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Abstract
We prove that the power word problem for the solvable Baumslag-Solitar groups BS(1, q) = 〈a, t |
tat−1 = aq〉 can be solved in TC0. In the power word problem, the input consists of group elements
g1, . . . , gd and binary encoded integers n1, . . . , nd and it is asked whether gn1

1 · · · g
nd
d = 1 holds.

Moreover, we prove that the knapsack problem for BS(1, q) is NP-complete. In the knapsack problem,
the input consists of group elements g1, . . . , gd, h and it is asked whether the equation gx1

1 · · · g
xd
d = h

has a solution in Nd.
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1 Introduction

The power word problem. The study of multiplicative identities and equations has a long
tradition in computational algebra, and has recently been extended to the non-abelian case.
Here, the multiplicative identities we have in mind have the form gn1

1 gn2
2 · · · g

nd

d = 1, where
g1, . . . , gd are elements of a group G and n1, n2, . . . , nd ∈ N are non-negative integers (we
may also allow negative ni, but this makes no difference, since we can replace a gi by its
inverse g−1

i ). Typically, the numbers ni are given in binary representation, whereas the
representation of the group elements gi depends on the underlying group G. Here, we
consider the case where G is a finitely generated (f.g. for short) group, and elements of G
are represented by finite words over a fixed generating set Σ (the concrete choice of Σ is
not relevant). In this setting, the question whether gn1

1 gn2
2 · · · g

nd

d = 1 is a true identity has
been recently introduced as the power word problem for G [27]. It extends the classical word
problem for G (does a given word over the group generators represent the group identity?)
in the sense that the word problem trivially reduces to the power word problem (take an
identity w1 = 1). Recent results on the power word problem in specific f.g. groups are:

For every f.g. free group the power word problem belongs to deterministic logspace [27].
For the following groups the power word problem belongs to the circuit complexity class
TC0:1 f.g. nilpotent groups [27], iterated wreath products of f.g. free abelian groups and
(as a consequence of the latter) free solvable groups [11].

1 In this paper, TC0 always refers to the DLOGTIME-uniform version.
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67:2 Knapsack and the Power Word Problem in Solvable Baumslag-Solitar Groups

If G is a so-called uniformly efficiently non-solvable group (this is a large class of non-
solvable groups that was recently introduced in [3] and that includes all finite non-solvable
groups and f.g. free non-abelian groups) then the power word problem for the wreath
product G o Z is coNP-hard [11].

Historically, the power word problem appeared earlier in the area of computational (commut-
ative) algebra. Ge [16] proved that one can check in polynomial time whether an identity
αn1

1 αn2
2 · · ·α

nd

d = 1, where the ni are binary encoded integers and the αi are from an algebraic
number field (and suitable encoded), holds.

In this paper we investigate the power word problem for the solvable Baumslag-Solitar
group BS(1, q) for q ≥ 2 an integer. This group is usually defined as the finitely presented
group BS(1, q) = 〈a, t | tat−1 = aq〉. It has a nice matrix representation as the group of all
matrices of the form(

qk u

0 1

)
(1)

with k ∈ Z and u ∈ Z[1/q] a rational number with a finite q-ary expansion. Our first
main result is that the power word problem for BS(1, q) belongs to TC0. This generalizes
a corresponding result for the word problem of BS(1, q) from [35]; see also [22, 37]. Via
the above matrix embedding our result for the power word problem for BS(1, q) is directly
related to recent results on matrix powering problems [1, 14]. These problems can be quite
difficult to analyze. For instance, it is not known whether a certain bit of the (0, 0)-entry of
a matrix power An can be computed in polynomial time, when n is given in binary notation
and A is a (2× 2)-matrix over Z. The related problem of checking whether the (0, 0)-entry
(or any other entry) of An is positive can be solved in polynomial time by [14].

The knapsack problem. If one replaces in the power word problem the exponents ni by
pairwise different variables xi and the right-hand side 1 by an arbitrary group element h ∈ G,
one obtains a so-called knapsack equation gx1

1 gx2
2 · · · g

xd

d = h. The question, whether such
an equation has a solution in Nd is known as the knapsack problem for G. In the general
context of finitely generated groups the knapsack problem has been introduced by Myasnikov,
Nikolaev, and Ushakov [33]. As for the power word problem, this problem has been studied
in the commutative setting before. For the case G = Z one obtains a variant of the classical
NP-complete knapsack problem; a proof of the NP-hardness of our variant of the knapsack
problem for the integers can be found in [18]. For this hardness result it is important that
integers are represented in binary notation. For unary encoded integers the complexity of
the knapsack problem goes down to TC0. For the case that the gi are commuting matrices
over an algebraic number field, the knapsack problem has been studied in [2, 8].

For the case of (in general) non-commutative groups, the knapsack problem has been
studied in [9, 11, 13, 15, 23, 26, 29, 33]. In these papers, group elements are usually represented
by finite words over the generators (although in [29] a more succinct representation by so-
called straight-line programs is studied as well). Note that for the group Z this corresponds to
a unary representation of integers. Hyperbolic groups (which are of fundamental importance
in the area of geometric group theory) are an important class of groups where knapsack can
be decided in polynomial time (and even in LogCFL). This result can be extended to the class
of all groups that can be built from hyperbolic groups by the operations of (i) direct products
with Z and (ii) free products [29]. On the other hand, for many groups the knapsack problem
is NP-complete. Examples are certain right-angled Artin groups (like the direct product of
two free groups of rank two [29]), wreath products (e.g. the wreath product Z o Z [15]) and
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free solvable groups [11]. For wreath products G o Z, where G is finite non-solvable or free of
rank at least two, the knapsack problem is Σp2-complete [11]. Finally, for finitely generated
nilpotent groups, the knapsack problem is in general undecidable [15, 32].

Our second main result is that for the Baumslag-Solitar groups BS(1, q) with q ≥ 2 the
knapsack problem is NP-complete. This extends a result from [9], where decidability (without
any complexity bound) was shown for a restriction of the knapsack problem for BS(1, q).
In this restriction, all group elements gi must have the form (1) with k 6= 0. Showing
NP-hardness of the knapsack problem for BS(1, q) is easy (based on the result that knapsack
for Z with binary encoded integers is NP-hard). For membership in NP we use a recent result
of Guépin, Haase, and Worrell [17] according to which the existential fragment of Büchi
arithmetic (an extension of Presburger arithmetic) belongs to NP. The NP-membership of
the knapsack problem for BS(1, q) is a bit of a surprise, since one can show that minimal
solutions of knapsack equations over BS(1, q) can be of size doubly exponential in the length
of the equation, see Theorem 4.2. This rules out a simple guess-and-verify strategy.

2 Preliminaries

For a, b ∈ Z we write a | b if b = ka for some k ∈ Z. We denote with [a, b] the interval
{z ∈ Z | a ≤ z ≤ b}. With Z[1/q] we denote the set of all rational numbers that have finite
expansion in base q, i.e., the set of all numbers

∑
a≤i≤b riq

i with ri ∈ [0, q − 1] and a, b ∈ Z.
If u =

∑
−k≤i≤` riq

i 6= 0 with k, ` ≥ 0 and `+ k minimal, we define ‖u‖q = `+ k. Under the
assumption that q is a constant (which will be always the case in this paper), ‖u‖q is the
length of a suitable q-ary representation of u.

A Laurent polynomial is an ordinary polynomial that may also contain powers xk with
k < 0. Formally, a Laurent polynomial over Z is an expression P (x) =

∑
i∈Z aix

i with ai ∈ Z
such that only finitely many ai are non-zero. With Z[x, x−1] we denote the set of all Laurent
polynomials over Z; it is a ring with the natural addition and multiplication operations.

Complexity. We assume basic knowledge in complexity theory. We deal with the circuit
complexity class TC0. It contains all problems that can be solved by a family of threshold
circuits of polynomial size and constant depth. In this paper, TC0 always refers to the
DLOGTIME-uniform version of TC0. In this variant, TC0 is contained in deterministic
logspace. A precise definition of (DLOGTIME-uniform) TC0 is not needed for our work; see
[36] for details. All we need is that the following problems can be solved in TC0:
1. iterated addition and multiplication of binary encoded numbers and polynomials [10, 19],
2. division with remainder of binary encoded numbers [19],
3. computing the number |w|a of occurrences of a letter a in a word w,
4. computing an image h(w) where h : Σ∗ → Γ∗ is a homomorphism [24].
The results on binary numbers hold for any basis, since one can transform between binary
representation and q-ary representation; this is a consequence of the first two points.

Groups. We assume that the reader is familiar with the basics of group theory. Let G be a
group. We always write 1 for the group identity element. We say that G is finitely generated
(f.g.) if there is a finite subset Σ ⊆ G such that every element of G can be written as a
product of elements from Σ; such a Σ is called a (finite) generating set for G. We always
assume that a ∈ Σ implies a−1 ∈ Σ; such a generating set is also called symmetric. We write
G = 〈Σ〉 if Σ is a symmetric generating set for G. In this case, we have a canonical morphism
h : Σ∗ → G that maps a word over Σ to its product in G. If h(w) = 1 we also say that w = 1
in G. On Σ∗ we can define a natural involution ·−1 by (a1a2 · · · an)−1 = a−1

n · · · a−1
2 a−1

1 for
a1, a2, . . . , an ∈ Σ.

MFCS 2020
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Baumslag-Solitar groups. For p, q ∈ Z\{0}, the Baumslag-Solitar group BS(p, q) is defined
as the finitely presented group BS(p, q) = 〈a, t | tapt−1 = aq〉. We can w.l.o.g. assume that
q ≥ 1. Of particular interest are the Baumslag-Solitar groups BS(1, q) for q ≥ 2. They are
solvable and linear. It is well-known (see e.g. [39, III.15.C]) that BS(1, q) is isomorphic to
the subgroup T (q) of GL(2,Q) consisting of the upper triangular matrices(

qk u

0 1

)
(2)

with k ∈ Z and u ∈ Z[1/q]. This means we have the multiplication(
qk u

0 1

)(
q` v

0 1

)
=
(
q`+k u+ v · qk

0 1

)
. (3)

Let us define the morphism h : {a, a−1, t, t−1}∗ → T (q) by

h(a) =
(

1 1
0 1

)
and h(t) =

(
q 0
0 1

)
(4)

and h(a−1) = h(a)−1, h(t−1) = h(t)−1. Then h(w) is the identity matrix if and only if w = 1
in BS(1, q).

I Lemma 2.1. Given a word w ∈ {a, a−1, t, t−1}∗ we can compute in TC0 the matrix h(w)
with matrix entries given in q-ary encoding. Vice versa, given a matrix A ∈ T (q) with q-ary
encoded entries, we can compute in TC0 a word w ∈ h−1(A).

Proof. First consider a word w ∈ {a, a−1, t, t−1}∗ and let h(w) be the matrix in (2). Then k =
|w|t−|w|t−1 , which can be computed in TC0. It remains to compute the q-ary representation
of u. Let w1a

ε1 , . . . , wla
εl be all prefixes of w that end with a or a−1 (ε1, . . . , εl ∈ {−1, 1}). Let

ki = |wi|t−|wi|t−1 , which can be computed in TC0 in unary notation. Then, u =
∑l
i=1 εiq

ki ,
which can be easily computed in q-ary notation.

The inverse transformation is straightforward using the q-ary representation of a matrix
of the form (2): Note that since qk is given in q-ary representation, the integer k is implicitly
given in unary representation. A matrix of the form

( 1 qz

0 1
)
(for a unary encoded z) can be

produced by the word tzat−z. By concatenating such words (which is possible in TC0 by
point 4 from page 3), one can produce from a given q-ary encoded number u ∈ Z[1/q] a word
for the matrix ( 1 u

0 1 ). Finally, one has to concatenate tk on the right in order to get (2). J

By the previous lemma, we can represent elements of BS(1, q) either as words over the
alphabet {a, a−1, t, t−1} or by matrices from T (q) with q-ary encoded entries. For the matrix
A ∈ T (q) in (2) we define ‖A‖ = |k|+ ‖u‖q. Hence ‖A‖ is the length of the encoding of A.

A group that is closely related to BS(1, q) is the restricted wreath product Z o Z. It is
isomorphic to the group of all matrices(

xk P (x)
0 1

)
(5)

where k ∈ Z and P (x) ∈ Z[x, x−1] (see e.g. [31, Section 2.2]). It can be generated by

a =
(

1 1
0 1

)
and t =

(
x 0
0 1

)
.

In contrast to BS(1, q), the group is Z o Z not finitely presented [4]. Obviously we have:
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I Lemma 2.2. The mapping φq :
(
xc P (x)
0 1

)
7→
(
qc P (q)
0 1

)
is a surjective homomorphism

φq : Z o Z→ T (q) ∼= BS(1, q).

With our choice of generators a, t for Z o Z and BS(1, q) = 〈a, t | tat−1 = aq〉, the above
homomorphism φq satisfies φq(a) = a and φq(t) = t.

Knapsack and the power word problem. Let G = 〈Σ〉 be a f.g. group. Moreover, let
x1, x2, . . . , xd be pairwise distinct variables. A knapsack expression over G is an expression of
the form E = v0u

x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗ and non-empty words
u1, . . . , ud ∈ Σ∗. A tuple (n1, . . . , nd) ∈ Nd is a G-solution of E if v0u

n1
1 v1u

n2
2 v2 · · ·und

d vd = 1
in G. With solG(E) we denote the set of all G-solutions of E. The size of E is defined as
|E| =

∑d
i=1 |ui|+ |vi|. The knapsack problem for G, Knapsack(G) for short, is the following

decision problem:
Input A knapsack expression E over G.
Question Is solG(E) non-empty?
It is easy to observe that the concrete choice of the generating set Σ has no influence on
the decidability/complexity status of Knapsack(G). W.l.o.g. we can restrict to knapsack
expressions of the form ux1

1 ux2
2 · · ·u

xd

d v: for E = v0u
x1
1 v1u

x2
2 v2 · · ·uxd

d vd and

E′ = (v0u1v
−1
0 )x1(v0v1u2v

−1
1 v−1

0 )x2 · · · (v0 · · · vd−1udv
−1
d−1 · · · v

−1
0 )xdv0 · · · vd−1vd

we have solG(E) = solG(E′).
A power word (over Σ) is a tuple (u1, k1, u2, k2, . . . , ud, kd) where u1, . . . , ud ∈ Σ∗ are

words over the group generators and k1, . . . , kd ∈ Z are integers that are given in binary
notation. Such a power word represents the word uk1

1 uk2
2 · · ·u

kd

d . Quite often, we will identify
the power word (u1, k1, u2, k2, . . . , ud, kd) with the word uk1

1 uk2
2 · · ·u

kd

d . The power word
problem for the f.g. group G, PowerWP(G) for short, is defined as follows:
Input A power word (u1, k1, u2, k2, . . . , ud, kd).
Question Does uk1

1 uk2
2 · · ·u

kd

d = 1 hold in G?
Due to the binary encoded exponents, a power word can be seen as a succinct description of
an ordinary word. The size of the above power word w is

∑d
i=1 |ui|+ dlog2 kie which is the

length of the binary encoding of w.

3 Power word problem for BS(1,q)

In this section we prove our first main result:

I Theorem 3.1. For every q ∈ N with q ≥ 2, PowerWP(BS(1, q)) belongs to TC0.

For the proof we will first work in the wreath product Z o Z. Recall the homomorphism φq
from Lemma 2.2. The evaluation of a given power word over the group Z oZ leads to periodic
Laurent polynomials, which we consider first.

Periodic Laurent polynomials. Consider a Laurent polynomial P (x) =
∑
i∈Z aix

i ∈
Z[x, x−1]. We define its support supp(P ) = {i ∈ Z | ai 6= 0}. For f ≥ 1 we say that
P (x) is f-periodic on the interval [k, `] ⊆ Z if supp(P ) ⊆ [k, `] and ai = ai−f for all
k + f ≤ i ≤ `. Then we have

(1− xf ) · P (x) =
∑̀
i=k

(aixi − aixi+f ) =
k+f−1∑
i=k

aix
i −

`+f∑
i=`+1

ai−fx
i. (6)

MFCS 2020
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We have to work with periodic Laurent polynomials that consist of exponentially (with
respect to the size of the input power word) many monomials but where the period f is
polynomially bounded in the input size. Such a Laurent polynomial can be represented by
the first f coefficients together with the period f (in unary representation). We will always
use this representation when dealing with periodic Laurent polynomials.

I Lemma 3.2. Let k, ` ∈ Z and P1(x), . . . , Pm(x) ∈ Z[x, x−1] be Laurent polynomials such
that Pi is fi-periodic on [k, `] and let f :=

∑
1≤i≤m fi. Then we can compute in TC0 Laurent

polyomials S(x), L(x) and R(x) with the following properties:
S(x) ·

∑m
i=1 Pi(x) = L(x) +R(x),

supp(S) ⊆ [0, f ] (hence, S is an ordinary polynomial of degree at most f),
supp(L) ⊆ [k, k + f − 1],
supp(R) ⊆ [`+ 1, `+ f ], and
S(q) 6= 0 for every q ∈ N \ {1}.

Proof. By (6) there exist polynomials Li(x) and Ri(x) such that for all i ∈ [1,m]:
(1− xfi) · Pi(x) = Li(x) +Ri(x),
supp(Li) ⊆ [k, k + fi − 1], and
supp(Ri) ⊆ [`+ 1, `+ fi].

Moreover, the Li(x) and Ri(x) are clearly computable in TC0 from the Pi(x). With S(x) :=∏
1≤i≤m(1− xfi) and S̃i(x) :=

∏
j 6=i(1− xfj ) we get

S(x) ·
m∑
i=1

Pi(x) =
m∑
i=1

S(x) · Pi(x) =
m∑
i=1

S̃i(x)Li(x) +
m∑
i=1

S̃i(x)Ri(x).

Let us set L(x) =
∑m
i=1 S̃i(x)Li(x) and R(x) =

∑m
i=1 S̃i(x)Ri(x). We then get supp(S) ⊆

[0, f ], supp(L) ⊆ [k, k + f − 1], and supp(R) ⊆ [` + 1, ` + f ]. Since iterated addition and
multiplication of polynomials is in TC0, we can compute the polynomials L(x) and R(x) in
TC0. The fact that we are dealing with Laurent polynomials does not cause any problems here.
Formally, one can multiply all polynomials by suitable powers of x in order to get ordinary
polynomials, then add/multiply all polynomials and finally multiply by the appropriate
negative power of x. J

Proof sketch of Theorem 3.1. Let us now consider a Baumslag-Solitar group BS(1, q)
with q ≥ 2 and the surjective homomorphism φq : Z o Z → BS(1, q). Let us write
χ : {a, a−1, t, t−1}∗ → Z o Z for the canonical monoid morphism that maps a word w ∈
{a, a−1, t, t−1}∗ to the group element of Z o Z represented by w.

Consider a power word w = uz1
1 u

z2
2 · · ·u

zd

d with ui ∈ {a, a−1, t, t−1}∗ and let n be the size
of w. In the first step we compute a suitable representation of the group element χ(w) ∈ Z oZ.
Based on this representation we check in the second step whether φq(χ(w)) = 1 in BS(1, q).

Step 1. The first step follows [27, 28], where it was shown that PowerWP(Z o Z) is in
TC0. Let

χ(w) =
(
xc P (x)
0 1

)
.

The integer c can be computed in TC0; this is just iterated addition. If c 6= 0, then
φq(χ(w)) 6= 1 and we can reject. Hence, let us assume that c = 0. Clearly, we cannot
compute the Laurent polynomial P (x) in polynomial time; it could be a sum of exponentially
many monomials. Nevertheless we can compute a certain implicit representation of P (x). In
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more detail, we compute from the power word w in TC0 polynomially many binary-encoded
integers c0 < c1 < · · · < cm with m odd such that supp(P ) ⊆ [c0, cm−1]. Hence, the Laurent
polynomial P (x) can be written as

P (x) =
∑

c0≤i<cm

aix
i.

By conjugating the power word w with a large enough power of t, we can assume that c0 = 0.
Hence P (x) ∈ Z[x]. Moreover, if we define the polynomials

Pj(x) =
∑

cj≤i<cj+1

aix
i

(so that P (x) = P0(x) + P1(x) + · · ·+ Pm−1(x)) then we get the following from [28]:
For every even j, the polynomial Pj can be computed explicitly in TC0. In particular,
this means that cj+1 − cj must be bounded by poly(n). The coefficients of Pj are of
magnitude exp(n), hence they will be computed in binary notation.
For every odd j, the polynomial Pj is a sum of at most d polynomials Pj,1, . . . , Pj,dj

,
where for all 1 ≤ ` ≤ dj , Pj,` is fj,`-periodic on the interval [cj , cj+1 − 1] for some
fj,` ≤ n. All coefficients of Pj,` are bounded by n too. We can then compute in TC0 for
all 1 ≤ ` ≤ dj the period fj,` (in unary notation) and the fj,` first coefficients of Pj,`.
These data uniquely represent Pj .

We refer to the full version [30] for a brief summary of the arguments from [28].

Step 2. Using the data that was computed in the first step, it remains to verify in TC0

that P (q) =
∑m−1
i=0 Pi(q) = 0. From the polynomials Pj,` and their periods fj,` we can by

Lemma 3.2 compute in TC0 for every odd j polyomials Sj(x), Lj(x) and Rj(x) with the
following properties, where fj =

∑dj

`=1 fj,`:
Sj(x) · Pj(x) = Lj(x) +Rj(x),
supp(Sj) ⊆ [0, fj ]
supp(Lj) ⊆ [cj , cj + fj − 1],
supp(Rj) ⊆ [cj+1, cj+1 + fj − 1], and
Sj(q) 6= 0.

Let pj = q−cjPj(q) (an integer) for j ∈ [0,m − 1] and sj = Sj(q) (a non-zero integer) for
every odd j ∈ [1,m− 2]. We can compute in TC0 for every odd j ∈ [1,m− 2] the integer sj
as well as the integers `j = q−cjLj(q) and rj = q−cj+1Rj(q) in binary representation. For
every even j ∈ [0,m− 1] we can compute in TC0 the binary representation of the integer pj .
For all odd j we have

qcjsjpj = qcj `j + qcj+1rj . (7)

To streamline the presentation, we define r−1 = `m = 0 and s−1 = sm = 1. We can also
compute an upper bound e ∈ N for the absolute value of the coefficients ai in the polynomial
P (x). This number e is of size exp(n) and we can compute in TC0 its binary representation.

For a position i ∈ [0, cm] let carry(i) be the carry that arrives in position i when we
compute the q-ary expansion of P (q). Formally, it can be defined by

carry(i) =
⌊ ∑

0≤j<i
ajq

j−i
⌋
· qi.

MFCS 2020
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Clearly, carry(0) = 0. Moreover, we can bound the absolute value |carry(i)| by

|carry(i)| =
∣∣∣∣⌊ ∑

0≤j<i
ajq

j−i
⌋
· qi
∣∣∣∣ ≤ e · ∑

0≤j<i
qj < e · qi.

Let us write carry(cj) = qcjγj for an integer γj satisfying |γj | < e. Then for every odd
j ∈ [1,m− 2] we get from (7)

(qcjpj + carry(cj)) · sj = qcj `j + carry(cj)sj + qcj+1rj = qcj (`j + γj · sj) + qcj+1rj . (8)

The following claim follows directly from the definition of the carries:

Claim 1. P (q) = 0 if and only if the following two properties hold:
(A) qcj+1 | (qcjpj + carry(cj)) for all 0 ≤ j ≤ m− 1, and
(B) carry(cm) = 0.
Hence, for every 0 ≤ j ≤ m − 1 we have to compute pj + q−cj carry(cj) = pj + γj , whose
absolute value is bounded by |pj |+ e. There are two problems: If j is odd then we cannot
compute pj explicitly (it may have exponentially many bits). Moreover, we do not know
carry(cj). In order to solve these problems, we start with some preprocessing.

Preprocessing. We merge an interval [cj , cj+1−1] with j odd with the neighboring (polyno-
mially long) intervals [cj−1, cj−1] and [cj+1, cj+2−1] (if they exist) in case the interval length
cj+1−cj satisfies qcj+1−cj ≤ |`j |+e · |sj |. Note that this implies cj+1−cj ≤ logq(|`j |+e · |sj |)
which is of size poly(n). Hence, we can compute in TC0 the polynomial Pj(x) explicitly,
which allows us to add to Pj(x) the neighboring polynomials Pj−1(x) and Pj+1(x) (that
have been computed explicitly before). In fact this merging might happen for a block of
more than three consecutive polynomials Pj(x).

After this preprocessing, we can assume that for every odd j ∈ [1,m− 2] we have qcj+1−cj >

|`j |+ e · |sj |. For the absolute value of the term qcj · (`j + γj · sj) in (8) we then obtain

qcj · |`j + γj · sj | ≤ qcj · (|`j |+ |γj | · |sj |) < qcj · (|`j |+ e · |sj |) < qcj+1 . (9)

With (8), this implies that if `j + γj · sj 6= 0 then (qcjpj + carry(cj)) · sj is not a multiple of
qcj+1 . Hence, also qcjpj + carry(cj) is not a multiple of qcj+1 , which implies P (q) 6= 0 by (A).
In summary, the preprocessing makes the term `j + γj · sj in (8) vanish for odd j ≥ 1 in case
P (q) = 0. In particular, this lets us express qcjpj + carry(cj) in terms of qcj+1 , rj , and sj .

We now state the following main claim, which directly implies that P (q) = 0 can be
checked in TC0 (for this, we use the seminal result of Hesse et al. [19] according to which
integer division is in TC0).

Claim 2. P (q) = 0 if and only if the following conditions hold.
(a) sj | rj for every odd 1 ≤ j ≤ m− 2 (for j = −1 this holds by definition of r−1 and s−1),
(b) qcj+2−cj+1 | (pj+1 + rj/sj) for every odd −1 ≤ j ≤ m− 2,
(c) `j+2 + qcj+1−cj+2(pj+1 + rj/sj)sj+2 = 0 for every odd −1 ≤ j ≤ m− 2,

The proof is based on equations (8) and (9). For the only-if-direction (where we start with
P (q) = 0) we must have `j + γj · sj = 0 for all odd j ≥ 1 by the remark after (9). From this
and Claim 1 one can easily deduce properties (a)–(c). Vice versa, from (a)–(c) one can show
Claim 1(A) by induction over j ≥ 0. For this one proves simultaneously over j the following
auxiliary statements:
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(C) carry(cj) = qcjrj−1/sj−1 for even j ∈ [0,m− 1],
(D) carry(cj) = qcj−1(pj−1 + rj−2/sj−2) for odd j ∈ [1,m].
Claim 1(B) then follows directly from (c) (for j = m− 2) and (D) (for j = m). Full details
can be found in the long version [30]. J

4 Knapsack for BS(1,q)

Whether the knapsack problem is decidable for BS(1, q) was left open in [9]. Our second
main result gives a positive answer and also settles the computational complexity:

I Theorem 4.1. For every q ≥ 2, Knapsack(BS(1, q)) is NP-complete.

Let us first remark that BS(1, q) is unusual in terms of its knapsack solution sets. In almost
all groups where knapsack is known to be decidable, knapsack equations have semilinear
solution sets [11, 12, 15, 23, 26, 29]. After the discrete Heisenberg group [23], the groups
BS(1, q) are only the second known example where this is not the case: The knapsack
equation t−x1ax2tx3 = a has the non-semilinear solution set {(k, qk, k) | k ∈ N}.

Another unusual aspect is that knapsack is in NP although there are knapsack equations
over BS(1, 2) whose solutions are all at least doubly exponential in the size of the equation:

I Theorem 4.2. There is a family Ek = Ek(x, y, z), k ≥ 1, of solvable knapsack expressions
over BS(1, 2) such that |Ek| = Θ(k) and z ≥ (22·3k−1 −1)/3k−1 for every solution of Ek = 1.

Proof. It is a well-known fact in elementary number theory that 2 is a primitive root
modulo 3k for every k ≥ 1. See, for example, Theorem 3.6 and the remarks before Theorem 3.8
in [34]. Consider the knapsack equation(

2 0
0 1

)x(1 1
0 1

)(
2−1 0
0 1

)y (1 −3k
0 1

)z
=
(

1 3k + 1
0 1

)
(10)

in BS(1, 2). In the top-left entry, it implies 2x2−y = 20. Therefore, we must have x = y in
every solution. In this case, the left-hand side of Equation (10) is(

2x 0
0 1

)(
1 1
0 1

)(
2−x 0

0 1

)(
1 −z3k
0 1

)
=
(

1 2x − z · 3k
0 1

)
.

Therefore, Equation (10) is equivalent to x = y and 2x − z · 3k = 3k + 1. Since some
non-zero power of 2 is congruent to 1 modulo 3k, Equation (10) has a solution. Moreover,
any solution must satisfy 2x ≡ 1 (mod 3k). Since 2 is a primitive root modulo 3k, i.e.,
2 generates the group (Z/3kZ)∗ (the group of units of Z/3kZ), x must be a multiple of
|(Z/3kZ)∗| = ϕ(3k) = 2 · 3k−1 (here, ϕ is Euler’s phi-function). Moreover, x must be
non-zero, because 1− z · 3k = 3k + 1 is not possible for z ∈ N. We obtain x ≥ 2 · 3k−1. Since
2x − z · 3k = 3k + 1, this yields z = (2x − 3k − 1))/3k ≥ (22·3k−1 − 1)/3k − 1. J

I Remark 4.3. Subject to Artin’s conjecture on primitive roots [20], a similar doubly-
exponential lower bound results for every BS(1, q) where q ≥ 2 is not a perfect square.
Moreover, Theorem 4.2 holds even if the variables x, y, z range over Z. For this, one replaces
3k + 1 with the inverse of 2 in (Z/3kZ)∗.
Theorem 4.2 rules out a simple guess-and-verify strategy to show Theorem 4.1. If one has
an exponential upper bound (in terms of input length) on the size of a smallest solution
of a knapsack equation, then one can guess the binary representation of a solution and

MFCS 2020
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verify, using the power word problem, whether the guess is indeed a solution. The second
step (verification of a solution using the power word problem) would work for BS(1, q) in
polynomial time due to Theorem 3.1, but the first step (guessing a binary encoded candidate
for a solution) does not work for BS(1, 2) due to Theorem 4.2.

Our main tool for the proof of Theorem 4.1 is a recent result from [17] concerning the
existential fragment of Büchi arithmetic.

Büchi arithmetic. Büchi arithmetic [7] is the first-order theory of (Z,+,≥, 0, Vq). Here, Vq
is the function that maps n ∈ Z to the largest power of q that divides n. It is well-known
that Büchi arithmetic is decidable (this was first claimed in [7]; a correct proof was given
in [5]). We will rely on the following recent result of Guépin, Haase, and Worrell [17]:

I Theorem 4.4 (c.f. [17]). The existential fragment of Büchi arithmetic belongs to NP. 2

We will also make use of the following simple lemma:

I Lemma 4.5. Given the q-ary representation of a number r ∈ Z[1/q] we can construct in
polynomial time an existential Presburger formula over (Z,+) of size O(‖r‖q) which expresses
y = r · x for x, y ∈ Z.

Proof. Let r =
∑
−k≤i≤` aiq

i with k, ` ≥ 0 and 0 ≤ ai < q for −k ≤ i ≤ `. We have y = rx

if and only if qky = r′x for r′ =
∑k+`
i=0 ai−kq

i ∈ Z. Using iterated multiplication with the
constant q (which can be replaced by addition) we can easily define from x and y the integers
qky and r′x by Presburger formulas of size O(k + `) = O(‖r‖q). J

Proof of Theorem 4.1. We start with the lower bound. The multisubset sum problem
asks for integers a1, . . . , ad, b ∈ Z given in binary, whether there exist natural numbers
x1, . . . , xd ≥ 0 with x1a1 + · · ·+ xdad = b. It is known to be NP-complete [18]. Since the
knapsack equation(

1 a1
0 1

)x1

· · ·
(

1 ad
0 1

)xd

=
(

1 b

0 1

)
is equivalent to x1a1 + · · · + xdad = b, we obtain NP-hardness of knapsack over BS(1, q).
Note that computing the q-ary representation of ai from the binary representation is possible
in logspace (even in TC0).

For the upper bound we reduce Knapsack(BS(1, q)) to the existential fragment of Büchi
arithmetic, which belongs to NP by Theorem 4.4. We proceed in three steps.

Step 1: Expressing Mg and M∗
g using S`. We first express a particular set of binary

relations using existential first-order formulas over (Z,+,≥, 0, Vq, (S`)`∈Z). Here, for ` ∈ Z,
S` is the binary predicate with

xS`y ⇐⇒ ∃r ∈ N ∃s ∈ N : x = qr ∧ y = qr+`·s.

Let TZ(q) denote the subset of matrices in T (q) that have entries in Z. We represent the
matrix (m n

0 1 ) ∈ TZ(q) by the pair (m,n) ∈ Z× Z (note that we must have m ∈ N). Observe
that we can define the set of pairs (m,n) ∈ Z such that (m n

0 1 ) ∈ TZ(q), because this is
equivalent to m being a power of q, which is expressed by 1S1m.

2 The paper [17] shows an NP upper bound for the structure (N, +, 0, Vq), but an existential sentence
over the structure (Z, +,≥, 0, Vq) easily translates into one over (N, +, 0, Vq).
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A key trick is to express solvability of a knapsack equation gx1
1 · · · g

xd

d = g without
introducing variables in the logic for x1, . . . , xd. Instead, we employ the binary relations Mg

and M∗g on TZ(q), which allow us to express existence of powers implicitly. For g ∈ T (q) and
x, y ∈ TZ(q), we have:

xMgy ⇐⇒ y = xg,
xM∗g y ⇐⇒ ∃s ∈ N : y = xgs.

We construct existential formulas of size polynomial in ‖g‖ over (Z,+,≥, 0, Vq, (S`)`∈Z),
which define the relations Mg and M∗g . Let g =

(
q` v
0 1

)
.

Note that the relation Mg is easily expressible because we can express multiplication
with q` and v by Presburger formulas of length ‖g‖, see Lemma 4.5. We now focus on the
relations M∗g . Observe that for ` 6= 0, we have(

qk u

0 1

)(
q` v

0 1

)s
=
(
qk u

0 1

)(
q`s v + q`v + · · ·+ q(s−1)`v

0 1

)
=
(
qk u

0 1

)(
q`s v q

`s−1
q`−1

0 1

)
=
(
qk+`s u+ v q

k+`s−qk

q`−1
0 1

)
.

Therefore,
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
is equivalent to

∃x ∈ Z ∃s ∈ N : qm = qk+`s ∧ w = u+ vx ∧ (q` − 1)x = qm − qk.

Here, we can quantify x over Z, because qk+`s−qk

q`−1 is always an integer. Note that since we
can express multiplication with v and q` by Presburger formulas of size O(‖g‖) (Lemma 4.5),
we can also express w = u+ vx and (q` − 1)x = qm − qk by formulas of size O(‖g‖). Finally,
we can express ∃s ∈ N : qm = qk+`s using qkS`qm.

It remains to express
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
in the case ` = 0. Note that gs = ( 1 sv

0 1 ) in

this case. Therefore, we have
(
qk u
0 1

)
M∗g
(
qm w
0 1

)
if and only if (i) there exists s ∈ N with

w = u+ qk · s · v and (ii) qm = qk. Note that condition (i) is equivalent to ∃t ∈ N : Vq(t) ≥
qk ∧w = u+ v · t. This is because choosing t = qk · s yields (i). By Lemma 4.5, w = u+ v · t
can be expressed by a formula of size O(‖g‖).

Step 2: Expressing S` using Vq. In our second step, we show that the binary relations Mg

and M∗g can be expressed using existential formulas over (Z,+,≥, 0, Vq) of size poly(‖g‖).
As shown above, for this it suffices to define S` by an existential formula over (Z,+,≥, 0, Vq)
of size poly(`) (note that the relations S` occur only positively in the formulas from Step 1).
For m ∈ N, let Pm be the predicate where Pm(x) states that x is a power of m. We first
claim that for each ` ≥ 0, we can express Pq` using an existential formula of size polynomial
in ` over (Z,+,≥, 0, Vq). The case ` = 0 is clear and Pq(x) is just Vq(x) = x. The following
observation is from the proof of Proposition 7.1 in [6].

I Fact 4.6. For all ` ≥ 1, Pq`(x) if and only if Pq(x) and q` − 1 divides x− 1.

Proof. If x is a power of q`, then x = q`·s for some s ≥ 0. So, x is a power of q. Moreover,
(x− 1)/(q` − 1) = (q`·s − 1)/(q` − 1) =

∑s−1
i=0 q

i` is an integer.
Conversely, suppose x is a power of q and q` − 1 divides x − 1. Write x = q`·s+r with

0 ≤ r < `. Observe that x− 1 = qs`+r − 1 = qr(qs` − 1) + (qr − 1). Since q` − 1 divides x− 1
as well as qs` − 1, we conclude that q` − 1 divides qr − 1. As 0 ≤ r < `, this is only possible
with r = 0. This shows the above fact. J
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Using the predicates Pq` , we can now express S`. Note that for ` ≥ 0, we have xS`y if and
only if y ≥ x ∧

∨`−1
i=0 Pq`(qix) ∧ Pq`(qiy). Furthermore, for ` < 0, we have xS`y if and only if

yS|`|x. Therefore, we can express each S` using an existential formula of size polynomial in `
over (Z,+,≥, 0, Vq). Hence, we can express Mg and M∗g using existential formulas of size
poly(‖g‖) over (Z,+,≥, 0, Vq).

Step 3: Expressing solvability of knapsack. In the last step, we express solvability of
a knapsack equation by an existential first-order sentence over (Z,+,≥, 0, Vq), using the
predicates Mg and M∗g . We claim that gx1

1 · · · g
xd

d = g has a solution (x1, . . . , xd) ∈ Nd if and
only if there exist h0, . . . , hd ∈ TZ(q) with

h0M
∗
g1
h1 ∧ h1M

∗
g2
h2 ∧ · · · ∧ hd−1M

∗
gd
hd ∧ h0Mghd. (11)

Clearly, the claim implies that solvability of knapsack equations can be expressed in existential
first-order logic over (Z,+,≥, 0, Vq).

If such h0, . . . , hd exist, then for some x1, . . . , xd ∈ N, we have hi = hi−1g
xi
i and hd = h0g,

which implies gx1
1 · · · g

xd

d = g. For the converse, we observe that for each matrix A ∈ T (q),
there is some large enough k ∈ N such that

(
qk 0
0 1

)
A has integer entries. Therefore, if

gx1
1 · · · g

xd

d = g, then there is some large enough k ∈ N so that for every i = 1, . . . , d, the
matrix

(
qk 0
0 1

)
gx1

1 · · · g
xi
i has integer entries. With this, we set h0 =

(
qk 0
0 1

)
and hi = hi−1g

xi
i

for i = 1, . . . , d. Then we have h0, . . . , hd ∈ TZ(q) and Equation (11) is satisfied. J

5 Open problems

Several open problems arise from our work:
What is the complexity/decidability status of the power word/knapsack problem for
Baumslag-Solitar groups BS(p, q) = 〈a, t | tapt−1 = aq〉 for p > 1? Decidability of
knapsack in case gcd(p, q) = 1 was shown in [9], but the complexity as well as the
decidability in case gcd(p, q) > 1 are open. Since the word problem for BS(p, q) can be
solved in logspace [38], one can easily show that the power word problem for BS(p, q)
belongs to PSPACE. By using techniques from [27] one might try to find a logspace
reduction from the power word problem for BS(p, q) to the word problem for BS(p, q) (the
same was done for a free group in [27]); this would show that the power word problem
for BS(p, q) can be solved in logspace.
Baumslag-Solitar groups BS(1, q) are examples of f.g. solvable linear groups. In [22] it
was shown that for every f.g. solvable linear group the word problem can be solved in
TC0. This leads to the question whether for every f.g. solvable linear group the power
word problem belongs to TC0.
The power word problem is a restriction of the compressed word problem, where it is asked
whether the word produced by a so-called straight-line program (a context-free grammar
that produces a single word) represents the group identity; see [25]. The compressed
word problem for BS(1, q) belongs to coRP (the complement of randomized polynomial
time); this holds in fact for every f.g. linear group [25]. No better complexity bound is
known for the compressed word problem for BS(1, q).
Let us define an exponent expression over a f.g. group G = 〈Σ〉 as a formal expression E =
v0u

x1
1 v1u

x2
2 v2 · · ·uxd

d vd with d ≥ 1, words v0, . . . , vd ∈ Σ∗, non-empty words u1, . . . , ud ∈
Σ∗, and variables x1, . . . , xd. In contrast to knapsack expressions, we allow xi = xj for
i 6= j in an exponent expression. The set of solutions solG(E) for the exponent expression
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E can be defined analogously to knapsack expressions. We define solvability of exponent
equations over G, ExpEq(G) for short, as the following decision problem:
Input A finite list of exponent expressions E1, . . . , En over G.
Question Is

⋂n
i=1 solG(Ei) non-empty?

This problem has been studied for various groups [11, 15, 26, 29]. Our algorithm for the
knapsack problem in BS(1, q) cannot be extended to solvability of exponent equations (not
even to solvability of a single exponent equation). Recently, it has been shown that the
Diophantine theory (or, equivalently, solvability of systems of word equations) is decidable
for BS(1, q) [21]. Since every element of BS(1, q) can be written in the form txaytz for
x, y, z ∈ Z, one can easily reduce the Diophantine theory of BS(1, q) to solvability of
exponent equations for BS(1, q). But it is not clear at all, whether a reduction in the
opposite direction exists as well.
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