈[w2]

L((i1, j1)(i2, j2))x(k+1)
j2,i2

∂f

x
(k+1)
j1,i1

= 0.

(2)

b) for all k ∈ [0, 3], k odd, and for all N ∈ {N1,1, . . . Nw,w}∑
i1,j1,i2,j2∈[w2]

NT ((i1, j1)(i2, j2))x(k)
j2,i2

∂f

x
(k)
j1,i1

−
∑

i1,j1,i2,j2∈[w2]

N((i1, j1)(i2, j2))x(k+1)
i2,j2

∂f

x
(k+1)
i1,j1

= 0.

(3)

5: Use the algorithm in Theorem 4 on input f and with oracle access to MMTI.
If the algorithm outputs ’No’ then output ’No w ∈ N such that A ∼= Mw’.
Otherwise, let B0, B1, B2, B3 be the output of the algorithm such that f =
Tr-IMMw,4(B0x0, B1x1, B2x2, B3x3).

6: Check if there exist matrices F1,1, . . . , Fw,w ∈Mw such that B0 · LTi,j ·B
−1
0 = Iw ⊗ FTi,j

and B1 ·Li,j ·B−1
1 = Iw ⊗Fi,j for all i, j ∈ [w]. If such matrices do not exist then output

’No w ∈ N such that A ∼=Mw’, otherwise output φ : A →Mw, where φ(Ei,j) = Fi,j for
all i, j ∈ [w] (extended linearly to the whole of A) as the algebra isomorphism from A to
Mw.

I Observation 5.2. The Lie algebra of Tr-IMMw,4((KT)−1x0,Kx1, (KT)−1x2,Kx3) con-
tains B′0,B′1,B′2,B′3.

At Step 4, Algorithm 3 computes a non-zero 4-tensor f such that B′k ⊆ gf for all k ∈ [0, 3].
Equation 2 ensures B′0, B′2 ∈ gf , and Equation 3 ensures B′1,B′3 ∈ gf . That the algorithm
is able to compute a non-zero f (by solving a linear system) follows from Observation 5.2.
Since the number of monomials in f is at most w8, this step runs in polynomial time.

MFCS 2020

72:14 Randomized Poly-Time Equivalence Between DET and TRACE

Step 5: From Corollary 18 it follows that
f(x) = α ·Tr-IMMw,4((KT)−1x0, Kx1, (KT)−1x2,Kx3) for some α ∈ F×. Hence, at step 5
with high probability the algorithm in Theorem 4 outputs four matrices B0, B1, B2, B3 ∈
GL(w2,F) such that f(x) = Tr-IMMw,4 (B0x0, B1x1, B2x2, B3x3).

Step 6: Let B be the block-diagonal matrix whose k-th block is Bk, for k ∈ [0, 3]. Since
B′0 ⊆ gf and gf = B−1 · gTr-IMM · B (from Fact 1), B · B′0 · B−1 ⊆ gTr-IMM. Observe that
every matrix in B · B′0 ·B−1 is block-diagonal with its non-zero entries confined to the first
two blocks. Hence, from Lemma 10, and the fact that both the spaces B · B′0 ·B−1 and B0
have dimension w2, we have B · B′0 · B−1 = B0. In particular, for every i, j ∈ [w] there is
an Fi,j ∈Mw such that B0 · LTi,j ·B

−1
0 = Iw ⊗ FTi,j and B1 · Li,j ·B−1

1 = Iw ⊗ Fi,j . Finally,
verify that φ(Ei,j) = Fi,j is an algebra isomorphism.

Comparison with [15]: In [15], FMAI is reduced to DET by using the fact that Detw is
characterized by its Lie algebra (see Lemma 7.1 in [15]). If the input algebra A is isomorphic
toMw then the algorithm in [15] computes a degree-w polynomial f in w2 variables such that
gf contains the Lie algebra of a polynomial equivalent to Detw. Hence, the time complexity of
their algorithm is wO(w). Algorithm 3 follows the same approach, but computes a degree four
polynomial f such that gf contains the Lie algebra of a polynomial equivalent to Tr-IMMw,4.
So, the complexity of this algorithm is wO(1).

References
1 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to

complexity of problems. In 22nd Annual Symposium on Theoretical Aspects of Computer
Science, STACS 2005, pages 1–17, 2005.

2 Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In 23rd
Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006, pages 115–126,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

3 Manuel Araújo. Classification of Quadratic Forms. https://www.math.tecnico.ulisboa.pt/
~ggranja/manuel.pdf, 2011.

4 László Babai and Lajos Rónyai. Computing irreducible representations of finite groups.
Mathematics of Computation, 55(192):705–722, 1990.

5 Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and Nitin Saurabh.
Algebraic branching programs, border complexity, and tangent spaces. Electronic Colloquium
on Computational Complexity (ECCC), 27:31, 2020. URL: https://eccc.weizmann.ac.il/
report/2020/031.

6 Peter A Brooksbank and James B Wilson. The module isomorphism problem reconsidered.
Journal of Algebra, 421:541–559, 2015.

7 Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions in geo-
metric complexity theory. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 386–395. IEEE Computer Society, 2016.

8 Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial derivatives in arithmetic complexity and
beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011.

9 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula
lower bounds for iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70–
92, 2019.

10 J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll. Explicit n-descent on elliptic
curves III. algorithms. Math. Comput., 84(292):895–922, 2015.

https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://eccc.weizmann.ac.il/report/2020/031
https://eccc.weizmann.ac.il/report/2020/031

J. Murthy, V. Nair, and C. Saha 72:15

11 W. M. Eberly. Computations for algebras and group representations. PhD thesis, Department
of Computer Science, University of Toronto, 1989.

12 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for
depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173–1201,
2015.

13 Georg Frobenius. Ueber die Darstellung der endlichen Gruppen durch lineare Substitutionen.
Sitzungber. der Berliner Akademie, 7:994–1015, 1897.

14 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Linear Algebra and its Applications, 566:212–244, 2019.

15 Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equivalence test
over finite fields and over Q. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, pages 62:1–62:15, 2019.

16 Fulvio Gesmundo. Geometric aspects of iterated matrix multiplication. Journal of Algebra,
461:42–64, 2016.

17 Fulvio Gesmundo, Christian Ikenmeyer, and Greta Panova. Geometric complexity theory and
matrix powering. Differential Geometry and its Applications, 55:106–127, 2017.

18 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68. ACM, 1986.

19 Joshua A. Grochow. Symmetry and equivalence relations in classical and geometric complexity
theory. PhD thesis, The University of Chicago, 2012. Available from https://www.cs.colorado.
edu/~jgrochow/grochow-thesis.pdf.

20 Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups, and cubic
forms: completeness and reductions. CoRR, abs/1907.00309, 2019.

21 Christian Ikenmeyer and Greta Panova. Rectangular kronecker coefficients and plethysms
in geometric complexity theory. In Irit Dinur, editor, IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 396–405. IEEE Computer Society, 2016.

22 Gábor Ivanyos, Lajos Rónyai, and Joseph Schicho. Splitting full matrix algebras over algebraic
number fields. Jounral of Algebra, 354:211–223, 2012.

23 Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black Boxes for
Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and
Denominators. J. Symb. Comput., 9(3):301–320, 1990.

24 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.
In Proceedings of the 22nd Symposium on Discrete Algorithms, SODA 2011, pages 1409–1421,
2011.

25 Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of the
44th Symposium on Theory of Computing, STOC 2012, pages 643–662, 2012. Full text
available from https://www.microsoft.com/en-us/research/wp-content/uploads/2016/
02/Projection.pdf.

26 Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization
and reconstruction of low width algebraic branching programs. Computational Complexity,
28(4):749–828, 2019.

27 Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivious
algebraic branching programs (roabps) and multilinear depth-three circuits. ACM Trans.
Comput. Theory, 12(1), 2020. Conference version appeared in the proceedings of STACS 2016.

28 Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of full rank
algebraic branching programs. TOCT, 11(1):2:1–2:56, 2019. Conference version appeared in
the proceedings of CCC 2017.

29 Neeraj Kayal and Chandan Saha. Lower bounds for sums of products of low arity polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 22:73, 2015. URL: http:
//eccc.hpi-web.de/report/2015/073.

MFCS 2020

https://www.cs.colorado.edu/~jgrochow/grochow-thesis.pdf
https://www.cs.colorado.edu/~jgrochow/grochow-thesis.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Projection.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/Projection.pdf
http://eccc.hpi-web.de/report/2015/073
http://eccc.hpi-web.de/report/2015/073

72:16 Randomized Poly-Time Equivalence Between DET and TRACE

30 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of
depth-four formulas with low individual degree. Theory of Computing, 14(1):1–46, 2018.
Conference version appeared in the proceedings of STOC 2016.

31 Adam Klivans and Amir Shpilka. Learning arithmetic circuits via partial derivatives. In
Proceedings of the 16th Conference on Learning Theory, COLT 2003, pages 463–476, 2003.

32 Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arithmetic
Circuits. SIAM J. Comput., 46(1):336–387, 2017.

33 J. M Landsberg. Geometric complexity theory: an introduction for geometers. Annali
Dell’Universita’ Di Ferrara, 61(1):65–117, 2015.

34 Meena Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci., 1997, 1997.

35 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory I: an approach to the P
vs. NP and related problems. SIAM J. Comput., 31(2):496–526, 2001.

36 Ketan Mulmuley and Milind A. Sohoni. Geometric complexity theory II: towards explicit
obstructions for embeddings among class varieties. SIAM J. Comput., 38(3):1175–1206, 2008.

37 Janaky Murthy, Vineet Nair, and Chandan Saha. Randomized polynomial-time equivalence
between determinant and trace-imm equivalence tests. Electronic Colloquium on Computational
Complexity (ECCC), 27:91, 2020.

38 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Symposium on Theory of Computing, STOC 1991, pages 410–418,
1991.

39 Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives.
Computational Complexity, 6(3):217–234, 1997.

40 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996.

41 Lajos Rónyai. Simple algebras are difficult. In Proceedings of the 19th Symposium on Theory
of Computing, STOC 1987, pages 398–408, 1987.

42 Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–373,
1990.

43 Lajos Rónyai. Algorithmic properties of maximal orders in simple algebras over Q. Computa-
tional Complexity, 2:225–243, 1992.

44 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2015.

45 Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Institute
of Technology, Kanpur, 2006.

46 Jean-Pierre Serre. A Course in Arithmetic. Springer-Verlag New York, 1973.
47 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open

questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
48 Thomas Thierauf. The isomorphism problem for read-once branching programs and arithmetic

circuits. Chicago J. Theor. Comput. Sci., 1998, 1998.
49 Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual ACM

Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages
249–261. ACM, 1979.

50 Lars Ambrosius Wallenborn. Computing the hilbert symbol, quadratic form equivalence and
integer factoring. Diploma thesis, University of Bonn, 2013.

	Introduction
	The results (stated formally)

	Notations and definitions
	Symmetries and Lie algebra of Tr-IMM
	Reduction from TRACE to DET: Proof of Theorem 1
	Reduction from TRACE-TI to DET

	Reduction from FMAI to MMTI: Proof of Theorem 2
	Characterization of Tr-IMM by its Lie algebra
	Proof of Theorem 2

